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Abstract

Optimal Control for Learning with Applications in Dynamic MRI

by

John Norman Maidens

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Murat Arcak, Chair

Unknown parameters in models of dynamical systems can be learned reliably only when
the system is excited such that the measured output data is informative. Given a statistical
model that specifies the dependence of the measured data on the state of the dynamical
system, the design of maximally informative inputs to the system can be formulated as a
mathematical optimization problem using the Fisher information as an objective function.

Optimal design in the time domain is hard in general, but efficient approximation al-
gorithms have been developed in some special cases. In this dissertation, we present new
approaches to solving this problem using optimal control algorithms based on convex relax-
ations, and exploiting geometric structure in the underlying optimization problem.

Magnetic resonance imaging (MRI) serves as a motivating application problem through-
out. We highlight two successes of these methods in the design of dynamic MRI experiments:
magnetic resonance fingerprinting (MRF) for accelerated anatomic imaging, and hyperpo-
larized carbon-13 MRI for noninvasively monitoring cancer metabolism. In particular, we
use optimal experiment design algorithms to compute optimized flip angle sequences for
MRF and hyperpolarized carbon-13 acquisitions as well as optimized tracer injection inputs
for estimating metabolic rate parameters in hyperpolarized carbon-13 acquisitions. In the
final chapter, we present results on constrained reconstruction of metabolism maps from
experimental data, closing the path from experiment design to data collection to synthesis
of interpretable information.
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Chapter 1

Introduction

In this dissertation, we consider the problem of estimating the value of unknown parameters
in a mathematical model of a dynamical system from noisy output data. For such a system,
the reliability of the parameter estimates depends on the choice of input used to excite the
system, as some inputs provide much greater information about the parameters than others.
This problem is known as optimal experiment design and much work has been done on this
problem in the last 50 years [35, 39, 58, 105].

Historically, a great deal of work on optimal experiment design has taken a frequency
domain approach, where the input to the system is designed based on its power spectrum.
Here, we will approach this problem in the time domain, hoping to be able to perform
experiment design for systems with nonlinear dynamics, and to put time domain constraints
on the admissible inputs.

My interest in optimal design stems from applied problems in medical imaging, in partic-
ular to solving quantitative imaging problems in magnetic resonance imaging (MRI). Data
collected in MRI experiments is typically noisy due to thermal movement of electrons in
the receiver coil and the object being imaged. This makes it challenging to estimate model
parameters from dynamic data sets when the signal to noise ratio is small. This challenge
can be addressed by designing experimental parameters with the goal of maximizing the
information about unknown model parameters contained in the data collected.

After introducing the problem of optimal experiment design in Section 1.1, we will in-
troduce two such MRI problems. In Section 1.2 we intoduce hyperpolarized carbon-13 MRI,
an emerging imaging technology that enables in vivo metabolism monitoring with chemical
specificity. Then in Section 1.3 we introduce magnetic resonance fingerprinting, a recently-
developed method for quantitative anatomic imaging. In Section 1.4, we summarize the
contributions of this dissertation to give the reader a high-level overview of what is to come
in the subsequent chapters.
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1.1 Optimal Design of Dynamic Experiments

Problem Description

We consider a discrete-time dynamical system with noisy observations

xt+1 = f(t, xt, ut, θ)

Yt ∼ Pxt
(1.1)

where xt ∈ R
n denotes the system’s state, ut ∈ R

m is a sequence of inputs to be designed
and θ ∈ R

p is a vector of unknown parameters that we wish to estimate. Observations are
drawn independently from a known distribution that is parametrized by the system state
xt. We assume that for all xt ∈ R

n the probability distribution Pxt is absolutely continuous
with respect to some measure µ and we denote its density with respect to µ by pxt(yt). We
consider this system over a finite horizon 0 ≤ t ≤ N . Our goal is to design a sequence u that
provides a maximal amount of information about the unknown parameter vector θ. This
problem can be addressed by maximizing the Fisher information about θ.

Fisher Information

An important notion in frequentist statistics is the Fisher information matrix for the vector
of model parameters θ. The Fisher information is fundamental in the analysis of numerous
statistical estimators from unbiased estimation to maximum-likelihood estimation. We begin
with a definition.

Definition 1. Let P = {Pθ : θ ∈ Ω} be a family of probability distributions parametrized by
θ in an open set Ω ⊆ R

p and dominated by some measure µ. Denote the probability densities
with respect to µ by pθ and assume that the densities are differentiable with respect to θ. We
define the Fisher information matrix as the p× p matrix I(θ) with (i, j)-th entry defined as

I(θ)i,j = E

[

∂ log pθ(Y )

∂θi

∂ log pθ(Y )

∂θj

]

where Y ∼ Pθ.

The Cramér-Rao Inequality for Unbiased Estimators

The Cramér-Rao inequality provides a lower bound on the achievable covariance of any
unbiased estimator of θ in terms of the Fisher information matrix.

Theorem 1 (Cramér-Rao Bound). Let δ(Y ) be any unbiased estimator of the parameter θ.
Under the conditions that

• I(θ) exists and is nonsingular
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• ∂
∂θ

[∫

δ(y)pθ(y)dy
]

=
∫

δ(y)
[

∂
∂θ
pθ(y)

]

dy

the estimator δ satisfies
cov(δ(Y )) ≥ I(θ)−1

where A ≥ B indicates that A− B is positive semidefinite.

Thus, as the Fisher information contained in a data set increases, it becomes possible
to find more reliable estimates of the parameter vector θ. The following result shows that
asymptotically, this bound is tight.

Asymptotic distribution of the Maximum-Likelihood Estimator

Let Y 1, . . . Y n be n random variables drawn independently from the probability distribution
Pθ. Given that some mild regularity conditions are satisfied, as n → ∞ the maximum-
likelihood estimator

θ̂MLE = argmax
θ

n
∑

i=1

log pθ(Y
i).

converges in distribution to a normal distribution with covariance I(θ)−1.

Theorem 2 (Asymptotics of the MLE). Suppose that

• the MLE is consistent

• pθ(Y ) is bounded and C2 in θ

• I(θ) exists and is nonsingular

• E[‖ logHθ(Y )‖] <∞ where H denotes the Hessian of pθ(Y ) with respect to θ.

Then
√
n(θ̂MLE − θ)

d−→ N(0, I(θ)−1) .

Scalar Measures of Positive Semidefinite Matrices

In order to use the Fisher information as an objective function for choosing an input sequence
u, we must choose a method of summarizing I(θ) by a scalar quantity. We survey some of
the most common choices here.

• Nonnegative linear functions

The most convenient class of objective functions are those that are linear functions of
the information matrix. For any positive semidefinite matrix K ∈ R

p×p we can define
the objective function

φ(I) = tr(KI).
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Particular cases are the “T -optimal” design criterion (when K is the identity matrix)
and the c-optimal design criterion (when K = ccT has rank 1), which is optimal for
the scalar parameter cT θ.

• Other convex functions

A number of other functions of the Fisher information matrix are also commonly used
as scalar measures of its size. Choices include:

– φD(I) = log det(I) know as “D-optimal design,”

– φE(I) = λmin(I) known as “E-optimal design”, and

– φA(I) = 1/ tr(I−1) known as “A-optimal design.”

To understand the geometric meaning of each of these optimal design criteria, consider
an asymptotic confidence region associated with the MLE of θ. Such a region is described
by the ellipsoid E = {θ̃ : n(θ̃ − θ̂MLE)

TI(θ̃ − θ̂MLE) ≤ ǫ} for some ǫ > 0. The volume
of this ellipsoid is proportional to

√

det(I−1) and therefore the D-optimal design criterion
corresponds to minimizing the volume of the confidence ellipsoid E . If the spectrum of I
is denoted λ1, . . . , λp then the length of the axes of E are 1√

λ1
, . . . , 1√

λp
. So the E-optimal

design criterion corresponds to minimizing the length of the longest axis of the confidence
ellipsoid and the A-optimal design criterion corresponds to minimizing the average squared
length of the confidence ellipsoid axes.

Optimizing Under Parametric Uncertainty

Given a particular scalar-valued function φ with which we will measure the size of the Fisher
information, the optimal experiment design problem is given by

maximizeu φ(I(θ))
subject to u ∈ U (1.2)

for some set U of admissible signals. In general the objective φ(I(θ)) depends on the true
value of the parameter θ ∈ Ω, which is unknown to the experimenter. Several approaches
are commonly taken to address this problem.

The simplest approach, and the one that we will use, is to assume a nominal value θ0 ∈ Ω
for the model parameters and to solve the problem

maximizeu φ(I(θ0))
subject to u ∈ U (1.3)

about this nominal value. This is referred to by some authors as “local design” [105], though
we will refer to it as “nominal design” and reserve the terms local and global to refer to local
and global solutions of the optimization problem. If multiple experiments can be performed,
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this approach can also be extended to an iterative procedure where we start with some
nominal value of the parameter vector and design an optimal experiment using this value.
Data are then collected, a new value of the parameter vector is estimated from the data, and
then the experiment design is performed again using the updated value of the parameter
vector.

Another approach is to consider a minimax criterion, solving the worst-case optimization
problem

maximizeu min
θ∈Ω

φ(I(θ))

subject to u ∈ U .
(1.4)

This approach ensures a minimum level of estimator performance regardless of the true value
of θ.

Another alternative is to consider a prior distribution π(θ) on the values that the pa-
rameter vector may take. The experiment may then be designed with respect to the average
criterion

maximizeu Eπ[φ(I(θ))]
subject to u ∈ U . (1.5)

1.2 Hyperpolarized Carbon-13 MRI for Imaging

Metabolism

Carbon is arguably the most important element in biochemistry. It forms the basis of all
organic molecules that make up the human body, yet only recently have we begun to be able
to quickly image carbon in vivo using magnetic resonance imaging (MRI). The emerging
technology that makes this possible is known as hyperpolarized carbon-13 MRI, and it has
enabled in vivo imaging with spatial, temporal and chemical specificity for the first time.
This development is leading to new insights into the spatial distribution of metabolic activity
through the analysis of dynamic image sequences.

The processes that are imaged in hyperpolarized carbon-13 MRI are inherently dynamic,
resulting from blood flow, tissue perfusion, metabolic conversion, and polarization decay.
Thus there is an opportunity for control researchers to improve the dynamic models, excita-
tion inputs and estimation algorithms used in hyperpolarized carbon-13 MRI.

The measurable signal in MRI arises from radio-frequency electromagnetic waves gen-
erated by oscillating atomic nuclei. Nuclei containing an odd number of protons and/or
neutrons possess a nuclear spin angular momentum, each giving rise to a small magnetic
moment. Thus nuclei such as carbon (12C) and oxygen (16O) are invisible to MRI, while
hydrogen (1H) and the carbon-13 isotope (13C) exhibit magnetic resonance (MR). Hydrogen
MR, sometimes known as proton MR, is currently the most commonly-used in clinical set-
tings due to the high abundance of hydrogen atoms in the human body (largely in the form of
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M

(a) Spins in the absence of
an external magnetic field are
oriented randomly, leading to
a net magnetization M = 0.

M

(b) In a magnetic field, spins
orient themselves with the
field, leading to a small net
magnetization M .

M

(c) Hyperpolarizing the sam-
ple causes the spins to coor-
dinate direction, leading to a
greater net magnetization M .

Figure 1.1: Polarization of a collection of spins leads to a net magnetization M . The mag-
nitude of the vector M can be increased by hyperpolarization.

H2O) and its high sensitivity [80]. Conventional hydrogen MRI is pervasive for noninvasive
imaging of anatomic structure, but provides little functional information. In this work, we
focus on carbon-13 MR, which can be used to provide information about metabolic function.

Polarization

Each carbon-13 nucleus in a sample gives rise to a small magnetic moment, which we think
of as a vector in three-dimensional space. In the absence of a magnetic field these magnetic
moments, or spins, are oriented randomly in space. In this state, where the spins are oriented
randomly, the net magnetization M = (Mx,My,Mz) of the sample (computed by summing
the magnetic moments from all nuclei in the sample) is zero (Figure 1.1a).

In the presence of a magnetic field, the spins will orient themselves to the magnetic field
with some aligned parallel (n+) with the magnetic field lines and some aligned anti-parallel
(n−) with the magnetic field lines. Due to a small energy difference between the two states,
there is a slight bias toward the lower energy state aligned parallel to the magnetic field.
This bias leads to a polarization of the sample, defined as the excess of spins in the lower
energy state. At thermal equilibrium, the polarization P is given in terms of the applied
magnetic field strength B0, ambient temperature T , gyromagnetic ratio γ of the nucleus
(10.705 MHz/T for 13C), and the Boltzmann (kB) and reduced Planck (~) constants as

P =
n+ − n−

n+ + n− = tanh

(

γ~B0

2kBT

)

.

This slight bias leads to a small net magnetization of the sample at thermal equilibrium
(Figure 1.1b) given by

M =





0
0
M0



 =





0
0

Nγ2~2Iz(Iz+1)B0

3kBT




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where N is the number of spins in the sample and Iz is the spin operator. Note that we use
the standard convention that the z axis is chosen such that it points in the direction of the
applied B0 field.

Due to the low natural abundance of carbon-13 in the body and its low gyromagnetic
ratio, the thermal equilibrium magnetization is insufficient to achieve sufficient signal for
imaging. Thus carbon-13-based imaging relies on hyperpolarization technology to increase
the polarization beyond the equilibrium level (Figure 1.1c).

Chemical shift

The unique aspect of hyperpolarized carbon-13 MRI, when compared to competing metabolic
imaging technologies such as positron emission tomography (PET), is that it is the only
technique that provides chemical specificity. It is possible to infer chemical information from
MRI data due to a phenomenon known as chemical shift.

Chemical shift results in a small change in the resonant frequency of spins. This change
is caused by shielding of the nuclei from the main magnetic field B0 due to nearby electron
orbitals [80]. The resulting frequency shift can be exploited to selectively excite specific
metabolites [56], or distinguish between metabolites produced. This gives hyperpolarized
carbon-13 MRI the unique ability to quantify metabolic flux in specific pathways.

Hyperpolarization using DNP

Hyperpolarized carbon-13 MRI has been enabled by new technologies for hyperpolarizing
carbon-13-containing substrates in liquid state, leading to a greater than 10000× increase in
signal-to-noise ratio (SNR) when imaging carbon-13. This technology relies on dissolution
dynamic nuclear polarization (D-DNP) to achieve significant polarization gains [4].

Dynamic nuclear polarization relies on transferring polarization to carbon-13 nuclei from
electrons using microwave radiation. In this procedure, a sample is doped with a small
quantity of stable electron radical. The sample is then cooled to cryogenic temperature
and placed in a strong magnet. At this temperature and magnetic field strength, electrons
become nearly 100% polarized. Then by irradiating the sample with microwaves, polarization
is transferred from the electrons to the carbon-13 nuclei in a biochemical substrate of interest.
To prepare the sample for injection and in vivo imaging, it is then rapidly dissolved in warm
water, neutralized to a safe pH and the electron radical is removed before injection [77].

Polarization decay in hyperpolarized substrates

Upon warming and removal from the magnet, the magnetization induced by hyperpolar-
ization begins to decay over time toward the thermal equilibrium magnetization due to a
phenomenon known as T1 relaxation. The dynamics of the magnetization vector are governed
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by a system of state equations know as the rotating frame Bloch equations:

d

dt





Mx

My

Mz



 =





− 1
T2

u2 0

−u2 − 1
T2

u1
0 −u1 1

T1









Mx

My

Mz



+





0
0
M0

T1



 (1.6)

with initial condition M(0) = (0, 0,Mz(0)). Here, the evolution of the state M is dependent
on a sequence of control inputs u1 and u2 corresponding to the amplitude and frequency of
the applied radio-frequency (RF) electromagnetic excitation pulse (known as the B1 field)
that rotates the vector M about the origin, and T1 and T2 parameters that govern the
relaxation time in the longitudinal (z) and transverse (x, y) directions respectively.

When the sample is hyperpolarized we have Mz(0) ≫ M0, therefore the contribution of
the affine term in (1.6) is negligible. Thus in the absence of RF excitation, the longitudinal
magnetization exhibits exponential the decay

Mz(t) =Mz(0)e
−t/T1 .

In addition to T1 relaxation, magnetization also decays due to repeated RF excitation.
Throughout this dissertation, in hyperpolarized carbon-13 models we will assume that the
RF pulse occurs on a time scale much faster than T1 and T2, therefore it can be modelled as
an instantaneous state reset that rotates M to some angle α away from the z axis, known
as the flip angle. We also assume that a spoiled gradient echo pulse sequence [10] is used,
thus between RF pulses a strong magnetic field gradient is applied to dephase the transverse
magnetization ensuring that Mx = My = 0. Thus at a time t+ immediately after an RF
pulse, the magnetization is given in terms of the magnetization at time t− immediately before
the RF pulse as

Mz(t
+) = cos(α)Mz(t

−)

Mxy(t
+) :=

√

Mx(t+)2 +My(t+)2 = sin(α)Mz(t
−).

It now follows that at a time t following a sequence of RF pulses with flip angles α0, . . . , αN−1

the longitudinal magnetization remaining has decayed to

Mz(t) =Mz(0)e
−t/T1

N−1
∏

k=0

cos(αk).

Metabolism and Disease

Hyperpolarized carbon-13 MRI makes it possible to track the metabolism of injected sub-
strates with spatial, temporal and chemical specificity. In practice, a commonly-used sub-
strate is [1-13C]pyruvate, which consists of pyruvate molecules labeled with a carbon-13 atom
at the first carbon position (Figure 1.2).
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Figure 1.2: [1-13C]pyruvate molecule.

Pyruvate plays an important role in cellular metabolism, as the end product of glycolysis.
Following glycolysis, under anaerobic conditions pyruvate is typically converted to lactate
via lactic acid fermentation, which serves as a short-term means of producing energy. Ac-
tivity in this pathway can be quantified using carbon-13 MRI via observed [1-13C]lactate
signal. Under aerobic conditions, pyruvate can also serve as an input to the citric acid cycle,
which produces cellular energy in the form of adenosine triphosphate (ATP) through cellu-
lar respiration in the mitochondria. Activity in this pathway can be quantified via pyruvate
flux through the pyruvate dehydrogenase complex (PDC), which is proportional to observed
13C-bicarbonate signal in carbon-13 MRI studies [74].

