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Optimal Control Approaches for Analysis of Energy

Use Minimization of Hybrid Ground-Coupled

Heat Pump Systems
Ercan Atam, Dieter Patteeuw, Stefan P. Antonov, and Lieve Helsen

Abstract— In this paper, we present a prediction-based
dynamic programming (DP) control approach, a nonlinear model
predictive control (NMPC) approach, and a linear optimal
control (LOC) approach to analyze the minimization of the total
energy use of a hybrid ground-coupled heat pump (hp) system
(incorporating a ground-coupled hp, a gas boiler, a passive cooler,
and an active chiller) under operational constraints. A large-scale
emulator model (based on finite-volume method and the
equivalent-diameter approach) is used for the borehole system
and for the assessment of different control algorithms. A nonlin-
ear autoregressive exogenous model is identified from the input–
output data generated by the emulator model to be used in
a DP-based controller. Since DP is a global optimal control
method, it was used as a reference for performance assessment.
Next, a state-space reduced-order control-oriented model with a
larger sampling time is obtained from the emulator model using
the so-called proper orthogonal decomposition model reduction
technique. This model is used in an NMPC algorithm to see
how much NMPC is suboptimal with respect to the DP in
terms of annual energy use minimization. Finally, a series of
LOCs based on constant hp coefficients of performance is tested
to see how much the system performance deteriorates. The
control algorithms are used for the satisfaction of heating–cooling
demands of three types of buildings: 1) heating dominated;
2) cooling dominated; and 3) thermally balanced. The effects
of constraining thermal buildup/depletion of ground, variable
electricity prices, and marginal violation of thermal comfort on
the performance of the different controllers applied are also
separately analyzed.

Index Terms— Borefield, dynamic programming (DP), hybrid
ground-coupled heat pumps, nonlinear model predictive
control (NMPC), optimal control.
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NOMENCLATURE

ce Electricity price.

cg Gas price.

J Total cost.

Nc Control horizon.

Np Prediction horizon.

ts Sampling period.

Ṗch Electrical power used by chiller.

Ṗgb Electrical power used by gas boiler.

Ṗhp Electrical power used by heat pump.

Ṗpc Electrical power used by passive cooler.

Q̇c Cooling load demand.

Q̇ch Thermal power extracted from the building

through active cooling.

Q̇gb Thermal power supplied to the building

by the gas boiler.

Q̇h Heating load demand.

Q̇hp Thermal power supplied to the building

by the heat pump.

Q̇inj Heat injected to ground.

Q̇net Net thermal power injected to ground.

Q̇pc Thermal power extracted from the building

through passive cooling.

Ta Ambient air temperature.

T f Borehole circulating fluid mean temperature.

Tsw,h Supply water temperature for heating.

Tsw,c Supply water supply temperature for cooling.

ηgb Gas boiler efficiency.

bal Balanced.

bh borehole.

cdom Cooling dominated.

ch Chiller.

E Electricity.

f Fluid.

gb Gas boiler.

hdom Heating dominated.

hp Heat pump.

marg. Margin.

pc Passive cooler.

A Annual.

B Building.

COP Coefficient of performance.

D/N Day night.

DP Dynamic programming.

GCHP Ground-coupled heat pump.

1063-6536 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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HyGCHP Hybrid ground-coupled heat pump.

LOC Linear optimal control.

MPC Model predictive control.

NARX Nonlinear autoregressive with exogenous input.

NMPC Nonlinear model predictive control.

POD Proper orthogonal decomposition.

RC Relative change.

ROM Reduced-order model.

SS State space.

TBUD Thermal buildup/depletion.

I. INTRODUCTION

G
LOBAL warming and worries about reliable future

energy supply have arisen a substantial interest in clean

and renewable energy. Especially, last two decades have

witnessed a substantial increase in geothermal energy use

through GCHPs [1]–[8] and GCHP systems with supplemen-

tary devices (HyGCHPs) [9]–[16]. Based on the fact that

buildings account for approximately 40% of total energy

use in Europe [18] and similar percentages in the rest of

the world, development of energy-efficient buildings and

heating and cooling technologies together with appropriate

control strategies is required. GCHP systems combined with

low-exergy heat emission systems have the potential to

reduce the primary energy use of space heating and

cooling by 70% [19] compared with conventional heating and

cooling systems. For GCHP systems with vertical borehole

heat exchangers, however, the large investment cost of the

borefield represents a major bottleneck. This explains the trend

toward compact hybrid GCHP systems that combine smaller

boreholes with supplementary heating or cooling devices such

as gas-fired boilers, passive coolers, and chillers. Although the

design of a compact HyGCHP system is often driven by cost

considerations to limit the drilling cost without compromising

thermal comfort in the building, sometimes other reasons may

also lead to HyGCHP systems, such as limited drilling area

for boreholes and/or the specific ground characteristics.

Under normal conditions, logically a long-term cost-optimal

operation boils down to maximizing the use of the heat pump

(hp) and passive cooling in covering the heating and cooling

loads within certain temperature constraints for the circulating

calorimetric fluid. Although we have this kind of a qualitative

nature of optimal control policy in our mind, determination

of quantitative values of optimal load sharing between

components requires an intelligent computational strategy

when multiple operational constraints have to be taken into

account. In addition, the possible variability of electricity price

should be considered.

In the literature, many strategies toward an intelligent

control strategy are available. The first category of stud-

ies, for example, [12] and [13], proposed rule-based control

strategies coupled with a set of parameters to optimize the

system performance using a simulation-based optimization

method. The main drawbacks of these approaches are as

follows.

1) They suffer from a mathematical model-based

optimization/control. Hence, rule-based control methods

may be very suboptimal strategies in general.

2) The number of variables to be optimized in a

rule-based control is restricted most of the time since

few parameters are chosen to characterize the optimal

control performance.

In optimal control of HyGCHP systems, the most prominent

constraint is the lower–upper temperature bound on the

circulating fluid mean temperature. The lower temperature

bound is typically defined by the fluid freezing temperature,

and the upper temperature bound is defined by constraints on

the supply water temperature for direct cooling at building

level. Optimal borefield operation thus requires modulation

of the borefield heat injection or extraction power to keep

the fluid temperature within this range. When maximizing the

share of hp or passive cooling in covering the heating and

cooling loads, the fluid temperature is, respectively, at the

lower or upper bound. Current rule-based control strategies

fail to get optimal system operation within (but close to)

these physical temperature bound constraints. When operating

near the temperature constraints, they often result in an

ON–OFF cycling, which is detrimental for both the system

energy performance and installation lifetime.

