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Abstract

The minimum-lap-time optimal control problem for a Formula One
race car is solved using direct transcription and nonlinear program-
ming. Features of this work include significantly reduced full-lap so-
lution times and the simultaneous optimisation of the driven line,
the driver controls and multiple car setup parameters. It is shown
that significant reductions in the driven lap-time can be obtained
from track-specific setup parameter optimisation. Reduced comput-
ing times are achieved using a combination of a track description
based on curvilinear coordinates, analytical derivatives and model
non-dimensionalisation. The curvature of the track centre line is found
by solving an auxiliary optimal control problem that negates the dif-
ficulties associated with integration drift and trajectory closure.

Keywords: numerical optimal control; lap-time simulation; Formula One
car modelling; parameter optimisation; nonlinear programming.

1 Introduction

Optimal control calculations for road cars go back to the 1950s, when simple
heuristic arguments were employed to estimate lap times and optimise setup
parameters [1]. By the early 1960s shooting methods, multiple shooting
methods and gradient descent methods were used routinely to solve a variety
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of aerospace flight path optimization problems [2]. In the context of motor
racing the objective is to complete a given set of manoeuvres (laps) in the
minimum possible time. This is commonly referred to as lap-time simulation,
or minimum-time manoeuvring. In these studies the driver is replaced by
a control system that ‘drives’ a car model as hard as possible within the
mechanical constraints of the vehicle.

The reader steeped in the classical theory of optimal control and the cal-
culus of variations might think that the most natural approach to the solution
of these problems is to use first-order necessary conditions to formulate and
solve a two-point-boundary-value problem (TPBVP). This is the approach
taken in [3], where two motorcycle manoeuvring problems are solved for the
Luco-Poggiosecco curves on the Mugello raceway. This paper introduces an
elegant curvilinear-coordinate-based description of the position and orienta-
tion of the vehicle on the track that is of general utility. An indirect method
is also used in [4], which presents a numerical procedure for solving optimal
control problems related to multibody systems. A motorcycle minimum lap-
time problem for the Adria Raceway in the Veneto region of Northern Italy
is solved, which compares favourably with data acquired from an on-board
inertial measurement device. In later developments of this line of research an
indirect method is used to examine minimum time manoeuvres for a single-
track car model through a U-turn [5]. Here a series of non-linear Pacejka-type
tyre models, for varying road surfaces, and different transmission layouts are
considered.

An early example of a direct numerical method for time-optimal control
being applied to road vehicles is given in [6]. This paper considers a lane-
change manoeuvre for a simple nonlinear single-mass car model with yaw,
lateral, and longitudinal freedoms. The tyre lateral force model is based on
classical magic formulae [7]. The optimal control problem was solved using a
gradient projection algorithm (see [8] pp 394-400). A key advantage of direct
methods is that they do not require the adjoint equations, which become
more and more difficult to derive as the complexity of the vehicle model and
boundary constraints increase.

Recognizing the disadvantages associated with conventional indirect meth-
ods, Casanova [9] invoked a direct-multiple-shooting technique that he deemed
a sensible compromise between the sensitivity problems associated with con-
ventional shooting methods [2] and the larger nonlinear programming prob-
lems associated with transcription methods [10]. A disappointing feature of
this approach is the long computation time required. Full-lap optimal control
calculations for the Barcelona track using a simple four-wheeled car model
required between 28 and 60 hours to converge on a Sun Spark workstation [9].
Some related work is described in [11], which uses a vehicle model that is
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similar to the one used in this paper, although the track modelling is done
in a different way. The method finds simultaneously the optimal racing line
and the controls required to follow this line in minimum time. A full lap of
the Jerez circuit with 10m control spacing requires approximately 8 hours of
computing time on a single core 2.4GHz processor [11]. The Modelica mod-
elling and optimization environment [12] was used to solve various minimum
lap time problems [13]. In order to solve the optimization problem on closed
tracks, the circuit is partitioned into a number of overlapping segments. The
Modelica modelling environment was also used in this work to optimize the
car setup parameters.

The apparently unusable computation times associated with high-fidelity
optimal control calculations motivated a search for faster optimisation meth-
ods. One hypothesis was that the computational time can be reduced by
supplying the racing line rather than computing it as part of the lap-time
optimization. Another was the use of quasi-steady-state models, which are
now widespread within the Formula One racing community. Both of these
ideas were investigated in [14] and, not surprisingly, much shorter computa-
tion times were achieved. The reported difference between the predicted lap
times using time-optimal and quasi-steady-state analysis for the Barcelona
circuit was 2.19 s, which is a significant discrepancy. This discrepancy ap-
pears to be the result of different braking/acceleration crossover points used
by the two methods [14].

Another approach to minimising the burden associated with minimum-
lap-time studies is the use of linear quadratic (LQ) preview to follow a pre-
scribed driving line at a fixed speed [15]. The method proposed makes use
of multiple linear models and a gain scheduling scheme, with its operation
demonstrated on three track segments. Ideas based on linear approximations
have been further developed in [16], where (linear time varying) model pre-
dictive control (MP) rather than linear preview control is exploited. This
approximation allows one to define the problem of finding a sub-optimal rac-
ing line and speed profile as a sequence of convex optimisation problems.
The computed trajectory is sub-optimal, because linear models are used (as
opposed to nonlinear ones) in conjunction with control problems that are
defined over a sequence of receding track segments (as opposed to the whole
track).

The aim of this paper is to study the minimum-lap-time optimal control of
a Formula One car with simultaneous parameter optimisation. Calculations
of this type include the simultaneous optimisation of the steering angle (as
a function of the distance travelled from the start-finish line), the drive and
braking of the vehicle, and one or more setup parameters, such as the location
of the car’s centre of mass and/or its centre of pressure; see Figure 1. By way
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of a theme example, we will seek to minimise the lap time of the Catalunya
circuit in Barcelona. The optimal control calculations are carried out using a
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Figure 1: Side view of a Formula One car showing its mass centre Mc and
its centre of pressure Cp.

direct collocation scheme and a nonlinear programming (NLP) algorithm [10].
Section 2 describes the model of the track and car used in this study. The

track is modelled using a curvilinear-coordinate-based description of the cen-
tre line. In order to control the noise level in the track curvature model, the
curvature is computed by solving an auxiliary optimal control problem based
on measured global positioning data (GPS); see Section 2.1.1. The car model
is described in Section 2.2 and has longitudinal, lateral and yaw freedoms.
The model has a combined-slip magic-formula-like tyre description, longitu-
dinal and lateral load transfer effects, four-wheel braking and a limited-slip
differential. The optimal control calculation methodology is described in
Section 3. Here we summarize the optimal control problem formulation and
the collocation procedure used. A brief account of our scaling procedures
is also given. The results are given in Section 4. The optimisation of the
track model is described in Section 4.1. A technique for including stability
constraints in the optimal control problem formulation is considered in Sec-
tion 4.2. Minimum-lap-time results are given in Section 4.3 with a parameter
optimisation study given in Section 4.4. The possible treatment of neglected
and slow dynamics is remarked on in Section 4.5 with the conclusions given
in Section 5. The car parameters are given in AppendixB.