Pyruvate metabolism changes in cancer

Cancer results in changes to metabolism that can be used to diagnose and monitor treatment
response. In particular, a phenomenon known as the Warburg Effect results in increased
lactic acid fermentation in place of cellular respiration in cancerous tissues even under aerobic
conditions [34]. Thus the rate of production of [1-13C]lactate from injected hyperpolarized [1-
13C]pyruvate can be used to monitor cancer metabolism in vivo. The ability of hyperpolarized
carbon-13 MRI to distinguish cancerous tissue from healthy tissue has been demonstrated
in animal model [29] and clinical human prostate cancer [77] studies.

Pyruvate metabolism changes in heart failure

Metabolic changes in the heart have also been proposed as a significant contributing factor
to congestive heart failure [99]. Hyperpolarized carbon-13 MRI studies are being used to
study this hypothesis by quantifying metabolic fluxes in the heart. Hyperpolarized carbon-13
MRI has been used to demonstrate that the development of heart failure leads to decreased
[1-13C]pyruvate flux through the PDC in a porcine model of dilated cardiomyopathy [94].
Recent clinical studies have also demonstrated feasibility of measuring PDC flux in heart
tissue using hyperpolarized [1-13C]pyruvate in healthy human subjects [27].

Quantifying Metabolic Flux

Hyperpolarized carbon-13 MRI enables dynamic experiments that show metabolic activity
with spatial, temporal and chemical specificity. This enables quantifying the spatial distri-
bution of the activity of specific metabolic pathways. In this section, we discuss model-based
methods of fusing this information into spatial maps of metabolic activity. This is done by
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estimating kinetic parameters in a model describing the evolution of the MR signal observed
in each spatial volume element (voxel).

Kinetic models of hyperpolarized MRI signal in a single voxel

Hyperpolarized carbon-13 MRI researchers commonly rely on linear compartmental models
for describing the evolution of signal in a voxel [18, 47, 52]. These models describe the
magnetization exchange from the pool of injected hyperpolarized substrate to pools corre-
sponding to various metabolic products. In its simplest form, this amounts to the irreversible
metabolic conversion of the substrate S to a single product P performed at a characteristic
kinetic rate kSP :

S
kSP⇀ P.

Throughout this dissertation, we will focus on extremely simple pathways of this form,
though extension to multiple products or bidirectional conversion is straightforward. Note
that the clinically-relevant pathways discussed in Section 1.2 can both be modelled in this
simple form.

In the absence of external RF excitation, magnetization in a particular voxel i evolves
via T1 decay and label exchange according to the differential equations

d

dt

[

Mz,i,S(t)
Mz,i,P (t)

]

=

[

−R1,i,S − kSP,i 0
kSP,i −R1,i,P

] [

Mz,i,S(t)
Mz,i,P (t)

]

+

[

kTRANS,i
0

]

u(t) (1.7)

where the states Mz,i,S and Mz,i,P represent the longitudinal magnetization in voxel i in
the substrate and product compartments respectively, the input u models an arterial input
function (AIF) describing the arrival of substrate from the circulatory system, and the pa-
rameters kSP,i, R1,i,S, R1,i,P , and kTRANS describe the metabolic rate, T1 decay rate in the
substrate pool, and T1 decay rate in the product pool, and perfusion rate respectively.

When a constant flip angle excitation sequence and repetition time is used for imaging,
decay due to RF excitation can be modelled by replacing R1,i,X by an effective decay rate

R1,i,X,effective = R1,i,X − log(cosα)

TR

where α is the flip angle and TR is the repetition time, and X denotes an arbitrary compound
(either S or P ) [97]. However, when a variable flip angle sequence is used, signal decay due
to RF excitation must be accounted for as in Section 1.2. This leads to a discrete time model
for the transverse and longitudinal magnetization immediately preceding excitation k given
by

[

Mz,i,S[k + 1]
Mz,i,P [k + 1]

]

= Ad

[

cosαS[k] 0
0 cosαP [k]

] [

Mz,i,S[k]
Mz,i,P [k]

]

+Bdu[k] (1.8)

where Ad and Bd are computed by discretizing (1.7) assuming a zero order hold with sampling
time TR. A model for the transverse magnetization immediately following excitation k given
by

Mxy,i,X [k] = sinαX [k]Mz,i,X [k]. (1.9)
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Figure 1.3: Simulated trajectories for a pyruvate to lactate conversion model using a constant
flip angle sequence with αS[k] = αP [k] = 15◦.

This transverse magnetization leads to the observable signal which we measure as an output
from voxel i at time k. In the case of normally-distributed measurements, we model the
generated data as

Yi,X [k] ∼Mxy,i,X [k] + ǫi,X [k]

where ǫ is independent identically distributed gaussian noise with a known variance σ2.
Simulated trajectories of this model are shown in Figure 1.3.

Estimation of unknown model parameters

Estimating metabolic rate parameters θi from experimental data collected from voxel i in-
volves minimizing a statistical loss function L(θi|Yi) that describes how well a signal model
fits the observed data Yi. Using the model equations (1.8)–(1.9) as the basis of a signal
model describing the predicted measurement

yi(θi) =
[

[Mxy,i,S[1] Mxy,i,P [1] . . . Mxy,i,S[N ] Mxy,i,P [N ]
]

in terms of the vector model parameters θi. Loss functions include:

• the least squares loss
L(θi|Yi) = ‖Yi − yi(θ)‖2

which corresponds to a nonlinear least squares estimation problem and

• the negative log likelihood loss

L(θi|Yi) = − log pθi(Yi)

which corresponds to a maximum likelihood estimation problem. Unlike the least
squares loss function, this loss requires a that a probability density function describing
the joint distribution of Yi be specified. Common choices are Yi ∼ yi + ǫ where ǫ is
independent, identically-distributed (iid) Gaussian noise or independent Rician noise
with location parameters given by yi [44].
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1.3 Magnetic Resonance Fingerprinting

In Chapter 3 of this dissertation we also consider an anatomic imaging technique know as
magnetic resonance fingerprinting, based on more traditional proton (1H) MRI.

Magnetic resonance imaging (MRI) has traditionally focused on acquisition sequences
that are static, in the sense that sequences typically wait for magnetization to return to
equilibrium between acquisitions. Recently, researchers have demonstrated promising re-
sults based on dynamic acquisition sequences, in which spins are continuously excited by
a sequence of random input pulses, without allowing the system to return to equilibrium
between pulses. Model parameters corresponding to T1 and T2 relaxation, off-resonance
and spin density are then estimated from the sequence of acquired data. This technique,
termed magnetic resonance fingerprinting (MRF), has been shown to increase the sensitivity,
specificity and speed of magnetic resonance studies [61, 28].

Magnetic resonance fingerprinting experiments are conducted in a fashion similar to dy-
namic system identification. Spins are excited via a sequence of randomized excitation
pulses, and dynamic time series of the tissue response are measured (Figure 1.4a). The time
series acquired differ based on the MR properties of the tissue, providing a “fingerprint”
characterizing the rate parameters of the tissue. Following the experiment, fingerprints are
then matched to a dictionary of simulated outputs, allowing the spatial distribution of tis-
sue parameters to be estimated (Figure 1.4b). Further, this technique can be successfully
applied to heavily undersampled data in the spatial frequency domain, allowing accurate,
quantitative parameter maps to be estimated from relatively short acquisition sequences.

In this dissertation, we study magnetic resonance fingerprinting from an experiment
design perspective. In particular, we formulate an optimization problem to replace the
randomized flip angle excitation sequences with a sequence optimized for informativeness
about model parameters. We demonstrate in Section 3.4 that this results in a significant
improvement in estimate accuracy for acquisitions of comparable length.

1.4 Summary of Contributions

In the next four chapters, we present four optimization problems that arise in the design
of dynamic MRI experiments and the subsequent data analysis. These problems and our
contribution to their algorithmic solution are summarized in Table 1.5. The first involves the
design of substrate injection inputs to generate maximally informative data, a problem in
which the control input enters linearly. The second and third involve the design of optimized
flip angle sequences, again for generating maximally informative data. In contrast with the
first, these problems involve a nonlinear control system model, which is significantly more
difficult to analyze globally. The fourth problem involves estimating the spatial distribution
of metabolic flux parameters from the acquired data. This problem, studied in the final
chapter, completes the experimental sequence from experimental design to data acquisition
to data analysis.
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Randomized input

Dynamical system

Measured output

(a) Spins are excited via a randomized sequence then the measured signal is matched to a simulated
dictionary.

(b) This dictionary matching procedure allows quantitative maps of tissue parameters to be gener-
ated. Here we show T1 (left) and T2 (right) relaxation parameter maps (in milliseconds) generated
from a numerical fingerprinting simulation.

Figure 1.4: Outline of a magnetic resonance fingerprinting experiment, adapted from the
original paper [61].

Chapter 2: Substrate Injection Design for Hyperpolarized

Carbon-13 MRI

In Chapter 2 we consider the optimal design of the injection input subject to constraints on
the maximum injection rate and volume. This results in an dynamic optimal experiment
design problem of the form discussed in Section 1.1. More formally, we consider the dynamic
model defined in Equation (1.8) with an output defined in Equation (1.9) which is corrupted
by iid additive Gaussian noise. The problem is to design an injection input u[k] to maximize
the Fisher information about the parameter of interest kSP contained in the data generated
from a finite number of samples under this model. The input is constrained such that
both the maximum injection rate ‖u‖∞ and the maximum injection volume ‖u‖1 are upper
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Chapter Domain Algorithm Application

2 Linear systems
SDP reformulation
w/ exact recovery
guarantees

Injection design for 13C
MRI (fast globally optimal
solutions)

3
Nonlinear systems
w/ symmetries

Dynamic
programming with
symmetry reduction

Flip angle design for MR
fingerprinting (75×
computational speedup)

4 Nonlinear systems

Derivative-free
optimization &
nonlinear
programming

Flip angle design for 13C
MDI (20% improvement in
metabolism estimates)

5
Spatially-
distributed system
identification

Constrained
parameter mapping
using nonconvex
ADMM

13C MRI of prostate
cancer (enables
reconstruction in low SNR)

Figure 1.5: Summary of Contributions

bounded by some positive constant.
This chapter is based on the paper Semidefinite relaxations in optimal experiment design

with application to substrate injection for hyperpolarized MRI written in collaboration with
my advisor Murat Arcak, that I presented at the 2016 American Control Conference [64].
In this chapter, we show that this problem can be reformulated as a nonconvex quadratic
program (QP). We then develop a procedure for approximating the global solution of the QP
using a semidefinite programming relaxation. This method allows us to compute approximate
solutions to particular instances of this problem as well as bounds on the global solution.
In particular, for an instance with realistic values for model parameters, we find that the
optimal input consists of a bolus applied at the beginning of the experiment injected at the
maximum rate until the volume budget is reached (Figure 1.6). Based on the semidefinite
relaxation, we then show that this input achieves an objective function value at least 98.7%
of the global optimum, for these particular values of the model parameters.

Chapter 3: Flip Angle Sequence Design for MR Fingerprinting

In Chapter 3, we consider the problem of computing optimal control policies for systems
possessing symmetries. This problem is motivated by the design of optimized flip angle
sequences for magnetic resonance fingerprinting, a system whose dynamics (governed by the
Bloch equations) possess a rotational symmetry about the axis of the main magnetic field
B0. We formulate this problem in terms of maximizing the Fisher information about the
T1 relaxation parameter, and solve it using a symmetry reduction method developed in the
chapter.
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Figure 1.6: Solution to a particular instance of the injection design problem. The optimal
input sequence u[k] applies a bolus injection at the maximum allowable rate until the total
input budget is reached.

Chapter 3 is based on a manuscript entitled Symmetry reduction for dynamic program-
ming that I wrote in collaboration with Axel Barrau, Silvère Bonnabel, and Murat Arcak.
This manuscript is currently under review and may be published at a later date. A prelimi-
nary version of this manuscript was also presented at the 2017 American Control Conference
[68]. In this chapter we present a general method for expoiting symmetries of a dynamical
system in order to reduce the computational burden of computing optimal control polices via
the dynamic programming algorithm. We then apply this technique to design optimized flip
angle sequences for MR fingerprinting. The resulting optimized sequence significantly im-
proves the accuracy of parameter estimates, when compared against a randomized sequence.

Chapter 4: Flip Angle Sequence Design for Hyperpolarized

Carbon-13 MRI

In Chapter 4 we again design experimental parameters to maximize the Fisher information
about unknown rates in a carbon-13 MRI model. Here, we consider the problem of designing
optimal flip angle excitation sequences.

Again we use the model defined in Equation (1.8) with an output defined in Equation
(1.9) corrupted by iid noise. We wish to select a sequence of flip angles αS[k] and αP [k]
used to excite each of the chemical species. Here the choice of αS[k] and αP [k] at each time
is unconstrained. Since the flip angles enter the model in a nonlinear fashion, the resulting
optimization problem is no longer a QP like in Chapter 2, so other optimization techniques
must be used.

Chapter 4 is based on the paper Optimizing flip angles for metabolic rate estimation in
hyperpolarized carbon-13 MRI that I wrote in collaboration with Jeremy W. Gordon, Murat
Arcak, and Peder E. Z. Larson, and published in IEEE Transactions on Medical Imaging [67].
In this chapter, we solve the flip angle design problem to local optimality under additional
smoothness constraints in using a nonlinear programming approach. The resulting optimized
flip angle sequence is shown in Figure 1.7. This flip angle sequence results in a 20% decrease
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in the uncertainty of metabolic rate estimates, when compared against the best existing
sequences.
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Figure 1.7: Optimized input sequence for the flip angle sequence design problem.

Chapter 5: Constrained Parameter Mapping

The final chapter investigates the computation of maps of metabolic activity from exper-
imental data. Here we assume that we are given a statistical model for the data as well
as a loss function, as described in Section 1.2. The challenge is to summarize the spatial,
temporal and chemical information contained in the dynamic experimental data into a single
spatial map of metabolic activity. We do so by estimating a value for the metabolic rate
parameter θi = kSP,i for each voxel i in space.

Since the objects imaged often contain spatial structure, this structure can be exploited
to improve the quality of the estimated parameter maps. This can be achieved by adding
regularization to the objective function that is optimized. Formally, we solve an optimization
problem of the form

minimize
∑

i

L(θi|Yi) + λr(θ)

where L is a loss function that depends on the data Yi collected in each voxel i, and r is
a regularization term that couples nearby voxels thereby enforcing spatial structure in the
estimated maps. Possible choices of regularization used to enforce smoothness, sparsity and
edge preservation include ℓ2, ℓ1 and total variation penalties. By including such penalties to
exploit spatial correlations in the data, we show that better image quality can be achieved
compared with independently fitting each voxel.

This chapter is based on recently-completed work, and will form the basis of a manuscript
to be submitted for publication at a later date. It is loosely based on an accepted conference
abstract that was presented at the 2017 Annual Meeting of the International Society for
Magnetic Resonance in Medicine [69].
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Chapter 2

Semidefinite Relaxations for Optimal

Experiment Design in Linear Systems

2.1 Introduction

Optimal experiment design

In this chapter we consider the problem of estimating uncertain parameters in a state space
model from noisy output data. For such a system, the reliability of the parameter estimates
depends on the choice of input used to excite the system, as some inputs provide greater
information about the parameters than others. The problem of designing an input that is
maximally informative is known as optimal experiment design and much work has been done
on this problem in the last 50 years [35, 39, 58, 105].

Historically, most work on optimal experiment design for dynamic systems has focused
on frequency domain techniques, where an optimal input is designed based on its power
spectrum. Here, we approach this problem in the time domain, allowing us to impose
amplitude (ℓ∞) and ℓ1 constraints on the admissible inputs. Amplitude-constrained optimal
experiment design is NP-hard in general [70], but semidefinite relaxation techniques can be
used to generate approximate solutions and to bound the suboptimality of such solutions
[70, 71]. In contrast with [70, 71], in this chapter we restrict our attention to linear measures
of the information allowing us to 1) write the objective function as a quadratic function of
the input sequence and 2) apply an exactness result for quadratically constrained quadratic
programming to give sufficient conditions under which the semidefinite relaxation recovers
the global solution. We also present the results in terms of a state space model enabling us
to model uncertainty in the initial state.

Metabolic MRI using hyperpolarized substrates

We are motivated by a problem in metabolic magnetic resonance imaging (MRI) using hyper-
polarized substrates. Hyperpolarized carbon-13 MRI has enabled the real-time observation
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of perfusion and metabolism in preclinical and clinical studies [37, 29, 52, 77, 5, 101]. This
technology is made possible by techniques for dynamic nuclear polarization (DNP) that have
led to signal-to-noise ratio (SNR) increases of four to five orders of magnitude compared with
endogenous signal in dissolved 13C-labelled molecules [4, 38]. Injected [1-13C] pyruvate is fre-
quently used as a substrate in metabolism experiments and its rate of conversion to [1-13C]
lactate has been shown to distinguish between healthy and cancerous tissues in animal [29],
and recently human [77], studies.

The goal of a metabolic MRI experiment is to learn the spatial distribution of metabolic
rates, as this indicates the regions of the body where a particular metabolic pathway is
active. Noise in the observed image data leads to uncertainty in estimates of metabolic rate
parameters, but the amount of uncertainty can be mitigated with experiment design.

The problem of optimally designing an image acquisition sequence is considered in [65,
67]. In this chapter we investigate optimal substrate injection profiles. After hyperpolar-
ization the substrate must be injected into the test subject, where metabolism occurs and
a sequence of images are acquired. Greater injection volumes lead to better signal-to-noise
ratio, but for safety reasons the injection profile is limited by the rate at which substrate
can be injected and by the total amount of fluid injected. Thus determining the optimal
injection profile is of clinical interest.

