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OPTIMAL CONTROL FOR DISTRIBUTED SYSTEMS SUBJECT
TO NULL-CONTROLLABILITY.

APPLICATION TO DISCRIMINATING SENTINELS

Ousseynou Nakoulima1

Abstract. We consider a distributed system in which the state q is governed by a parabolic equation
and a pair of controls v = (h, k) where h and k play two different roles: the control k is of controllability
type while h expresses that the state q does not move too far from a given state.

Therefore, it is natural to introduce the control point of view. In fact, there are several ways
to state and solve optimal control problems with a pair of controls h and k, in particular the Least
Squares method with only one criteria for the pair (h, k) or the Pareto Optimal Control for multicriteria
problems.

We propose here to use the notion of Hierarchic Control. This notion assumes that we have two
controls h, k where h will be the leader while k will be the follower. The main tool used to solve the
null-controllability problem with constraints on the follower is an observability inequality of Carleman
type which is “adapted” to the constraints.

The obtained results are applied to the sentinels theory of Lions [Masson (1992)].
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1. Introduction

For d ∈ N∗, let Ω be a bounded open subset of Rd with boundary Γ of class C2, T > 0, and let ω be an
open non empty subset of Ω. Set Q = Ω × (0, T ), Σ = Γ × (0, T ), U = ω × (0, T ). We consider the parabolic
evolution equation: 


−q′ − ∆q + a0q = h+ kχω in Q,

q = 0 on Σ,
q(T ) = q0 in Ω,

(1)

where (.)′ is the partial derivative with respect to time t, a0 ∈ L∞(Q), v = (h, k) ∈ L2(Q) × L2(U), q0 ∈ L2(Ω)
and χω denotes the characteristic function of ω. It is well known that problem (1) admits a unique solution q
in the following Hilbert space (see for instance [13, 15]):

W (0, T ) = {ϕ | ϕ ∈ L2(0, T ;H1
0 (Ω)), ϕ′ ∈ L2(0, T ;H−1(Ω))} (2)
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endowed with the natural norm

‖ϕ‖W (0,T ) =
{
‖ϕ‖2

L2(0,T ;H1
0 (Ω)) + ‖ϕ′‖2

L2(0,T ;H−1(Ω))

} 1
2
.

Remark 1. System (1) is a backward parabolic problem. It appears under this form in the sentinels theory of
Lions as the associated adjoint state. (cf. [14], p. 22. See also below in Sect. 5).

We will use the notation
q = q(x, t; v)

to mean that the solution q of (1) depends of the control pair v = (h, k) which plays a particular role. Roughly
speaking, we would like to choose v = (h, k) in order to achieve two objectives. The first one is formulated as
follows: let h be a given function in L2(Q) and

K a real closed vector subspace of L2(U). (3)

Denoting by K⊥ the orthogonal subspace of K in L2(U) we look for a control variable k ∈ L2(U) so that

k ∈ K⊥, (4)

and such that if q = q(x, t; v) is the unique solution of (1), then

q(., 0; v) = 0 in Ω. (5)

The role of k is to guarantee the null-controllability property (5) in the presence of the forcing term h and under
the restriction (4).

Remark 2. The null-controllability problem (1), (4) and (5) is by now well understood in the case K = {0}.
It has been studied by several authors using different methods. We refer to Russell [17], Lebeau and Rob-
biano [12], Fursikov and Imanuvilov [10]. We also refer to Barbu [1], Doubova et al. [5], Fabre et al. [6],
Fernández-Cara [7], Fernández-Cara and Guerrero [8], Zuazua [18, 20], and their bibliography for other related
controllability problems.

The null-controllability problem (1), (4) and (5) in the case K �= {0} has been studied by the author in [16]
when K is of finite dimension. In this case, some compatibility conditions are requiered for controllability to
hold. We shall return to this matter latter on.

In addition to the null-controllability property (5) subject to the constraint (4), the second goal is to choose
the forcing term h such that (4) and (5) are satisfied and that, also,

q(., .; v) is not too far from zd,

where zd is given in Q.

In order to make these objectives more precise, we introduce a suitable non-negative weight function θ which
will be defined below and consider the space

L2
θ(Q) =

{
h | h ∈ L2(Q), θh ∈ L2(Q)

}
,

a Hilbert space for the scalar product and norm

(h, �)θ =
∫
Q

θ2h� dx dt, ‖h‖θ = ‖θh‖L2(Q).
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For h ∈ L2
θ(Q), we will see that there exist several controls k such that (1), (4) and (5) are satisfied. Therefore,

we need to add some criteria to select k. More precisely, for each h, we can consider k̂θ(h) as being the control k
of minimal norm. Thus, we can define a mapping

k̂θ : h �→ k̂θ(h)

from L2
θ(Q) into L2(U) such that k̂θ(h) satisfies (1), (4) and (5). Then, we define

q̂θ(h) = q(., .; (h, k̂θ(h))),

and introduce the weighted cost function Jθ defined as follows: for any control h ∈ L2
θ(Q),

Jθ(h) =
α

2
‖q̂θ(h) − zd‖2

L2(Q) +
β

2
‖k̂θ(h) − kd‖2

L2(U) +
N

2
‖h‖2

θ (6)

where zd ∈ L2(Q), kd ∈ L2(U), α, β ≥ 0 and N > 0 are given.