The second category of studies, for example, [14] and [17],

in contrast to rule-based approaches, uses mathematical

model-based control methods that allow for a better control.

However, they are based on simplifications and/or

unrealistic assumptions introduced during the controller

design. For example, De Ridder et al. [14] applied a

DP-based optimal control method. DP is a powerful method

since it is a closed-loop global optimal control algorithm.

However, the model used in [14] for DP is a very simple

first-order model for the ground mean temperature. The

chosen control time step for the system is one week, which

is very long since typical control actions for buildings may

require control time steps in order of minutes or hours.

Moreover, the realization of the designed controller requires

the measurement of underground field temperature, for which

measurement may be either difficult or inaccurate. As a

result, the approach in [14] involves both high-level modeling

simplifications and a hard-to-realize implementation. Similar

to [17], an LOC method is applied. The simplification made

in this paper is that the hp COP is taken to be constant

without a formal justification. The models used for control

and emulator are the same, which eliminates the impact of

model mismatch and therefore limits the generality of the

approach followed in [17].

In this paper, we present three contributions to both

control-oriented modeling and control of HyGCHPs,

alleviating the simplifications mentioned above and designing/

validating/analyzing different controller approaches under

more realistic assumptions. These contributions are as

follows.

As a first contribution, we identify a prediction-oriented

low-order (with respect to the number of regressors) neural

network NARX model using data from an emulator borehole

thermal model for the prediction of circulating fluid mean

temperature. The emulator model is a large-scale finite-

volume-based numerical borehole thermal model. A low-order

NARX is capable of better predictions compared with linear
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models of the same order. Here, since the output variable is the

fluid mean temperature, which is the average of inlet and outlet

fluid temperatures, it is a measurable quantity in contrast to the

mean borefield temperature in [14]. Since the NARX model

is a nonlinear model, it is a more sophisticated model aimed

at obtaining more accurate predictions and, hence, a better

controller design possibility. NARX was used to design a

DP-based controller. DP is a closed-loop global optimal

control method (global optimal up to the approximations due

to input-state gridding and interpolations). The DP control

results were used as reference values to compare the

performance of other control approaches.

The second contribution is the derivation and use of a

control-oriented SS reduced-order model (SS-ROM), which is

obtained from the emulator model using the POD model order

reduction technique. SS-ROM is used to design a nonlinear

model predictive controller to minimize the energy use over

the prediction horizon. Since the model is an SS model,

an observer is used for the estimation of states. The main

objective here was to see how far NMPC-based energy

minimization deviates from the global optimal DP control

results.

The sampling periods of both NARX and SS-ROM and

the control time steps of the designed controllers are 4 h,

in contrast to the very long control time step of one week

in [14]. As a result, the DP and NMPC controllers based

on, respectively, NARX and SS-ROM, are substantially more

realistic in terms of control time step. COP values were also

taken as functions of source-sink temperatures in both control

methods.

The third contribution is the comparison of the results with

the reference DP-based control results when a series of linear

optimal controllers (LOCs) is designed based on constant

hp COP values in the control model. In this way, a formal

simulation-based assessment for the performance of linear

controllers is provided since the results are compared with the

DP results and since all controllers are tested on the emulator

model.

In the performance analysis of all the control methods, three

types of buildings, heating dominated, cooling dominated, and

thermally balanced, are considered to make the analysis results

more general. The performance of the control algorithms is

analyzed for four cases: 1) without considering TBUD of

the ground; 2) constraining the ground to have zero TBUD

at the end of the considered period; 3) variable versus D/N

electricity prices; and 4) allowing some violation margin in

the satisfaction of heat–cold loads.

This paper is structured as follows. In Section II, the

HyGCHP system and the control problem are described

in detail. In Section III, the emulator model of the

borehole system to be used both for reduced-order model

constructions (NARX and SS-ROM) and for testing the

designed controllers is described shortly. Section IV considers

control-oriented modeling where an NARX model is identified

in Section IV-A and an SS-ROM is constructed

in Section IV-B. Prediction-based DP control of the system

using NARX model and NMPC of the system using SS-

ROM are elaborated, respectively, in Sections V-A and V-B.

Fig. 1. Schematic of hybrid GCHP system. CT: cooling tower.

Section V-C presents the LOC of the system based on constant

hp COP. In the previous sections, TBUD of the ground was

not taken into account in the applied control methods. The

effect of constraining the ground to have zero TBUD at the

end of the control period is analyzed in Section VI. Testing

performances of MPC and LOCs under combinations of

variable electricity prices and nonzero thermal load violations

are considered in Section VII. Lessons learned from this

paper are listed in Section VIII. Finally, conclusions of this

paper and future work are summarized in Section IX.

II. SYSTEM DESCRIPTION AND CONTROL PROBLEM

The hybrid GCHP system is shown in Fig. 1 and consists of

a hp, a gas-fired boiler, a passive cooler (pc), and a chiller (ch)

(with a cooling tower). It is assumed that the heating demand

is provided by the hp and boiler, and the cooling demand is

provided by the pc and ch. The expressions for the efficiency

(η) and COP of all components shown in Fig. 1 are given by

COPhp =
Q̇hp

Php
, ηgb =

Q̇gb

Pgb
, COPpc =

Q̇pc

Ppc
, COPch =

Q̇ch

Pch

where Php denotes the electrical power consumption of the

hp compressor and the power consumed by circulation pumps

from the borefield side, Pgb denotes the rate of the primary

energy use of the gas boiler (gb), Ppc is the electrical power

used for the circulation pumps of the passive cooling installa-

tion, and finally, Pch denotes the electrical power consumption

of the ch compressor and the circulation pumps of the cooling

tower. The COPs given by the above expressions depend on

the temperatures of the source and the emission system, as

expressed by

COPhp = fhp(T f , Tsw,h)

COPpc = fpc(T f , Tsw,c)

COPch = fch(Ta, Tsw,c)

where Tsw,h and Tsw,c represent the supply water temperature

for heating and supply water temperature for cooling, respec-

tively. Ta is the ambient temperature, and T f is the circulating

fluid mean temperature. The gb efficiency, ηgb, is given a

constant value of unity.