Outline

We begin in Section 2.2 by introducing the time domain optimal experiment design problem
for linear systems, and discuss relevant relaxations from the literature. Then in Section 2.3
we present a mathematical model of hyperpolarized MRI and use semidefinite relaxation
techniques to design optimal injection inputs for hyperpolarized substrates. We constrain
the total amount of fluid injected using the ℓ2 or ℓ1 norms of the input signal. In the ℓ2-
constrained case, the relaxation is tight and we are able to recover a globally optimal solution
to the original problem. In the ℓ1-constrained case we do not recover a solution from the
relaxation, but the objective value of the relaxation can be used to bound the optimality
gap and show that a simple boxcar injection achieves at least 98.7% of the global optimum.
Matlab code to reproduce the results in this chapter is available at https://github.com/
maidens/ACC-2016.

2.2 Semidefinite Relaxations in Optimal Experiment

Design

Consider a discrete-time linear system

xt+1 = A(θ)xt +B(θ)ut

yt = Cxt

Yt ∼ N(yt,Σ)

(2.1)

https://github.com/maidens/ACC-2016
https://github.com/maidens/ACC-2016
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over a horizon 0 ≤ t ≤ N where the initial state x0 and time-invariant state dynamics
matrices A ∈ R

n×n and B ∈ R
n×nu are dependent on some unknown parameter vector

θ ∈ R
p. We wish to choose an input sequence u to maximize some measure of the Fisher

information matrix

I(θ) =
N
∑

t=0

(∇θxt)
TCTΣ−1C(∇θxt) (2.2)

about the parameter vector θ contained in the data Y . The Fisher information is a positive
semidefinite matrix that is used in experiment design for parameter estimation as a measure
of the informativeness of an experiment [87, 105]. The inverse of the information gives an
upper bound on the covariance of an arbitrary unbiased estimator θ via the Cramer-Rao
inequality. See [63] for a derivation of (2.2).

Quadratic objective function

We consider nonnegative, linear information metrics of the form

ϕ
(

I(θ)
)

= tr
(

KI(θ)
)

(2.3)

where K � 0 is positive semidefinite. Particular cases include the T-optimal design criterion
(whereK is the p×p identity matrix) [87] and the c-optimal design criterion (whereK = ccT )
which is optimal for the scalar parameter cT θ [88].

To formulate the problem of choosing the sequence uk for k = 0, . . . , N − 1 we define the
stacked vector u = [uT0 . . . u

T
N−1]

T and denote its components u(j,k) where (j, k) = knu + j
defines a reverse lexicographic ordering, j ranges over the input index from 1 to nu and k
ranges over the time index from 0 to N − 1. With this notation established, we can state
the following result.

Proposition 1. The objective (2.3) is a quadratic function

ϕ
(

I(θ)
)

= uTQ(θ)u+ 2q(θ)Tu+ q0(θ)

of the design variable u. The entries of the matrices appearing in the objective function are
computed as

Q(θ)(j′,k′)(j,k) =
N
∑

t=max{k,k′}+1

n
∑

h,h′=1

p
∑

i,i′=1

Kii′Mh′

k′i′j′(t)Shh′M
h
kij(t)

q(θ)(j,k) =
N
∑

t=k+1

n
∑

h,h′=1

p
∑

i,i′=1

Kii′mh′

i′ (t)Shh′M
h
kij(t)

q0(θ) =
N
∑

t=0

n
∑

h,h′=1

p
∑

i,i′=1

Kii′mh′

i′ (t)Shh′m
h
i (t)
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where Shh′ is the hh′-th entry of CTΣ−1C, mh
i (t) is the h-th entry of the vector

At
∂x0
∂θi

+
t−1
∑

ℓ=0

At−ℓ−1∂A

∂θi
Aℓx0

and Mh
kij(t) is the h, j-th entry of the matrix

At−k−1∂B

∂θi
+

t−1
∑

ℓ=k+1

At−ℓ−1∂A

∂θi
Aℓ−k−1B.

We see that for a linear dynamical system with Gaussian-distributed measurements,
optimal experiment design is a nonconvex quadratic programming problem. If there are no
constraints on the admissible inputs the optimal value is infinite, as by choosing u∗ as an
eigenvector of Q(θ) that corresponds to a nonzero eigenvalue, letting u = αu∗ for α > 0, we
can make uTQ(θ)u+ 2q(θ)Tu+ q0(θ) arbitrarily large.

Constrained quadratic programming is NP-hard in general [33]. But certain quadratic
programming problems lend themselves to polynomial-time approximation algorithms using
a semidefinite programming relaxation [36, 59]. We first give a proof of Proposition 1, before
moving on to semidefinite relaxations of the optimal experiment design problem.

Proof. Unrolling the recursion relation (2.1), we can write

xt = Atx0 +
t−1
∑

k=0

At−k−1Buk.

Applying the chain rule to (2.1) we get a recursion relation for the sensitivities

∂

∂θi
xt+1 = A

∂

∂θi
xt +

∂A

∂θi
xt +

∂B

∂θi
ut

which can be unrolled as

∂

∂θi
xt = At

∂x0
∂θi

+
t−1
∑

ℓ=0

At−ℓ−1

[

∂A

∂θi
xℓ +

∂B

∂θi
uℓ

]

.

= At
∂x0
∂θi

+
t−1
∑

ℓ=0

At−ℓ−1

[

∂A

∂θi

(

Aℓx0 +
ℓ−1
∑

k=0

Aℓ−k−1Buk

)

+
∂B

∂θi
uℓ

]

=

(

At
∂x0
∂θi

+
t−1
∑

ℓ=0

At−ℓ−1∂A

∂θi
Aℓx0

)

+
t−1
∑

k=0

(

At−k−1∂B

∂θi
+

t−1
∑

ℓ=k+1

At−ℓ−1∂A

∂θi
Aℓ−k−1B

)

uk



CHAPTER 2. SEMIDEFINITE RELAXATIONS FOR OPTIMAL EXPERIMENT

DESIGN IN LINEAR SYSTEMS 21

To simplify notation, from this point forward we will use the Einstein summation convention,
where upper and lower repeated indices denotes an implicit summation over those indices.
In this notation, we see that the sensitivity matrix ∇θxt has entries

(∇θxt)
h
i =Mh

kij(t)u
jk +mh

i (t)

whereM and m are defined as in the statement of the proposition and the index k runs from
0 to t− 1. Thus the objective function is expressed as

tr
(

KI(θ)
)

= Kii′I(θ)ii′

= Kii′
N
∑

t=0

(∇θxt)
h′

i′ Shh′(∇θxt)
h
i

= Kii′
N
∑

t=0

(

Mh′

k′i′j′(t)u
j′k′ +mh′

i′ (t)
)

Shh′
(

Mh
kij(t)u

jk +mh
i (t)
)

=
N−1
∑

k,k′=0

uj
′k′





N
∑

t=max{k,k′}+1

Kii′Mh′

k′i′j′(t)Shh′M
h
kij(t)



ujk

+ 2
N−1
∑

k=0

(

N
∑

t=k+1

Kii′mh′

i′ (t)Shh′M
h
kij(t)

)

ujk

+
N
∑

t=0

Kii′mh′

i′ (t)Shh′m
h
i (t)

= uTQ(θ)u+ 2q(θ)Tu+ q0(θ)

Semidefinite relaxation of quadratic programs

Semidefinite relaxations of indefinite quadratic programming problems have been the subject
of considerable study over the past two decades [36, 59, 79, 78, 107, 108]. The essential idea
is to take a quadratic program

maximize uTQu+ 2qTu+ q0

subject to u ∈ P ⊆ R
d

(2.4)

over a linear vector space and transform it to a linear problem over a quadratic space

maximize tr

([

Q q
qT q0

] [

U u
uT 1

])

subject to

[

U u
uT 1

]

∈ P̃ ⊆ R
(d+1)×(d+1)

U = uuT

(2.5)
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by introducing a rank 1 semidefinite variable U = uuT and translating the constraint set
P from the the linear vector space to a convex constraint set P̃ in the semidefinite matrix
space. The problem (2.5) in non convex, but the equality constraint U = uuT can be relaxed

to the inequality U � uuT then transformed to semidefinite constraint

[

U u
uT 1

]

� 0 via

Schur complement. Thus (2.5) can be relaxed to the convex problem

maximize tr

([

Q q
qT q0

] [

U u
uT 1

])

subject to

[

U u
uT 1

]

∈ P̃
[

U u
uT 1

]

� 0.

(2.6)

The value of the convex program (2.6) can then be used as an upper bound on the solution

to (2.4). Further if a solution

[

U∗ u∗

u∗T 1

]

to (2.6) happens to have rank 1 then u∗ is a global

solution to (2.4).
To translate constraints u ∈ P ⊆ R

d on u to constraints U ∈ P̃ ⊆ R
d×d on U there are a

number of methods.

• Quadratic constraints on u of the form

P = {u : uTRu+ 2rTu+ r0 ≤ 0}
are translated to constraints of the form

P̃ = {U : tr

([

R r
rT r0

] [

U u
uT 1

])

≤ 0}.

For example, the ℓ2 constraint ‖u‖2 ≤ c becomes tr(U) ≤ c2.

• Amplitude constraints on u of the form P = {u : |ut| ≤ ct t = 1, . . . , d} for particular
constants ct are modelled as d homogeneous quadratic constraints P = {u : u2t ≤ c2t t =
1, . . . , d} which correspond to P̃ = {U : Utt ≤ c2t t = 1, . . . , d}.

• Box constraints of the form P = {u : 0 ≤ ut ≤ ct} can be translated as P̃ = {U : Utt ≤
c2t t = 1, . . . , d ∧ Ust ≥ 0 s, t = 1, . . . , d}.

• For u normalized such that 0 ≤ ut ≤ 1, the relaxation can be tightened by noting
that u2i ≤ ui. Thus the constraints Uii ≤ ui i = 1, . . . , d can be added to tighten the
relaxation.

• If ut ≥ 0 and a is a vector with at ≥ 0 then the linear constraint P = {u : aTu ≤ b}
can be translated by noting that 0 ≤ aTu ≤ b implies that tr(aaTU) = tr(aTUa) =
aTuuTa = (aTu)2 ≤ b2. This results in a tighter approximation than adding the
constraint aTu ≤ b (see Lemma 1 of[49]). In particular, if we denote the d× d matrix
of ones by E then the ℓ1-norm constraint ‖u‖1 ≤ b can be translated as tr(EU) ≤ b2.
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A result on exact recovery from semidefinite relaxation

For a vector u ∈ R
d let u2 denote the vector obtained by squaring the entries of u component-

wise and consider a problem of the form

maximize uTQu+ 2qTu+ q0

subject to u2 ∈ F . (2.7)

The following result gives sufficient conditions for the semidefinite relaxation

maximize tr

([

Q q
qT q0

] [

U u
uT 1

])

subject to diag(U) ∈ F
[

U u
uT 1

]

� 0

(2.8)

to recover the global solution of (2.7).

Proposition 2 (Adapted from Theorem 2 of [108]). If Qij ≥ 0 for all i 6= j, qi ≥ 0 for all i
and F ⊆ R

d is a closed convex set then the values of (2.7) and (2.8) coincide. Moreover, if

Ũ∗ is a solution of (2.8) then
√

diag(Ũ∗) is a solution of (2.7).

Thus if u ∈ P can be expressed in the form u2 ∈ F for some convex F , and the entries
of Q and q are nonnegative, we can globally solve (2.4) via the convex relaxation.

2.3 Infusion Input Design for Substrate Injection in

Hyperpolarized Carbon-13 MRI

We consider a linear model of magnetization exchange resulting from the injection of a
hyperpolarized substrate, observed using a flip angle sequence αk,t [53]:

dx

dt
(t) =

[

−kPL −R1P − 1−cos(α1,t)

∆t
0

kPL −R1L − 1−cos(α2,t)

∆t

]

x(t) +

[

kTRANS
0

]

AIF (t) (2.9)

where AIF (t) is an arterial input function. The result of a bolus (impulse) injection of
substrate is often modelled as the arterial input function is of the form [75]

AIF (t) = A0t
γe−t/β.

In the case γ = 2 the samples of this AIF can be modelled as the impulse response of the
γ + 1 = 3rd order system

zt+1 =





3e−(∆t)/β −3e−2(∆t)/β e−3(∆t)/β

1 0 0
0 1 0



 zt +





1
0
0



 ut

AIFt = A0

[

e−(∆t)/β e−2(∆t)/β 0
]

zt.

(2.10)
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xt+1 =













3e−(∆t)/β −3e−2(∆t)/β e−3(∆t)/β 0 0
1 0 0 0 0
0 1 0 0 0

A0e
−(∆t)/βB̄1 A0e

−2(∆t)/βB̄1 0 Ā11 Ā12

A0e
−(∆t)/βB̄2 A0e

−2(∆t)/βB̄2 0 Ā21 Ā22













xt +













1
0
0
0
0













ut

yt =

[

0 0 0 sin(α1,t) 0
0 0 0 0 sin(α2,t)

]

xt

(2.12)

We discretize (3.3) with step ∆t = 2 s assuming a zero-order hold on the AIF, yielding a
model

x̄t+1 = Ā x̄t + B̄ AIFt

yt =

[

0 0 0 sin(α1,t) 0
0 0 0 0 sin(α2,t)

]

x̄t.
(2.11)

Combining (2.10) and (2.11), we get a model of the full system (2.12) mapping the infusion
input u to the observed signals.

We now solve an example instance of this system with model parameters taken from [67]
which are shown in Table 4.1 , along with noise covariance matrix Σ = I, horizon of N = 30
samples and a constant flip angle sequence αk,t = 15◦. Computation times for solving this
problem are given in Table 2.2.

R1P R1L kPL kTRANS t0 γ β A0

1/10 1/10 0.07 0.055 3.2596 2.1430 3.4658 1.0411 ×104

Table 2.1: Nominal parameter values used

problem time to generate SDP SDP decision variable size number of SDP constraints time to solve SDP
ℓ2 constrained

12.0 s
30 × 30 symmetric 31 0.58 s

ℓ1 constrained 31 × 31 symmetric 497 5.51 s

Table 2.2: Computation time to solve semidefinite programming relaxations. The SDP was
solved using CVX [42] with the SeDuMi backend in MATLAB v8.4.0 running on a Macbook
laptop (2.3 GHz quad-core Intel Core i7 Ivy Bridge processor, 8GB memory).

ℓ2 constrained input

The substrate injection is constrained to limit the rate of injection to |ut| ≤ 1 and to limit
the ℓ2 norm of the injection to ‖u‖2 ≤ 4. Thus we wish to solve the quadratically-constrained
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quadratic program

maximize uTQ(θ)u

subject to u2t ≤ 1

N−1
∑

t=0

u2t ≤ 16.

(2.13)

The matrix Q is nonnegative and the constraints are of the form u2 ∈ F where F is a closed
convex set. Therefore this problem yields a semidefinite relaxation

maximize tr
(

Q(θ)U
)

subject to Utt ≤ 1

tr(U) ≤ 16.

(2.14)

whose solution has rank 1 (by Proposition 2). So we can extract a globally optimal solution
to (2.13) from its semidefinite relaxation. The resulting optimal input trajectory and the
corresponding output trajectories are shown in Fig. 2.1.
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Figure 2.1: Optimal solution to (2.13) computed using semidefinite relaxation.

ℓ1 constrained input

We now replace the ℓ2-norm constraint with an ℓ1-norm constraint ‖u‖1 ≤ 8 that limits
the total amount of substrate injected. This constraint is more clinically relevant than the
ℓ2-norm constraint, as the total substrate than can be injected is often limited due to safety-
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related concerns. This leads to a linearly-constrained QP of the form

maximize uTQ(θ)u

subject to 0 ≤ ut ≤ 1

N−1
∑

t=0

ut ≤ 8.

(2.15)

This QP can be relaxed to the semidefinite program

maximize tr
(

Q(θ)U
)

subject to

[

U u
uT 1

]

� 0

Utt ≤ ut

tr
(

EU
)

≤ 64

Ust ≥ 0

(2.16)

where both U and u are decision variables and E is the N × N matrix of ones. In this
case, the constraint set is more complex than in the ℓ2-norm constrained case. Therefore the
solution to the semidefinite program does not have rank 1, so we cannot extract the solution
to (2.15). But the optimal value of (2.16) is an upper bound on the optimal value of (2.15),
so given a proposed solution of (2.15) we can bound the optimality gap using the value of
(2.16).

We conjecture that the global solution of (2.15) is the boxcar shown in Fig. 2.2. This
input is what is currently used in practice: the substrate is injected at the maximum rate until
the total allowable volume has been injected. Comparing the optimal value 1.2888× 1010 of
the relaxation with the objective value 1.2724× 1010 we see that the boxcar input achieves a
value of a factor of at least 0.9873 the optimal value. Thus even if our conjecture is incorrect
and the boxcar is not optimal, the improvement that may be achieved by the optimal input
is negligible. This observation helps to validate the current practice in hyperpolarized MRI.

2.4 Conclusion

We have found that semidefinite relaxation can be used to compute an optimal hyperpolar-
ized substrate infusion input profile for estimating uncertain metabolic rate parameters in
metabolic MRI. Future work will focus on investigating the relationship between the rank
1 recovery that we see in the ℓ2-norm-constrained case and properties of the dynamic sys-
tem such as positivity and passivity, and attempting to extend these results to nonlinear
measures of the information such as the D- E- and A-optimality criteria used in [71].
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Figure 2.2: The boxcar input function, which we conjecture to be optimal for the ℓ1-
constrained problem.
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Chapter 3

Symmetry Reduction for Optimal

Control of Nonlinear Systems

3.1 Introduction

The dynamic programming algorithm for computing optimal control policies has, since its
development, been known to suffer from the “curse of dimensionality” [8]. Its applicability
in practice is typically limited to systems with four or five continuous state variables because
the number of points required to grid a space of n continuous state variables increases expo-
nentially with the state dimension n. This complexity has led to a collection of algorithms for
approximate dynamic programming, which scale to systems with larger state dimension but
lack the guarantees of global optimality of the solution associated with the original dynamic
programming algorithm [9, 12, 85, 86].