Let us now consider the set of admissible controls

Uad = non empty closed convex subset of L
2

θ(Q). (7)

Then, the second objective, briefly presented above, is achieved and made precise through the minimization
problem

min Jθ(h), h ∈ Uad. (8)

If the minimum exists, we say that h is the optimal leader, k is the optimal follower and q is the optimal state
of the system.

The optimal control problem (8) is not standard because of the restriction (4), but also and mainly because
of (5). The problem (8) has been studied by Dorville [3], and by Dorville et al. in [4] in the case K = {0}. This
article seems to be the first one dealing with the case K �= {0}.

The paper is organized as follows: Section 2 is devoted to define the optimal follower. The main tool is a
constraint-adapted observability inequality given by Lemma 1. In Section 3, we consider the optimal control
problem defined by (8), and prove the existence of a unique optimal control (Th. 2) and we give the optimality
system for the optimal control (Th. 3). In Section 5, we give an application of the above results to the sentinels
theory of Lions as revisited in [16].

2. Preliminaries

2.1. Classical Carleman’s inequality

It is now well known that the null controllability analysis of parabolic equations is equivalent to the observ-
ability inequality of the associated adjoint state which is obtained by appropriate Carleman estimates. The
main contributions in this area are due to Imanuvilov, who developed the use of Carleman estimates in the
context of null controllability [11].

In order to state Carleman’s inequality, we introduce now some objects and notations. Choose first some
auxiliary function ψ ∈ C2(Ω) which satisfies the following conditions:

ψ(x) > 0 ∀x ∈ Ω, ψ(x) = 0 ∀x ∈ Γ, |∇ψ(x)| �= 0 ∀x ∈ Ω − ω,

Such a function ψ exists according to Fursikov and Imanuvilov [10].
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For any positive parameter λ define then the following weight functions

ϕ(x, t) =
eλψ(x)

t(T − t)
, η(x, t) =

e2λ‖ψ‖∞ − eλψ(x)

t(T − t)
,

and adopt the following notations




L0 = ∂
∂t − ∆,

L = ∂
∂t − ∆ + a0I,

V =
{
ρ ∈ C∞(Q), ρ = 0 on Σ

} (9)

where a0 ∈ L∞(Q). Now the inequality can be formulated as follows. There exist three constants λ0 =
λ0(Ω, ω) > 1, s0 = s0(Ω, ω, T ) > 1 and C = C(Ω, ω) > 0 such that for any λ ≥ λ0, any s ≥ s0 and for any ρ ∈ V
the following inequality holds:

∫
Q

e−2sη

sϕ

(
|ρ′|2 + |∆ρ|2

)
dx dt+

∫
Q

sλ2ϕ e−2sη |∇ρ|2 dx dt+
∫
Q

s3λ4ϕ3e−2sη |ρ|2 dx dt

≤ C

(∫
Q

e−2sη |L0|2 dx dt+
∫
U

s3λ4ϕ3e−2sη |ρ|2 dx dt
)
. (10)

The above inequality is referred to as the global Carleman inequality (see [10] and [11]). As L0 = L − a0I,
then from the previous inequality (10) we deduce another inequality for the operator L by direct substitution
in (10). We conclude the existence of three constants λ1 = λ1(Ω, ω, a0) > 1, s1 = s1(Ω, ω, T, a0) > 1 and
C = C(Ω, ω) > 0 such that for any λ ≥ λ1, any s ≥ s1 and for any ρ ∈ V the next inequality holds:

∫
Q

e−2sη

sϕ

(
|ρ′|2 + |∆ρ|2

)
dx dt+

∫
Q

sλ2ϕ e−2sη |∇ρ|2 dx dt+
∫
Q

s3λ4ϕ3e−2sη |ρ|2 dx dt

≤ C

(∫
Q

e−2sη |Lρ|2 dx dt+
∫
U

s3λ4ϕ3e−2sη |ρ|2 dx dt
)
. (11)

Since ϕ does not vanish, we may set

θ =
esη

ϕ
√
ϕ

so
1
θ

= ϕ
√
ϕ e−sη.

Then θ ∈ C2(Q) and 1/θ is bounded. By substitution in (10) the following inequality holds

∫
Q

1
θ2

|ρ|2 dx dt ≤ C

(∫
Q

1
θ2ϕ3s3λ4

|Lρ|2 dx dt+
∫
U

1
θ2

|ρ|2 dx dt
)
.