Letting ce(t) and cg denote the time-dependent electricity

and gas price per kilowatt hour, an optimal control problem
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will be solved to minimize the following cost function for

HyGCHP system operation over a time period [t0, t f ] :

J =

∫ t f

t0

[ce(t)(Php(t) + Ppc(t) + Pch(t)) + cg Pgb(t)]dt

∼=

N−1
∑

k=0

ts

[

ce(k)

(

Q̇hp(k)

COPhp(k)
+

Q̇pc(k)

COPpc(k)

+
Q̇ch(k)

COPch(k)

)

+ cg

Q̇gb(k)

ηgb

]

(1)

where ts is the sampling period and k is the sampling instant.

The cost function presented by (1) has to be minimized under

operational temperature constraints and power constraints.

Next, we will discuss these constraints and present their

expressions.

A. Heat and Cold Demand Satisfaction

The building heat and cold demands should be satisfied with

some acceptable margins

Q̇h(k) − εh−l(k) ≤ Q̇hp(k) + Q̇gb(k) ≤ Q̇h(k) + εh−u(k)

(2a)

Q̇c(k) − εc−l(k) ≤ Q̇pc(k) + Q̇ch(k) ≤ Q̇c(k) + εc−u(k)

(2b)

where Q̇h(k) and Q̇c(k) are the building heat and

cold demands, respectively, εh−l(k) and εh−u(k) are the

time-dependent lower and upper violation margins for

the satisfaction of heat demand, and εc−l(k) and εc−u(k) are

the lower and upper violation margins for the satisfaction of

cold demand. Note that the margins are taken to be time

dependent to allow different degrees of flexibility over time.

During critical demand load periods, these margins can be set

very strictly.

B. Circulating Fluid Temperature Bounds

The cooling of a building requires heat injection to the

ground during summer. This increases the ground temperature

toward winter, which, in turn, increases COPhp. However, the

ground temperature, which is represented indirectly by T f ,

should be kept below the supply water temperature, Tsw,c, for

passive cooling of the building. Similarly, heating a building

requires heat extraction from the ground. This decreases

the ground temperature toward summer, which, in turn,

increases COPpc. However, again the ground temperature

represented indirectly by T f should not decrease to a value

below freezing point to avoid frost problems. All these require

to put lower and upper bounds on T f

T f −min(k) < T f (k) < T f −max(k). (3)

T f −min is set to a small value greater than zero to prevent

freezing of the circulating fluid, and T f −max is set to a value

for which passive cooling will be efficient (which depends on

climate conditions). In the simulations performed in the next

sections, we used T f −min = 0.5 °C and T f −max = 19.5 °C

(based on Belgium climate).

C. Heat Exchange With the Ground and Bounds

on Annual Net Heat Transfer With the Ground

Heat extraction/injection from/to the ground and the net heat

transfer with the ground are given by the following equations:

Q̇ext(k) =
COPhp(k) − 1

COPhp(k)
Q̇hp(k) (4a)

Q̇inj(k) =
COPpc(k) + 1

COPpc(k)
Q̇pc(k) (4b)

Q̇net(k) = Q̇inj(k) − Q̇ext(k). (4c)

To limit the degree of TBUD in the ground, the following

constraint may be put on the net annual heat transfer with the

ground:
∣

∣

∣

∣

∑

1year

Q̇net

∣

∣

∣

∣

≈ 0. (5)

Note that the constraint in (5) can be used only for optimal

control. Since NMPC cannot see the whole control period, it

is not applicable for NMPC.

D. Circulating Fluid Mean Temperature Dynamics

The model predicting the mean temperature of the

circulating fluid will be either an input–output model

identified using input–output data from the emulator model

in Section IV-A or an SS-ROM derived from the emulator

model in Section IV-B. The first model will be used to solve

the optimal control problem in Section V-A using DP, and the

second one will be used in Section V-B using NMPC.

E. Optimal Control Problem for Total

Energy Use Minimization

The optimal control problem for total energy use minimiza-

tion will be minimization of (1) over the whole control period

subject to the operational/physical constraints given by (2)–(5)

plus the dynamics for T f given by (7) in Section V-A.

F. Model Predictive Control Problem for

Energy Use Minimization

In MPC formulation, the control problem for energy use

minimization will be minimization of (1) over the predic-

tion horizon subject to the operational/physical constraints

given by (2)–(4) plus the dynamics for T f given

by (12) in Section V-B. Limits for TBUD in the ground cannot

be set here.

III. BOREHOLE EMULATOR MODEL

In this section, the borefield, part of the system shown

in Fig. 1, is modeled as a single equivalent borehole that is

sized according to the specified building loads to be considered

in the next sections. This is an approximation neglecting the

interaction between different boreholes in a borefield. The

equivalent borehole filled with grout is schematically shown

in Fig. 2, where an equivalent-diameter approach [4], [10], [21]

is used. In the equivalent-diameter approach, the heat transfer

from the U-tube is approximated by the heat transfer from

a single pipe with a hypothetical diameter through which



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ATAM et al.: ANALYSIS OF ENERGY USE MINIMIZATION OF HYBRID GROUND-COUPLED HEAT PUMP SYSTEMS 5

Fig. 2. Equivalent borehole system.

the heat exchanging fluid circulates. The objective is the

determination of the circulating fluid mean temperature, T f (t),

corresponding to a net (injected—extracted) heat profile per

unit length, unet = Q̇net . The 1-D radial heat conduction

equation is considered. Next, the grout and soil regions

are divided into thermal nodes and an energy balance for

the equivalent borehole is considered. Using the finite-

volume technique, the following large-scale dynamic model

is obtained:

xbh(k + 1) = Abh(p)xbh(k) + Bbh(p)unet(k)

y(k) = T f (k) = Cbhxbh(k) (6)

where xbh = [T f Tg1 · · · Tgng
Ts1 · · · Tsns

]T. Here, T f is the

circulating fluid mean temperature, [Tg1 · · · Tgng
]T are the

grout nodal temperatures, [Ts1 · · · Tsns
]T are the soil (ground)

nodal temperatures, p is the known parameter vector including

thermal, physical, and other parameters of the system

(diffusivities, conductivities, different radii, discretization step

sizes, etc.), and unet is the net heat injected to the ground.

A full derivation of (6) can be found in [11].

IV. CONTROL-ORIENTED BOREHOLE MODELS

In this section, we present two models obtained from the

borehole emulator model: an input–output model to be used

in DP and an SS model to be used in NMPC.