2 Track and Vehicle Model

The optimal control calculations presented in this paper require mathemat-
ical models of both the track and the vehicle. Since the track modelling is
purely kinematic it will be dealt with first.
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2.1 Track Model

We will model the track using a curvilinear coordinate system that follows
the vehicle using the track centre line arc length as the abscissa. This ap-
proach provides a compact way of describing the vehicle’s progress and of
constraining it to remain within the track boundaries [3]. A curvilinear co-
ordinate system also enables one to deal easily with a track that crosses over
itself.
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Figure 2: Curvilinear-coordinate-based description of a track segment Z.
The independent variable s represents the elapsed centre-line distance, with
R the radius of curvature and N the track half-width; nx and ny represent
the inertial reference frame.

Referring to Figure 2, we describe the location of the mass centre of the
vehicle in terms of the curvilinear abscissa s(t) and the vector n(s(t)). The
former quantity defines the distance travelled along the track centre line
from the start-finish line, while the latter gives the position of the vehicle’s
mass centre in a direction perpendicular to the track centre-line tangent
vector t(s(t)). It is understood that the travelled distance s(t) is a strictly
increasing function of time, and that ‘time’ and ‘distance’ can be thought
of as alternative independent variables. In order to simplify the notation
the track-related quantities will be described without explicit reference to
an independent variable, although this could be time or arc length. The
standard dot notation will be used to signify derivatives with respect to time.
At any point s the track’s radius of curvature is given by R and its curvature
by C = 1/R. The track centre-line tangent vector t will be described in terms
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of the track orientation angle θ, with the track’s half-width given by N .
The absolute yaw angle of the vehicle is given by ψ and the angle between

the vehicle and the track by ξ, thus ψ = θ + ξ. In this coordinate system
constraints on the track width are easily expressed in terms of constraints on
the magnitude of n. If the half-track width is described by N , then we can
constrain the vehicle to drive on the track by simply enforcing |n| ≤ N a. It
is clear that in this coordinate system each increment of progress ds along
the track centre line produces increments dx and dy in the conventional
rectangular inertial system as follows:

dx = ds cos θ (1)

dy = ds sin θ. (2)

This gives
dy

dx
= tan θ. (3)

It follows from elementary geometry that the track curvature is given by

C =
dθ

ds
=

d

ds

(

arctan
dy

dx

)

, (4)

which provides a conceptual way of finding the track curvature from GPS
data expressed in rectangular coordinates.

Resolving the vehicle’s velocity in the t-direction (see Figure 2) gives

ṡ− nθ̇ = u cos ξ − v sin ξ, (5)

where u and v are, respectively, the longitudinal and lateral components of
the vehicle’s mass-centre velocity. The lateral position of the vehicle’s mass-
centre relative to the track centre line is given by n, which is in the direction
of n; note that d (nθ)

dt
= nθ̇ + ṅθ with ṅθ orthogonal to t. Identity (5) gives

ṡ =
u cos ξ − v sin ξ

1− nC . (6)

using (4). The rate of change of n is given by

ṅ = u sin ξ + v cos ξ. (7)

Finally, differentiating ψ = ξ + θ with respect to time results in

ξ̇ = ψ̇ − Cṡ (8)

using (4).

aThe real track boundary constraints apply to the positions of the vehicle’s tyres with
respect to the track edges. In order to simplify the problem the boundary constraints are
enforced on the vehicle’s centre of mass, with the track half-width reduced by the vehicle
half-width.
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2.1.1 Track Curvature from Optimal Control

The track centre line can be reconstructed using a centre-line curvature es-
timate C by integrating (4) to find the track orientation angle, and then
integrating equations (1) and (2) to find the track centre line in terms of
the rectangular coordinates x and y. In order to implement this process for
closed tracks, the track curvature estimate must satisfy the closure condi-
tion

∫

Ω
Cds = 2nπb. This track reconstruction process may fail as a result

of integration drift, or if the curvature estimate does not satisfy the closure
condition. As we will now show a track curvature estimate can be found
by solving an optimal control problem that explicitly enforces the closure
condition, while solving (1), (2) and (4) using a single numerical integration
process in order to minimise integration drift.

Suppose that the control input ũc to an optimal control problem is the
rate of change of the centre-line curvature

dC
ds

= ũ. (9)

It then follows from (4) that
dθ

ds
= C, (10)

and from (1) and (2) one obtains

dx

ds
= cos θ (11)

dy

ds
= sin θ. (12)

Finally, minimising the performance index

J =

∫ sf

s0

(

rũ2 + (xc − x)2 + (yc − y)2
)

ds, (13)

in which xc and yc are given GPS data for the track centre line, yields an
optimal estimate of the track curvature C by minimising the error between
the measured and estimated centre-line data sets. The constant r in (13) is
a weighting factor that determines the importance of the rate of change of
the track curvature relative to the reconstruction accuracy. In a sense, the
constant r can be used to low-pass filter the estimate of C, but this will be
at the expense of increasing the centre-line estimation error.

bThe left-hand side of this equation is the line integral of the track curvature around
the track centre line Ω, in which n is an integer (usually −1 ≤ n ≤ 1).

cWe will use ũ for the input to control systems and x̃ will be used to denote the state
vector in control-system-related contexts.
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2.1.2 Change of Independent Variable

Since ‘time’ and the ‘distance travelled’ are closely related independent vari-
ables, one would naturally assume that either could be dispensed with in the
formulation of optimal control problems. Using the ‘distance travelled’ as the
independent variable has the advantage of maintaining an explicit connection
with the track position, as well as reducing (by one) the number of problem
variables. In order to make this change of variables one has to ensure that
there is a one-to-one correspondence between s and t. Since ds = ṡdt, one
need only ensure that the vehicle velocity in the track-tangent direction is
positive; this will be assumed from now on. Next, we observe that

dt =
dt

ds
ds = Sf (s)ds,

where Sf comes from (6) as follows

Sf =

(

ds

dt

)−1

=
1− nC

u cos ξ − v sin ξ
. (14)

The quantity Sf is the reciprocal of the component of the vehicle velocity
in the track-tangent direction (on the centre line at s), which defines a one-
to-one map between s and t when the numerator and denominator are both
positive. Selecting the ‘distance travelled’ as the independent variable, one
obtains

dn

ds
= Sf (u sin ξ + v cos ξ) (15)

from (7), and
dξ

ds
= Sfω − C (16)

from (8); ω = ψ̇ is the vehicle yaw rate. Expressing the controls and problem
states in terms of the distance travelled allows one to assess the vehicle’s
performance anywhere on the track.