As a consequence of the boundeness of 1/θ and 1/ϕ3s3λ4, the following inequality holds too:

∫
Q

1
θ2

|ρ|2 dx dt ≤ C

(∫
Q

|Lρ|2 dx dt+
∫
U

|ρ|2 dx dt
)
. (12)

All these results are by now well understood. We refer, for instance, to Fernández-Cara and Zuazua [9].
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2.2. Carleman’s inequality adapted to linear constraints

We are now concerned with a new observability inequality needed to address the problem that motivates this
article. Indeed, for the null controllability problem with constraints, we need another observability inequality
with partial measurements. More precisely, in order to deal with the constraint (4) we have to derive a more
precise observability inequality adapted to the subspace K in (3). Assume that

K is finite dimensional, (13)

and

any function k ∈ K such that Lk = 0 in U is identically zero in U. (14)

Denote by
P = the orthogonal projection operator from L2(U) onto K (15)

and for ρ ∈ L2(Q)
Pρ = the orthogonal projection of ρχω. (16)

The following lemma is the key ingredient for our results.

Lemma 1. Assume that (13) and (14) hold. Then there exists a positive constant C = C(Ω, ω) such that for
any ρ ∈ V: ∫

Q

1
θ2

|ρ|2 dx dt ≤ C

(∫
Q

|Lρ|2 dx dt+
∫
U

|ρ− Pρ|2 dx dt
)
. (17)

Remark 3. The assumption (14) has been already introduced by Lions in [14], p. 33. Here is some case where
this assumption is satisfied. As an example, consider the case in which each mi has its support in domains such
as ωi × (0, T ) with ωi ⊂ ω and ωi ∩ ωj = ∅ for i �= j. Assuming that Lmi �= 0, then if k ∈ K and Lk = 0 in
ω × (0, T ) we have k = 0 in ω × (0, T ), and the assumption (14) is satisfied.

Proof of Lemma 1. The proof uses a well known compactness-uniqueness argument. Indeed, suppose that (17)
does not hold. Then 


∀n ∈ N∗, ∃ρn ∈ V , ∫Q 1

θ2 |ρn|2 dx dt = 1,

∫
Q
|Lρn|2 dx dt ≤ 1

n and
∫
U
|ρn − Pρn|2 dx dt ≤ 1

n .

(18)

The proof consists in showing that (18) yields a contradiction. We do it in four steps.
(1) We have ∫

U

1
θ2

|Pρn|2 dx dt ≤
∫
U

1
θ2

|ρn|2 dx dt+
∫
U

1
θ2

|ρn − Pρn|2 dx dt.

Since 1/θ2 is bounded, it follows from (18),∫
U

1
θ2

|Pρn|2 dx dt ≤ C. (19)

Since Pρn ∈ K and K is finite dimensional, Pρn (and so ρn) is bounded in L2(U).
(2) We can extract a subsequence, still denoted (ρn)n, such that on the one hand

ρn ⇀ g weakly in L2(U), (20)

and on the other hand:

ρn − Pρn → 0 strongly in L2(U). (21)
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Next, we deduce from the compactness of P (because K is of finite dimension) that there exists σ ∈ K such that

Pρn → σ strongly in L2(U). (22)

We deduce from (21) and (22) that ρn → g = σ strongly in L2(U). Thanks to the continuity of P , we have
Pρn → Pg strongly in L2(U). Therefore, Pg = g and g ∈ K.

(3) In fact, we have g = 0. Indeed, from (18), we also have Lρn → 0 strongly in L2(Q). Thus Lρn → 0
strongly in L2(U). We deduce that Lρn ⇀ 0 weakly in D′(U) and so Lg = 0. The assumption (14) implies
g = 0 on U . Finally, ρn → 0 strongly in L2(U).

(4) Since ρn ∈ V , it follows from the observability inequality (12) that

∫
Q

1
θ2

|ρn|2 dx dt ≤ C

(∫
Q

|Lρn|2 dx dt+
∫
U

|ρn|2 dx dt
)
.

Then, from the conclusions in the third step, we deduce that
∫
Q

1
θ2 |ρn|2 dx dt → 0 when n → +∞. The

contradiction occurs thanks to the first condition in (18), where
∫
Q

1
θ2 |ρn|2 dx dt = 1. The proof of (17) is

complete. �

Corollary 1. Assume that (13) and (14) hold. Then there exists a positive constant C = C(Ω, ω, a0, T ) such
that for any ρ ∈ V :

∫
Ω

|ρ(T )|2 dx+
∫
Q

1
θ2

|ρ|2 dx dt ≤ C

(∫
Q

|Lρ|2 dx dt+
∫
U

|ρ− Pρ|2 dx dt
)
. (23)

Proof. The proof of Corollary results from three arguments: the C2 regularity of θ on Q, the adapted observ-
ability inequality (17) and classical properties of the heat equation. Here and in the sequel C denotes a generic
positive constant that changes from line to line but that it is independent of the solution.

Since the function θ is bounded on Q, we deduce from (17) that on an interval (T/4, 3T/4), we have

∫ 3T/4

T/4

∫
Ω

|ρ|2 dx dt ≤ C

(∫
Q

|Lρ|2 dx dt+
∫
U

|ρ− Pρ|2 dx dt
)

∀ρ ∈ V . (24)

Let now β be a function satisfying

β ∈ C∞([0, T ]), 0 ≤ β ≤ 1, β = 0 on
[
0,
T

4

]
, β = 1 on

[
3T
4
, T

]
.