In practice, many real-world systems exhibit symmetries that can be exploited to reduce
the complexity of system models. Symmetry reduction has found applications in fields
ranging from differential equations [24, 15] to model checking [32, 54]. In control engineering,
symmetries have been exploited to improve control of mechanical systems [13, 19], develop
more reliable state estimators [7], study the controllability of multiagent systems [89] and to
reduce the complexity of stability and performance certification for interconnected systems
[3, 92]. Symmetry reduction has also been applied to the computation of optimal control
policies for continuous-time systems in [43, 83] and Markov decision processes (MDPs) in
[110, 76].

In this chapter, we present a theory of symmetry reduction for the optimal control of
discrete-time, stochastic nonlinear systems with continuous state variables. This reduction
allows dynamic programming to be performed in a lower-dimensional state space. Since the
computational complexity of a dynamic programming iteration increases exponentially with
state dimension, this reduction significantly decreases computational burden. Further, our
proposed method does not rely on an explicit transformation of the state update equations,
making the method applicable in situations where a such a transformation is difficult or
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impossible to find analytically.
We present two theorems that summarize our method of symmetry reduction. Theorem

3 describes how symmetries of the system dynamics imply symmetries of the optimal cost
and optimal policy functions. Theorem 4 then describes a method of computing the cost
function based on reduced coordinate system that depends on fewer state variables.

This chapter is organized as follows: in Section 3.2 we introduce notation and provide
background information both on dynamic programming for optimal control, and on the
mathematical theory of symmetries. In Section 3.3, we derive our main theoretical results,
that is, we prove that control system symmetries induce symmetries of the optimal cost func-
tion and optimal control policy, and then leverage the result to present a general method
of performing dynamic programming in reduced coordinates. In Section 3.4 we apply sym-
metry reduction to compute the solution of an optimal control problem arising in dynamic
MRI acquisition. In Section 3.5 we apply the algorithm to the problem of coordination
on Lie groups. Simulations are performed on a cooperative control problem for two Du-
bins vehicles. Code to reproduce the computational results in this chapter is available at
https://github.com/maidens/Automatica-2017.

3.2 Dynamic Programming and Symmetries

In this section, we first recall the main features of dynamic programming for optimal control
of stochastic discrete time systems. Then we introduce our problem and provide the reader
with a primer on the classical theory of symmetries. We also introduce the notion of invariant
control systems with invariant costs.

Dynamic programming for optimal control of stochastic systems

We consider a discrete-time dynamical system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1 (3.1)

where xk ∈ X ⊆ R
n is the system state, uk ∈ U ⊆ R

m is the control variable to be chosen
at time k, wk ∈ W ⊆ R

ℓ are independent continuous random variables each with density
pk, and N ∈ Z+ is a finite control horizon. Associated with this system is an additive cost
function

gN(xN) +
N−1
∑

k=0

gk(xk, uk, wk)

that we wish to minimize through our choice of uk. We define a control system to be a tuple
S = (X ,U ,W , p, f, g,N) where p =

∏N−1
k=0 pk is the joint density of the random variables wk.

We consider a class of control policies π = {µ0, . . . , µN−1} where µk : X → U maps
observed states to admissible control inputs. Given an initial state x0 and a control policy

https://github.com/maidens/Automatica-2017
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π, we define the expected cost under this policy as

Jπ(x0) = E

[

gN(xN) +
N−1
∑

k=0

gk(xk, µk(xk), wk)

]

.

An optimal policy π∗ is defined as one that minimizes the expected cost:

Jπ∗(x0) = min
π∈Π

Jπ(x0)

where Π denotes the set of all admissible control policies. The optimal cost function, denoted
J∗(x0), is defined to be the expected cost corresponding to an optimal policy.

An optimal policy π∗ and the optimal cost function J∗ can be computed using the dynamic
programming algorithm. We quote the following result due to Bellman from [11]:

Proposition 3 (Dynamic Programming). For every initial state x0, the optimal cost J∗(x0)
of the basic problem is equal to J0(x0), given by the last step of the following algorithm, which
proceeds backward in time from period N − 1 to period 0:

JN(xN) = gN(xN)

Jk(xk) = min
uk∈U

E

[

gk(xk, uk, wk) + Jk+1

(

fk(xk, uk, wk)
)

]

k = 0, 1, . . . , N − 1,

(3.2)

where the expectation is taken with respect to the probability distribution of wk. Furthermore,
if u∗k = µ∗

k(xk) minimizes the right hand side of (3.2) for each xk and k, then the policy
π∗ = {µ∗

0, . . . , µ
∗
N−1} is optimal.

Invariant system with invariant costs

We first recall the definition of a transformation group for a control system, as in [72, 51,
90]. See [84] for the more general theory.

Definition 2 (Transformation group). A transformation group on X ×U×W is set of tuples
hα = (φα, χα, ψα) parametrized by elements α of a Lie group G having dimension r, such
that the functions φα : X → X , χα : U → U and ψα : W → W are all C1 diffeomorhpisms
and satisfy:

• φe(x) = x, χe(u) = u, ψe(w) = w when e is the identity of the group G and

• φa∗b(x) = φa ◦ φb(x), χa∗b(u) = χa ◦ χb(u), ψa∗b(x) = ψa ◦ ψb(x) for all a, b ∈ G where
∗ denotes the group operation and ◦ denotes function composition.

To simplify notation we will sometimes suppress the subscripts α. In the present chapter,
we will consider the following class of systems and cost functions.
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Definition 3. (Invariant control system with invariant costs) A control system S is G-
invariant with G-invariant costs if for all α ∈ G, xk ∈ X , uk ∈ U and wk ∈ W we have:

φ−1 ◦ fk(φ(xk), χ(uk), ψ(wk)) = fk(xk, uk, wk),

k = 0, 1, . . . , N − 1

gk(φ(xk), χ(uk), ψ(wk)) = gk(xk, uk, wk),

k = 0, 1, . . . , N − 1,

gN(φ(xN)) = gN(xN), and

pk(ψ(wk))| detDψ(wk)| = pk(wk)

k = 0, 1, . . . , N − 1.

The rationale is simple: For any fixed α ∈ G, consider the change of variables Xk =
φα(xk), Uk = χα(uk), Wk = ψα(wk). Then, we have

Xk+1 = fk(Xk, Uk,Wk), k = 0, 1, . . . , N − 1,

and for k = 0, 1, . . . , N − 1 we have also gk(Xk, Uk,Wk) = gk(xk, uk, wk). As a result, if
u1, . . . , uN−1 is a series of controls that minimize J(x0), then one can expect U1, . . . , UN−1

to minimize J(X0), under some assumptions on the noise. As a result, the optimal control
problem needs only be solved once for all initial conditions belonging to the set {φα(x0)|α ∈
G}, reducing the initial n dimensional problem to a n− r dimensional problem. The present
chapter derives a proper theory for such symmetry reduction in dynamic programming, and
provides various examples of engineering interest.

Cartan’s moving frame method

To find a reduced coordinate system in which to perform dynamic programming, we will
use the moving frame method of Cartan [20]. In general, this method only results in a local
coordinate transformation as it relies on the implicit function theorem. However, for many
practical problems the transformation computed using this method extends globally. To
simplify the exposure we will present a “global” version of the method.

We briefly introduce the moving frame method following the presentation in [16]. Con-
sider an r-dimensional transformation group (with r ≤ n) acting on X via the diffeomor-
phisms (φα)α∈G. Assume we can split φα as (φaα, φ

b
α) with r and n−r components respectively

so that φaα is an invertible map. Then, for some c in the range of φa, we define a coordinate
cross section to the orbits C = {x : φae(x) = c}. This cross section is an n − r-dimensional
submanifold of X . Assume moreover that for any point x ∈ X , there is a unique group
element α ∈ G such that φα(x) ∈ C. Such α will be denoted γ(x), and the map γ : X → G
will be called moving frame.

A moving frame can be computed by solving the normalization equations:

φaγ(x)(x) = c.
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Define the following map ρ : X → Rn−r as

ρ(x) = φbγ(x)(x).

Note that, for all α ∈ G we have ρ(φα(x)) = ρ(x), that is, the components of ρ are invariant
to the group action on the state space. Further, due to our assumptions, the restriction
of ρ to C is injective. We denote this restricted function ρ̄, and it will serve as a reduced
coordinate system to solve the invariant optimal control problem.

3.3 Main Results

In order to combat the “curse of dimensionality” associated with performing dynamic pro-
gramming in high-dimensional systems, we describe a method to reduce the system’s dimen-
sion by exploiting symmetries in the dynamics and stage costs.

Symmetries imply equivalence classes of optimal policies

Theorem 3. (Symmetries of the optimal cost and policy) Let G be a group and let S be a
G-invariant control system with G-invariant costs. Then the optimal cost functions Jk(x0)
satisfy the symmetry relations

Jk = Jk ◦ φα
for any k = 0, . . . , N and any α ∈ G. Furthermore, if π∗ = {µ∗

0, . . . , µ
∗
N−1} is an optimal

policy then so is π̃∗ := {χα ◦ µ∗
0 ◦ φ−1

α , . . . , χα ◦ µ∗
N−1 ◦ φ−1

α } for any α ∈ G.
Proof. First, note that

JN(xN) = gN(xN) = gN(φ(xN)) = JN(φ(xN)).

Now, suppose that for some k ∈ {0, . . . , N − 1} we have Jk+1(xk+1) = Jk+1(φ(xk+1)) for all
xk+1 ∈ X . Then for any xk ∈ X, and uk ∈ U we have

E

[

gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

]

=

∫

W

[

gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

]

pk(wk)dwk

=

∫

W

[

gk(φ(xk), χ(uk), ψ(wk)) + Jk+1(φ
−1 ◦ fk(φ(xk), χ(uk), ψ(wk)))

]

pk(wk)dwk

=

∫

W

[

gk(φ(xk), χ(uk), ψ(wk)) + Jk+1(fk(φ(xk), χ(uk), ψ(wk)))

]

pk(wk)dwk

=

∫

W

[

gk(φ(xk), χ(uk), ψ(wk)) + Jk+1(fk(φ(xk), χ(uk), ψ(wk)))

]

pk(ψ(wk))| detDψ(xk)|dwk
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=

∫

ψ(W)

[

gk(φ(xk), χ(uk), w̃k) + Jk+1(fk(φ(xk), χ(uk), w̃k))

]

pk(w̃k)dw̃k

=

∫

W

[

gk(φ(xk), χ(uk), wk) + Jk+1(fk(φ(xk), χ(uk), wk))

]

pk(wk)dwk

= E

[

gk(φ(xk), χ(uk), wk) + Jk+1(fk(φ(xk), χ(uk), wk))

]

Therefore,

Jk(xk) = min
uk∈U

E

[

gk(xk, uk, wk) + Jk+1(fk(xk, uk, wk))

]

= min
uk∈U

E

[

gk(φ(xk), χ(uk), wk) + Jk+1(fk(φ(xk), χ(uk), wk))

]

= min
ũk∈χ(U)

E

[

gk(φ(xk), ũk, wk) + Jk+1(fk(φ(xk), ũk, wk))

]

= Jk(φ(xk)).

Thus J∗ = J∗◦φ. Now, if π∗ = {µ∗
0, . . . , µ

∗
N−1} is an optimal policy and we denote x̃k = φ(xk)

then for any k ∈ {0, . . . , N − 1} we have

Jk(x̃k) = Jk(xk)

= E

[

g(xk, µ
∗
k(xk), wk) + Jk+1(fk(xk, µ

∗
k(xk), wk))

]

= E

[

gk(φ(xk), χ(µ
∗
k(xk)), wk) + Jk+1(fk(φ(xk), χ(µ

∗
k(xk)), wk))

]

= E

[

gk(φ(xk), χ ◦ µ∗
k ◦ φ−1(φ(xk)), wk) + Jk+1(fk(φ(xk), χ ◦ µ∗

k ◦ φ−1(φ(xk)), wk))

]

= E

[

gk(x̃k, χ ◦ µ∗
k ◦ φ−1(x̃k), wk) + Jk+1(fk(x̃k, χ ◦ µ∗

k ◦ φ−1(x̃k), wk))

]

Thus π̃∗ := {χ ◦ µ∗
0 ◦ φ−1, . . . , χ ◦ µ∗

N−1 ◦ φ−1} is an optimal policy.

Dynamic programming can be preformed using reduced

coordinates

Theorem 3 readily implies the problem can be reduced, as all states along an orbit of G are
equivalent in terms of cost, and that there are equivalence classes of optimal policies. So it
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suffices to only consider the cost corresponding to a single representative of each equivalence
class, and to find a single representative of the optimal policy within each class. This can
now easily be done using the injective map ρ̄ : C → R

n−r.
For x̄ ∈ ρ̄(C) ⊂ R

n−r, let z ∈ C be such that x̄ = ρ̄(z), and define

J̄k(x̄) = Jk(z).

The following result shows that the functions Jk on the n-dimensional space X ⊆ R
n are

completely determined by the values of J̄k on the subset ρ̄(C) of Rn−r.

Corollary 1. For any x ∈ X and k = 0, . . . , N , the cost function Jk for the full problem
can be computed in terms of the lower-dimensional cost function J̄k as

Jk(x) = Jk(φγ(x)(x)) = J̄k(x̄),

where x̄ := ρ̄(φγ(x)(x)) is well defined as φγ(x)(x) ∈ C.

It is thus sufficient to have evaluated J̄ at all points of ρ̄(C) ⊂ R
n−r to be able to instantly

evaluate J at any point of X .

Theorem 4. (Dynamic programming in reduced coordinates) The reduced coordinates are in
one to one correspondance with the cross-section C. For any x̄, let z ∈ C satistisfy ρ̄(z) = x̄.
Then in the reduced coordinates, the sequence J̄k can be computed recursively via

J̄k(x̄) = min
uk∈U

E
[

gk(z, uk, wk) + J̄k+1(ρ(fk(z, uk, wk)))
]

.

Proof. We have

J̄k(x̄) = Jk(z) = min
uk∈U

E

[

gk(z, uk, wk) + Jk+1

(

fk(z, uk, wk)
)

]

= min
uk∈U

E

[

gk(z, uk, wk) + J̄k+1

(

ρ ◦ fk(z, uk, wk)
)

]

.

Case of equivariant costs

So far, we have considered the costs to be invariant. However, equivariance can obviously
also be considered. Indeed, the cost gk is said to be equivariant if there exists a family of
diffeomorphisms ϕα such that gk(φα(xk), χα(uk), ψα(wk)) = ϕα ◦ gk(xk, uk, wk). As we want
the cost function J to be equivariant too, we will need ϕα(·) to be linear. Thus we will
simply assume that ϕα is of the form ϕα(J) = l(α)J , that is, it is a scaling of the cost, where
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l : R>0 → R>0. For simplicity’s sake, we consider here the problem to be noise free. Along
the lines of the preceding sections it is easily proved that

Jk(φ(x)) = ϕ ◦ Jk(x)

as already noticed in [2] for the case of homogeneous costs. Symmetry reduction can then
be applied. We now give two tutorial examples.

Example 1. Consider the linear system

xx+1 = Axk +Buk

with quadratic costs gk = xTkQxk + uTkRuk. The system is invariant to scalings, φα(x) =
αx, χα(u) = αu, and the cost is equivariant letting ϕα(J) = αJ , where α ∈ G = R>0.
The unit sphere is a cross section to the orbits, and the normalization equations yield
γ(x) = 1/||x||. Applying the results above, we see that the controls that minimize J(x0) are
||x0||u∗1, · · · , ||x0||u∗N−1, where u

∗
1, · · · , u∗N−1 are those minimizing J( x0

||x0||). This agrees with
the well known fact that the optimal controller for the problem above is the linear quadratic
controller, and is indeed of the linear form uk = −Fkxk.

Example 2. Consider the following system and costs

xx+1 = Axk +Buk, gk = h(xk) + ||uk||1

where ||uk||1 denotes the L1 norm of uk and h is a map satisfying h(ax) = ah(x) for a > 0.
Such costs may arise when one tries to force some controls to zero to create sparsity, a method
known as L1 regularization. This problem is challenging, particularly for nonconvex h. But
according to the theory above, it is sufficient to solve it numerically for initial conditions
lying on the unit sphere of the state space.

3.4 Application to Optimal Experiment Design for

MR Fingerprinting

Magnetic resonance imaging (MRI) has traditionally focused on acquisition sequences that
are static, in the sense that sequences typically wait for magnetization to return to equilib-
rium between acquisitions. Recently, researchers have demonstrated promising results based
on dynamic acquisition sequences, in which spins are continuously excited by a sequence of
random input pulses, without allowing the system to return to equilibrium between pulses.
Model parameters corresponding to T1 and T2 relaxation, off-resonance and spin density
are then estimated from the sequence of acquired data. This technique, termed magnetic
resonance fingerprinting (MRF), has been shown to increase the sensitivity, specificity and
speed of magnetic resonance studies [61, 28].
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This technique could be further improved by replacing randomized input pulse sequences
with sequences that have been optimized for informativeness about model parameters. To
this end, we present a model of MR spin dynamics that describes the measured data as a
function of T1 and T2 relaxation rates and the sequence of radio-frequency (RF) input pulses,
used to excite the spins.

The following model was introduced in the conference paper [68]. In this chapter, an
optimal control was computed via dynamic programming on a very sparse six-dimensional
grid. Now using our symmetry reduction technique, we we exploit symmetry reduction to
provide a much more accurate optimal input sequence computed on a finer five-dimensional
grid.

