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Abstract—In this paper we present a new approach for 

linear Volterra integral equations that is based on optimal 

control theory. Some optimal control problems 
corresponding Volterra integral equation be introduced 

which we solve these problems by discretization methods 

and linear programming approaches. Finally, some 

examples are given to show the efficiency of approach. 
 

Index Terms —Volterra integral equations, Optimal control, 

Linear programming. 

I. INTRO DUCTIO N 

Volterra integral equations arise in many physical 

applications, e.g., potential theory and Dirichlet  problems 

and electrostatics. Also, Volterra integral equations are 

applied in the biology, chemistry, engineering, 

mathematical problems of radiat ion equilibrium, the 

particle transport problems of astrophysics and reactor 

theory, and radiation heat transfer problems [1,2,3,4,5]. 

There exist the some valid approximate and numerical 

methods for solving Volterra integral equation such as 

Adomian decomposition method [6], Walsh functions 

method and mult igrid approach [7, 8], Bernstein 

Polynomials  method [9], collocation method 

[10,11,12,13,14,15], Langrange interpolation method [16], 

Taylor-series expansion method [17,18,19], classical 

Neumann-series method [20], spectral methods 

[21,22,23,24,25,26,27], finite element method [28] , Sinc 

method [29,30], Galerkin method [31,32], wavelet 

approach [33], block-by-block method [34] and 

homotopy analytic method [35,36,37,38,39]. 

In this paper, we present a d ifferent approach from above 

methods for solving linear volterra integral equations 

which is based on the optimal control theory [40,41,42].  

Consider the following linear Volterra integral equations 

of second kind:  

( ) ( ) ( , ) ( ) , [ , ],  
x

a
y x x g x t y t dt x a b   (1)    

where a  and b are constant, functions (.,.)g  and (.)  

are continuously differentiable with respect to x . In 

equation (1), functions (.)  and (.,.)g  are known and 

(.)y  is an unknown function. We assume that equation 

(1) have a solution.  

The structure of this paper is as follows: Section 2 shows 

that solving Volterra integral equation (1) is equivalent to 

solve several optimal control problems. In section 3, a 

discretizat ion method is applied to convert the problem to 

the corresponding linear programming problem. In  

section 4, the applicability of the approach is illustrated in 

several examples in which the computed results are 

compared with the exact solution. Section 5, gives the 

conclusion of this paper.    

 

II. Optimal control problems 

In this section, we are going to introduce some optimal 

control problems corresponding Volterra integral 

equation (1). Let 





g
p

x
. By using Leibnitz rule for 

derivatives we have: 

            
( , ) ( ) ( , ) ( )

( , ) ( ) .









x

x

a

a

d
g x t y t dt g x x y x

dx

p x t y t dt

      (2) 

Also from equation (2) and differentiating both sides of 

(1) respect to x  we have: 

          

( ) ( ) ( , ) ( )

( , ) ( ) , [ , ],

  

 
x

a

y x x g x x y x

p x t y t dt x a b


     (3) 

Now let  [ , ]x a b  be an arb itrary  given number. We 

define the following problem: 

 

(4)

(5)

(6)

( ) ( ) ( , ) ( ) ( ) , [ , ]

( ) ( , ) ( ) 0, [ , ]

( ) ( ), ( ) 0.

    


   


 


z

a

y z z g z z y z v z z a x

v t p z t y t dt z a x

y a a v a





 

Theorem II.1: Let [ , ]x a b  be an arbitrary number and 

 (.), (.) y v  be solution of prob lem (4)-(6). Then we 

have:  

          ( ) ( ) ( , ) ( ) .   
x

a
y x x g x t y t dt               (7) 

Proof: Let [ , ]x a b . By init ial conditions (6) and  

equation (5), we obtain  

     
( ) ( , ) ( ) , [ , ]  

z

a
v z p z t y t dt z a x              (8). 

So, by using equation (8) and (4), we take    
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( ) ( ) ( , ) ( )

( , ) ( ) , [ , ]

 



 

 
z

a

y z z g z z y z

p z t y t dt z a x


 

Hence  

 ( ) ( ) ( , ) ( )
   

z

a

d
y z z g z t y t dt

dz
 ,  [ , ].z a x                                   

By integrating both sides of above equation on [ , ]a x  

and conditions (6), we obtain the equation (7).□ 

Now, let [ , ]x a b  be an arb itrary g iven number and  

define the following optimal control problem: 

      

1

1

2

2

( ) ( , ) ( ) ( ) ( )

( ) ( ) , [ , ]

( ) ( ) , [ , ]

( , , ) 0, [ , ]

( ) ( ), ( ) 0,

   

  

  

 

 


x

a

Minimize

subject  to

t g t t y t v t u t dt

y t u t t a x

v t u t t a x

r t y u t a x

y a a v a





     (9) 

where  (.), (.)y v and  1 2
(.), (.)u u are state and control 

variables, respectively, and for [ , ]t a x   

        2 2
( , , ) ( ) ( , ) ( ) . 

t

a
r t y u u w p t w y w dw     (10) 

Theorem II.2: Let [ , ]x a b  be an arbitrary g iven 

number and pairs  (.), (.) y v and  1 2
(.), (.) u u  be 

optimal state and control of the problem (9), respectively. 