Set ζ(x, t) = β(t)ertρ(x, t) where ρ ∈ V and r ∈ R∗. Then on the one hand we have ζ(T ) = erTρ(T ), ζ(0) = 0
and on the other hand

∂ζ

∂t
− ∆ζ + (a0 − r)ζ = β ert

(
∂ρ

∂t
− ∆ρ+ a0ρ

)
+ β′ertρ in Q. (25)

With this, we multiply the equation (25) by ζ. It follows from the inequality 2ab ≤ a2 + b2 that for every µ > 0

∫
Ω

|ζ(T )|2 dx+
∫ T

0

∫
Ω

|∇ζ|2 dx dt+
∫ T

0

∫
Ω

(a0 − r) |ζ|2 dx dt ≤ µ

2

∫ T

0

∫
Ω

e2rt |βLρ|2 dx dt

+
1
2µ

∫ T

0

∫
Ω

|ζ|2 dx dt+
∫ T

0

∫
Ω

β′β ert |ρ|2 dx dt.
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From the properties of β and the Poincaré’s inequality and for a choice of r < |a0|L∞(Q), we have then

∫
Ω

|ζ(T )|2 dx+
(

1 − C

2µ

) ∫ T

0

∫
Ω

|∇ζ|2 dx dt ≤ µ

2

∫ T

0

∫
Ω

|Lρ|2 dx dt+ C

∫ 3T/4

T/4

∫
Ω

|ρ|2 dx dt.

Finally, as ζ(T ) = erTρ(T ), we deduce from (24) that for all ρ ∈ V the inequality (23) holds, for a choice of
µ > C/2. �

3. Optimal control for the follower

3.1. Existence of the optimal control

Consider now the following symmetric bilinear form

a(ρ, ρ̂) =
∫
Q

LρLρ̂ dx dt+
∫
U

(ρ− Pρ)(ρ̂− P ρ̂) dx dt. (26)

Thanks to Lemma 1, this bilinear form is a scalar product on V . Let V be the Hilbert space obtained upon
taking the closure of V under the norm:

ρ �→ ‖ρ‖V =
√
a(ρ, ρ). (27)

Remark that the norm ‖.‖V is related to the right hand side of the inequality (17). Similarly, the left hand side
of (17) leads to the norm

‖ρ‖θ =
(∫

Q

1
θ2

|ρ|2 dx dt
) 1

2

.

The completion of V is the weighted Hilbert space usually denoted by L2
1/θ.

The inequality (17) shows that

‖ρ‖θ ≤ C ‖ρ‖V . (28)

This inequality extends to ρ ∈ V . This shows that V is continuously imbedded in L2
1/θ.

Let us now consider h ∈ L2
θ(Q), i.e.:

h ∈ L2(Q) and θh ∈ L2(Q). (29)

From this assumption and thanks to (67) and the Cauchy-Schwarz inequality, we deduce that the linear form
defined on V by

ρ→
∫
Q

hρ dx dt+
∫

Ω

q0ρ(T ) dx

is continuous. By the Lax-Milgram theorem, for any h ∈ L2
θ(Q) and for any q0 ∈ L2(Ω), there exits one and

only one solution ρθ of the variational problem:

ρθ ∈ V, ∀ρ ∈ V, a(ρθ, ρ) =
∫
Q

hρ dx dt+
∫

Ω

q0ρ(T ) dx. (30)
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Theorem 1. Assume that (13) and (14) hold. Let ρθ be the unique solution of (30) and Pρθ be the projection
of ρθχω. Set

kθ = −(ρθχω − Pρθ) (31)

and

qθ = Lρθ. (32)

Then, the pair (kθ, qθ) is such that (1), (4) and (5) hold. Moreover, we have

‖ρθ‖V ≤ C
[
‖θh‖L2(Q) +

∥∥q0∥∥
L2(Ω)

]
, (33)

‖kθ‖L2(U) ≤ C
[
‖θh‖L2(Q) +

∥∥q0∥∥
L2(Ω)

]
, (34)

‖qθ‖W (0,T ) ≤ C
[
‖θh‖L2(Q) +

∥∥q0∥∥
L2(Ω)

]
, (35)

where C is a positive constant depending only on Ω, ω, a0, T and K.

Proof. Since ρθ ∈ V then kθ = −(ρθχω − Pρθ) ∈ L2(U) and qθ ∈ L2(Q). Since Pρθ ∈ K then kθ = −(ρθχω −
Pρθ) ∈ K⊥. By direct subtitution in the formulas (26), (30) and (32) it follows∫

Q

qθLρ dx dt+
∫
U

(ρθ − Pρθ)(ρ− Pρ) dx dt =
∫
Q

hρ dx dt+
∫

Ω

q0ρ(T ) dx, ∀ρ ∈ V.

