
ar
X

iv
:2

21
1.

02
51

7v
1 

 [
qu

an
t-

ph
] 

 4
 N

ov
 2

02
2

Optimal control for state preparation in two-qubit

open quantum systems driven by coherent and

incoherent controls via GRAPE approach

Vadim N. Petruhanov1,2,* and Alexander N. Pechen1,2,**

1Department of Mathematical Methods for Quantum Technologies,
Steklov Mathematical Institute of Russian Academy of Sciences,

8 Gubkina str., Moscow, 119991, Russia,
2National University of Science and Technology “MISiS”,

6 Leninskiy prospekt, Moscow, 119991, Russia;
*vadim.petrukhanov@gmail.com, mathnet.ru/eng/person176798

**apechen@gmail.com, mathnet.ru/eng/person17991

Dedicated to the 75th anniversary of
the birth of Igor Vasyl’evich Volovich

Abstract

In this work, we consider a model of two qubits driven by coherent and incoher-
ent time-dependent controls. The dynamics of the system is governed by a Gorini–
Kossakowski–Sudarshan–Lindblad master equation, where coherent control enters into
the Hamiltonian and incoherent control enters into both the Hamiltonian (via Lamb
shift) and the dissipative superoperator. We consider two physically different classes of
interaction with coherent control and study the optimal control problem of state prepa-
ration formulated as minimization of the Hilbert–Schmidt distance’s square between
the final density matrix and a given target density matrix at some fixed target time.
Taking into account that incoherent control by its physical meaning is a non-negative
function of time, we derive an analytical expression for the gradient of the objective
and develop optimization approaches based on adaptation for this problem of GRadient
Ascent Pulse Engineering (GRAPE). We study evolution of the von Neumann entropy,
purity, and one-qubit reduced density matrices under optimized controls and observe a
significantly different behavior of GRAPE optimization for the two classes of interaction
with coherent control in the Hamiltonian.

Keywords: open quantum system; two qubits; quantum control; coherent control;
incoherent control; GRAPE.

1 Introduction

Quantum control which aims to manipulate individual quantum systems is an important
tool necessary for development of modern quantum technologies [1, 2]. In real experimental
applications, controlled quantum systems are typically open, that is, interacting with their
environment. This interaction with the environment is often considered as an obstacle for
controlling the system. However, the environment can also be used to actively control
quantum systems via its temperature, pressure, or more generally, non-equilibrium spectral
density.
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For open quantum systems, in the works [3, 4, 5], a general approach based on gradient
optimization over complex Stiefel manifolds for quantum control and quantum technolo-
gies was developed. General case of arbitrary N -level quantum systems was considered,
for which not only general framework of optimization over complex Stiefel manifolds was
introduced, but also explicit analytical expressions for the gradient and Hessian of quantum
control objectives for various quantum control problems were computed, the corresponding
optimization techniques were developed, and various examples were studied, including with
constraints.

The dynamical method of incoherent control via dissipation induced by an engineered
environment with time-dependent decoherence rates was proposed in [6]. This method ex-
ploits density of particles of the environment nω,α(t) in their momenta k (or energy which
for incoherent photons is ~ω = ~c|k|, where c is the speed of light and ~ is the Planck

constant, or for massive particles of mass m is ω = |k|2

2m ) and internal degrees of freedom
α, to induce time-dependent decoherence rates γi(t) and drive the system density matrix
towards a desired target state. Natural examples of such environment are the environment
formed by incoherent photons and control through collisional decoherence; both approaches
were studied in [6]. A particular case is control by temperature and pressure but generally
the environment in this approach can be non-thermal and non-equilibrium and even time
dependent. For incoherent photons, it is possible to realize various non-equilibrium dis-
tribution functions nω,α(t) (for photons ω is frequency and α is polarization). Incoherent
control via decoherence and engineered dissipation used as a resource was studied in vari-
ous contexts, e.g., for superabsorption of light via quantum engineering [7], optimal control
for non-Markovian open quantum systems [8] and Markovian dynamics [9], control of dis-
sipation in cavity QED [10], manipulation of states of a degenerate three-level quantum
system [11], incoherent control in a Bose-Hubbard dimer [12], photoionization of atoms
under noise [13], generating quantum coherence through an autonomous thermodynamic
machine [14], incoherent control of optical signals via quantum heat-engine approach [15],
optimization of up-conversion hues in phosphor [16], Landau-Zener transitions [17], etc. In
this work, we study coherent and incoherent control of two-qubit quantum systems based
on the type of master equations derived in the weak coupling limit by E.B. Davies [18] and
in the stochastic limit by L. Accardi, Y.G. Lu and I.V. Volovich [19]. Master equations
beyond secular approximation are also considered [20].