Then function (.)y satisfies equation (7). 

Proof: Assume that [ , ]x a b  is an arbitrary given  

number. By theorem II.1, it is sufficient that we show pair 

 (.), (.) y v  is the solution of problem (4)-(6).  Define 

the following problem corresponding to the problem (9):

                         

 

( , ) ( ) ( , ) ( ) ( ) ( ) (11)

( ) ( , ) ( ) 0, [ , ] (12)

( ) ( ), ( ) 0. (13)

    

   

 





x

a

t

a

J y v t g t t y t v t y t dt

subject to

v w p t w y w dw t a x

y a a v a

Minimize





 

Now, let (.) (.)y y  be the solution of the equation (1),  

and (.) (.)v v  satisfies equation (12) where 

(.) (.)y y . It is trivial that pair  (.), (.) y v  satisfies 

init ial conditions (13) and ( , ) 0J y v . On other hand, 

since  (.), (.) y v  and  1 2
(.), (.) u u  are optimal 

solutions of problem (9), pair  (.), (.) y v  is the 

optimal solution of the problem (11)-(13) and we have 

( , ) 0  J y v . Thus  

    ( ) ( , ) ( ) ( ) ( ) 0.
     

x

a
z g z z y z v z y z dt  

Hence  

( ) ( ) ( , ) ( ) ( )
     y t t g t t y t v t .  

Moreover, equation (5) and initial conditions (6) hold for 

pair  (.), (.) y v . Thus, pair  (.), (.) y v  is the 

solution of the problem (4)-(6) and this completes     

proof. □ 

Now let n be a given large number. Set 
0
x a , 




b a
h

n
 and  

j
x a jh  for 1,2,..., .j n  The 

corresponding optimal control problem (9) for 
j

x x , 

1,2,...,j n  is as follows: 

      

1

1

2

2

( ) ( , ) ( ) ( ) ( )

( ) ( ) , [ , ]

( ) ( ) , [ , ]

( , , ) 0, [ , ]

( ) ( ), ( ) 0,

   

  

  

 

 


jx

a

j

j

j

Minimize

t g t t y t v t u t dt

subject  to

y t u t t a x

v t u t t a x

r t y u t a x

y a a v a





  (14) 

where r (.,.,.) is defined by (10). We rewrite problem (14) 

for 1,2,...,j n  as follows: 

   

1
1

1

1 1

2 1

2 1

0 0 0

( ) ( , ) ( ) ( ) ( )

( ) ( ) , [ , ], 1,2,...,

( ) ( ) , [ , ], 1,2,...,

( , , ) 0, [ , ], 1,2,...,

( ) ( ), ( ) 0.









   

   

   

  

 


k

k

j
x

x
k

k k

k k

k k

t g t t y t v t u t dt

subject  to

y t u t t x x k j

v t u t t x x k j

r t y u t x x k j

y x x v x

Minimize





  (15)      

By assumption  

   
1

( ) ( ) ( , ) ( ) ( ) ( )   t t g t t y t v t u t  , [ , ]t a b  

the problems (15) fo r all 1,2,...,j n  is equivalent to 

the following multi-objective programming problem: 

   

 
1 1 2

0 0 1

1 2

0 1 1

16

{ ( ) , ( ) ( ) ,

..., ( ) ( ) ... ( ) }




  

  

  
n

n

x x x

x x x

x x x

x x x

z dz z dz z dz

z dz z dz z dz

Minimize

  

  

 

  

1 1

2 1

2 1

0 0 0

( ) ( ) , [ , ],

( ) ( ) , [ , ],

( , , ) 0, [ , ],

( ) ( ), ( ) 0,

1,2,..., , 1, 2,..., .







  

  

 

 

 

k k

k k

k k

subject  to y t u t t x x

v t u t t x x

r t y u t x x

y x x v x

k j j n



 

By multi-objective programming methods (see [43]), we  
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can use the following problem instead of problem (16):  

   
11

1 1

2 1

2 1

0 0 0

(17)?

(18)

(19)

(20)

(21)

( 1) ( )

( ) ( ) , [ , ], 1,2,...,

( ) ( ) , [ , ], 1,2,..., ,

( , , ) 0, [ , ], 1,2,...,

( ) ( ), ( ) 0.