Taking into account that Pρ ∈ K, the above identity reduces to∫
Q

qθLρ dx dt =
∫
Q

hρ dx dt−
∫
U

(ρθ − Pρθ)ρ dx dt+
∫

Ω

q0ρ(T ) dx, ∀ρ ∈ V.

i.e. ∫
Q

qθLρ dx dt =
∫
Q

hρ dx dt+
∫
U

kθρ dx dt+
∫

Ω

q0ρ(T ) dx, ∀ρ ∈ V. (36)

We show now that qθ is in fact the weak solution by transposition of a backward heat problem. More precisely,
if φ ∈ L2(Q), let p be the solution of 


p′ − ∆p+ a0p = φ in Q,

p = 0 on Σ,
p(0) = 0 in Ω.

(37)

Then p ∈ V , and thus ∫
Q

qθφdx dt =
∫
Q

hp dx dt+
∫
U

kθp dx dt+
∫

Ω

q0p(T ) dx. (38)

Therefore qθ is the weak solution by transposition of problem (1) with k = kθ (see [15], p. 177). And we know
that the solution of this equation is in W (0, T ). Therefore qθ ∈ C([0, T ] , L2(Ω)). Then multiplying the first
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equation of (1) by ρ ∈ V and integrating by parts over Q, it follows that for any ρ ∈ V



−
∫

Ω

qθ(T )ρ(T ) dx+
∫

Ω

qθ(0)ρ(0) dx+
∫
Q

qθLρ dx dt

=
∫
Q

hρ dx dt+
∫
U

kθρ dx dt.
(39)

As ρ ∈ V , we deduce from (36) that
∫

Ω

qθ(0)ρ(0) dx = 0 ∀ρ ∈ V .

Therefore qθ(0) = 0 in Ω. Hence, the first statement of Theorem 1 is proved.
It remains to prove the estimates (33)–(35). We set ρ = ρθ in (30), it follows from (17) that

a(ρθ, ρθ) = ‖qθ‖2
L2(Q) + ‖kθ‖2

L2(U) ≤ ‖θh‖L2(Q) ‖ρθ‖θ +
∥∥q0∥∥

L2(Ω)
‖ρθ(T )‖L2(Ω)

≤ C
[
‖θh‖L2(Q) +

∥∥q0∥∥
L2(Ω)

]
‖ρθ‖V . (40)

Then, from (27) we obtain (33) and thus (34). Finally, (35) is a consequence of (34) and classical properties of
the heat equation. �

3.2. Definition of the follower

The adapted observability inequality (17) shows that the choice of the scalar product on V is not unique.
Thus, there exist infinitely many control functions k such that (1), (4) and (5) hold.

That being, thanks to (30) and Theorem 1, for each scalar product on V and for each function h in L2
θ(Q),

there exists a unique ρθ in V and a unique pair (kθ, qθ) such that (1), (4) and (5) hold. Thus, we define the
following mappings

ρ̂θ : h �→ ρθ, k̂θ : h �→ kθ and q̂θ : h �→ qθ. (41)

Corollary 2. Assume that (13) and (14) hold. The functions ρ̂θ, k̂θ, q̂θ defined in (41) depend linearly on h and
are continous from L2

θ(Q) into V, L2(U) and W (0, T ) respectively.

Consequently the cost function Jθ(h) is well defined by (6) and thus also the optimization problem (8).

Definition 1. If h is the minimum of the optimization problem (8), we say that h is the optimal leader, k̂θ(h)
is the optimal follower and q̂θ(h) is the optimal state of the system defined by (1), (4), (5) and (8).

It remains to prove the existence of the optimal leader. This is done in the forthcoming Section 4.

4. Optimal control for the leader

4.1. Existence of the leader

Theorem 2. Under the assumptions (13) and (14), there exists a unique optimal control hθ, the so called
optimal leader, which is the solution to the problem (8).

Proof. Since Uad is non empty, from Theorem 1, problem (1), (4) and (5) admits at least one solution. Thus

d = inf{Jθ(h), h ∈ Uad}
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is well defined in [0,∞[. Therefore, if (hn) is a minimizing sequence, we have

Jθ(hn) ≤ Cθ

where Cθ is a finite constant independent of n. Moreover, hn is such that (hn, k̂θ(hn), q̂θ(hn)) verifies

hn ∈ Uad, k̂θ(hn) ∈ K⊥, q̂θ(hn) ∈W (0, T ), (42)


−q̂′θ(hn) − ∆q̂θ(hn) + a0q̂θ(hn) = hn + k̂θ(hn)χω in Q,

q̂θ(hn) = 0 on Σ,

q̂θ(hn)(T ) = q0 in Ω,

(43)

q̂θ(hn)(0) = 0 in Ω. (44)

In a first step, we consider the structure (6) of Jθ(hn). Since N > 0, then

‖hn‖θ ≤ Cθ. (45)

Thanks to (34) and (35) ∥∥∥k̂θ(hn)∥∥∥
L2(U)

≤ C(‖hn‖θ +
∥∥q0∥∥

L2(Ω)
),

|q̂θ(hn)‖L2(Q) ≤ C(‖hn‖θ +
∥∥q0∥∥

L2(Ω)
)

and thus we have ∥∥∥k̂θ(hn)
∥∥∥
L2(U)

≤ Cθ,

‖q̂θ(hn)‖L2(Q) ≤ Cθ.