2.2 Dynamic Model

The car model we use here is standard, and is based on a rigid-body rep-
resentation of a chassis with longitudinal, lateral and yaw freedoms. The
important geometric modelling quantities are shown in plan view in Figure 3.

Each tyre produces longitudinal and lateral forces in response to slip
quantities; see AppendixA. These forces together with the steer (δ) and
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Figure 3: Plan view of a Formula One car with its basic geometric parameters.
The body-fixed axes xb and yb are in the ground plane.
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Figure 4: Tyre force system.
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yaw (ψ) angle definitions are given in Figure 4; the inertial reference frame
is shown as nx and ny.

Balancing forces in the longitudinal and lateral directions, while also bal-
ancing the yaw moments, gives

M
d

dt
u(t) = Mωv + Fx

M
d

dt
v(t) = −Mωu+ Fy

Iz
d

dt
ω(t) = a (cos δ(Ffr y + Ffl y) + sin δ(Ffr x + Ffl x)) +

wf (sin δFfr y − cos δFfr x)− wrFrr x +

wf (cos δFfl x − sin δFfl y) + wrFrl x − b (Frr y + Frl y) , (17)

in which Fx and Fy are the longitudinal and lateral forces, respectively, acting
on the car. These forces are given by

Fx = cos δ(Ffrx + Fflx)− sin δ(Ffry + Ffly) + (Frrx + Frlx) + Fax (18)

Fy = cos δ(Ffry + Ffly) + sin δ(Ffrx + Fflx) + (Frry + Frly) (19)

in which Fax is the aerodynamic drag force, defined in Section 2.4. These
equations can be expressed in terms of the independent variable s as follows

du

ds
= Sf (s)u̇ (20)

dv

ds
= Sf (s)v̇ (21)

dω

ds
= Sf (s)ω̇. (22)

2.3 Tyre Forces

The tyre forces have normal, longitudinal and lateral components that act
on the vehicle’s chassis at the tyre ground contact points and react on the
inertial frame. The rear-wheel tyre forces are expressed in the vehicle’s body-
fixed reference frame, while the front tyre forces are expressed in a steered
reference frame; refer again to Figure 4. In each case these forces are functions
of the normal load and the tyre’s longitudinal and lateral slip.

2.3.1 Load Transfer

In order to compute the time-varying tyre loads normal to the ground plane,
we balance the forces acting on the car in the nz direction and balance mo-
ments around the body-fixed xb- and yb-axes; see Figure 3. These calculation
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must recognise the gravitational, inertial and aerodynamic forces acting on
the car. The vertical force balance gives

0 = Frrz + Frlz + Ffrz + Fflz +Mg + Faz, (23)

in which the F··z’s are the vertical tyre forces for each of its four wheels,
g is the acceleration due to gravity and Faz is the aerodynamic down force
acting on the car, defined in Section 2.4. Balancing moments around the car’s
body-fixed xb-axis gives

0 = wr(Frlz − Frrz) + wf (Fflz − Ffrz) + hFy, (24)

in which Fy is the lateral inertial force acting on the car’s mass centre; see
(19). Balancing moments around the car’s body-fixed yb-axis gives

0 = b(Frrz + Frlz)− a(Ffrz + Fflz) + hFx + (aA − a)Faz, (25)

where Fx is the longitudinal inertial force acting on the car’s mass centre;
see (18).

Equations (23), (24) and (25) are a set of linear equations in four un-
knowns. A unique solution for the tyre loads can be obtained by adding a
suspension-related roll balance relationship, in which the lateral load differ-
ence across the front axle is some fraction of the total lateral load difference

Ffrz − Fflz = D(Ffrz + Frrz − Fflz − Frlz), (26)

where D ∈ [0, 1]. If this fourth equation is recognised, and equations (23),
(24), (25) and (26) are linearly independent, they have a unique solution for
the tyre normal load distribution.

2.3.2 Non-Negative Tyre Loads

The forces satisfying equations (23), (24), (25) and (26) are potentially both
positive and negative. If these forces are negative, the corresponding wheels
are subject to vertical reaction forces. On the other hand, positive forces
represent non-physical ‘forces of attraction’ that will not be experienced by
a real vehicle, and should therefore not be allowed in the car model. Since
the model being used here has no pitch, roll or heave freedoms, none of the
wheels is free to leave the road, while simultaneously keeping faith with (23)
to (26). In order to cater for the possible ‘positive force’ situation within a
nonlinear programming environment we begin by introducing the vector

F̄z =









F̄frz
F̄flz
F̄rrz
F̄rlz









, (27)

11



and by defining the vector of non-positive loads

Fz = min(F̄z, 0); (28)

the minimum function min(·, ·) is interpreted element-wise. It is clear that
F̄z and Fz will be equal unless at least one entry of F̄z is positive (i.e. non-
physical). We now argue that the model must respect the laws of mechanics
at all times and so equations (23), (24) and (25) must be enforced. In con-
trast, we assume that the solution to (26), which is only an approximate
representation of the suspension system, can be ‘relaxed’ in the event of a
wheel load sign reversal.

Equations (23), (24) and (25) can be assembled in matrix form as

A1Fz = c, (29)

while (26) can be written as
A2Fz = 0. (30)

The entries in A1 and A2, and the vector c are assembled from (23), (24),
(25) and (26).

In order to deal with the ‘light wheel’ situation, we combine (29) and (30)
as

[

A1 0
0 A2

] [

Fz
F̄z

]

=

[

c
0

]

; (31)

with Fz replaced with F̄z in the second block row. In the situation where
all the wheels are normally loaded, F̄z = Fz and (31) reduces to (23), (24),
(25) and (26). On the other hand, if there is a ‘light wheel’, the mechanics
equations (23), (24) and (25) will be satisfied by the non-positive forces Fz,
while the roll balance equation is satisfied by the now fictitious forces F̄z
that contain a force of attraction. The non-positive forces Fz are used to
represent the normal tyre loads. It is clear that the four components of F̄z
have to satisfy the nonlinear relationship (31), which will be solved by a NLP
algorithm.

There is a circular dependency between tyre loads and tyre forces inher-
ent in the tyre description. This circularity is treated as a nonlinear set of
algebraic equations that is solved as part of the optimising NLP; the tyre
friction model is given in AppendixA.