A. Identification of an NARX Prediction Model

Input–output-based modeling using system identification

techniques is a strong alternative modeling approach, which

uses only the input and output data and fits an empirical model

to it. The type of identification model is strongly depending

on the underlying system. The NARX model structure has the

general form

y(k + 1)

= f̂narx(y(k), y(k − 1), . . . , unet(k), unet(k − 1), . . .) (7)

where f̂narx is a nonlinear function. Input arguments to

f̂narx are called model regressors. When the NARX model

structure is specified, it is possible to choose among several

available nonlinear mapping functions [22], including neural

networks, wavelet networks, and so on. Here, we choose

a model in two input and two output regressors

y(k + 1) = f̂narx(y(k), y(k − 1), unet(k), unet(k − 1)) (8)

Fig. 3. (a) Identification data. (b) Validation data.

where f̂narx is a neural network. Defining the equivalent

states xeq(k) = [x
eq
1 (k) x

eq
2 (k) x

eq
3 (k)]T � [y(k) y(k − 1)

unet(k − 1)]T , we have

x
eq
1 (k + 1) = f̂narx

(

x
eq
1 (k), x

eq
2 (k), x

eq
3 (k), unet(k)

)

(9a)

x
eq
2 (k + 1) = x

eq
1 (k) (9b)

x
eq
3 (k + 1) = unet(k) (9c)

y(k) = [1 0 0]xeq(k) = Cnarx(xeq(k)). (9d)

The system of equations in (9) can be compactly expressed

in SS form as

xeq(k + 1) = f̃narx(xeq(k), unet(k)) (10a)

y(k) = Cnarx(xeq(k)) (10b)

where

f̃narx(xeq(k), unet(k))

=

⎡

⎣

f̂narx

(

x
eq
1 (k), x

eq
2 (k), x

eq
3 (k), unet(k)

)

x
eq
1 (k)

unet(k)

⎤

⎦.

Neural network models might have inferior extrapolation

behavior when operating in untrained region, and hence it

is very important to validate the model with extra validation

data sets, in addition to the used identification data. The

identification–validation input data sets used and the corre-

sponding outputs generated by the emulator model are shown

in Fig. 3. The data cover one year with a sampling time of 4 h.

The identification input (uid) consists of 30 multisines with

frequencies distributed in the range [0, 0.5 fs], where fs is the
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sampling frequency. The identification output is yid = T f . The

prediction performance of NARX versus the emulator model

both for identification and validation data sets (where the

validation input is again a multisine) for different time

intervals is given in Fig. 4. The prediction performance

can be expressed in terms of normalized root-mean-square

error (NRMSE)

fitNRMSE = 100 ×

(

1 −
‖y − ŷ‖

‖y − mean(y)‖

)

.

The one-step prediction performances of the NARX model

corresponding to the identification and validation data sets are

fitidNRMSE = 98.72% and fitval
NRMSE = 98.63%, respectively, and

they are almost perfect. The simulation performance of NARX

is also, compared with the emulator model, presented in Fig. 5.

For the use of NARX in DP-based control, however, one-step

prediction performance of NARX is relevant.

B. State-Space ROM

The emulator model given by (6) is not appropriate for

an SS-based control design like MPC due to two reasons:

1) it is a large-scale model (506 states) and 2) its sampling

time is very short: 1 s. As a next step, a reduced-order model

from the large-scale model given by (6) is obtained using the

POD model order reduction technique [23], [24]. The reduced-

order model is given by

xr (k + 1) = Ar xr (k) + Br unet(k)

y(k) = T f (k) = Cr xr (k) (11)

and the details can be found in [11].

POD is a flexible model order reduction method compared

with other model order reduction methods. It is based on

extracting dominant system features and then projecting the

large-scale dynamics on the space spanned by the domi-

nant features. The dominant features are eigenvectors of the

snapshot matrix, a matrix whose columns are state values at

different time points. One of the main features of POD is that

it can be applied to both linear and nonlinear ODEs. Another

flexibility in POD is the ability to reflect both short- and long-

term effects in the reduced-order model by the adjustment of

the time instants in the construction of the snapshot matrix.

The only constraint for a successful POD-based reduced-

order modeling is that the large-scale model of the underlying

system should be accurate. There is no limit on the level of

detail. The large-scale model can even be a nonlinear model

such as the Navier–Stokes equation.

Although the model in (11) is a reduced-order model (thus,

smaller scale), the second issue is not yet solved: the sampling

period of (11) is the same as that of the large-scale model: 1 s.

The next objective is to obtain an SS model from (11) with a

larger sampling period: 4 h. To make the discussion general,

assume that (11) has a sampling period ts and we apply

to this system an input that changes its value just over a

larger sampling period tL and assume that (tL/ts) = M > 1,

where M is an integer. After applying some simple algebra,

one can show that the SS model with sampling period tL

Fig. 4. Prediction performance (one step) of NARX model versus emulator
model. (a) and (b) Identification input of duration: (700–800 h) and
(6000–6100 h). (c) and (d) Validation input of duration: (2500–2600 h) and
(8000–8100 h).

(larger sampling period) is

x(k + 1) = Āx(k) + B̄unet(k)

y(k) = C̄x(k) (12)
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Fig. 5. Simulation performance of NARX with respect to the emulator model.

Fig. 6. Prediction performance (six steps ahead) of SS-ROM model versus
emulator model. (a) and (b) Identification input of duration (1200–1300 h)
and (3200–3300 h). (c) and (d) Validation input of duration (5500–5600 h)
and (7200–7300 h).

where Ā = AM
r , B̄ = (AM−1

r + AM−2
r + · · · + I )Br , and

C̄ = Cr . Now, the model given in (12) is both an SS-ROM

and a model with the desired larger sampling period tL .

We denote this SS model obtained from the emulator model

by SS-ROM. This model will be used in Section V-B for

NMPC of the emulator system.

Fig. 7. Frequency response comparison of borehole emulator model and
SS-ROM.

We use the same identification–validation data as

in Section IV-A. The model order for SS-ROM was

chosen to be six, the minimum order for accurate prediction.

The prediction performance of SS-ROM versus the emulator

model both for identification data set (used in POD phase)

and validation data set for different time intervals of 100 h is

shown in Fig. 6. The six-step ahead prediction performances

of the SS-ROM for identification and validation data are

fitidNRMSE = 98.54% and fitval
NRMSE = 98.55%, respectively.