From the properties of the heat equation we have also

‖q̂θ(hn)‖W (0,T ) ≤ Cθ. (46)

So we can extract from (hn, k̂θ(hn), q̂θ(hn)) a subsequence, still denoted by (hn, k̂θ(hn), q̂θ(hn)), such that:

hn ⇀ hθ weakly in L2
θ(Q), hθ ∈ Uad,

k̂θ(hn) ⇀ kθ weakly in L2(U), kθ ∈ K⊥,
q̂θ(hn) ⇀ qθ weakly in W (0, T ) and strongly in L2(Q), qθ ∈W (0, T ).

Therefore, we can pass to the limit in the system (42)–(44). We obtain

hθ ∈ Uad, kθ ∈ K⊥, qθ ∈W (0, T ) (47)


−q′θ − ∆qθ + a0qθ = hθ + kθχω in Q,

qθ = 0 on Σ,

qθ(T ) = q0 in Ω,

(48)

qθ(0) = 0 in Ω. (49)
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Hence, by weak lower semicontinuity of the functional Jθ we deduce that

lim inf Jθ(hn) ≥ α

2
‖qθ − zd‖2

L(Q)2 +
β

2
‖kθ − kd‖2

L2(U) +
N

2
‖hθ‖2

θ. (50)

In a second step, we deduce from (30) that kθ = k̂θ(hθ) and qθ = q̂θ(hθ), i.e.

{
kθ = −(ρ̂θ(hθ)χω − P ρ̂θ(hθ)),

qθ = Lρ̂θ(hθ).
(51)

�

4.2. Optimality system for the leader

Let hθ be the optimal leader, and (kθ, qθ) = (k̂θ(hθ), q̂θ(hθ)) be the corresponding follower-state. The Euler-
Lagrange condition gives

d
dλ
Jθ(hθ + λ(h− hθ)|λ=0 ≥ 0 ∀h ∈ Uad. (52)

In order to calculate
d
dλ
Jθ(hθ + λw)|λ=0 = X(w),

we begin by observing that k̂θ and q̂θ depend linearly on h so that

{
k̂θ(hθ + λw) = k̂θ(hθ) − λ(ρ(w)χω − Pρ(w)),

q̂θ(hθ + λw) = q̂θ(hθ) + λLρ(w),

ρ(w) being the unique solution of the following problem


ρ(w) ∈ V,

a(ρ(w), ρ) =
∫
Q

wρ dx dt ∀ρ ∈ V,
(53)

where a(., .) and V are defined in (26) and (27) respectively. Therefore, we have

X(w) =
∫
Q

α(q̂θ(hθ) − zd)Lρ(w) dx dt−
∫
U

β(k̂θ(hθ) − kd)(ρ(w) − Pρ(w)) dx dt+N

∫
Q

θ2hθw dx dt.

As hθ is optimal, it follows by Euler-Lagrange’s condition in (52) that

X(h− hθ) ≥ 0, ∀h ∈ Uad. (54)

To simplity these explicit conditions, we introduce the adjoint state defined as follows: for ρ ∈ V , we set

l(ρ) =
∫
Q

α(q̂θ(hθ) − zd)Lρ dx dt−
∫
U

β(k̂θ(hθ) − kd)(ρ− Pρ) dx dt.

Then
|l(ρ)| ≤ {‖α(q̂θ(h) − zd)‖2

L2(Q) + ‖β(k̂θ(hθ) − kd)‖2
L2(U)}

1
2 {‖Lρ‖2

L2(Q) + ‖ρ− Pρ‖2
L2(U)}

1
2 . (55)

And thus,
|l(ρ)| ≤ C‖ρ‖V .
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In other words, the linear form ρ �→ l(ρ) is continuous on V . Therefore, there exists a unique solution σθ of the
problem {

σθ ∈ V,

a(σθ, ρ) = l(ρ) ∀ρ ∈ V.
(56)

We shall say that σθ is the associated adjoint state to ρθ where

ρθ = ρ̂θ(hθ). (57)

Now, if we choose on the one hand ρ = ρ(w) in (56) where ρ(w) is defined by (53), and on the other one ρ = σθ
in (53), then we have

l(ρ(w)) = a(σθ, ρ(w)) = a(ρ(w), σθ) =
∫
Q

wσθ dx dt.

Using the adjoint state σθ, we have

X(w) = l(ρ(w)) +N

∫
Q

θ2hθw dx dt =
∫
Q

wσθ dx dt+N

∫
Q

θ2hθw dx dt.

So, the Euler-Lagrange condition (54) yields∫
Q

(σθ +Nθ2hθ)(h− hθ) dx dt ≥ 0, ∀h ∈ Uad.