We model the spin dynamics via the equations

xk+1 = Uk





θ2 0 0
0 θ2 0
0 0 θ1



xk +





0
0

1− θ1



 (3.3)

where the states x1,k and x2,k describe the transverse magnetization (orthogonal to the
applied magnetic field) and x3,k describes the longitudinal magnetization (parallel to the
applied magnetic field). To simplify the presentation, off-resonance is neglected in this model.
Control inputs Uk ∈ SO(3) describe flip angles corresponding to RF excitation pulses that
rotate the state about the origin. Between acquisitions, transverse magnetization decays
according to the parameter θ2 = e−∆t/T2 and the longitudinal magnetization recovers to
equilibrium (normalized such that the equilibrium is x0 = [0 0 1]T ) according to the
parameter θ1 = e−∆t/T1 where ∆t is the sampling interval.

fk(xk, Uk, wk) =

















0 0 0
Uk 0 0 0

0 0 0
0 0 0
0 0 0 Uk
0 0 0

































θ2 0 0 0 0 0
0 θ2 0 0 0 0
0 0 θ1 0 0 0
0 0 0 θ2 0 0
0 0 0 0 θ2 0
0 0 1 0 0 θ1

















xk +

















0
0

1− θ1
0
0
−1

















gk(xk, Uk, wk) = −xTk

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1

γ
0 0

0 0 0 0 1
γ

0

0 0 0 0 0 0

















xk

(3.4)

We assume that data are acquired immediately following the RF pulse, allowing us to
make a noisy measurement of the transverse magnetization. We also assume that the mea-
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sured data are described by a multivariate Gaussian random variable

yk =

[

1 0 0
0 1 0

]

xk + vk

where vk is a zero-mean Gaussian noise with covariance

[

γ 0
0 γ

]

. This model results from a

time discretization of the Bloch equations [14, 80] under a time scale separation assumption
that specifies that the RF excitation pulses act on a much faster time scale than the relaxation
time constants T1 and T2. A simplified two-state version of this model was considered in
[66], where the transverse magnetization was modelled using a single state describing the
magnitude of [x1,k, x2,k]

T .
We see from the model (3.3) that magnetization in the transverse direction decays while

magnetization in the longitudinal direction grows. However only the transverse component of
the magnetization can be measured. Thus there is a trade-off between making measurements
(which leads to loss of magnetization) and magnetization recovery. This is the trade-off that
we hope to manage through the optimal design of an input sequence Uk.

We wish to quantify the informativeness of an acquisition sequence based on the infor-
mation about the T1 relaxation parameter θ1 that is contained in the resulting data set.
More formally, we wish to choose Uk ∈ SO(3) to maximize the Fisher information about θ1
contained in the joint distribution of Y = (y0, . . . ,yN). The Fisher information I can be
expressed as a quadratic function of the sensitivities of xk with respect to θ1:

I =
N
∑

k=0

∂

∂θ1
xTk





1/γ 0 0
0 1/γ 0
0 0 0





∂

∂θ1
xk

where the sensitivities ∂
∂θ1

xk satisfy the following sensitivity equations:

∂

∂θ1
xk+1 = Uk





θ2 0 0
0 θ2 0
0 0 θ1





∂

∂θ1
xk + Uk





0 0 0
0 0 0
0 0 1



xk +





0
0
−1



 .

It should be noted that for system (3.3), the objective function I has many local optima
as a function of the input sequence Uk. Thus, in contrast with [67] which consider optimal
experiment design for hyperpolarized MRI problems, for this model, local search methods
provide little insight into what acquisition sequences are good. In contrast with the MRI
model presented in [64], where global optimal experiment design heuristics are developed for
linear dynamical systems, in this model the decision variables Uk multiply the state vector
xk, making the output yk a nonlinear function of the sequence U = (U0, . . . Uk−1). Thus we
must use dynamic programming to find a solution.
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Model

To present this problem in the formalism we have introduced, we define an augmented state
vector

xk =

[

xk
∂
∂θ1

xk

]

∈ R
6.

We can write the dynamics of the augmented state as a control system with f and g defined
in Equation (3.4). This system has a one-dimensional group of symmetries defined by

φα(xk) =

















cos(α) − sin(α) 0 0 0 0
sin(α) cos(α) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(α) − sin(α) 0
0 0 0 sin(α) cos(α) 0
0 0 0 0 0 1

















xk

χα(Uk) =





cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1



Uk





cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1





ψα(wk) = wk

for any α ∈ R/2πZ.

Dynamic programming in reduced coordinates

To perform dynamic programming in a reduced coordinate system, we begin by defining the
cross-section C = {x : x1 = 0, x2 > 0}, and computing the moving frame γ(x). To do so, we
solve

0 = φaγ(x)(x) = x1 cos γ(x)− x2 sin γ(x).

Isolating γ yields
γ(x) = atan2(x1, x2).
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Next, we compute the invariants ρ(x) using

ρ(x) = φbγ(x)

=













sin(atan2(x1, x2)) cos(atan2(x1, x2)) 0 0 0 0
0 0 1 0 0 0
0 0 0 cos(atan2(x1, x2)) − sin(atan2(x1, x2)) 0
0 0 0 sin(atan2(x1, x2)) cos(atan2(x1, x2)) 0
0 0 0 0 0 1













x

=

















√

x21 + x22
x3

1√
x2
1
+x2

2

(x2x4 − x1x5)

1√
x2
1
+x2

2

(x1x4 + x2x5)

x6

















Further, ρ restricted to the cross-section C is injective with inverse ρ̄−1 : R+ × R
4 → C

given by ρ̄−1(x̄) =
[

0 x̄1 x̄2 x̄3 x̄4 x̄5
]T
. The theory above tells us we can thus solve

the optimal stochastic control problem in a 5 dimensional state space, reducing the original
6 dimensional problem of 1 dimension.

Results

To implement this algorithm, we discretize the reduced five-dimensional state space and two-
dimensional input space via grids of size 6× 10× 15× 15× 15 and 16× 8 respectively. The
code was written in the Julia language and parallelized to allow evaluation of Jk in parallel
across grid points [66]. The implementation is publicly available at https://github.com/
maidens/Automatica-2017.

Optimal input and state trajectories for the model corresponding to the initial condition
at the equilibrium x0 = [0 0 1 0 0 0]T are plotted in Figures 3.1 and 3.2.

In contrast with the results from [66] where we considered a simplified version of the
model, for this full model we no longer find that the optimal flip angle sequence converges
to a cyclic pattern, rather it appears irregular. However, state sequence of longitudinal
magnetizations and transverse magnetization magnitudes appears to converge to a constant
sequence. This is likely because in this work we assumed Gaussian noise in the inputs
in contrast with the Rician noise assumed in the previous work, therefore it is no longer
necessary to conserve magnetization across multiple time steps before generating a reliable
measurement.

3.5 Optimal Formation Control on Lie Groups

We now apply the theory presented in Section 3.2 where the state space X ⊆ R
n is the

Cartesian product of matrix Lie groups. Note that, straightforward modifications arise

https://github.com/maidens/Automatica-2017
https://github.com/maidens/Automatica-2017
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Figure 3.1: Optimal input sequence for the MR fingerprinting model. The angles α, β and
δ represent rotations about the z, y and x axes respectively, resulting in an control input
Uk = Rz(αk)Ry(βk)Rx(γk).

(a) Magnetizations (b) Sensitivities

Figure 3.2: Optimal state sequence for the MR fingerprinting model. Here we have plotted
the longitudinal and transverse components of both the magnetization (states x1, x2, and
x3) and the sensitivities (states x4, x5, and x6) where the transverse component is computed
as the Euclidean norm of the vectors (x1, x2) and (x4, x5) respectively.

along the way as the state space and noise space are not vector spaces as in the theory
above. The methodology is then applied to the synchronization of two non-holonomic cars
in the presence of uncertainties.
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General problem

We model the system as a collection of K agents, where the state of each agent evolves on
a r-dimensional matrix Lie group G. We assume that the evolution of the state of agent j
proceeds according to the equation

Xj
k+1 = Xj

kM(ujk)W
j
k (3.5)

where Xk, M(uk), Wk are all square matrices belonging to G, uk is a control that lives in
some finite dimensional vector space, and Wk is the noise. The control objective is to reach
a desired configuration, that is, a desired value for the relative configurations of the agents
(X1)−1X2, . . . , (XK−1)−1XK , see e.g., [93] for more information.

Systems of this form are naturally invariant to left multiplication of allXj by some matrix
A ∈ G:

φA(X) =







AX1

...
AXK







where X = (X1, . . . , Xk) ∈ GK . Letting χ(u1, . . . , uK) ≡ (u1, . . . , uK), ψ(W 1, . . . ,WK) ≡
(W 1, . . . ,WK), and the costs be of the form g̃((X1)−1X2, . . . , (XK−1)−1XK)+h(u1, . . . , uK),
we get an invariant system with invariant costs.

One can define a cross section to the orbits by letting the first agent coordinates be equal
to the identity matrix, that is, C = {X ∈ GK : X1 = I}. The normalization equation are
given by I = φaγ(X)(X) = γ(X)X1, hence the moving frame is given by γ(X) = (X1)−1. The
invariants are computed as

ρ(X) = φbγ(X) =







(X1)−1X2

...
(X1)−1XK







The optimal stochastic control problem can then be solved in the reduced coordinate system
defined by ρ, reducing the state space from dimension Kr to (K − 1)r.

Application: cooperative formation control for two stochastic

Dubins vehicles

We consider two identical Dubins vehicles each with dynamics

zk+1 = zk + vk cos θk

yk+1 = yk + vk sin θk

θk+1 = θk +
1

L
vk tan sk + wk
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where yk and zk denote the two-dimensional position of the vehicle, θk denotes the heading
of the vehicle, vk is a velocity input, sk is a steering angle input, and wk is independent,
identically-distributed zero-mean Gaussian noise with variance σ2, and L is a parameter that
determines the vehicle’s steering radius.

These dynamics can be embedded in the three-dimensional special Euclidean matrix Lie
group G = SE(2), by defining the state

Xk =





cos θk − sin θk zk
sin θk cos θk yk
0 0 1



 ,

input matrix

M(vk, sk) =





cos( 1
L
vk tan sk) − sin( 1

L
vk tan sk) vk

sin( 1
L
vk tan sk) cos( 1

L
vk tan sk) 0

0 0 1



 ,

and noise matrix

Wk =





coswk − sinwk 0
sinwk coswk 0

0 0 1



 ,

with state update equation of the form (3.5).
We wish to compute a control policy for a two-vehicle system, with states X1 and X2,

where the controls can only take a finite number of values, and with terminal cost

J(X1
0 , X

2
0 ) = E

[

gN
(

(X1
N)

−1X2
N

)

]

where gN(X) = arccos(X11)
2 + |

√

X2
13 +X2

23 − 1|, that is, we want the vehicles to have the
same heading, and follow each other at unit distance. Thanks to the theory developed above,
the stochastic control problem is reduced from problem with a six dimensional state space
to a problem with a three dimensional state space only.

For numerical simulations, the cost functions J̄k were computed on a fixed grid of dimen-
sion 51× 51× 65 using turning radius parameter L = 1, input sets vk ∈ {−0.1, 0,−0.1} and
sk ∈ {−1, 0,−1} Globally optimal input and state trajectory sequences corresponding to the

initial condition x0 =
[

0.1 0 1
2
π −0.1 0 3

2
π
]T

are shown in Figures 3.3 and 3.4. These
are compared against a deterministic version of the model with wk = 0 in Figures 3.5 and
3.6.

3.6 Conclusion

We have presented a method of reducing the complexity of dynamic programming for systems
in which the state dynamics, stage costs and transition probabilities are invariant under a
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Figure 3.3: Optimal input sequence for cooperative stochastic Dubins vehicle model with
σ = 0.3.

�
���� ��� ��� ��� ���

����

����

���

���

���

�

Figure 3.4: Optimal state sequence for the cooperative stochastic Dubins vehicle model with
σ = 0.3.
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Figure 3.5: Optimal input sequence for cooperative deterministic Dubins vehicle model.
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Figure 3.6: Optimal state sequence for the cooperative deterministic Dubins vehicle model.

group of symmetries. This allows us to compute globally optimal control policies for systems
of moderate state dimension. We have applied this technique to compute globally optimal
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trajectories to a six-dimensional original MRI model with a one-dimensional group of sym-
metries and for a six-dimensional stochastic Dubins vehicle model with a three-dimensional
group of symmetries by reducing the dimension of the state space to five and three dimen-
sions respectively. Since computation time for dynamic programming depends exponentially
on the state space dimension, this technique enables the computation of optimal control
policies for systems in which it was previously infeasible.
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Chapter 4

Optimizing Flip Angles for Metabolic

Rate Estimation in Hyperpolarized

Carbon-13 MRI

Hyperpolarized carbon-13 magnetic resonance imaging (MRI) has enabled the real-time ob-
servation of perfusion and metabolism in preclinical and clinical studies [37, 29, 52, 77,
5, 101]. This technology is made possible by techniques for dynamic nuclear polarization
(DNP) that have led to signal-to-noise ratio (SNR) increases of four to five orders of magni-
tude compared with endogenous signal in dissolved 13C-labelled molecules [4, 38]. Injected
[1-13C] pyruvate is frequently used as a substrate in metabolism experiments and its rate
of conversion to [1-13C] lactate has been shown to distinguish between healthy and diseased
tissues in animal [29], and recently human [77], studies.

In contrast with conventional MRI, magnetization is a non-renewable resource in hy-
perpolarized MRI. Conventional imaging relies only on thermal equilibrium polarization,
therefore an arbitrary number of acquisitions can be performed if we allow time for the
magnetization to return to equilibrium between acquisitions. In contrast, hyperpolarization
can only be performed before a 13C-labeled substrate is injected into the body, and once
injected the magnetization decays due to T1 relaxation and rapid T2 relaxation following
radio frequency (RF) excitation. Thus, the choice of excitation sequence is important for
managing the trade-off between present and future measurement quality.

In typical practice a constant flip angle sequence is used for excitation, with typical values
ranging from 5–30 degrees. Alternative time-varying acquisition sequences include sequences
that attempt to maintain constant observed signal over time [106], maximize the cumulative
observed lactate signal over time [62], or saturate the lactate signal in each acquisition [96].

In this chapter our goal is to design a time-varying flip angle sequence to achieve max-
imally reliable quantitative estimates of the metabolic rate that can be compared between
tissue regions, across subjects, or over time. To achieve this we develop a statistical model of
the observed data as a function of the flip angle sequence and design flip angles to maximize
the Fisher information about the metabolic rate parameter.
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We begin by presenting a mathematical model of the magnetization dynamics in the ob-
served tissue in Section 4.1. In Section 4.2, we introduce a flip angle optimization procedure
and present an optimal sequence. Next, we validate this result with computer simulation
studies to demonstrate that our optimized sequence yields more reliable metabolic rate es-
timates than commonly-used flip angle sequences in Section 4.3. Finally, in Section 4.4, we
demonstrate the feasibility of this procedure in vivo and demonstrate the well-foundedness
of our mathematical model with experiments in a prostate cancer mouse model.

The software and experimental data required to generate the figures in this chapter are
available at: https://github.com/maidens/TMI-2015.

4.1 Mathematical Model

Linear differential equations are well-established as models of metabolic flux measured us-
ing MR spectroscopy [29, 18]. It is shown in [47] that a first-order, two-site model with
unidirectional flux of pyruvate to lactate is sufficient to accurately model the appearance of
lactate, when observed by hyperpolarized MR. This work also showed that increasing the
fidelity of the model to incorporate bidirectional flux, or transport of lactate outside the cell,
did not significantly improve the fit to hyperpolarized MR data. Therefore, we consider a
two-dimensional system of ordinary differential equations

dx

dt
(t) =

[

−kPL −R1P 0
kPL −R1L

]

x(t) +

[

kTRANS
0

]

u(t) (4.1)

that models the magnetization dynamics in a tissue with an arterial input function u(t) and
uni-directional conversion from the substrate (pyruvate) to a metabolic product (lactate),
which has been commonly applied for hyperpolarized 13C pyruvate experiments. The state
x1(t) denotes the longitudinal magnetization of pyruvate contained in a particular voxel in
the tissue and x2(t) the longitudinal magnetization of lactate in the same voxel. The rate of
metabolism of pyruvate to lactate is denoted kPL, the perfusion rate from the arterial input
to the tissue is denoted kTRANS, and R1P and R1L are lumped parameters that account for
T1 decay in the magnetization along with other effects, such as metabolism of pyruvate into
products other than lactate as well as flow of magnetization out of the slice. The input to
the system u(t) is an unmeasured arterial input function (AIF) resulting from the injection
of hyperpolarized [1-13C] pyruvate. In an experimental setting an AIF will be estimated
based on the data collected, but for the purposes of designing a flip angle sequence, it will
be assumed to be of gamma-variate shape

u(t) = A0(t− t0)
γe−(t−t0)/β

with parameters t0, γ, β, A0 given in Table 4.1.
We acquire data at N time points separated by intervals of length TR. Each time t an

acquisition is made, we must choose a flip angle αk,t for each compound k to be measured.

https://github.com/maidens/TMI-2015
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(t)+
x(t)+cos(α)

x(t)+sin(α)

α

x

(a) Flip angle selection

Magnetization

remaining

Observed 

signal

t

x(t)

(b) Hybrid (continuous-discrete) dynamics

Figure 4.1: Illustration of the trade-off between present and future image intensity in a single
compound. (a) Each acquisition relies on choosing an angle α to perturb the longitudinal
magnetization into the transverse plane, allowing a measurement of magnitude x(t) sin(α),
after which x(t) cos(α) longitudinal magnetization remains for future acquisitions. (b) Re-
peated excitation leads to repeated discrete jumps in the system state, depleting the remain-
ing magnetization.

If the magnetization of the k-th compound before the acquisition is xk, then this choice of
flip angle allows us to measure a signal of magnitude sin(αk,t)xk, after which cos(αk,t)xk
magnetization remains for future acquisitions (Fig. 4.1a). This causes discrete jumps, or
resets, in the system state, leading to a hybrid dynamical system [60] (Fig. 4.1b). Since
we are only interested in the system’s state at acquisition times, we can avoid technicalities
associated with hybrid system modelling by discretizing the system in time and considering a
discrete-time dynamical system that simultaneously captures the evolution of (4.1) between
acquisitions and the discrete jumps induced by the acquisitions. We define the transition
matrices Ad and Bd

Ad = exp

(

TR

[

−kPL −R1P 0
kPL −R1L

])

Bd =

[

−kPL −R1P 0
kPL −R1L

]−1

(Ad − I)

[

kTRANS
0

]

that correspond to the discretization of (4.1) assuming a zero-order hold on the input between
each acquisition [22].