The prediction performance of the SS-ROM is almost perfect,

as was also the case for the NARX model. The comparison

of the frequency responses of the emulator model and

the SS-ROM is shown in Fig. 7. Note that the Nyquist

frequency of the discrete-time emulator and SS-ROM models

is 0.5 × 1/(4 × 3600) = 3.4722 × 10−5 Hz.

V. OPTIMAL CONTROL APPROACHES

AND COMPARISON OF RESULTS

In this section, DP, NMPC, and LOC formulations of the

HyGCHP system will be presented as general as possible, but

the results without taking into account zero TBUD constraint

and assuming zero building load violation margins will be

shown. The reason for such a restriction was to be able to

apply DP, MPC, and LOC under the same set of constraints

and, hence, to compare the results fairly. The control results

under the constraint of prevention of TBUD in the ground

and inclusion of load violation margins will be presented in

the next sections for MPC and LOC approaches. In all the

simulations of the controlled system, controllers were applied

on the detailed (finite-volume) emulator model. The platforms

for identification, optimization, and simulation were MATLAB

system identification toolbox, MATLAB optimization toolbox,

and MATLAB Simulink, respectively.

A. Dynamic Programming-Based Optimal Control

Consider the expression inside the summation given in cost

function (1)

h = ts

[

ce(k)

(

Q̇hp(k)

COPhp(k)
+

Q̇pc(k)

COPpc(k)
+

Q̇ch(k)

COPch(k)

)

+ cg

Q̇gb(k)

ηgb

]

. (13)
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The electricity price ce(k) varies according to D/N tariff with

0.09 euro/kWh for 8 A.M–10 P.M., 0.15 euro/kWh for rest,

and cg is taken 0.06 euro/kWh. Here, COPs and efficiencies

are fitted to TRNSYS data [25]

COPhp(k) = α0 + α1T f (k) + α2T 2
f (k) (14a)

COPch(k) = β0 + β1Ta(k) + β2T 2
a (k) (14b)

COPpc = 12, ηgb = 1 (14c)

where COPhp and COPch are fitted for a supply water

temperature of Tsw,h = 40 °C for heating and a supply water

temperature of Tsw,c = 18 °C for cooling, typically coupled

to thermally activated building systems. The coefficients are

α0 = 3.04, α1 = 0.079, α2 = −0.0012; β0 = 10.22,

β1 = −0.26, and β2 = 0.002. Using (10b), (14a) can be

written as

COPhp(k) = α0 + α1Cnarx(xeq(k)) + α2C2
narx(xeq(k))

� fCOPhp
(xeq(k)). (15)

The requirement of exact heating and cooling load satisfaction

gives

Q̇gb(k) = Q̇h(k) − Q̇hp(k) (16a)

Q̇pc(k) = Q̇c(k) − Q̇ch(k). (16b)

Using (16), (13) becomes

h = ts

[

ce(k)

COPhp(k)
−

cg(k)

ηgb

]

Q̇hp(k)

+ ts

[

ce(k)

COPch(k)
−

ce(k)

COPpc

]

Q̇ch(k)

+ ts

[

cg(k)

ηgb
Q̇h +

ce(k)

COPpc
Q̇c

]

. (17)

We assumed satisfaction of exact heating–cooling demands

(zero violation margins) to formulate the DP with two con-

trol inputs (Q̇hp and Q̇ch) instead of four (Q̇hp, Q̇ch, Q̇gb,

and Q̇pc) to alleviate a numerical difficulty of DP (known

as curse of dimensionality; more details will be given in the

following).

Note that we can express h in (17) as h = h(y, u, w),

where u = [Q̇hp Q̇ch]
T, y = T f is the circulating fluid mean

temperature, and w = [ce cg Ta Qh Qc]
T.

Next, we will express the borehole dynamics (10) in terms

of the u and w. Using (4) and (16), the net input to the ground

can be expressed as

unet =
COPpc + 1

COPpc
[Q̇c − Q̇ch] −

COPhp − 1

COPhp
Q̇hp

=
COPpc + 1

COPpc
[Q̇c − Q̇ch] −

fCOPhp(xeq(k)) − 1

fCOPhp(xeq(k))
Q̇hp

� funet(xeq, u, w). (18)

Then, the borehole dynamics (10) can be expressed as

xeq(k + 1) = f̃narx(xeq(k), unet(k))

= f̃narx(xeq(k), funet(xeq(k), u(k),w(k)))

� fnarx(xeq(k), u(k),w(k)) (19a)

y(k) = Cnarx(xeq(k)). (19b)

Now, the DP formulation of the control problem can be

given: minimization of total energy cost (1) under operational

constraints. DP is based on the principle of optimality [26],

which simply says that in a multistage process whatever the

previous states are, the remaining decisions must be optimal

with regard to the state following from the current state. This

principle allows the optimal control problem for a K -stage

process to be recursively formulated starting from the final

discrete time point N

J ⋆
N−K ,N (y(N − K ))

= min
u(N−K )

{h(y(N −K ), u(N −K ),w(N −K )) + J ⋆
N−(K−1),N

× (h(y(N −(K −1)),w(N − (K − 1))))}.

(20)

Using the SS dynamics given in (19), we can write (20) as

J ⋆
N−K ,N (xeq(N − K ))

= min
u(N−K )

{h(Cnarx(xeq(N − K )), u(N − K ),w(N − K ))

+ J ⋆
N−(K−1),N (h(Cnarx( fnarx(xeq(N − K ),

u(N − K )),w(N − K )),w(N − K + 1))}.

(21)

Here, J ⋆
N−K ,N is the optimal cost for a K -stage policy with

the initial state xeq(N − K ) and J ⋆
N−(K−1),N is the optimal

cost for a K − 1-stage policy. To start the algorithm, we set

J ⋆
N,N = 0, which is the cost of stage number zero, K = 0.

Typically, in DP, the feasible states and feasible inputs

are gridded into quantized values and then at a given stage

with a chosen feasible state value, and all possible quantized

inputs are tried until the minimum of (21) is determined at

that stage. This is done for all feasible gridded states. Hence,

the DP control algorithm is a closed-loop and global optimal

control algorithm (global optimal up to the approximations

due to state-input gridding and interpolations). In the

NARX model (8), the variables in the role of states are

{y(k), y(k − 1), unet(k − 1)} and the input to be determined is

unet(k) at time step k. Note that in DP-based control, instead

of SS-ROM (with six states), we preferred an input–output

model NARX (with equivalent three states) due to the curse-

of-dimensionality problem [26], [27].