To sum up, we have proved the following result:

Theorem 3. Assume that (13) and (14) hold. Let (kθ, qθ) ∈ L2(U) ×W (0, T ) be given by (51). The element
hθ is the optimal control of the problem (8) if and only if the (unique) solution of


σθ ∈ V,

a(σθ, ρ) =
∫
Q

α(qθ − zd)Lρ dx dt−
∫
U

β(kθ − kd)(ρ− Pρ) dx dt ∀ρ ∈ V
(58)

satisfies the optimal condition∫
Q

(σθ +Nθ2hθ)(h− hθ) dx dt ≥ 0 ∀h ∈ Uad. (59)

5. Discriminating sentinels

5.1. Definition

Let us remind that the Lions sentinels theory [14] relies on the following three features: the state equation,
the observation system and some particular evaluation function: the sentinel itself. More precisely, we consider
in the first step the semilinear parabolic equation:


y′ − ∆y + f(y) = 0 in Q,

y = 0 on Σ,
y(0) = y0 + τ ŷ0 in Ω.

(60)

We are interested in systems with data that are not completely known. In the present situation f : R → R
is a given map, and the function y0 ∈ L2(Ω) is known. However the term, the so called perturbation τ ŷ0 is
unknown, but is such that

‖ŷ0‖L2(Ω) ≤ 1 and the real number τ is small enough. (61)
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In addition to (61), we assume that the non-linearity of f verifies

f(0) = 0 (62)

and satisfies the following growth condition



|f(s1) − f(s2) − f ′(0)(s1 − s2)| ≤

C(|s1|p−1 + |s2|p−1) |s1 − s2| , ∀s1, s2 ∈ R
(63)

for some C > 0 and p > 1 such that

p ≤ (d+ 4)/d. (64)

This growth condition is classical (see for instance [19]). Under this growth condition, it is proved in [2], p. 63
that there exists α > 0 such that when ∥∥y0 + τ ŷ0

∥∥
L2(Ω)

≤ α

the problem (60) admits a unique solution in C([0, T ], L2(Ω)) . Let

y = y(τ, ŷ0) (65)

be this solution. Therefore, the map

τ �−→ y(τ, ŷ0) is in C1(R;C([0, T ], L2(Ω)). (66)

Next, consider in the second step the observation process. The observation consists on the knowledge, along
some time period, of some function yobs which is defined on the strip O × (0, T ) over some nonempty open
subset O ⊂ Ω, called observatory. The function yobs is assumed to be of the form

yobs = m0 +
M∑
i=1

βimi. (67)

where the functions m0,m1, ...,mM are given measurements of y in L2(O×(0, T )), but where the real coefficients
βi are unknown. We assume that βi are small. We refer to the terms βimi as the interference terms. We can
assume without loss of generality that

the functions mi are linearly independent. (68)

Finally, we introduce now the notion of sentinel. Let h0 be a given function on O × (0, T ) such that

h0 ≥ 0,
∫ T

0

∫
O

h0 dx dt = 1. (69)

Moreover let ω be an open and non empty subset of Ω. For any control function w ∈ L2(ω × (0, T )), set

S(τ) =
∫ T

0

∫
O

h0y(τ, ŷ0) dx dt+
∫ T

0

∫
ω

wy(τ, ŷ0) dx dt. (70)
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The role of the function w appears in the following definition. We shall say that S defines a discriminating
sentinel (for the system (60), (67) and (69)) if there exists w such that the functional S satisfies the following
conditions:

(i) S is stationary at first order with respect to the missing terms τ ŷ0, that is

∂S

∂τ
(0) = 0 ∀ŷ0; (71)

(ii) S is stationary with respect to the interference terms βimi, that is

∫ T

0

∫
O

h0mi dx dt+
∫ T

0

∫
ω

wmi dx dt = 0, 1 ≤ i ≤M. (72)

Remark 4. At this point, some comments must be made.

(1) The original Lions’s discriminating sentinel S corresponds to the case where ω = O and the norm
‖w‖L2(ω×(0,T )) is minimal among control functions w in L2(ω × (0, T )) which satisfy the above condi-
tions (71)–(72). Therefore, the previous definition introduces a generalization of Lions’s discriminating
sentinel to the case where the observation and the control have their supports in two different open
subsets. This point of view with w of minimal norm is considered in [16].

(2) The support supp(mi) of functions mi is assumed to be included in O. Suppose ω ∩ O = ∅. Then,
automatically

∫ T
0

∫
ω wmi dxdt = 0. Therefore, it suffices to choose h0 such that h0 is orthogonal to

each mi and then (72) would be readily verified. Therefore, for all ω we can neglect the part of ω which
is out of O. So, without loss of generality, it may be assumed that

ω ⊂ O. (73)

5.2. Equivalence to the null-controllability

Here it will be shown that the existence of such a control function w satisfying (71)–(72) is equivalent to
the null-controllability property for a system with constrained control. First, we denote by y the solution of
problem (60) for τ = 0 and we assume that y can be computed in practice. Next, we consider the function yτ
defined by

yτ =
d
dτ
y(τ, ŷ0)|τ=0. (74)

The function yτ is the solution of the linearized problem




y′τ − ∆yτ + f ′(y)yτ = 0 in Q,
yτ = 0 on Σ,
yτ (0) = ŷ0 in Ω,

(75)

where f ′(y) denotes the derivative of f on y. Thanks to (63), problem (75) admits a unique solution yτ .