We will construct metabolite maps using magnitude image data, which necessitates a
Rician noise model. Using magnitude images allows us to avoid modelling sources of phase
in the image which would require additional states and parameters to estimate. It would also
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Figure 4.2: Simulated trajectories for a pyruvate to lactate conversion model using a constant
flip angle sequence with αS[k] = αP [k] = 15◦.

be possible to perform the parameter mapping using complex images with Gaussian noise,
but this would require revising the model to account for phase, or modifying the image
reconstruction to estimate and remove phase from the acquired images.

Accordingly, we model the measurements as independent Rician-distributed random vari-
ables [44], which have probability density

px,σ(y) =
y

σ2
exp

(

−y
2 + x2

2σ2

)

I0

(yx

σ2

)

where Iν denotes the modified Bessel function of the first kind of order ν. All together, we
have the discrete-time model

x0 = 0

xt+1 = Ad(θ)

[

cosα1,t 0
0 cosα2,t

]

xt +Bd(θ)ut(θ)

x̃k,t = sin(αk,t)xk,t k = 1, 2

Yk,t ∼ Rice(x̃k,t, σk) k = 1, 2.

(4.2)

Simulated trajectories of this model are shown in Fig. 4.2.
The model parameters are

θ = [R1P , R1L, kPL, kTRANS, u0, . . . , uN−1]

and we have the freedom to choose

α =

[

α1,1 . . . α1,N

α2,1 . . . α2,N

]

to generate the best possible estimate of the unknown parameters. The noise parameters
σk for k = 1, 2 can be estimated separately from a measurement of the background and are
therefore assumed to be known. We fix a sampling interval of TR = 2 seconds, though this
could in principle be included as a decision variable.
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4.2 Optimal Experiment Design

In this section, we present a methodology for designing flip angle sequences to provide max-
imal information about the metabolic rate parameter kPL. This methodology is based on an
optimization problem that can be solved to local optimality using nonlinear programming.
To facilitate the implementation of this methodology, we have released an open source MAT-
LAB toolbox for the design of optimal flip angle sequences. This toolbox is available at
https://github.com/maidens/Flip-Angle-Design-Toolbox.

Theory

The goal of optimal experiment design is to estimate parameters in a statistical model from
observed data with minimum variance in the estimates [87]. The most commonly used
optimization criteria are scalar-valued functions of the Fisher information matrix. For a
statistical model described by a family of probability density functions pθ(y) parametrized
by a vector of parameters θ ∈ R

p, the Fisher information is a p × p symmetric, positive
semidefinite matrix defined as

Iij(θ) = E

[

∂ log pθ(Y )

∂θi

∂ log pθ(Y )

∂θj

]

where the expectation is computed under the distribution pθ.
In linear regression models with Gaussian-distributed measurements, the maximum-

likelihood estimator of θ is unbiased and has covariance equal to the inverse of the Fisher
information matrix. Thus the variance of estimates of θ can be minimized by maximizing
the Fisher information. For general models, the Cramér-Rao inequality

cov(θ̂) ≥ I−1 (4.3)

gives a lower bound on the covariance of any unbiased estimator θ̂ of the parameter θ in
terms of the Fisher information matrix. In general, finite-sample efficient estimators do not
exist, that is, there is no estimator that can achieve the Cramér-Rao bound based on a
single experiment, or even a finite number of independent experiments. Nonetheless, the
Fisher information is commonly used in optimal experiment design in nonlinear models
as it is general, easy to compute, provides good results in practice and can be justified
mathematically via asymptotic analysis[105].

In this chapter, we will estimate unknown model parameters using the maximum likeli-
hood estimator (MLE) defined as

θ̂MLE ∈ argmax
θ∈Rp

pθ(Y )

where Y is the observed data. Under mild assumptions, the maximum likelihood estimator
is asymptotically efficient [25], that is,

√
n(θ̂MLE − θ)

d−→ N (0, I−1) (4.4)

https://github.com/maidens/Flip-Angle-Design-Toolbox
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as the number n of independent data sets used to compute the MLE tends to infinity. Here
N (0, I−1) denotes the multivariate normal distribution with mean zero and covariance I−1

and
d−→ denotes convergence in distribution. Thus, we see that asymptotically the MLE

achieves the Cramér-Rao bound. While it is not necessarily the case in general that the
MLE based on a single data set, or any finite number of data sets, has covariance equal to
I−1, it is often a good approximation. Thus, we attempt to design an experiment to reliably
estimate θ by maximizing the Fisher information.

The Fisher information is a function of the true value of the parameter vector θ, which
is unknown a priori. There are commonly three approaches to overcome this difficulty:

1. Minimax/maximin optimal design: Given a range Θ of values for the parameter vector
choose the design α to maximize the worst-case information among all potential values
of the parameter θ ∈ Θ (i.e. α∗ = argmaxα∈A minθ∈Θ µ(I(θ, α)) for some measure µ
of the size of the information matrix). This approach is advantageous because it pro-
vides a guaranteed lower bound on the information gained from an experiment despite
parametric uncertainty. But it typically leads to a design α∗ that is optimized for a
“corner case” in the parameter space, which may be overly conservative in practice.
In addition, minimax/maximin objective functions are non-differentiable and can be
difficult to optimize numerically [82, 31].

2. Bayesian optimal design: Given a prior distribution p0(θ) on the space of possible pa-
rameter values, maximize the expected information (i.e. α∗ = argmaxα∈A

∫

µ(I(θ, α))p0(θ)dθ).
This approach handles parametric uncertainty nicely, but can lead to difficulties when
it in unclear how to choose an appropriate prior, or when the parameter space is large
and hence the computation of the high-dimensional integral is numerically intractable
[21].

3. Choose a nominal value θ0 of the parameter vector at which to optimize the infor-
mation (i.e. α∗ = argmaxα∈A µ(I(α, θ0))). This approach is conceptually simple and
numerically tractable, but may suffer from a lack of robustness to the choice of θ0.

In this dissertation, we take the third approach. We address the potential lack of robust-
ness to the choice of the nominal parameter value θ0 by a systematic numerical study of
the robustness to parametric uncertainty in Section 4.3. These experiments demonstrate
that for this particular model, an experiment designed using nominal values of the model
parameters performs well across a wide range of values of the true parameter. It is possible
that the results presented here could be improved further based on a minimax or Bayesian
formulation, but this investigation is beyond the scope of our current study.

Computing Fisher information for our model

To find a maximum-likelihood estimate with minimum variance, we choose the sequence α
to maximize the Fisher information matrix at a nominal value of the parameter vector θ.
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The nominal parameter values used are given in Table 4.1. The T1 relaxation, perfusion and
metabolic rate parameters were chosen based on our typical data in a prostate cancer mouse
model, and nominal values for the input shape and noise parameters were chosen based on a
maximum likelihood fit to an arterial input function measured in a preliminary experiment.

Table 4.1: Nominal parameter values used to compute optimal flip angle sequences

R1P R1L kPL kTRANS t0 γ β A0 σk
1/20 1/20 0.07 0.055 3.2596 2.1430 3.4658 1.0411 ×104 2.3608 ×104

To compute the Fisher information, we use the expression derived in [63] for the (i, j)-th
entry of I:

Iij =
N
∑

t=0

2
∑

k=1

1

σ2
k

∂x̃k,t
∂θi

∂x̃k,t
∂θj

ψ

(

x̃k,t
σk

)

(4.5)

where the sensitivities are computed recursively as







































∂x0
∂θi

= 0

∂xt+1

∂θi
= ∂Ad

∂θi

[

cosα1,t 0
0 cosα2,t

]

xt

+Ad

[

cosα1,t 0
0 cosα2,t

]

∂xt
∂θi

+ ∂Bd

∂θi
ut +Bd

∂ut
∂θi

∂x̃t
∂θi

=

[

sinα1,t 0
0 sinα2,t

]

∂xt
∂θi

and ψ is defined in terms of the integral

ψ(z) = −z2 +
∫ ∞

0

y3
I21 (yz)

I0(yz)
exp

(

−1

2
(y2 + z2)

)

dy.

Eliminating nuisance parameters

In practice, we do not necessarily need good estimates of all the unknown parameters in
the model. For example, in this chapter our primary goal is to estimate the metabolic
rate parameter kPL which is useful for discriminating between cancerous and non-cancerous
tissues [5], determining the severity of disease [1, 95] and monitoring response to therapy
[29]. Thus we wish to modify our optimality criterion to maximize the sensitivity of the
experiments to kPL while considering the nuisance parameters only insofar as they allow us
to estimate the parameters of interest. We do so by partitioning the information matrix as

I =

[

I11 I12

I21 I22

]
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where the first block corresponds to the parameters of interest and the second block corre-
sponds to the nuisance parameters. The inverse of the Fisher information is given by

I−1 =

[

(I11 − I12I−1
22 I21)

−1 −I−1
11 I12(I22 − I21I−1

11 I12)
−1

−I−1
22 I21(I11 − I12I−1

22 I21)
−1 (I22 − I21I−1

11 I12)
−1

]

.

Thus, optimal design for the parameters of interest can be performed by maximizing the
Schur complement of I22:

S = I11 − I12I−1
22 I21

which corresponds to minimizing the asymptotic covariance of the marginal distribution of
the MLE corresponding to the parameters of interest via (4.4), or equivalently, minimizing
the Cramér-Rao bound on the parameters of interest via (4.3).

In general, if multiple parameters are of interest then S will be a matrix and we would
be required to choose a suitable scalar criterion for measuring the size of S. The problem
of simultaneously estimating kPL and kTRANS is considered in [65], where the D−, E− and
A− optimality criteria are compared. However, in this instance we are considering a single
parameter of interest kPL, therefore the Schur complement S is scalar-valued.

Regularization

We desire a smoothly-varying sequence of flip angles for a number of reasons including in-
creasing robustness against model mismatch and interpretability of the resulting sequence of
flip angles. We achieve smoothness in the flip angle sequence by adding a regularization term
λ‖∆α‖F to the objective function to penalize nonsmooth sequences where the differencing
operator ∆ is defined as

∆

([

α1,1 . . . α1,N

α2,1 . . . α2,N

])

=

[

(α1,2 − α1,1) . . . (α1,N − α1,N−1)
(α2,2 − α2,1) . . . (α2,N − α2,N−1)

]

and ‖ · ‖F denotes the Frobenius norm. The nonnegative parameter λ can be adjusted to
achieve the desired degree of smoothness.

Regularization also improves the convexity of the objective function. When the regu-
larization parameter takes the value λ = 0, the objective function possesses multiple local
minima, but as λ → ∞ the convex term ‖∆α‖F dominates, which guarantees that any
stationary point is a global optimum.

We chose a particular value of λ by comparing the flip angle sequences resulting from
the optimization using numerous regularization parameter values. The value λ = 0.1 was
found to nicely balance between smoothness and range (between 0◦ and 90◦) of the flip angle
sequence.
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Numerical optimization

To design an optimal flip angle scheme, we must solve the flip angle optimization problem

maximize S(θ, α)− λ‖∆α‖F
subject to 0◦ ≤ αk,t ≤ 90◦ k = 1, 2 t = 1, . . . , N

(4.6)

for the flip angle sequence α where θ is fixed to some nominal value for the unknown param-
eters. The MATLAB Optimization Toolbox [102] provides a derivative-free implementation
of the quasi-Newton optimization algorithm of Broyden-Fletcher-Goldfarb-Shanno (BFGS)
[81], which is well-suited to finding local optima of this objective function.

Results

A solution to the optimization problem (4.6), initialized at αk,t = 5◦, is given in Fig. 4.3.
Simulated state and observation trajectories corresponding to this flip angle sequence are
shown in Fig. 4.4.
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Figure 4.3: Optimized flip angle sequence for estimating the metabolic rate parameter kPL
using the nominal parameter values in Table 4.1 and a sampling interval TR = 2 s between
acquisitions.

We see that the pyruvate flip angles follow a pattern similar to flip angle sequences
designed for other objectives, beginning with small flip angles to preserve magnetization for
future acquisitions but increasing toward the end of the sequence [106, 62]. In contrast, the
optimized flip angle sequence is much more aggressive with the lactate flip angles at the
beginning of the experiment than in other variable flip angle sequences. This provides more
reliable information about the leading end of the lactate time series, which contains the most
information about the metabolic rate.

For the particular model and regularization parameter values used, the BFGS optimiza-
tion algorithm converges to the same optimal sequence for a wide range of initializations. To
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Figure 4.4: Simulated trajectories of the model (4.2) using the optimized flip angle sequence
shown in Fig. 4.3 and the arterial input function shown in Fig. 4.2a.

confirm this, we have initialized the search algorithm using three flip angle sequences with
angles generated randomly between 0 and 90◦. For all three initializations, the algorithm
converges to the flip angle sequence shown in Fig. 4.3. This demonstrates that the flip angle
sequence presented is likely a global optimum.

4.3 Validation Using Simulated Data

In this section, we demonstrate the advantage of the optimally designed flip angle sequence
using computer-simulated data. Working with simulated data allows us to collect a large
number of statistically independent data sets and provides us access to a “ground truth”
value for the parameter vector. This makes it possible to reliably determine the parameter
estimation error that results from noise in the simulated measurements. It is not feasible to
acquire such a large number of data sets in vivo, and these would also not include ground
truth values. Thus we use simulated data to demonstrate that our optimized flip angle
sequence leads to smaller uncertainty in estimates of the metabolic rate parameter kPL.

Two-step parameter estimation procedure

When fitting the data from in vivo experiments, data from different voxels will correspond
to different values of the parameters kTRANS, kPL, R1P and R1L as these values change with
spatial location, but all correspond to the same arterial input u(t). Thus we present a fitting
procedure that proceeds in two steps: first we fit a single input function u(t) to the entire
data set, then we fix this input function and estimate values of the remaining parameters
individually for each of the voxels in the slice.
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Simulation results and discussion

We wish to compare the reliability of estimates of kPL between data generated using five
competing flip angle sequences:

1. a T1-effective sequence [106] that aims to keep the measured signal constant despite
repeated RF excitation and magnetization exchange between chemical compounds (Fig.
4.5a)

2. an RF compensated flip angle sequence [109] that aims to keep the measured signal
constant despite repeated RF excitation (Fig. 4.5b),

3. a constant flip angle sequence of 15◦,

4. a sequence that maximizes the total signal-to-noise ratio in the observed signal

SNRtotal =
N
∑

t=0

2
∑

k=1

x̃k,t
σk

.

[62] (Fig. 4.5c), and

5. our flip angle sequence that maximizes the Fisher information about kPL (Fig. 4.3).

For each of the five flip angle sequences, we simulate n = 25 independent data sets from the
model (4.2) using the parameter values given in Table 4.1. We then perform the two-step
parameter estimation procedure described in Section 4.3. The resulting parameter estimates
are shown in Fig. 4.6. We see that for all five flip angle sequences, the parameter estimates
congregate near the ground truth value of the model parameters.

To demonstrate that our optimized flip angle sequence provides more accurate estimates
of kPL than the competing flip angle sequences, we compare the root mean squared (RMS)
estimation error between the sequences. We repeat this experiment for various values of the
noise parameter σ2 ranging from 103 to 106 to demonstrate that the improvement in the
estimates is robust to variation in the noise strength. A value of approximately 2 × 104, in
the center of this range, is typical for prostate tumor mouse model experiments. For each
value of σ2 we compute the RMS error of the kPL and nuisance parameter estimates across
the n = 25 trajectories and plot these relationships in Figs. 4.7 and 4.8 respectively. The
average improvement compared with competing sequences, across a range of noise parameter
values {σp, p = 1, . . . , 5}, is computed as a percentage

100×
(

1

5

5
∑

p=1

[

1− RMSFisher(σp)

RMScompeting(σp)

]

)

.

These improvement percentages are summarized in Table 4.2.
Overall, we see that the optimized flip angle sequence provides a more reliable estimate

of the parameter of interest kPL, with a substantial improvement over all four competing
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Figure 4.5: Flip angle schedules compared experimentally with our optimized flip angle se-
quence. Note that for the RF compensated and maximum total SNR schedules, the sequences
corresponding to pyruvate and lactate are identical.
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Figure 4.6: Maximum likelihood estimates of the parameters kTRANS, kPL, R1P and R1L for
numerous independent simulated data sets compared between five flip angle sequences for
σ2 = 2.3608× 104. The ground truth value is depicted as ×.
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Figure 4.7: Comparison of the root mean square kPL estimation error between various flip
angle sequences across different values of the noise strength parameter σ2.

Table 4.2: Improvement in metabolic rate estimate achieved by Fisher information sequence
against competing sequences

Competing sequence T1 effective RF compensated Constant 15◦ total SNR

Improvement achieved 90.6% 23.1% 25.3% 19.8%

flip angle schedules. The magnitude of the improvement varies from a 91% decrease in the
estimation error against the T1 effective sequence to a 20% decrease compared against the
closest competitor: the maximum total SNR sequence. This improvement comes at the
expense of less reliable estimates of some of the nuisance parameters. This highlights the
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Figure 4.8: Comparison of the root mean square nuisance parameter estimation error between
various flip angle sequences across different values of the noise strength parameter σ2.

advantage of using optimization-based methods to manage trade-offs in experiment design.

Robustness to parametric uncertainty

Based on the simulation experiments described in Section 4.3 we have argued that flip angles
optimized based on the Fisher information lead to smaller error in estimates of the parameter
of interest kPL when the same parameter values are used for the simulation and flip angle
optimization. In this section we dispense with the latter assumption to demonstrate that this
improvement is robust to uncertainty in the model parameters. We use the flip angle sequence
shown in Fig. 4.3, which was designed using the specific model parameters given in Table 4.1,
along with two competing flip angle sequences to simulate data from models with different
values for the parameters kTRANS, kPL, R1P , R1L and t0 as well as a factor ∆B1 multiplying
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the flip angle sequence, used to demonstrate robustness to known B1 inhomogeneities.
The ranges of the varying parameters were chosen to represent realistic physiological

ranges and to center near the values we typically observe in a prostate tumor (TRAMP)
mouse model. In Fig.4.9 we plot the ensemble RMS error over n=25 simulated data sets as
a function of the model parameter modified in the simulated data.