In the optimal control problem, the control input range

for both Q̇hp and Q̇ch is taken to be [0, 6000] W and is

gridded into 300 points. The range for output y is taken

as [0.5, 19.5] °C, and it is gridded into 200 points. The results

are shown for all relevant variables for a heating-dominated

case in Fig. 8, for a cooling-dominated case in Fig. 9, and

finally, for a thermally balanced case in Fig. 10, where

r1(k) �
ce(k)/COPhp(k)

cg(k)/ηgb
, r2(k) �

ce(k)/COPch(k)

ce(k)/COPpc
.

Observe from (17) that r1 determines whether instantaneously

it is advantageous to use the hp or gb and r2 whether to

use the ch or pc. r1 < 1 means to choose the hp over gb

and r2 < 1 to choose the ch over pc (under the assumption

that power limits and T f bounds are not violated).

From Figs. 8(d) and (e)–10(d) and (e), we observe that always
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Fig. 8. Controlled system variables for heating-dominated case (DP).
(a) Circulating fluid mean temperature. (b) Heat demand and hp power. (c)
Cold demand and ch power. (d) r1. (e) r2 . (f) Accumulated cost profile.

r1 < 1 but r2 > 1 most of the time. Indeed, in the heating-

dominated and balanced cases, r2 is always greater than one

when cooling is required because when r2 < 1, there is

no cooling load. For the cooling-dominated case, r2 > 1.

As a result, for all three categories, we can say that it is

always advantageous to use passive cooling, which is expected

since the pc has a higher efficiency than the ch. Note that

the Q̇hp value is equal to the demanded heat value as long

as the hp capacity is not exceeded or the circulating fluid

mean temperature is not crossing the temperature bounds.

When the temperature bounds are approached or reached, a

gradual decrease in Q̇hp is observed and the remaining heating

load should be provided by the gb. A similar behavior holds

for Q̇ch: as long as the circulating fluid mean temperature

bounds are not approached, the pc is used. As a result, the

critical control actions are totally determined by: 1) power

capacity of the hp and ch and 2) temperature bounds for T f .

This observation may suggest that these important parameters

may be used in a rule-based control strategy without needing

a model-based intelligent control algorithm. This is not the

case because, for example, when T f temperature bounds are

approached, it is very difficult to decide the power ratio

between hp/gb in the heating case and the power ratio between

ch/pc in the cooling case in order not to exceed but stay

close to these temperature bounds. In Figs. 8(b) and (c)–

10(b) and (c), the difference between required loads (red color)

and the part provided either by hp or ch (blue color) means

Fig. 9. Controlled system variables for cooling-dominated case (DP).
(a) Circulating fluid mean temperature. (b) Heat demand and hp power. (c)
Cold demand and ch power. (d) r1. (e) r2 . (f) Accumulated cost profile.

that these differences should be provided by the gb for heating

cases and by the pc for cooling cases.

B. Nonlinear Model Predictive Control of the System

First, the main aspects of NMPC are presented. Given

general process dynamics

x(k + 1) = f (x(k), u(k),w(k)) (22)

subject to the general constraint function including bounds on

input and state variables

g(x(k), u(k),w(k)) ≤ 0 (23)

the objective is the minimization of

J (x(k), ū(k),w(k)) =

k+Np
∑

i=k

h(x̄(i), ū(i),w(i)) (24)

where

x̄(k + 1) = f (x̄(k), ū(k),w(k)), x̄(k) = x(k) (25)

under the constraints

g(x̄(k), ū(k),w(k)) ≤ 0 (26a)

ū(s) = ū(k + Nc), k + Nc ≤ s ≤ k + Np

Nc ≤ Np . (26b)
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Fig. 10. Controlled system variables for thermally balanced case (DP).
(a) Circulating fluid mean temperature. (b) Heat demand and hp power. (c)
Cold demand and ch power. (d) r1. (e) r2 . (f) Accumulated cost profile.

Here, Np and Nc are called prediction and control horizons,

respectively. The bar notation denotes the internal control

variables (the calculated control inputs) and the resulting

predicted states over the given horizons. A distinction between

the real system variables and the variables in the controller

(denoted with a bar) is necessary because the calculated inputs

and the predicted values may not be the same as the ones in

the real-time controlled system. Moreover, NMPC is applied

in a receding horizon way, meaning that only the first input of

the calculated input sequence is applied and the optimization

is redone at every time step.

For the NMPC, we will use the SS model SS-ROM con-

structed in Section IV-B. In the HyGCHP system model, the

nonlinearity enters in the objective function and in the input

part of the system dynamics [Q̇net = Q̇inj − Q̇ext, see (4)] due

to the state dependency of hp COP: COPhp(T f ) [see (14)].

We choose Np = Nc = 6 (24-h prediction and control

horizon), and in minimization of (24), a multisearch global

optimization scheme is used to force the solution toward a

global optimal solution. Seeking for a global optimal solution

is important since we will compare the results with the

DP results from Section V-A. In the implementation of the

NMPC controller, an observer is designed for the estimation

of SS-ROM states from the input–output of the emulator

model. The results are almost indistinguishable from the

results of DP (Figs. 8–10), and hence the very similar plots will

not be repeated here. This is a very interesting observation,

and it means that MPC-based energy minimization of the

system is almost the same as its DP-based minimization over a

period of time (here one year). In other words, the total energy

minimization problem does not depend on future inputs, states,

and disturbances. This observation is very important because

in most applications of GCHPs with supplementary devices,

the control problem is defined as keeping the building zone

temperature(s) in a thermal comfort band and this control

policy is applied online. Now, after the above observation,

this control problem can be solved in an energy-optimal way:

online minimize the total energy use of the system over the

MPC horizon and put temperature bounds for thermal comfort

as constraints. This policy will determine a control trajectory

that ensures thermal comfort while the total use of energy will

be minimized over the system operation period, one year in our

case. This observation for the studied energy-optimal control

of a HyGCHP system, in fact, raises the following general

theoretical optimal control research problem—assume that we

have an optimal control problem:

min

N
∑

k=1

h(x(k), u(k),w(k))

s.t. x(k + 1) = Ax(k) + B(x(k))u(k) and

g(x(k), u(k),w(k)) ≤ 0.