We now consider the stationary condition (71). It holds if and only if

∫ T

0

∫
O

h0yτ dx dt+
∫ T

0

∫
ω

wyτ dx dt = 0 ∀ŷ0 : ‖ŷ0‖L2(Ω) ≤ 1. (76)
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In order to transform the equation (76), introduce now the classical adjoint state. More precisely, consider the
solution q = q(x, t) of the linear problem


−q′ − ∆q + f ′(y)q = h0χO + wχω in Q,

q = 0 on Σ,
q(T ) = 0 in Ω,

(77)

where χO and χω are the characteristic functions for the open sets O and ω respectively. As for the problem
(75), problem (77) admits a unique solution q. The so called adjoint state q depends on the unknown w and its
usefulness comes from the following observation.

First, multiply both members of the differential equation in (77) by yτ , and integrate by parts over Q:

∫ T

0

∫
O

h0yτ dx dt+
∫ T

0

∫
ω

wyτ dx dt =
∫

Ω

q(0)ŷ0dx ∀ŷ0, ‖ŷ0‖L2(Ω) ≤ 1.

Thus, the condition (71) (or (76)) holds if and only if

q(0) = 0. (78)

Then, consider the constraints (72). Let K be the vector subspace generated in L2(ω × (0, T )) by the M
independent functions miχω. There is a unique k0 ∈ K such that

∫ T

0

∫
O

h0mi dx dt+
∫ T

0

∫
ω

k0mi dx dt = 0, 1 ≤ i ≤M. (79)

In other words, the condition (72) holds if and only if

w − k0 = k ∈ K⊥. (80)

The above considerations show that finding the control w such that the functional S satisfies (71)–(72) is
equivalent to finding the control k such that the pair (k, q) satisfies the following system

k ∈ K⊥, q ∈W (0, T ), (81)


−q′ − ∆q + f ′(y)q = h0χO + k0χω + kχω in Q,
q = 0 on Σ,

q(T ) = 0 in Ω,
(82)

q(0) = 0 in Ω. (83)

We see that (81)–(83) is exactly the problem (1), (4) and (5) when a0 = f ′(y), h = h0χO + k0χω and q0 = 0.
So, we can apply the results obtained in the previous sections. Indeed, observe first that K is finite dimensional.
Now, assume that K and h = h0χO + k0χω are such that (14) and (29) hold respectively. We assume also (73).
Now, let (ρθ, kθ, qθ) be defined as in Theorem 1. Then

kθ = −(ρθχω − Pρθ),

and the sentinel is defined by

S(τ) =
∫ T

0

∫
O

h0y(τ, ŷ0) dx dt+
∫ T

0

∫
ω

(k0 − (ρθ − Pρθ))y(τ, ŷ0) dx dt. (84)
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Now, if h0 is subject to some constraints, for example if h0 remains in a suitable non empty convex set, then it
is natural to introduce the control point of view. For instance, we would like to choose h0 such that the adjoint
state q of the system does not move too far from a given state. So, we can use the previous notion of leader
and follower. Thus, given zd ∈ L2(Q), kd ∈ L2(U), let hθ be the optimal solution of (8), ρθ the corresponding
solution of (30), and define Sθ by

Sθ(τ) =
∫ T

0

∫
O

h0y(τ, ŷ0) dx dt+
∫ T

0

∫
ω

(k0 − (ρθ − Pρθ)y(τ, ŷ
0) dx dt. (85)

This is the optimal sentinel for the system (60), (67), (69), (6)–(8).
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Antilles et de la Guyane (2004).
[4] R. Dorville, O. Nakoulima and A. Omrane, Low-regret control for singular distributed systems: The backwards heat ill-posed

problem. Appl. Math. Lett. 17 (2004) 549–552.
[5] A. Doubova, A. Osses and J.P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous

diffusion coefficients. ESAIM: COCV 8 (2002) 621–661.
[6] C. Fabre, J.P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Royal Soc. Edinburg

125A (1995) 31–61.
[7] E. Fernández-Cara, Nul controllability of the semilinear heat equation. ESAIM: COCV 2 (1997) 87–103.
[8] E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability.

SIAM J. Control Optim. 45 (2006) 1395–1446.
[9] E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Differ.

Equ. 5 (2000) 465–514.
[10] A. Fursikov and O.Yu. Imanuvilov, Controllability of evolution equations, Lecture Notes. Research Institute of Mathematics,

Seoul National University, Korea (1996).
[11] O.Yu. Imanuvilov, Controllability of parabolic equations. Sbornik Math. 186 (1995) 879–900.
[12] G. Lebeau and L. Robbiano, Contrôle exacte de l’équation de la chaleur. Comm. Part. Diff. Eq. 20 (1995) 335–356.
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