  

   

   

  

 

 
k

k

n x

x
k

k k

k k

k k

Minimize

J n k z dz

subject to

y t u t t x x k n

v t u t t x x k n

r t y u t x x k n

y x x v x





                                                                      

Define the following problem for 1,2,...,k n : 

    

1

1 (22)( ) ( )


   
k

k

x

k
x

Minimize

J n k z dz
 

    

1 1

2 1

1 2 1

[ 1] [ 1]

1

(23)

(24)

(25)

(26)

( ) ( ) , [ , ],

( ) ( ) , [ , ],

( , , ) 0, [ , ],

( ) , ( ) .





 

 



  

  

 

 

k k

k k

k k k

k k

k k

subject to

y t u t t x x

v t u t t x x

r t y u t x x

y x y v x v

 

where 
[ 1]ky  and 

[ 1]kv  are known numbers which we 

can obtain these numbers by solving problem (22) -(26) 

on interval 
2 1

[ , ]
 k k

x x . Moreover, for 
1

[ , ]



k k

t x x  

 
1

1 2 2
( , , ) ( ) ( , ) ( ) .




 
k

t

k
x

r t y u u w p t w y w dw  

Now we have the following theorem: 

Theorem II.3: Let   ( 1) ( 1)
(.), (.) 

 k k
y v  and 

 ( 1),1 ( 1),2
(.), (.) 

 k k
u u  for any 1,2,...,k n  be optimal 

state and control of problem (22)-(26), respectively. Then 

optimal solutions of problem (17)-(21) are as follows: 

( 1) 1

( 1) 1

1 ( 1),1 1

2 ( 1),2 1

( ) ( ), [ , ], 1,2,...,

( ) ( ), [ , ], 1,2,...,

( ) ( ), [ , ], 1,2,...,

( ) ( ), [ , ], 1,2,..., .

 

 

 

 

 

 

 

 

   


  


  


  

k k k

k k k

k k k

k k k

y t y t t x x k n

v t v t t x x k n

u t u t t x x k n

u t u t t x x k n

 (27) 

Proof: Consider the following sets: 

1 2 1 2
{( , , , ) : ( , , , )D y v u u y v u u  satisfies in equations 

                              (18)-(20) on 0
[ , ]

n
x x }, 

1 2 1 2
{( , , , ) : ( , , , )

k
D y v u u y v u u  satisfies in equations   

         (23)-(26) on 
1

[ , ]
k k

x x } ,    1,2,...,k n    

It is trivial that 
1


n

k
k

DD . In  addition, the value o f 

objective functional in problems (17)-(21) and (22)-(26) 

are nonnegative. Thus, we have: 

1 2 1 2( , , , ) ( , , , )
1

( )
 




k

n

k
y v u u D y v u u D

k

Minimize J Minimize J  

The system (27) is immediate from latter relation and 

optimality principle in continuous-time dynamic  

programming which in itiated by Bellman (see section 8 

of [44]). □   

Remark II-4: Note that 
[0]

0
( )y x  and 

[0] 0v .  

III. Linear programming problems 

In this section, we convert the continuous problem (22)-

(28) to an equivalent discrete problem and solve the 

obtained problem by linear programming method (see 

[45]). For this purpose, consider the following 

approximations in numerical differentiat ion and 

integration for 1,2,...,k n and 
1
,




k k
t x x : 

 

   

 

 

1

1

1

1 1

2

2, 1 1 1 2,

( ) ( ) ( )
2

1 1
( ) ( ) ( ) , ( ) ( ) ( ) ,

( ) ( , ) ( )

( , ) ( , ) .
2







 

  

 

    

 

  





k

k

k

k

x

k k
x

k k k k

x

k
x

k k k k k k k k

h
z dz x x

y t y x y x v t v x v x
h h

u w p x w y w dw

h
u p x x y u p x x y

  

   

Using the above approximat ion we can transform 

problem (22)-(28) to the following corresponding 

problem for 1,2,...,k n :  

 1
( 1)

2


   
k k k

h
J n k

Minimize

 
            (28)  

1 1, 1 1 1,

1 2, 1 1 2,

2, 1 1 1 2,

[ 1] [ 1]

1 1

0 , 0,

0 , 0,

( , ) ( , ) 0,

, .

  

  

  

 

 

     

     

   

 

k k k k k k

k k k k k k

k k k k k k k k

k k

k k

subject to

y y hu y y hu

v v hu v v hu

u p x x y u p x x y

y y v v

        

where for 1, l k k  we have:

   

                  

1, 1 2, 2
( ), ( ),

( ), ( ), ( ).