In [21], it was found that incoherent control by photons, when combined with coherent
control by lasers, allows to approximately steer any initial density matrices, pure or mixed,
of a generic N -level quantum system to a vicinity of any predefined pure or mixed target
density matrix thereby to approximately, with some physical precision, realize complete
density matrix controllability — the strongest degree of quantum state control — of almost
all (i.e., generic) quantum systems of arbitrary dimension. Important is that this result was
obtained within physical class of master equations well known in quantum optics and that
optimal incoherent control was found analytically. The control scheme is also independent
of the initial state — it allows to steer simultaneously all initial states into the same target
state. Thereby this scheme realizes universally optimal Kraus maps [22].

Under coherent and incoherent controls in the Gorini–Kossakowsky–Sudarchhan–Lindblad
(GKSL) master equation, the exact degree of precision has been obtained recently only for
a qubit [23]. Using geometric control theory, in this work it was found that most states
in the Bloch ball can be obtained exactly except of points representing density matrices in
two regions of the size δ ≈ γ/ω, where γ is the decoherence rate and ω is the transition
frequency of the qubit. Moreover, the size of these regions was shown to be exactly in the
range

1

2

(

1 +
γ2

ω2

)−1/2
≤ δ ≤ π

4

γ

ω
.
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Various numerical optimization schemes are used for quantum control including Pon-
tryagin maximum principle [24], steepest descent [25], Krotov method [26, 27, 28], Zhu–
Rabitz [29], Maday–Turinici [30], GRadient Ascent Pulse Engineering (GRAPE) method [31,
32, 27, 33], genetic evolutionary algorithms [34, 6], speed gradient [35, 36], Chopped Random-
Basis (CRAB) [37], Hessian based optimization [38], etc. Uncomputability of discrete quan-
tum control was shown via establishing a relation with Diophantine equations and tenth
Hilbert problem [39]. Numerical optimization schemes for a qubit driven by coherent and
incoherent controls were studied in [40, 41, 42, 43, 44, 45] for various objective criteria, for
studying reachable and controllability sets, and for exploiting machine learning.

While dynamics and coherent control of two qubits have been studied in a variety of
works [46, 47, 48, 49], simultaneous coherent and incoherent control for the two-qubit case
remains mostly uninvestigated. Global search genetic evolutionary algorithm was used for
optimization of time-independent incoherent control in such systems driven by a GKSL
master equation in [6]. The recent article [50] considers a two-qubit system with time-
dependent coherent control and time-independent incoherent control.

In this article, control of a two-qubit system is studied when both coherent and inco-
herent controls are modeled, in general, as variable in time piecewise continuous functions.
For a fixed final time T , we consider the problem of state preparation formulated as min-
imization of the Hilbert–Schmidt distance ‖ρ(T ) − ρtarget‖ between the quantum system’s
final state, ρ(T ), which is found via solving the GKSL master equation, and a given target
density state ρtarget. For convenience, we consider the problem of minimizing the distance’s
square, i.e. ‖ρ(T ) − ρtarget‖2. Under sufficient control resources (i.e., final time, possible
additional constraints to controls’ amplitudes, etc.), this problem describes steering a state
of the system to the target state.

For this optimal control problem, we derive the following optimization technique taking
into account that incoherent control by its physical meaning is always constrained — it is a
non-negative function of time. Using piecewise constant controls, we introduce a change of
variables and reduce the infinite-dimensional optimization problem to unconstrained finite-
dimensional optimization, analytically compute gradient of the objective function and use
it to adopt GRAPE, which is well known in NMR pulse sequence design, for numerical
optimizing of coherent and incoherent controls. Here gradient of the objective function is
derived analytically (for analogy see [33, subsections 5.2, 5.3]) via operations with matrix
exponentials.

The structure of this paper is the following. In Sec. 2, the model of the two-qubit
control system with the objective functional is formulated and standard definitions of other
considered quantities such as von Neumann entropy, etc. are provided. Sec. 3 describes the
adaptation of GRAPE to the problem of optimizing controls for minimizing the Hilbert–
Schmidt distance’s square, when piecewise constant controls are considered, and contains
the corresponding numerical results for steering either mixed separable or Bell entangled
state into a target mixed separable state. Conclusions section summarizes the paper.