Then, what are the necessary and/or sufficient conditions so

that the optimal solution will not depend on future control/

states/disturbances? An answer to this general problem is very

important for the studied control problem in this paper to

understand why total energy minimization over the whole

control period was very weakly dependent on future variables.

However, this theoretical problem is out of the scope of this

paper and it is the topic of a future research. Note that

the objective of this section was to compare performance of

NMPC with DP. Since NMPC cannot see the whole control

period (which is one year), zero TBUD in the ground was not

considered as a constraint in DP-based control. It will be taken

into account as a constraint in the next sections.

C. Linear Optimal Control of the System

In this section, we take the COP value of the hp constant,

and hence make the objective function and equivalent borehole

dynamics of the control problem linear. The COP of the ch is

variable as was assumed before and has no impact on linearity

of the system (it is not state or control input dependent). We

apply the classical LOC theory (minimization of energy over

a given period of time) and consider the objective function

with two control inputs u = [Qhp, Qch]
T, which is obtained

summing (17) over a period

J = ts

N−1
∑

k=0

{[

ce(k)

COPhp = constant
−

cg(k)

ηgb

]

Q̇hp(k)

+

[

ce(k)

COPch(k)
−

ce(k)

COPpc

]

Q̇ch(k)

+

[

cg(k)

ηgb
Q̇h +

ce(k)

COPpc
Q̇c

]}

. (27)
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Fig. 11. Controlled system variables for heating-dominated case (LOC
with COPhp = 3.5). (a) Circulating fluid mean temperature. (b) Heat
demand and hp power. (c) Cold demand and ch power. (d) r1. (e) r2 .
(f) Accumulated cost profile.

The function in (27) will be minimized over a one-year period

using the operational constraints given by (2)–(5) and the

SS-ROM model dynamics. The typical range of COPhp is

taken as [2.5, 6]. This range is gridded into a set of grid

points with a grid size of 0.1. Then, for each grid point, a

corresponding LOC is designed. The results for COPhp = 3.5

are shown in Figs. 11–13.

From Figs. 11–13, we observe that the results are close

to the DP and NMPC cases with some differences: 1) more

oscillation in hp and ch power and this in turn causes and

2) the circulating fluid mean temperature to become oscilla-

tory, especially when the temperature bounds are approached.

The annual cost, maximum lower, and upper temperature

violation of T f versus COPhp are shown in Fig. 14. The total

cost is compared with the total cost in the DP (≈NMPC) case.

A zero temperature bound violation for either lower bound or

upper bound of T f means that the corresponding bound is

not exceeded. The results show that taking any reasonable

constant COP for hp gives more or less a similar annual cost,

but T f temperature bounds are exceeded. A COPhp value in the

range [3, 4] gives the results for which T f temperature bound

violation is acceptable. Note that for some COPhp values,

the annual costs of LOC cases are slightly lower than the

corresponding cases of DP. This may seem strange since the

DP case was a global optimal approach. This can be explained

by a violation of the temperature bounds in the LOC cases.

Fig. 12. Controlled system variables for cooling-dominated case (LOC
with COPhp = 3.5). (a) Circulating fluid mean temperature. (b) Heat
demand and hp power. (c) Cold demand and ch power. (d) r1. (e) r2.
(f) Accumulated cost profile.

TABLE I

COMPUTATION TIMES FOR CONTROLLERS FOR THE

HEATING-DOMINATED CASE

In fact, comparison of annual costs with the corresponding

results of DP may be unreasonable under the violation of T f

bounds. Such a comparison was done only to give an idea,

and it was not meant as a real comparison.

Comparisons of computation times for DP, NMPC, and

LOC controllers are presented in Table I for the heating-

dominated case.

VI. DP AND LOC WITH ZERO THERMAL

BUILDUP/DEPLETION

In Section V, we neglected TBUD in the ground during

control for a fair comparison with MPC. However, this effect is

important and should be taken into consideration if the system

has to operate for a long term. From the results of Section V,

we calculate a thermal depletion of approximately 5% for

the heating-dominated case (calculated as the ratio of annual

net heat to the ground to annual heating load) and a thermal

buildup of 40% for the cooling-dominated case (calculated as
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Fig. 13. Controlled system variables for thermally balanced case (LOC
with COPhp = 3.5). (a) Circulating fluid mean temperature. (b) Heat
demand and hp power. (c) Cold demand and ch power. (d) r1. (e) r2 .
(f) Accumulated cost profile.

the ratio of annual net heat to the ground to annual cooling

load). For the thermally balanced case, TBUD was almost

negligible. All the control approaches gave the results within

the above bands.

In this section, we force the system to have zero TBUD

in the ground. The comparison of the control results for

DP and LOC for all the loading types is shown in Fig. 15,

where only circulating fluid mean temperatures and accumu-

lated cost profiles are shown to save space. The LOC results

are shown for COPhp = 3, 4, and 5. Note that zero TBUD in

the ground cannot be put as a constraint in NMPC since NMPC

cannot see the whole horizon, and hence it is not relevant for

this section.

The results of Fig. 15 show that circulating fluid mean

temperatures become more oscillatory toward the lower–upper

bounds to satisfy the zero TBUD in the ground at the end

of the year. However, the trend of accumulated cost profiles

is not affected considerably, when compared with the results

in Section V.

VII. OPTIMAL CONTROL WITH ADDITIONAL SCENARIOS

In this section, we consider additional scenarios using MPC

and LOC. In these scenarios, we include a new constraint for

reducing accumulation of heat/cold demand dissatisfaction at

Fig. 14. Annual cost and temperature bound violation ranges (for LOC)
versus COPhp. (a) Heating-dominated case. (b) Cooling-dominated case.
(c) Thermally balanced case.
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where i is the current time step and Np is the prediction

horizon. This constraint will be applied both for

NMPC and LOC. However, note that since NMPC is applied

with receding horizon, this constraint will not guarantee the

prevention of accumulated heat/cold demand dissatisfaction
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Fig. 15. Comparison of results for DP and LOC in te case of zero ground
TBUD. (a) Circulating fluid mean temperature (hdom). (b) Accumulated
cost profile (hdom). (c) Circulating fluid mean temperature (cdom).
(d) Accumulated cost profile (cdom). (e) Circulating fluid mean
temperature (bal). (f) Accumulated cost profile (bal).

at the end of the day, but it will increase the probability of

reduction of accumulation.