2.4 Aerodynamic Loads

The external forces acting on the car come from the tyres and from aero-
dynamic influences. The aerodynamic model used here is limited to speed-
dependent down force and drag influences acting in the car’s plane of sym-
metry; aerodynamic side forces, yawing moments and pitching effects have
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been neglected. As is standard in models of this type, the aerodynamic force
is assumed to be quadratic in the vehicle’s speed and is applied at the centre
of pressure, which is located in the vehicle’s plane of symmetry; see Figure 1.
The down force and drag are modelled as

Faz = 0.5Cl ρAu
2 (32)

and
Fax = −0.5Cd ρAu

2 (33)

respectively, which act in the car’s body-fixed z- and x-axis directions re-
spectively. The constants Cl and Cd are the aerodynamic down force and
drag coefficients, ρ is the air density and A the frontal area of the vehicle.

2.5 Wheel Torque Distribution

In order to optimise the vehicle’s performance, one needs to control the
torques applied to the individual road wheels. In some applications, in-
cluding current F1 racing, the braking system has to be designed so that
equal pressure is applied to the brake callipers of each axle, with the brak-
ing pressures between the front and rear axles satisfying some design ratio.
The drive torques applied to the rear wheels are controlled by a differential
mechanism.

2.5.1 Brakes

We equate equal brake calliper pressures with equal braking torques when
neither wheel on a particular axle is locked. If one wheel is locked, the braking
torque applied to the locked wheel may be lower than that applied to the
rolling wheel. In the case of the front wheels this constraint is modelled as

0 = max(ωfr, 0)max(ωfl, 0)(Ffrx − Fflx), (34)

in which ωfr and ωfl are the angular velocities of the front right and front
left wheel, respectively. If either road wheel ‘locks up’, the corresponding
angular velocity will be non-positive and the braking torque constraint (34)
becomes inactive.

2.5.2 Differential

We assume that the drive torque is delivered to the rear wheels through a
limited-slip differential that is modelled as

R(Flrx − Frrx) = −kd(ωlr − ωrr), (35)
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in which ωlr and ωrr are the rear-wheel angular velocities, R is the rear-
wheels’ radius and kd is a torsional damping coefficient. The special cases
of an open- and a locked-differential correspond to kd = 0 and kd arbitrarily
large respectively.

3 Numerical Optimal Control

The minimum-lap-time optimal control problem includes non-linear and non-
smooth dynamics, as well as state and control constraints. Care is required
when formulating these problems in order that a reliable solution is obtained
in a reasonable time. Key steps include selecting the optimisation strategy
to be used, selecting a simple vehicle model that captures all the important
problem features, finding an efficient and numerically stable track centre
line description, scaling the problem correctly and developing techniques for
‘smoothing out’ non-smooth features of the problem so that the gradients
required by the optimization algorithm are properly defined.

3.1 Optimal Control Problem Formulation

The optimal control problem formulation used here involves minimising a
Lagrange cost over a finite horizon, subject to position-dependent differential-
algebraic equations with equality and inequality constraints on the problem
parameters, states and controls. An optimal control problem general enough
for our purposes is

min
{p,ũ(·),x̃(s0),x̃(sf )}

∫ sf

s0

l(s, p, x̃(s), ũ(s))ds, (36)

subject to the constraints















dx
ds

− f (s, p, x̃(s), ũ(s)) = 0
g (s, p, x̃(s), ũ(s)) = 0
h (s, p, x̃(s), ũ(s)) ≤ 0
gb (p, x̃(s0), x̃(sf )) = 0

(37)

where s is the distance travelled along the track centre line; in this case
s0 and sf are on the start-finish line. The vector p ∈ R

np contains the
vehicle parameters to be optimisedd, and x̃(s) ∈ R

n and ũ(s) ∈ R
m are the

vehicle state and control vectors respectively. The vector function f(·) ∈ R
n

describes the vehicle’s dynamics. The vector functions g(·) ∈ R
ng and h(·) ∈

d
R

n denote the set of n-dimensional real vectors.
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R
nh define the equality and inequality constraints for the system (e.g. the

track topology and box constraints on the states, controls and parameters);
the subscript b refers to the boundary constraints with gb(·) ∈ R

ngb . The
scalar function l(·) is the stage cost that is a function of the state, the controls
and the parameters.

In the case of the work presented here, f(·) contains equations (15), (16),
(20), (21) and (22), with the associated states given by n, ξ, u, v and ω.
The normal tyre loads appear in g(·) and are constrained by (28) and (31),
with the tyre longitudinal slips constrained by conditions of the form (34).
The rear tyre slips are constrained by the differential according to (35). The
track width constraint −N ≤ n ≤ N appears in h(·), with the track closure
condition x̃ (sf )− x̃ (s0) given in gb(·). The Lagrange cost function is l(·) =
S−1
f .

3.2 Transcription

Betts [10] gives a detailed overview and classification of the various numeri-
cal methods that could be used for solving optimal control problems. There
are a number of issues in favour of using a direct solution method that we
will mention briefly. Firstly, direct methods do not require one to find the
necessary conditions for optimality. Secondly, direct methods are relatively
easy to implement and a wide variety of ‘ready-to-use’ software is available.
Thirdly, parameter optimisation is easily accommodated by simply adding
new decision variables to the transcribed optimisation problem. In the work
presented here the MATLAB-based optimal control transcription toolbox
ICLOCS [18] was used with trapezoidal integration to convert the optimal
control problem into a NLP problem. The ICLOCS software also constructs
data structures containing the derivative information required by the nonlin-
ear programming algorithm (IPOPT [19]). The required derivatives include
first- and second-order partial derivatives of the stage cost, the path con-
straints, the system dynamics and the boundary constraints with respect to
the decision variables that include the inputs, the states and the parameters.
The interested reader can consult the ICLOCS manual [18] (downloadable),
or [10] for a full account of the derivatives required in transcription methods.

In order to negate the influences of the truncation errors associated with
finite-differencing, analytical derivatives were used which enhance the con-
vergence of the NLP solution. Since analytical expressions are available for
the stage cost, the path constraints, the system dynamics and the boundary
constraints, they can be differentiated symbolically using a symbolic mathe-
matics package such as Maple. These symbolic derivatives were coded in C
and compiled into executable functions that are used to generate numerical
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values of the derivatives for any choice of the decision variables.
The transcription of the optimal control problem given in (36) and (37)

into a NLP problem was achieved using the methodology described in [10].
To begin, the dynamic system is discretised in terms of arc length increments,
while the continuous state and control functions are quantised into a finite
set of decision variables. First, let us introduce a strictly increasing finite
sequence of arc length samples S ′ = [s1, s2, . . . , sN ] ∈ R

N , with s1 = s0, sN =
sf and every other entry ∈ (s0, sf ). The sequence S defines the collocation
points for the trapezoidal approximation, where N is the number of sampling
points. The arc length difference sequence is then defined as S ′

d = [s2−s1, s3−
s2, . . . , sN − sN−1] ∈ R

N−1. If

T1 =







−1 +1
. . . . . .