We see that the flip angles optimized based on Fisher information lead to better estimates
of kPL across nearly the entire range of model parameters used, despite no longer being
optimal for the parameter values used to generate the data. This provides strong evidence
that not exactly knowing the parameter values a priori does not limit the usefulness of our
proposed flip angle design methodology.

4.4 In Vivo Experiments

We now move on to in vivo experiments. In contrast with the in silico experiments, here there
is no ground truth value of the model parameters against which to compare our estimates, as
the true rates are unknown and may vary between different regions of the tissue. However, the
in vivo experiments can be used to show well-foundedness of the model that we have chosen
and to demonstrate the feasibility of model-based parameter mapping using our optimized
time-varying flip angle sequence. We show that our model can reliably reproduce observed
data and achieve consistent parameter estimates across a variety of time-varying flip angle
sequences.

Experimental setup

To implement this technique in vivo, metabolic data were acquired in a prostate tumor
mouse (TRAMP) model using a 3T MRI scanner (MR750, GE Healthcare). Briefly, 24µL
aliquots of [1-13C] pyruvic acid doped with 15mM Trityl radical (Ox063, GE Healthcare)
and 1.5mM Dotarem (Guerbet, France) were inserted into a Hypersense polarizer (Oxford
Instruments, Abingdon, England) and polarized for 60 minutes. The sample was then rapidly
dissoluted with 4.5g of 80mM NaOH/40mM Tris buffer to rapidly thaw and neutralize the
sample. Following dissolution, 450µL of 80mM pyruvate was injected via the tail vein over 15
seconds, and data acquisition coincided with the start of injection. Metabolites from a single
slice were individually excited with a singleband spectral-spatial RF pulse and encoded with
a single-shot symmetric EPI readout [41], with a repetition time of 100ms, a field-of-view
of 53 × 53mm, a matrix size of 16 × 16, an 8mm slice thickness, and a 2 second sampling
interval. A 1H image showing the anatomy contained in the slice in question is given in Fig.
4.11.

Datasets were acquired using three time-varying flip angle sequences. The T1-effective
and RF-compensated sequences, shown in Figs. 4.5a and 4.5b respectively, aim to distribute
observed magnetization evenly across acquisitions, leading to roughly constant observed
signals over time. The RF-compensated sequence does so by accounting for magnetization
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Figure 4.9: Simulated comparison of the kPL estimation error across values of the model
parameters. The error is compared between five flip angle sequences shown in Figs. 4.3
and 4.5. These flip angle sequences are computed based on the nominal values of the model
parameters given in Table 4.1 and held fixed across all comparisons. Note that the first graph
is logarithmically scaled, due to the fact that low perfusion leads to significant uncertainty
in the metabolic rate estimates. Some estimation errors corresponding to the T1 effective
sequence are greater than the maximum value plotted on these axes.
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Figure 4.10: Simulated comparison of the normalized kPL estimation error across values of
the model parameters. The absolute estimation error for the Fisher information sequence
ranges from approximately 10−3 to 10−2 across the different values of the model parameters.
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Figure 4.11: 1H image of the slice of interest. A large tumor, outlined in blue, fills a significant
portion of the slice. Numbered volumes used to extract trajectories for parameter estimation
are outlined in gold.

lost due to repeated RF excitation, but ignoring exchange between chemical compounds
and T1 relaxation [109]. In contrast, the T1-effective sequence accounts for exchange and
T1 relaxation as well as RF excitation in attempting to achieve a flat time profile [106].
We compare these two sequences against our sequence, shown in Fig. 4.3, that has been
optimized with respect to the Fisher information about kPL.

Resulting data

An example of the collected data, from the experiment with the Fisher information-optimized
flip angles, is shown in Fig. 4.12. Experimentally-estimated values for the noise parameters
are given in Table 4.3.

Table 4.3: Maximum-likelihood estimates of the noise parameter σ2
k for each of the three

data sets collected

T1 effective RF compensated Fisher information
σ2
1 (pyruvate) 1.84 ×104 2.05 ×104 2.21 ×104

σ2
2 (lactate) 2.14 ×104 1.97 ×104 3.26 ×104

Flip angle profile modelling

Due to an imperfect (non-rectangular) slice profile, flip angles applied in practice vary spa-
tially across the slice. This can lead to excess signal coming from regions near the boundary
of the slice at later time points in the acquisitions, a phenomenon known as the slice profile
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(a) pyruvate data

(b) lactate data

Figure 4.12: Data collected using the optimized flip angles shown in Fig. 4.3. The field-of-
view of these images is identical to the 1H image in Fig. 4.11.
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effect [73, 30]. We have found that it is necessary to account for this effect in order to
accurately fit the experimental data.

We consider the actual slice profile π(z) shown in Fig. 4.13 which corresponds to the
spatial response of the RF pulse used experimentally. We assume that at each time step t
and for each compound k (i.e. k = 1 corresponding to pyruvate, k = 2 corresponding to
lactate) we can choose a real parameter αk,t such that the flip angle applied at location z is
θk,t(z) = αk,tπ(z). To generate a finite-dimensional model of the dynamics, we consider the
magnetization dynamics at a discrete set of z coordinates {z1, . . . , zN}. The magnetization
at location zi in the slice is then governed by the equations

xi,t+1 = Ad

[

cos(α1,tπ(zi)) 0
0 cos(α2,tπ(zi))

]

xi,t +Bdut(p)

and the total magnetization measured is then assumed to be distributed

x̃t =
N
∑

i=1

1

zi+1 − zi

[

sin(α1,tπ(zi)) 0
0 sin(α2,tπ(zi))

]

xi,t

Yk,t ∼ Rice(x̃k,t, σ
2).

This approach accounts for the slice profile effects by modelling the dynamics across the
actual slice profile.

Figure 4.13: Comparison between an ideal flip angle profile across the slice and the actual
profile for the RF excitation pulse used.

Parameter estimation

We begin by extracting time evolutions of the measured pyruvate and lactate signal from
n = 9 voxels in the slice. The chosen volumes from which these signals are extracted are
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illustrated in Fig. 4.11. As in Section 4.3, parameter estimation is performed in two steps.
First, a single arterial input function and value for the parameter R1L are estimated based on
the spatial average of the time series extracted from the tumor region. Second, the estimated
input function and R1L value are held fixed while model parameters kTRANS and kPL are
fit individually to the time series extracted from each of the voxels. To ensure practical
identifiability of the model, the parameter R1P is fixed to a value of 0.05 during both steps.

In vivo results and discussion

Estimates of the arterial input corresponding to each of the three flip angle sequences are
shown in Fig. 4.14. We see that the estimated inputs are reasonably consistent between the
three data sets, but have some variation due to measurement noise in the pyruvate signal.
Our optimized sequence yields the most smoothly-varying input function, which suggests
that it is likely the most reliable of the three estimated AIFs.

Figure 4.14: Estimated arterial input functions corresponding to each of the three flip angle
sequences given in Figs. 4.3 and 4.5.

Parameter estimates corresponding to each of the nine voxels are compared between the
three flip angle sequences in Fig. 4.15. Examples of the quality of the fit corresponding
to a particular voxel are shown in Fig. 4.16. We see that the estimated parameter values
are consistent between the three flip angle sequences and that our model is able to reliably
reproduce the observed data in all three cases. This provides evidence that the model we
have used in this chapter accurately describes the dynamics of magnetization exchange in
vivo, and hence that the decision to use this model for the numerical reliability experiments
of Section 4.3 is well-founded.
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Figure 4.15: Maximum likelihood estimates of the parameters kTRANS and kPL for time series
trajectories extracted from various voxels, labelled 1 through 9. The resulting estimates are
compared between data sets collected using the three flip angle sequences shown in Figs. 4.3
and 4.5.

Parameter mapping

We also present maps that show the spatial distribution of estimated metabolic and perfusion
rates in Fig. 4.17. We see that the range and spatial distribution of parameter estimates are
consistent between acquisition sequences.

4.5 Conclusion

We have presented a method of generating optimal flip angle sequences for estimating the
metabolic rate in a model of pyruvate metabolism. This method uses the Fisher information
about the parameter of interest as the objective function that we wish to maximize. We
have shown that the resulting flip angle sequence leads to smaller variance in the parameter
estimates due to noise in the measured signal. We have demonstrated this in silico where
we can explicitly compare the estimated model parameter values against the ground truth
value. In this simulation experiment we demonstrated that our flip angle sequence leads to
a 20% to 90% decrease in the uncertainty of the estimated metabolic rate, when compared
with existing sequences. We also performed in vivo experiments to provide evidence that
the model used in the in silico experiments is well-founded and demonstrate the feasibility
of metabolic rate estimation and parameter mapping using this novel sequence. Based on
the reliability results demonstrated in silico and the in vivo experiments demonstrating the
appropriateness of the model used for the in silico experiments we argue that, for experiments
that aim to quantitatively compare metabolic rates, optimizing flip angle sequences based on
the Fisher information will probably lead to more reliable estimates of the model parameters
of interest.
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(a) T1 effective flip angle sequence (Fig.
4.5a)

(b) RF compensated flip angle sequence (Fig.
4.5b)

(c) Fisher information optimized flip angle
sequence (Fig. 4.3)

Figure 4.16: Model fit to a collection of experimentally measured time series data corre-
sponding to voxel number 5. Each of the three data sets was collected using a different flip
angle sequence.
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Figure 4.17: Maps of the perfusion rate parameter kTRANS and metabolic rate parameter
kPL corresponding to each of the three flip angle sequences. The kPL maps are masked
outside the perfused region using a threshold of kTRANS = 0.02. A single map combining
anatomic, perfusion and metabolism information is shown on the right. In this map, the
color is determined by the estimated kPL value while the transparency of the map is set
using the perfusion rate parameter kTRANS such that in highly-perfused tissues where the
estimates of the metabolic rate parameter are more reliable the map is less transparent. The
combined image data are zero-filled from 16 × 16 to 256 × 256 to match the resolution of
the 1H images.
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Chapter 5

Spatio-Temporally Constrained

Reconstruction for Hyperpolarized

Carbon-13 MRI Using Kinetic Models

5.1 Introduction

Magnetic resonance imaging (MRI) using hyperpolarized carbon-13 labeled substrates has
made it possible to probe metabolism in vivo with chemical specificity [38, 29]. This tech-
nique is increasingly being applied in the clinic, allowing researchers to investigate metabolic
conditions ranging from prostate cancer [77] to heart disease [27]. In particular, experiments
studying the conversion of hyperpolarized [1-13C]pyruvate to [1-13C]lactate are common, as
the rate of conversion is upregulated in many cancers, a phenomenon known as the Warburg
effect.

MRI using hyperpolarized carbon-13 is challenging due to the dynamic nature of the data
collected, the low signal-to-noise ratio (SNR), and the difficulty of presenting large data
sets consisting of dynamic spectroscopic images in an interpretable manner. Metabolism
mapping by estimating parameters in a kinetic model from hyperpolarized MRI data has
been shown to be useful for overcoming a number of these challenges [6]. Constraining the
time evolution of signal in a given voxel to follow a kinetic model has been shown to allow
map reconstruction from noisy, undersampled dynamic images, and to reduce the number of
signal-depleting excitations required to generate images. Parameter mapping also facilitates
interpretation of dynamic image data by summarizing spatial, temporal and chemical (i.e.
chemical shift spectrum) information in a single spatial map.

Parameter maps are naturally a form of constrained reconstruction, as they constrain the
data to lie on a manifold of trajectories of the dynamical system parametrized by the sys-
tem’s parameters. This constrained reconstruction reduces the sequence of dynamic images
to a single map by exploiting temporal correlations within the dynamic imaging data. In this
chapter, we demonstrate that we can exploit spatial correlations in addition to temporal cor-
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relations by integrating prior information about the parameter map through regularization.
Similar approaches have proven useful recently in the context of pharmacokinetic parameter
mapping in dynamic contrast enhanced MRI [57, 45, 46].

This chapter is organized as follows. In Section 5.2 we introduce background on modelling
hyperpolarized 13C MRI data and existing approaches to parameter mapping. In Section
5.3 we introduce a framework for spatially-constrained parameter mapping to exploit spatial
correlations in the data. In Section 5.4 we present an algorithm for efficient inference in
this framework. In Section 5.5 we present the results of simulation experiments where we
demonstrate the effectiveness of the method. In Section 5.6 we then apply the method to
a collection of clinically-relevant data sets. Finally, Section 5.7 concludes the chapter and
briefly discusses potential extensions of this work.

5.2 Background

Data Model

We model the dynamic evolution of the data Yi collected from a single voxel i using the
dynamic model

dx

dt
(t) =

[

−kPL −R1P 0
kPL −R1L

]

x(t) +

[

kTRANS
0

]

u(t). (5.1)

This system of ordinary differential equations (ODEs) has been widely used to model the
uni-directional conversion of an injected substrate (pyruvate, in this case) to a metabolic
product (lactate, in this case) [47]. The state x1(t) models the longitudinal magnetization
in the substrate pool, and the state x2(t) models the longitudinal magnetization in the
product pool. The parameter kPL describes the rate at which the substrate is metabolized,
the parameter kTRANS describes the rate at which the substrate is taken up by the tissue,
and the parameters R1P and R1L are lumped parameters that account for T1 magnetization
decay, metabolism of the substrate into unmeasured products and flow of substrate out of
the voxel.

Measurements are collected at a sequence of times {t1, . . . , tN}. Neglecting the effect of
the input between tk and tk+1, integrating this continuous-time dynamic model and incorpo-
rating the effect of repeated radio-frequency (RF) excitation leads to a discrete-time model
for the magnetization at acquisition times tk of the form

L̂(k + 1) = e−R1L∆t cos(αL(k))L̂(k)− kPL
e−(R1P+kPL)∆t − e−R1L∆t

R1P −R1L + kPL
cos(αP (k))P (k). (5.2)

This gives a statistical model that describes the evolution of the predicted lactate signal
L̂(k) = x2(tk) as a function of the measured pyruvate signal P (k) = x1(tk) and the flip
angles αP and αL applied to the pyruvate and lactate compartments. The predicted lactate
is assumed to be L̂(0) = 0 at the beginning of the experiment.
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For the purpose of generating simulated data, the data measured at each time tk are
assumed to be independent and follow a bivariate normal distribution with mean δxδyδzx(tk)
and covariance σ2I where I denotes the 2× 2 identity matrix and δx, δy and δz describe the
image resolution and slice thickness. We collect the time series data collected from voxel i

into a vector Yi =

[

P (1) · · · P (N)
L(1) · · · L(N)

]

and denote the unknown parameters to be estimated

from the data θi = kPL.

Voxel-Wise Parameter Estimation

Given a collection of data Yi from a voxel i we wish to generate an estimate of the parameter
θi that describes the tissue in that voxel. We assume that θi lies in a parameter space Θ.
We consider the class of “M-estimators” [50] that minimize a loss function

θ̂i ∈ argmin
θ∈Θ

ℓ(θi|Yi).

In the present chapter, we consider the nonlinear least squares loss function

ℓ(θi|Yi) = ‖Yi − Ŷi(θi)‖F (5.3)

where Ŷ =

[

P (1) · · · P (N)

L̂(1) · · · L̂(N)

]

denotes the predicted signal given the pyruvate time series

and ‖ · ‖F denotes the Frobenius norm (i.e. the ℓ2 norm of the vectorized matrix). Under
the assumption that the data collected are normally-distributed with mean proportional to
x(tk), independent with identical variance, the minimum of this nonlinear least squares loss
is also the maximum likelihood estimate of the parameter vector. While we consider only
this loss in the present chapter, the results are applicable generally to any computationally
tractable loss function.

5.3 Constrained Parameter Mapping

In order to incorporate prior information about the spatial distribution of metabolic rates
and exploit spatial correlations within the data, we constrain the maps to have a desired
structure through regularization. This results in an optimization problem in Lagrangian
form

minimize
∑

i∈V
ℓ(θi|Yi) + λr(θ) (5.4)

where θ = (θi)i∈V denotes the map of parameters across all voxels, r is a regularization
term, and λ denotes a Lagrange multiplier that can be tuned in order to achieve the desired
regularization strength. The choice of an appropriate regularizer depends on the desired
features of the parameter map. Common choices include Tikhonov (ℓ2) regularization, ℓ1
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regularization, and total variation regularization. We briefly summarize these three methods
below.

Tikhonov regularization, or ℓ2 regularization penalizes the size of the parameters θi. It
involves adding a quadratic penalty term

r(θ) = ‖θ‖22

where ‖ · ‖2 denotes the ordinary Euclidean norm. For linear regression problems with
orthogonal covariates, this regularization leads to uniform shrinkage of the estimates [48]. For
the nonlinear parameter mapping problems we consider here, using Tikhonov regularization
helps to suppress large parameter values in the unperfused “background” region.

ℓ1 regularization is another shrinkage method that penalizes parameters based on their
ℓ1 norm

r(θ) = ‖θ‖1.
This method induces sparsity in the resulting parameter maps, and hence also helps to
suppress parameter values in the background region. It is closely-related to basis pursuit
denoising [23] and lasso regression [103].

Total variation (TV) regularization is another method commonly used for image denoising
[91]. The regularization term in this case is given by

r(θ) = ‖∇θ‖1 :=
∑

(i,j)∈N
‖θi − θj‖1

where ∇ denotes a discrete differencing operator and N denotes the set of all neighbouring
voxels. TV regularization is known to preserve edges and large-scale structure in images
while rejecting noise [100], resulting in natural-looking reconstructed images.

5.4 Iterative Algorithms for Constrained Parameter

Mapping

A naive algorithm for solving this optimization problem by directly optimizing the objective
function (5.4) would be inefficient because it involves solving a joint optimization over all
{θi : i ∈ V}. Thus the computation time required to directly solve the optimization problem
increases dramatically with matrix size, making naive approaches inefficient even for the
images of moderate resolution considered here. To solve the optimization problem more
efficiently, we can take advantage of the particular structure of the problem using the ADMM
algorithm.