 

  

l l l l

l l l l l l

u u x u u x

x y y x v v x 

      

 

Now by applying the techniques of linear and nonlinear 

programming [45,46], and relation 

   
1

( ) ( ) ( , ) ( ) ( ) ( ), [ , ]    t t g t t y t v t u t t a b   

the nonlinear problem (28) be converted to  the following 

corresponding linear programming problem for 

1,2,...,k n : 

 1
( 1)

2


   
k k k

h
J n k z zMinimize          (29) 

1 1 1 1

1 1 1 1 1, 1 1 1

1,

1 1, 1 1 1,

0, 0,

0, 0,

( , ) ( ),

( , ) ( ),

0 , 0,

   

      

  

    

    

    

    

     

k k k k

k k k k

k k k k k k k

k k k k k k k

k k k k k k

subject to

z z

z z

g x x y v u x

g x x y v u x

y y hu y y hu
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1 2, 1 1 2,

2, 1 1 1 2,

[ 1] [ 1]

1 1 1

0 , 0,

( , ) ( , ) 0,

, , 0, 0,

  

  

 

  

     

   

   

k k k k k k

k k k k k k k k

k k

k k k k

v v hu v v hu

u p x x y u p x x y

y y v v z z

 

where decision variables of this problem are 

1,
, , , ,

l l l l l
z y v u and 

2,l
u for 1, l k k . Not that by  

solving problems (29), we obtain the approximations


k
y , 

1, 2,...,k n for exact solution of problem (1), 

means ( )

k
y x , 1,2,...,k n . 

Remark III.1: Note that, in this approach, we solve the 

linear programming problem (29) and use theorem 2-3 to 

approximate the solution of equation (1). 

In next section, we illustrative the efficiency of our 

approach in some numerical examples. 

IV. Simulation results 

In this section, we use our approach to solve two linear 

Volterra integral equations. Here we apply  the MATLAB 

software and simplex method [45] for solving linear 

programming problem (29). 

Example IV.1: Consider the following Volterra integral 

equation of second kind: 

     0

2 cos( )
( ) sin( ) ( ) ,

2 cos( )

[0,1].


 


 


x

x x
y x e x y t dt

t

x

    (30)                                                                 

The exact solution of equation (34) is  

         
( ) sin( )

(2 cos( ))(ln(3) ln(2 cos( ))),



   

x

x

y x e x

e x x
 

Here fo r 10,20,50n  and 100n , we solve 

corresponding problem (29) for equation (30). In Figures 

1-4, the connected line indicates the graph of exact 

solutions. The comparison of obtained results and 

 exact solution for equation (29) are showed in Table 1. 

Example IV.2: Consider the following Volterra integral 

equation of second kind: 

        0
( ) sin( ) 2cos( ) ( ) ,

[0,1].

   

 


x

y x x x t y t dt

x
       (31)                              

Here fo r 10,20,30n  and 40n , the corresponding 

problem (29) for equation (31) is solved. The connected 

line indicates the graph of exact  solutions. We can 

compare the obtained results and exact solution of 

equation (31) in Table 2. 

V. Conclusions 

In this paper, we obtained optimal control problems 

corresponding Volterra integral equation. By  

discretizat ion method these optimal control problems 

converted to the corresponding linear programming 

problems. Thus we can solve linear programming 

problems instead of Volterra integral equations.  By this 

approach, we can obtain a good approximat ion for the 

solution of linear Volterra integral equation. 

 
Fig. 1: The approximate solution for 10n  

 
Fig. 2: The approximate solution for 20n  

     
Fig .3: The approximate solution for 50n  
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Fig. 4: The approximate solution for 100n  

 

Table 1: Comparison of exact and approximate solutions 

for Ex. IV.1 . 

x Approximate 

solution for 
n=10 

Approximate 

solution for 
n=20 

Approximate 

solution for 
n=50 

Approximate 

solution for 
n=100 

Exact 

solution  

x=0.2 95189032.0 9516312232 951.010283 9512890932 0.26692094 

x=0.5 9532228922 9501121829 9502200010 9500..8016 0.98809616 

x=0.8 2502620092 1590303923 1523.61600 1512.16.8. 1512.16.8. 

 

 

Fig. 5: The approximate solution for 10n . 

   

Fig. 6: The approximate solution for 20n . 

 
Fig. 7: The approximate solution for 30n  

 
Fig. 8: The approximate solution for 40n  
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Table 2: Comparison of exact and approximate solutions 

for Ex. IV.2 . 

x Approximate 
solution for  

n=10 

Approximate 
solution for  

n=20 

Approximate 
solution for  

n=30 

Approximate  
solution for  

n=40 

 
 

Exact 
solution 

x=0.2 95120.9962 9518222206 9518.86961 95180.8902 95166139.. 

x=0.5 9501.022.3 950068.080 9500168026 9539209962 9531682928 

x=0.8 25.6061963 2523239010 2508162068 250.018.33 2503968106 
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