−1 +1







(N−1)×N

, (38)

then
Sd = T1S. (39)

Next, we define two parameter vectors that represent the values of the
states and the controls at the collocation points, U ′ = [ũ′1, . . . , ũ

′
N ] ∈ R

Nm

and X ′ = [x̃′1, . . . , x̃
′
N ] ∈ R

Nn. We will also require sampled versions of l(·),
f(·), g(·), h(·) and gb(·), which will replace their continuous counterparts in
(37). These are given in vector form as

L(S, p, U,X) =







l(s1, p, ũ1, x̃1)
...

l(sN , p, ũN , x̃N)






∈ R

N , (40)

F (S, p, U,X) =







f(s1, p, ũ1, x̃1)
...

f(sN , p, ũN , x̃N)






∈ R

Nn, (41)

G(S, p, U,X) =







g(s1, p, ũ1, x̃1)
...

g(sN , p, ũN , x̃N)






∈ R

Nng , (42)

H(S, p, U,X) =







h(s1, p, ũ1, x̃1)
...

h(sN , p, ũN , x̃N)






∈ R

Nnh (43)
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The integral cost in (36) is approximated using the trapezoidal rule as follows

∫ sf

s0

l (s, p, ũ(s), x̃(s)) ds

≃
N−1
∑

i=1

(si+1 − si)
l(si, p, ũi, x̃i) + l(si+1, p, ũi+1, x̃i+1)

2

= S ′
d T2 L(S, p, U,X), (44)

with

T2 =







1/2 1/2
. . . . . .

1/2 1/2







(N−1)×N

. (45)

The constraints associated with the system dynamics are approximated using
a trapezoidal-rule approximation of the differential operator d

ds
(·):

(T1 ⊗ In)X = (diag(Sd)T2 ⊗ In)F (S, p, U,X), (46)

in which ⊗ is the Kronecker product [20]. After transcription, the optimal
control problem given in (36) and (37) is re-cast as the NLP problem

min
[p,U,X]

S ′
dT2L (S, p, U,X)

such that















(T1 ⊗ In)X = (diag(Sd)T2 ⊗ In)F (S, p, U,X),
G(S, p, U,X) = 0,
H(S, p, U,X) ≤ 0,
gb (p, x̃1, x̃N) = 0

(47)

in which the decision variables appear in p, U and X.

3.3 State and Control Scaling

Scaling can have a significant influence on the performance of optimisation
algorithms. Since convergence tolerances and other criteria are necessarily
based on some notion of ‘small’ and ‘large’ quantities, problems with unusual
or unbalanced scaling may cause difficulty. One notion of scaling is to trans-
form the variables from their original representation, which may reflect the
physical nature of the problem, to variables that have desirable properties in
terms of optimisation.
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3.3.1 Non-Dimensionalisation

In problems that involve physical quantities poor scaling can be a direct
consequence of the choice of the problem units. In our case, using SI units, the
vehicle main frame has a mass of approximately 600 kg and the acceleration
due to gravity is approximately g=9.8ms−2. When the effect of aerodynamic
down force is included, the normal tyre loads and the tyre friction forces can
be of the order of 104N in some cases. The forces acting on the vehicle
are thus 4 orders of magnitude larger than length-related decision variables,
angles (e.g. steering) and/or tyre slip coefficients. For these reasons we non-
dimensionalise the model by normalising the basic physical units of length,
mass and time. All the mass- and length-related quantities are scaled so
that the vehicle has unit mass and unit length. Time is scaled so that the
acceleration due to gravity is unity too; after non-dimensionalisation angles
are still expressed in radians.

3.4 Smoothing Functions

Interior point nonlinear programming algorithms such as IPOPT need first-
and second-order derivative information for the functions defining the cost
and constraints. For this reason non-smooth problem features have to be
approximated in a way that does not change significantly the problem’s so-
lution. Functions such as min(x, 0) and max(x, 0) have undefined derivatives
at x = 0, and are therefore approximated using

max(x, 0) ≈ x+
√
x2 + ǫ

2
, min(x, 0) ≈ −−x+

√
x2 + ǫ

2
, (48)

in which ǫ is a ‘small’ constant. Since

∂

∂x

(

1

2

(

x+
√
x2 + ǫ

)

)

=
1

2

(

x√
x2 + ǫ

+ 1

)

, (49)

one sees that the derivative approximation for max(x, 0) at x = 0 is well
defined as 1/2. These approximations are more accurate for smaller values
of ǫ, with values in the range 10−4 ≤ ǫ ≤ 10−2 used for the computation of
the results given here.

4 Results

In this section we present results relating to several minimum-lap-time and
parameter-optimisation studies. Before presenting the main results we will
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deal with some preliminaries relating to the track centre-line modelling, and
possible dynamic instabilities. The vehicle’s geometric, mechanical, tyre and
aerodynamic data is given in AppendixB.

4.1 Optimal Track Description

We will now find an optimised curvilinear coordinate description of the cen-
tre line of the Circuit de Catalunya using measured GPS data and the opti-
mal control problem described in Section 2.1.1. Figure 5 shows the measured
Barcelona raceway and its centre line. In order to solve minimum-time op-
timal control problems, the track curvature is required (as a function of the
elapsed centre-line distance). This has been computed for two values of the
curvature-rate weighting factor r given in (13). As expected, the fit between
the ‘true’ centre line and the curvilinear approximation degrades when r is
increased; this discrepancy is best seen in turns 10 , 14 and 15 as shown on
the right-hand side of Figure 5.
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Figure 5: Plan view of the ‘Circuit de Catalunya’ (Barcelona). The solid
black lines are the track boundaries derived from GPS data, with the black
dashed line the track centre line. The light (yellow) and dark (red) solid
curves are the track centre lines computed for weights of r = 106 and r =
105 respectively in (13). The insets on the right-hand side show magnified
versions of two track sectors.

When solving the curvature optimisation problem there is a trade-off
between the accuracy of the centre-line estimate and noise in the curvature
estimate. Figure 6 illustrates this compromise, with magnified views shown
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Figure 6: Optimised curvature estimates as functions of the elapsed distance
for the centre-line descriptions given in Figure 5. The colour coding is con-
sistent with Figure 5 for different values of r. The insets on the right-hand
side show two track sections.

for turn 4 , and the straight between turns 9 and 10 ; the higher-accuracy
centre line fit is accompanied by increased noise levels in the track curvature
estimate.

4.2 Vehicle Stability

Under over-steering conditions four-wheeled vehicles can be unstable in yaw
[7]. While stability-related constraints have not been included explicitly in
the optimal control problem formulation described in Section 3.1, it is possible
to include them implicitly by restricting the range over which parameters can
be optimised. To show how this might be accomplished we consider briefly
the impact of the location of the aerodynamic centre of pressure on the yaw-
mode stability of the car under high-speed cornering. The conditions we
will examine are representative of the racing conditions in turn 3 of the
Barcelona track, which we will assume is a 65m/s corner with a constant
radius of curvature of 150m.