In the previous sections, we presented the control results

for MPC-LOC and compared them with DP. However, as

explained before, due to the curse-of-dimensionality problem,

we assumed perfect satisfaction of heat–cold demands to be

able to reformulate DP control with only two control inputs,

instead of four. As a result, in all the control results in the

previous sections, we set violation margins to zero. In this

section, we allow demand violation margins to be up to 5%

of the associated heat–cold demand at a given time. Since

it was not possible to control the system (due to the curse-

of-dimensionality issue) with DP when nonzero margins are

considered, here the results are presented only for NMPC

and LOC. Moreover, in this section, we consider a variable

electricity price profile, in contrast to the previous D/N (D/N)

profile. The variable electricity price profile is based on

day ahead market prices from the Belgian transmission grid

operator for the year 2013 [29]. However, these prices are

not representative for electricity consumers, as these also have

to pay a fixed cost component for transmission, distribution,

taxes, and levies. In line with current electricity prices in

Europe [28], this constant cost component is assumed to

be 0.07 EUR/kWh and is added to the day ahead market prices.

The annual variation of the variable electricity price is shown

Fig. 16. Variable electricity prices [28], [29].

in Fig. 16.

Next, based on a combination of selected control method

(NMPC or LOC), whether a D/N or variable electricity price

profile is used, zero/nonzero demand violation margins, a set

of new scenarios is created. The results of all the scenarios

considered so far in the previous sections and the new ones are

listed in Table II. In Table II, the annual cost results (A.cost)

are compared with the base case of DP control with zero

margins, D/N electricity prices, and where TBUD in the

ground is allowed. This base case is denoted as a scenario with

number 1 and is shown in bold face. The last column shows

the RC of annual costs with respect to the base case annual

cost as percentage. In the presented scenarios, all the three

building types (B.type) are considered. The new scenarios are

these with numbers 3–5 and 8–10, and in these new

scenarios, the additional heat–cold accumulation

constraint (28) is taken into account, in addition to variable

electricity prices and/or nonzero demand violation margins.

From the results in Table II, we observe the following.

1) Five percent demand violation margins with D/N elec-

tricity prices reduces the annual cost up to 6.9% for

NMPC and 2.2% for LOC. However, reduction in cost

for LOC is dependent on the hp COP value assumed

in the controller design. For some COP values, there is

an increase in annual cost compared with the base case

even with nonzero demand violation margins.

2) The combination of nonzero demand violation

margins and variable electricity prices provided higher

cost reduction in the NMPC case. The corresponding

reduction results (if it happens) in the LOC case are

lower and COPhp dependent. As before, for some

COPhp values, there is an increase in the annual cost

relative to the base case.

3) The percentage of RC of annual cost, when 5% violation

margins and/or variable electricity prices are considered,

is not more than 10% for all the cases applying NMPC

or LOCs.

VIII. LESSONS LEARNED FROM ANALYSIS

OF OPTIMAL CONTROL APPROACHES

From the analysis of different optimal control approaches

applied to a HyGCHP system, we extract the following points.
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TABLE II

SCENARIOS AND COMPARISON OF ANNUAL COSTS WITH BASE DP CONTROL CASE (SCENARIO #1)

1) Without the concern of TBUD in the ground, zero

demand violation margins, and D/N electricity prices,

the energy use minimization results using NMPC were

almost not distinguishable from the results of total

energy use minimization over the whole period using

DP. Moreover, the results of LOCs based on con-

stant hp COP values gave the results close to the

DP results. There were minor circulating fluid mean

temperature bound violations, which implies that if an

LOC is used, lower–upper temperature bounds should

be refined a little bit to avoid these violations but still

having a HyGCHP system operating almost globally

optimal.

2) When zero TBUD in the ground is taken into account,

in the case of D/N electricity prices and zero demand

violation margins, performances of DP and LOC con-

trollers were again close to each other. Circulating fluid

mean temperatures become more oscillatory toward the

lower–upper bounds to satisfy the zero TBUD in the

ground at the end of the year. Finally, the accumulated

cost profile trends are not affected considerably, when

compared with the results in Section V.

3) When 5% demand violation margins and/or a variable

electricity price profile are considered, there were reduc-

tions in the annual cost relative to the base case up

to 9.2%. NMPC was better than LOCs in such cases.

However, still the performance of LOCs is acceptable.

4) The above trends were observed for the three types of

building loads: heating-dominated, cooling-dominated,

and thermally balanced cases.

IX. CONCLUSION

In this paper, a detailed simulation-based analysis for the

energy use minimization of HyGCHP systems was carried

out through different controller models and control algorithms

and under different scenarios. Moreover, all the controllers

were tested on a detailed (finite-volume) emulator model. The

results can be summarized as follows.
1) The NARX model with three equivalent states was

sufficient to represent the prediction dynamics. This

model was used in DP where the results were used

as reference values for comparison with NMPC and

classical LOC.
2) An SS-ROM was constructed from the emulator model

through POD to be used in NMPC. The results from

NMPC were almost indistinguishable from the corre-

sponding results of DP when zero demand violation

margins are assumed, TBUD in the ground is allowed,

and D/N electricity prices are considered. This observa-

tion implies that NMPC of the HyGCHP system based

on energy use minimization over the prediction horizon

gives the results very close to the results of DP, which

is based on energy use minimization considering the

whole period. This important observation can be used to

include energy use minimization as the cost function in

online control systems like NMPC and putting thermal

comfort limits as constraints so that the control sys-

tem will provide thermal comfort in an energy-optimal

way.
3) The temperature dynamics of a borehole system

was accurately predicted either by an SS-ROM
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(with six states) or by an input–output model

(NARX with three equivalent states). Similar low order

models are expected to hold for a borefield system.

4) When a 5% demand violation margin and/or a vari-

able electricity price were considered, the annual costs

changed but not too much. MPC is the most optimal

control strategy when applicability, different scenarios,

and reduction in annual cost are all considered together.

The series of LOCs based on constant COP values gave

also good results.

5) An immediate extension of this paper is to a borefield

system. Moreover, in the design of a DP controller,

gridding can also be done based on heating/cooling loads

so that the controller will work under any kind of load,

which will not require the loads to be known during

controller design.

6) The next extension is to do some experiments to

testify the theoretical results obtained from the presented

analysis.
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