The alternating direction method of multipliers (ADMM) is an iterative optimization
algorithm that is well-suited to efficiently solving such problems that can be decomposed
into a sum of two terms [17]. In contrast with other distributed optimization algorithms, the
ADMM algorithm is particularly well-suited to the problem formulated in this chapter as it
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splits the required optimization into the sum of a set of loss functions ℓ that are complex
to optimize, but can be optimized independently for each voxel, and a regularization r that
is relatively simple but high-dimensional as it couples a large number of neighboring voxels.
By exploiting this decomposition, ADMM allows the optimization problem to be solved
efficiently. The general problem that ADMM attempts to solve is an optimization problem
of the form

minimize f(x) + g(z)

subject to Ax+Bz = c.
(5.5)

The algorithm does so by iteratively applying the updates

xk+1 = argmin
x

(

f(x) +
ρ

2
‖Ax− Bzk − c+ uk‖22

)

zk+1 = argmin
z

(

g(z) +
ρ

2
‖Axk+1 − Bz − c+ uk‖22

)

uk+1 = uk + Axk+1 +Bzk+1 − c.

Under the assumption that f and g are closed, proper, convex functions and that the La-
grangian

L(x, z, λ) = f(x) + g(z) + λT (Ax+Bz − c)

has a saddle point, it can be shown [17] that the residuals rk = Axk + Bzk − c converge to
zero and the values f(xk) + g(zk) converge to the optimal value of the problem (5.5).

ADMM for iterative parameter mapping

To solve (5.4) we transform the problem to a form amenable to the ADMM algorithm by
introducing a new variable z = θ and solving

minimize
∑

i∈V
−ℓ(θi|yi) + λr(z)

subject to θ − z = 0.

(5.6)

The ADMM iteration is then given as

θk+1 = argmin
θ

∑

i∈V
−ℓ(θi|yi) +

ρ

2
‖θ − zk + uk‖22

zk+1 = argmin
z

λr(z) +
ρ

2
‖θk+1 − z + uk‖22

uk+1 = uk + θk+1 − zk+1.
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This method is sometimes known as Douglas-Rachford splitting [104]. Note that the θ update
is additively separable. Introducing the proximity operator

prox
f

(x) = argmin
u

f(u) +
1

2
‖u− x‖22

we can re-write this iteration as

θk+1
i = prox

− 1

ρ
ℓ(·|yi)

(zki − uki ) i ∈ V

zk+1 = prox
λ
ρ
r

(θk+1 + uk)

uk+1 = uk + θk+1 − zk+1.

Here, the θi updates can be performed independently for each i ∈ V , significantly decreasing
time and memory required for computation and allowing the parallelization of this step.

Note that for the particular choice of loss function given in Section 5.3, ℓ(·|Yi) are non-
convex functions and thus the formal convergence guarantees do not apply. Despite this fact,
we have seen in all the experimental instances of the problem we have considered that the
algorithm converges to a sensible optimum robustly for a variety of initializations.

Hybrid ℓ2 regularization

As a particular technical detail that helps to simplify the implementation of the algorithm,
we consider the case when the regularization term can be expressed as a positive combination
of a Tikhonov term and another term:

λr(θ) = λ1r1(θ) + λ2‖θ‖22.

In this special case, the z update step can be simplified considerably. Indeed, we can express
the z update as

zk+1 = argmin
z

λ1r1(z) + λ2‖z‖22 +
ρ

2
‖θk+1 − z + uk‖22

= argmin
z

λ1r1(z) + λ2z
T z +

ρ

2
zT z − ρ(θk+1 + uk)T z +

ρ

2
(θk+1 + uk)T (θk+1 + uk)

= argmin
z

λ1r1(z) +
(

λ2 +
ρ

2

)

zT z − ρ(θk+1 + uk)T z

= argmin
z

λ1r1(z) +
(

λ2 +
ρ

2

)

‖z − b‖22

where

b =
1

2

ρ
(

λ2 +
ρ
2

)(θk+1 + uk) =
1

1 + 2λ2
ρ

(θk+1 + uk).
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Thus the z update can be written in terms of the proximity operator of r1 as

zk+1 = prox
λ1

λ2+
ρ
2

r1

(b) = prox
λ1

λ2+
ρ
2

r1

(

1

1 + 2λ2
ρ

(θk+1 + uk)

)

. (5.7)

5.5 Simulated Results and Discussion

To demonstrate the effectiveness of this method, we perform a sequence of experiments on
simulated data. We begin with an experiment using a simple numerical phantom designed
to test the robustness of metabolic parameter mapping methods to differences in perfusion,
as well as their ability to reliably resolve large and small features.

A numerical phantom

In order to compare parameter mapping algorithms, we introduce a 3D parameter phantom
that describes the simple spatial distribution of perfusion rates kTRANS and metabolism rates
kPL. This phantom is defined on the three-dimensional spatial interval [−1, 1] × [−1, 1] ×
[−1, 1]. The kTRANS map consists of two adjacent rectangular cuboids. The cuboid that
defines the low perfusion region with kTRANS = 0.02 is centered at (x0, y0, z0) = (0.4, 0.0, 0.0)
and has side lengths (Lx, Ly, Lz) = (0.8, 1.6, 1.6). The cuboid that defines the high perfusion
region with kTRANS = 0.05 is centered at (x0, y0, z0) = (−0.4, 0.0, 0.0) and also has side
lengths (Lx, Ly, Lz) = (0.8, 1.6, 1.6). The kPL map is made up of four large spherical features
nested with four smaller spherical features. Centers (x0, y0, z0), radii R and kPL values for
these spheres are given in Table 5.1.

Table 5.1: Geometric parameters defining the numerical metabolic phantom. x0, y0, and z0
define the center of the sphere, R defines the sphere radius and kLP defines the metabolic
rate in the sphere’s interior.

R x0 y0 z0 kPL
0.35 0.45 0.45 0.00 0.01
0.35 -0.45 0.45 0.00 0.01
0.35 0.45 -0.45 0.00 0.03
0.35 -0.45 -0.45 0.00 0.03
0.10 0.45 0.45 0.00 0.03
0.10 -0.45 0.45 0.00 0.03
0.10 0.45 -0.45 0.00 0.01
0.10 -0.45 -0.45 0.00 0.01

When discretizing this phantom at a particular resolution, parameters θi are chosen
based on the value of each phantom at the center of each voxel. Thus partial voluming is
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not considered in the current experiments. A central slice through z = 0 is shown in Figure
5.1 for 256× 256× 256 and 16× 16× 16 matrix sizes.

(a) kTRANS map at 256× 256× 256 (b) kPL map at 256× 256× 256

(c) kTRANS map at 16× 16× 16 (d) kPL map at 16× 16× 16

Figure 5.1: Slice through z = 0 of the 3D dynamic phantom at varying resolutions.

Reconstruction at a variety of noise levels

To generate simulated data for validating our algorithm, we simulate trajectories for each
voxel of the 16 × 16 × 16 dynamic phantom described in the previous section according to
the model (5.1) with arterial input u(t) = kTRANSA0(t−t0)γe(−(t−t0)/β added to the pyruvate
compartment, and states scaled by cos(αP/L(k)) and measured outputs scaled by sin(αP/L(k))
each time that simulated data are collected, where αP/L(k) is a spectrally-selective flip angle
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applied to spins in the P or L compartment during acquisition k. An optimized dynamic flip
angle sequence based on the method of [106] is used for the simulation, and shown in Figure
5.2. This same flip angle sequence is also used for a majority of the in vivo experiments.
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Figure 5.2: Dynamic flip angle sequence used for experimental validation

We then add independent, identically-distributed (iid) Gaussian noise at a variety of SNR
levels, measured based on the SNR in the lactate channel corresponding to the peak lactate
level. Simulated time series and image data are shown in Figure 5.3.

For SNR levels of 8, 4, 2, and 1, we fit the model (5.2) to the data using the loss function
(5.3) and the regularization r(θ) = λ1‖∇θ‖1+λ2‖θ‖22 with λ1 =1e06 and λ2 =1e08 using the
hybrid ADMM z update described in Equation (5.7). The values of λ1 and λ2 are selected
such that the total absolute error is minimized (see Section 5.5). Before fitting, the simulated
data are scaled by 1/ sin(αP/L(k)) to counteract the effect of the time-varying flip angle
sequence. In Figure 5.4 we compare the results of this constrained fit against two competing
methods: independent voxel-wise fit (equivalent to our method with λ1 = λ2 = 0) and
independent voxel-wise fit followed by total variation denoising of the resulting parameter
map. We see that the constrained reconstruction allows accurate parameter maps to be
generated in high noise regimes where the competing methods have difficulty.

Quantitative Improvements

In addition to the qualitative benefits of spatial regularization demonstrated in the previous
section, regularization can also lead to quantitative improvements in the estimates of dynamic
parameters. In simulation experiments where we have access to the ground truth values of
the model parameters, we can quantify the improvement in estimates θ̂ of θ via the total
absolute error

‖θ̂ − θ‖1 =
∑

i∈V
|k̂PLi

− kPLi
|.

In Figure 5.5 we plot the total absolute error for various values of the regularization
parameters λ1 and λ2. This experiment was performed using the 16× 16× 16 phantom from
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(a) Sample time series data from a high
kTRANS , high kPL voxel

(b) Pyruvate image slice through z = 0 (c) Lactate image slice through z = 0

Figure 5.3: Simulated data generated at a maximum lactate SNR level of 2.

Figure 5.1 with a maximum lactate SNR value of 2.0. We see that small values of λ1 and λ2
lead to larger quantitative errors in the parameter maps than the optimized values λ1 =1e06
and λ2 =1e08 used in the previous section. Note that the optimal values will depend on a
number of factors potentially including the geometry and sparsity of the phantom, and the
noise distribution, SNR and signal amplitude in the dynamic images. Thus by appropriately
choosing λ1 and λ2, we can achieve quantitative improvements in the parameter map in
addition to the qualitative improvements we have already demonstrated.
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SNR = 8 SNR = 4 SNR =1

Maximum lactate SNR

Voxel-wise 

parameter map

Spatially-constrained

parameter map

SNR = 2

Figure 5.4: Results of simulated kPL mapping experiment
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Figure 5.5: Total absolute estimation error for kPL for various values of the regularization
parameters λ1 and λ2.
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5.6 In Vivo Results and Discussion

We now move on to experiments on a number of datasets collected in vivo. In contrast to
the simulation experiments, we no longer have access to ground truth values of the model
parameters to make quantitative comparisons. However, we will use the in vivo experi-
ments to demonstrate that the spatially-constrained parameter mapping technique leads to
qualitative improvements in the parameter maps.

We begin with an experiment in healthy rats where we can collect high SNR data. For
these data, we add artificial noise to demonstrate how the spatially-constrained parameter
mapping technique can be used to allow reconstruction in low SNR regimes, for realistic
anatomies. We then apply this technique to the analysis of a number of low SNR clin-
ical datasets collected in prostate cancer patients. These experiments demonstrate that
spatio-temporally constrained kinetic modelling can be used to generate improved metabolic
parameter maps from low SNR experimental data.

High SNR rat kidney data analysis

We begin by analyzing a metabolic dataset acquired in healthy Sprague-Dawley rats on a
3T MRI scanner (MR750, GE Healthcare). 2.5mL of 80mM hyperpolarized [1-13C]pyruvate
was injected over 15s, and data acquisition coincided with the start of injection. Metabolites
from a single slice were individually excited with a singleband spectral-spatial RF pulse and
encoded with a single-shot EPI readout, an in-plane resolution of 3 x 3mm, a 15mm slice
thickness centered on the kidneys, and a 2s sampling interval. The resulting dynamic image
sequences, are relatively high SNR with Rician noise resulting from magnitude images, are
shown in Figure 5.6.

In Figure 5.7 we compare a spatially constrained fit of the data against an independent
voxel-wise fit. The voxel-wise fit is masked to only show kPL fit in the highly perfused
regions where the total area under the pyruvate curve (AUC) is greater than 2e04. We see
that the constrained fit leads to more smoothly-varying maps. Additionally, the Tikhonov
regularization helps alleviate problems with artificially high kPL estimates in the background
region and tissues with low perfusion, a common problem with kPL mapping from Rician-
distributed data. This leads to more realistic kPL values in the intestinal tissue proximal to
the kidneys without significantly affecting the kPL estimates in the kidney voxels, and also
removes the need to mask the images to the high perfusion region.

To investigate the robustness of this technique to noise, we perform a sequence of experi-
ments in which artificial iid Gaussian noise of varying strengths is added to the in vivo data
before fitting kPL. This allows us to replicate the results of Figure 5.4 with more realistic
anatomy. We see that qualitatively, the spatially-constrained fit is more robust to strong
noise than the independent fit.
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(a) Sample time series data from high lactate
SNR voxel

(b) Pyruvate image at time t = 50s (c) Lactate image at time t = 50s

Figure 5.6: Dynamic metabolite images collected in the healthy rat experiment.

Human prostate cancer data analysis

To validate this technique on clinically-relevant data, we have analyzed three prostate cancer
datasets collected during clinical experiments at UCSF. Imaging was performed using a 3T
GE scanner using a abdominal clamshell 13C transmission coil and an endo-rectal receive
coil. The injected solution consisted of 220-260 mM [1-13C]-pyruvate at a dose of 0.43
mL/kg. Dissolution DNP was performed using a 5T SpinLab polarizer (GE Healthcare).
Before injection the electron paramagnetic agent OX063 (GE Healthcare) is filtered out,
and automated pH, temperature, polarization, volume and EPA concentration tests were
performed.

Images were encoded using two techniques. One set of images labeled “EPI” were col-
lected using a spectrally-selective excitation with an echo-planar (EPI) readout [40]. Two
sets of images labelled “EPSI” were collected using a blipped EPSI acquisition with a com-
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(a) Independent voxel-wise fit masked to re-
gion with pyruvate AUC > 2e04.

(b) Independent voxel-wise fit without mask-
ing exhibits high kPL values in the back-
ground region.

(c) Spatially-constrained fit with λ1 = 1e07
and λ2 = 1e10.

(d) Scatterplot of constrained and uncon-
strained kPL fits.

Figure 5.7: Comparison of unconstrained and constrained kPL maps fit to the healthy rat
dataset.

pressed sensing reconstruction [55].
Raw space/time/chemical data reconstructed from the EPI acquisition are shown in

Figure 5.9. The raw data are rather noisy and also difficult to interpret for metabolic
activity due to 3D spatial, temporal and chemical dimensions.

We fit 3D kPL parameter maps to the data using the constrained reconstruction method.
Regularization strengths λ1 and λ2 are selected manually based on the qualitative appear-
ance of the parameter maps. Due to the quick parameter map estimation enabled by the
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SNR = 8 SNR = 4 SNR = 2 SNR = 1

Voxel-wise

parameter map

Spatially-constrained

parameter map

Figure 5.8: Comparison of kPL maps at various artificial noise levels.

(a) Time series data at pyruvate and lactate
frequencies corresponding to the voxel indi-
cated in red.

(b) Lactate data from 8 of the 16 slices at
the time of the final acquisition t=42 seconds
from the start of injection.

Figure 5.9: Sample of raw EPI data collected in a prostate cancer patient.

parallelized ADMM iteration, it is possible to perform this exploration relatively efficiently.
The results are shown in Figures 5.10, 5.11 and 5.12. Additionally, in Figure 5.13 we compare
the resulting parameter maps for a variety of values for the regularization parameters λ1 and
λ2. We see that with an appropriate choice of regularization, we can recover qualitatively
satisfying parameter maps for a variety of datasets. Note that the regularization parame-
ters differ significantly between the EPI and EPSI acquisitions due mainly to the different
amplitudes of the raw dynamic image data.

Additionally, in Figure 5.14 we compare unconstrained and constrained fits on the sin-
gle dataset from the EPI acquisition. The fits are overlaid on 1H images of the anatomy
using SIVIC [26]. The unconstrained fit is masked to prostate-adjacent voxel due to non-
identifiability in the background region, whereas this in not necessary for the constrained
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fit. Note that the strong regularization leads to significant quantitative shrinkage of the kPL
estimates. However, it improves the qualitative indication of the highly metabolically-active
region. Elevated kPL in the prostate base is consistent with biopsy proven Gleason 3+4
cancer.

Figure 5.10: Spatially-constrained kPL maps computed with λ1 = 5e04 and λ2 = 1e09 from
the 3D EPI human prostate cancer dataset. Each image corresponds to one slice through
the prostate.

5.7 Conclusion

We have demonstrated that constrained reconstruction of parameter maps via spatial reg-
ularization improves the qualitative performance of model-based parameter mapping. We
have shown this first in simulated experiments where we can also demonstrate quantitative
improvements in the parameter estimates. The results of the in vivo studies echo the qual-
itative benefits of constraining parameter maps through regularization, and validate that
the ADMM-based algorithm we have developed enables efficient reconstruction of parameter
maps for problems of practical interest by exploiting the objective function’s structure.

Looking forward, the ability to exploit spatial and temporal correlations in the data for
denoising could potentially help to overcome problems with low SNR in hyperpolarized 13C
MRI, enabling the reconstruction of higher resolution images. Also, developing methods to
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Figure 5.11: Spatially-constrained kPL maps computed with λ1 = 1e18 and λ2 = 1e20 from
the 3D EPSI human prostate cancer dataset pc9154.

choose the regularization strength hyperparameters systematically may help to improve the
quantitative bias seen in some of the in vivo experiments. In particular, methods based on
Shure’s unbiased risk estimate used for selecting hyperparameters in total variation denoising
applications [98] can likely be adapted to this context.
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Figure 5.12: Spatially-constrained kPL maps computed with λ1 = 2e17 and λ2 = 1e14 from
the 3D EPSI human prostate cancer dataset pc9375.
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Figure 5.13: Constrained fits with different regularization strengths compared on the 3D
EPI human prostate cancer dataset.
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(a) Unconstrained fit (λ1 = λ2 = 0) masked
to prostate region

(b) Spatially-constrained fit with λ1 = 3e06
and λ2 = 3e09.

Figure 5.14: Comparison of unconstrained and constrained kPL maps fit to the EPI data
overlaid on prostate anatomy.
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