For this analysis we use a vehicle model that includes a parallel spring-
damper double-wishbone suspension system, and the gyroscopic effects re-
lated to the road wheels. The car’s parameters are based on those given
in AppendixB, with the suspension parameters used in the sprung model
consistent with the nominal roll balance used for the optimal control calcu-
lations. In order to establish the vehicle’s stability properties, the sprung
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vehicle was driven at constant speed (65m/s) around a circular trajectory
of constant radius (150m). The equilibrium states thus obtained were used
to find a small-perturbation linear model that is continuously updated as
the centre of pressure is moved slowly towards the front axle. The vehicle’s
yaw-mode stability is analysed as a function of the location of the centre
of pressure by plotting the centre-of-pressure dependent eigenvalues of the
linearised model in Figure 7. For the cornering conditions considered, when
the aerodynamic centre of pressure is behind aA = 1.64m the vehicle is sta-
ble, but the vehicle becomes unstable in yaw when the centre of pressure
is forward of this point. Stability information of this type can be used to
restrict the search range over which parameters might be optimised. The
nominal location of the aerodynamic centre of pressure is at aA =1.9m and
one could constrain any parameter optimisation problem so that aA ≥1.7m
for example. Once potential instabilities of this type have been identified, it
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Figure 7: Yaw-mode stability as a function of the location of the aerodynamic
centre of pressure. The plot shows the real part of the yaw-mode eigenvalue
as a function of the distance between the front axle and the centre of pressure
(see Figure 1); negative real parts are displayed in blue, while positive ones
are red. The model is linearised at a constant-speed of 65m/s in a corner with
radius of curvature 150m, with the aerodynamic centre of pressure moved
towards the front axle at 0.0033m/s.

is a straightforward matter to constrain parameter optimisation studies to
avoid dynamic instabilities in parameter space.

4.3 Optimal Lap

In this section we study the behaviour of the optimally controlled car using
the nominal parameter set given in AppendixB. The centre-line curvature
estimate used here corresponds to the case r = 106 as shown in Figure 5.
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The speed profile for a computed minimum-time lap of the Barcelona track
is given in Figure 8. The computed lap time is 82.43 s, which was obtained
using a fixed uniform grid that will be used for all the calculations in this
section.
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Figure 8: Car speed as a function of the distance travelled from the start-
finish line on the Barcelona Formula One track. The centre line is estimated
using a curvature rate weighting of r = 106 in the performance index (13)
as shown in Figure 5. The corner numbers correspond to those given in the
same figure.

The optimal racing line for four track sections is shown in Figure 9. In
each case the cornering manoeuvre starts with a © and ends with a ⋆.
As one would expect, the optimal racing line seeks to ‘smooth out’ the cor-
ners by maximising the radius of curvature of the trajectory throughout the
manoeuvre.

Figure 10 focuses on the tyre force system behaviour in turn 1 at the
six points highlighted in Figure 9. At point © the front tyres are essen-
tially free-rolling, while they are both under equal normal loads of just over
6000N. At this point the rear tyres are supporting equal longitudinal drive
forces of just under 3000N and normal loads of ≈ 7500N. During the braking
phase between △ and � large longitudinal braking forces are produced by
all four tyres with a simultaneous reduction in the normal loads resulting
from reduced aerodynamic down force. There is also a load transfer from the
rear to the front axle during braking. During the mid-corner at ♦ the tyres
are experiencing almost no longitudinal force and large lateral forces on the
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Figure 9: Optimal trajectory of the car’s centre of mass through turns 1 ,
5 , 10 - 11 and 14 - 15 . The markers associated with different points in
the corners are as follows: The start of the manoeuvre is marked with a ©;
the start of the braking phase is marked with a △; the start of the cornering
phase is marked with a �; the ♦ marks the beginning of the corner exit
acceleration phase; the ▽ symbol marks a reversal in the direction of the
tyre side forces, while the ⋆ is the end of the manoeuvre. The marker points
defined for turn 1 correspond to specific transition points in the tyre forces
shown in Figure 10.
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left-hand (outer) tyres that are also experiencing high normal loads due to a
lateral load transfer. Once the car starts to exit the corner between ▽ and ⋆

the lateral tyre forces reduce, the drive forces on the rear tyres increase, and
the lateral load transfer is reversed in preparation for the following left-hand
turn 2 .
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Figure 10: Tyre forces in turn 1 . The first column gives the longitudinal
and lateral tyre forces for the left-hand wheels, with the left-front wheel at
the top. The longitudinal forces are on the vertical axes, while the side forces
are on the horizontal axes. The second column gives the longitudinal and
lateral tyre forces for the right-hand wheels, with the right-front wheel at the
top. The third column gives the normal loads as functions of the distance
travelled from the start-finish line, with the front wheels at the top; the left-
hand wheels are the solid lines, while the right-hand wheels are the dashed
lines.

Figure 11 shows the effect of the mesh size variations on the predicted
lap time and the solution time. The important message from this figure
is that the predicted optimal lap time approaches an asymptotic value of
82.57 s. A subsidiary point is that the solution time increases significantly
for finer meshes, but without any apparent benefit in terms of prediction
accuracy. Once the mesh length falls below 0.5m, solution times of the order
of hours can be expected. This figure also shows that for the computa-
tion meshes considered the solution time grows approximately according as:
tNLP ≈ 5 · 10−3N1.5 in which N is the number of mesh points. This provides
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evidence that the NLP solver (IPOPT) is exploiting the sparsity of the gradi-
ent matrices, since otherwise the computation time would increase according
as tNLP ∝ N3; the time taken to solve of a dense set of linear equations. If
for the Barcelona circuit ∆s is a (fixed) mesh length, the number of samples
is approximately N = 4655/∆s.
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Figure 11: Sensitivity of the minimum lap time to arc length mesh size.
The solid black line shows the optimal lap time as a function of the arc
length sampling distance (on a semi-log scale). The dashed blue line shows
the NLP solution time (on a log-log scale) as a function of the arc length
sampling distance. The red line is the approximate computation time given
by tNLP ≈ 5 · 10−3(4655/∆s)1.5

.

4.4 Parameter Optimisation

One of the important attributes of direct methods for optimal control is the
ease with which they optimise simultaneously parameter values, and opti-
mal control and state trajectories. We will exploit this facility by optimising
a number of setup parameter values. The goal is to assess the sensitivity
and importance of these parameters in minimising optimal lap times. Fig-
ure 12 considers the optimisation of the location of the vehicle’s mass centre,
its aerodynamic centre of pressure, its roll balance and finally the differ-
ential viscosity constant. Each of these parameters is first adjusted on a
one-parameter-at-a-time basis with multi-parameter optimisation considered
after that.
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Figure 12: Minimum lap time as a function of the centre of mass position a,
the position of the centre of pressure aA, the roll balance Droll and the differ-
ential viscosity kd. These curves were computed by varying each parameter
in isolation. The black dashed lines correspond to the nominal configuration
and its corresponding lap time, while the dashed light (red) lines correspond
to optimised parameter values.
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Parameter Optimal Value Lap Time

a 1.816 m 82.425 s
aA 2.025 m 82.212 s
Droll 0.629 81.947 s
kd 2552.3 N m s/rada 81.353 s
M − ∼ 0.035 s/kg

aDifferential essentially locked.

Table 1: Independently optimised parameter values with corresponding lap
times; see Figure 12.

The first plot in Figure 12 shows that the nominal location of the vehicle’s
mass centre is almost optimal, with little to be gained from a small 1.6 cm
rearward adjustment to its optimal location. The optimisation of the aerody-
namic centre of pressure location requires a rearward shift of 12.5 cm, which
has the effect of reducing the car’s optimum lap time by approximately 0.22 s.
The third plot shows that the roll stiffness (see (26)) should be increased from
its nominal value of 0.5 to 0.629 thereby reducing the optimal lap time by
0.49 s in this case. The single parameter in the group studied that appears
to be most influential in reducing the optimum lap time is the viscosity con-
stant of the differential (see (35))e. By running the car with an almost locked
differential, rather than with a viscosity constant of kd =10.47Nms/rad, a
reduction of 1.08 s in the minimum lap time can be achieved. In another
single-parameter study the change in lap-time was found to vary almost lin-
early with fuel load at a rate of 0.035 s/kg, which is in close agreement with
the commonly employed “rule of thumb (0.03 s/kg)” that is based on years
of track-side measurements. The results of this study are summarised in
Table 1.

Figure 13 shows that if the four parameters considered in Figure 12 are
optimised in concert, the nominal minimum lap time can be reduced by ap-
proximately 1.5 s, which is significantly larger than the improvement achieved
in any of the one-parameter-at-a-time studies. In the context of competitive
motor sport a lap time reduction of this magnitude is substantial. The results
of the multiple parameter optimisation study are given in Table 2, which are

eSince tyre wear is not modelled, the differential serves only to maximise the drive
torque. In practice a fully locked differential will result in different longitudinal rear-tyre
slips in corners that will give rise to unproductive tyre wear and energy dissipation. If
tyre wear were recognised in the optimal control problem setup, a lower value for the
differential viscosity constant would inevitably result.
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Parameter Optimal Value

a 1.9a m
aA 2.1789 m
Droll 0.4537
kd 2218.1 N m s/radb

aRestricted by a box constraint on
the allowed parameter range.

bDifferential essentially locked.

Table 2: Parameter values from a multi-parameter optimisation study. The
resulting lap time is 80.94 s; see Figure 13.

in broad agreement with Table 1 in trend-predicting sense, although the spe-
cific parameter values are different. The solid black curve in Figure 13 shows
the time difference at each point on the track between the nominal parame-
ter study and the times achieved with optimised parameters. Although the
parameter-optimised car is substantially faster than the nominal vehicle in
terms of lap time, there are isolated sections on the track, for instance turns
1 , 4 , 5 and 12 where the nominal car is quicker. The most substantial

performance gain appears to result from a higher exit speed from turn 16 ,

which is then carried down the long high-speed straight towards turn 1 ;
there is a 0.3 s gain in this section alone. Further gains are achieved between
turns 10 and 15 where a lot of braking, accelerating and steering is required.

It is common lore that the racing line is relatively insensitive to the dy-
namic properties of individual cars. While this belief is generally borne out by
this study, it is not always true. Figure 14 shows that the racing line for the
nominal car in turn 4 can vary by over half a track width as compared with
the vehicle using optimised parameter settings. If one studies Figures 13 and
14 in combination, it is evident that the braking/driving strategy is adjusted
to take full advantage of the vehicle’s enhanced performance. In the case of
the parameter-optimised car the braking phase in turn 4 starts slightly later
and lasts longer than with the nominal car, which results in a significantly
lower minimum speed in the corner; the optimised car loses time during the
braking phase. In compensation, the optimised vehicle undergoes a more
rapid transition from braking to driving that provides a higher exit speed
from the corner, which is carried on to the straight to turn 5 . The higher
exit speed and shorter trajectory (see Figure 14) gain the optimised vehicle
almost 0.2 s between the braking points on turns 4 and 5 . Similar be-
haviours appear elsewhere, with even more pronounced gain in time for the
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Figure 13: Speed profiles for the nominal (dark red line) and optimised (light
yellow line) parameter sets. The solid black line shows the time gain for the
optimised vehicle with distance travelled from the start-finish line; the lap
time for the vehicle with optimised parameters is 80.94 s. The left-hand y-
axis gives the speed, while the right-hand y-axis is the time gained by the
parameter optimised car.

slow-speed corners.

4.5 Neglected and Slow Dynamics

The vehicle model used here captures the essential behaviour of a racing car,
but it also neglects a number of dynamic features that may be of interest in
some studies. These include, for example, the suspension dynamics, limits
on fuel usage, vehicle mass variations due to reducing fuel loads, and the
effects of tyre wear and tyre temperature changes. The inclusion of the slow
dynamics associated with system states such as the amount of fuel on board,
or the temperature of the tyres would require only routine changes to the
model and the optimal control problem setup. There is no apparent need to
change the way in which the model is transcribed, although any new dynam-
ics may affect the convergence of the NLP solution, or its sensitivity to initial
conditions. The inclusion of faster (and therefore ‘stiffer’) dynamics, such as
those associated with suspension systems, or tyre carcass deformation, may
require a change in the transcription method used. At this point in time the
difficulties that these changes may produce are largely unknown (at least to
us). Another challenge relates to the use of tables that may be associated
with such things as engine and fuel consumption maps, the thermal proper-
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Figure 14: Change in the racing line in turn 4 due to parameter variations.
The centre of mass trajectory for the nominal car is shown in red, while the
trajectory for the optimised car is shown in yellow.

ties of the tyres, and the heave- and pitch-dependent aerodynamic drag and
down-force properties. Future studies will investigate the use of alternative
transcription methods such as orthogonal collocation, and of adaptive grid
refinement schemes.

5 Conclusions

We have shown that full-lap vehicular optimal control problems can be solved
quickly using direct collocation methods without recourse to expedients such
as linearisation, preview or track segmentation. While it is difficult to make
quantitative statements about performance gains of this type, prior-art cal-
culations that took many hours can now be completed in less than fifteen
minutes on standard desktop computing facilities using a sampling distance
of approximately 2m for both the control and the dynamics. These gains
come from a combination of several refinements including: the use of curvilin-
ear coordinates for the track model; a car model that has no “stiff” dynamics,
which require a very fine solution mesh; model non-dimensionalisation and
scaling; the approximation of non-smooth modelling features with differen-
tiable functions; and the use of computer-generated analytic derivatives in
combination with an open-source sparse large-scale NLP solver. Our focus
has been on minimum-lap-time optimal control problems for Formula One
cars. We have shown that the simultaneous optimisation of the driver con-
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trols (and therefore the racing line), and several setup parameters can be
easily achieved using standard optimal control techniques. The setup pa-
rameters we have studied here include the location of the vehicle’s mass
centre, the location of the aerodynamic centre of pressure, the roll balance
and the differential viscosity constant. The value of this work lies in the fact
that it represents an optimal control and parameter optimisation basis that
can be developed further. The solution of more difficult problems such as
three-dimensional minimum-lap-time problems, and the optimal control of
combined kinetic/thermal energy recovery systems is now in prospect.

6 Acknowledgement

This work was supported by the UK Engineering and Physical Sciences Re-
search Council.

31



A Tyre Friction

The tyre frictional forces are modelled using empirical formulae that are re-
sponsive to the tyres’ normal loads and combined slip. The tyre’s longitudinal
slip is described by a longitudinal slip coefficient κ, while the lateral slip is
described by a slip angle α [7]. Following standard conventions we use

κ = −
(

1 +
Rωw
uw

)

(A.1)

and
tanα = − vw

uw
, (A.2)

where R is the wheel radius and ωw the wheel’s spin angular velocity. The
terms uw and vw are the longitudinal and lateral components of the velocity
of the wheel centre in body-fixed coordinates.

The following formulae give the peak values and locations of the lateral
and longitudinal friction coefficients using linear interpolation [11]

µxmax = (Fz − Fz1)
µxmax2 − µxmax1

Fz2 − Fz1
+ µxmax1, (A.3)

µymax = (Fz − Fz1)
µymax2 − µymax1

Fz2 − Fz1
+ µymax1, (A.4)

κmax = (Fz − Fz1)
κmax2 − κmax1
Fz2 − Fz1

+ κmax1, (A.5)

αmax = (Fz − Fz1)
αmax2 − αmax1
Fz2 − Fz1

+ αmax1, (A.6)

where the quantities containing a ‘1’ or a ‘2’ in the subscript are measured
tyre parameters. Next, the tyre slip is normalised with respect to the peak
slip:

κn = κ/κmax, (A.7)

αn = α/αmax. (A.8)

(A.9)

Following normalisation, the slip is characterised by a combined-slip coeffi-
cient

ρ =
√

α2
n + κ2n. (A.10)

The friction coefficients in the longitudinal and lateral directions are de-
scribed by

µx = µxmax sin (Qx arctan(Sxρ)), (A.11)

µy = µymax sin (Qy arctan(Syρ)). (A.12)
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with

Sx =
π

2 arctan(Qx)
, (A.13)

Sy =
π

2 arctan(Qy)
. (A.14)

Finally, the longitudinal and lateral components of the tyre forces are given
by

Fx = µxFz
κn
ρ
, (A.15)

Fy = µyFz
αn
ρ
. (A.16)

In the car model used here the normal loads Fz are determined by solving
the load balance equations given in Sections 2.3.1 and 2.3.2. The four wheel
slip angles are given by

αrr = arctan
(

v−ψ̇b

u−ψ̇wr

)

,

αrl = arctan
(

v−ψ̇b

u+ψ̇wr

)

,

αfr = arctan
(

sin δ(ψ̇wf−u)+cos δ(ψ̇a+v)

cos δ(u−ψ̇wf )+sin δ(ψ̇a+v)

)

,

αfl = arctan
(

cos δ(ψ̇a+v)−sin δ(ψ̇wf+u)

cos δ(ψ̇wf+u)+sin δ(ψ̇a+v)

)

,

(A.17)

with the longitudinal slip coefficients given by

κrr = −
(

1 + Rωrr

u−ψ̇wr

)

,

κrl = −
(

1 + Rωrl

u+ψ̇wr

)

,

κfr = −
(

1 +
Rωfr

cos δ(u−ψ̇wf )+sin δ(ψ̇a+v)

)

,

κfl = −
(

1 +
Rωfl

cos δ(u+ψ̇wf )+sin δ(ψ̇a+v)

)

.

(A.18)

As is evident from equations (A.15) and (A.16) the tyre model is respon-
sive to normal load variations and combined slip effects. It also allows one
to specify locations and peak values for the coefficients of friction in the lon-
gitudinal and lateral directions, which are treated as linear functions of the
normal load. Longitudinal and lateral ‘shape factors’ are used to determine
the cornering stiffness and the asymptotic ‘roll off’ characteristics of the tyre.
Due to a paucity of publicly available Formula One tyre data, we have used
the same tyre model on the front and rear wheels.
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B Vehicle and Tyre Data

This appendix contains the nominal values of the tyre, the vehicle and the
aerodynamic parameters used in this study.

Symbol Description Value

Fz1 reference load 1 2000 N
Fz2 reference load 2 6000 N
µx1 peak longitudinal friction coefficient at load 1 1.75
µx2 peak longitudinal friction coefficient at load 2 1.40
κ1 slip coefficient for the friction peak at load 1 0.11
κ2 slip coefficient for the friction peak at load 2 0.10
µy1 peak lateral friction coefficient at load 1 1.80
µy2 peak lateral friction coefficient at load 2 1.45
α1 slip angle for the friction peak at load 1 9◦

α2 slip angle for the friction peak at load 2 8◦

Qx longitudinal shape factor 1.9
Qy lateral shape factor 1.9

Table 3: Tyre friction parameters.
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Symbol Description Value

M vehicle mass 660 kg
Iz moment of inertia about the z−axis 450 kg m2

w wheelbase 3.4 m
a distance of the mass centre from the front axle 1.8 m
b distance of the mass centre from the rear axle w − a
h centre of mass height 0.3 m

Droll roll moment distribution (fraction at the front axle) 0.5
wf front wheel to car centre line distance 0.73 m
wr rear wheel to car centre line distance 0.73 m
R wheel radius 0.33 m
kd differential friction coefficient 10.47 N m s/rad
Cd drag coefficient 0.9
Cl downforce coefficient 3.0
A frontal area 1.5 m2

ρ air density 1.2 kg/m3

aA centre of pressure to front axle distance 1.9 m
bA centre of pressure to rear axle distance w − aA

Table 4: Vehicle parameters.
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