2 Control System, Objective Functional, and Relevant Quan-

tities

Consider a pair of qubits (i.e., two-level quantum systems) interacting with the environment.
Hilbert space of each qubit is Hi = C

2, i = 1, 2. Density matrix of the system ρ is a 4× 4
positive semi-definite matrix with complex elements and with unit trace, i.e. ρ ∈ C

4×4,
ρ ≥ 0, and Trρ = 1.
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Following [6, 50], consider the GKSL master equation

dρ(t)

dt
= −i

[

HS + εHeff ,n(t) + Vu(t), ρ(t)
]

+ εLn(t)(ρ(t)), ρ(t = 0) = ρ0. (1)

Here HS is the free Hamiltonian for the two qubits, Heff ,n(t) is the two-qubit effective
Hamiltonian (Lamb shift), which depends on the incoherent control n = (nω1

, nω2
), which, in

general, is considered as a pair piecewise continuous functions, and interaction Hamiltonian
Vu(t) = V u(t) depends on real valued coherent control u, which, in general, is considered as
piecewise continuous function (physically, e.g., shaped laser field). Here V is the operator
describing the interaction between the system and the coherent field, Ln(t)(ρ(t)) is the
superoperator of dissipation which depends on n, the parameter ε > 0 describes strength
of the coupling between the system and its environment, ρ0 is a given initial density matrix
corresponding to some pure or mixed quantum state. The notation [A,B] = AB − BA
denotes commutator of operators A and B. In this article, we consider the rational system
of units where the reduced Planck’s constant ~ and the speed of light c are equal to 1.

We consider the situation when the qubits have sufficiently different frequencies and
can be addressed independently by incoherent control. Free Hamiltonian HS and effective
Hamiltonian Heff are the following:

HS = HS,1 +HS,2 =
ω1

2
(σz ⊗ I2) +

ω2

2
(I2 ⊗ σz) , (2)

Heff,n(t) = Heff,n(t),1 +Heff,n(t),2 = Λ1nω1
(t) (σz ⊗ I2) + Λ2nω2

(t) (I2 ⊗ σz) , (3)

where σz =

(

1 0
0 −1

)

is Z Pauli matrix; I2 is the 2× 2 identity matrix; tensor products are

σz ⊗ I2 =

(

I2 02
02 −I2

)

and I2 ⊗ σz =

(

σz 02
02 σz

)

; 02 means the 2× 2 zero matrix. Incoherent

controls n1(t) ≡ nω1
(t) and n2(t) ≡ nω2

(t) are arbitrary functions of time defined on the
interval t ∈ [0, T ], they represent density of particles of the environment at frequencies ω1

and ω2 and can be controlled independently. Because incoherent control by its physical
meaning is a density of particles, it is a non-negative function of time and we have the
constraints

n1(t) ≥ 0, n2(t) ≥ 0 for all t ∈ [0, T ]. (4)

The interaction operator Vu(t) = V u(t) is defined, in general, with some arbitrary Her-
mitian matrix V and, in particular, as in [50], we consider the following two types:

V = V1 := σx ⊗ I2 + I2 ⊗ σx =

(

02 I2

I2 02

)

+

(

σx 02
02 σx

)

=

(

σx I2

I2 σx

)

, (5)

V = V2 := σx ⊗ σx =

(

02 σx

σx 02

)

, (6)

where σx =

(

0 1
1 0

)

is X Pauli matrix. The difference between these two interactions V

is that in the case of (5) the same coherent control u addresses each qubit independently,
while in the case of (6) the control u acts to couple the qubits.

The superoperator of dissipation acts on the density matrix as

Ln(t)(ρ(t)) = Ln(t),1(ρ(t)) + Ln(t),2(ρ(t)), (7)

Ln(t),j(ρ(t)) = Ωj(nωj
(t) + 1)

(

2σ−j ρσ
+
j − σ+j σ

−
j ρ− ρσ+j σ

−
j

)

+

+Ωjnωj
(t)

(

2σ+j ρσ
−
j − σ−j σ

+
j ρ− ρσ−j σ

+
j

)

, j = 1, 2, (8)
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where Λj > 0 and Ωj > 0 are some constants and matrices σ±j are

σ±1 = σ± ⊗ I2, σ±2 = I2 ⊗ σ± with σ+ =

(

0 0
1 0

)

, σ− =

(

0 1
0 0

)

. (9)

There are various approaches for representation of density matrices, e.g., ordinary Bloch
parametrization for density matrices of a two-level quantum system (e.g., [51]), generalized
Bloch vector (e.g., [52]), probability representation [53], etc. Bloch parameterization in
general case of N -level system is parameterization in some traceless Hermitian N×N matrix
basis, e.g. in the basis of generalised Gell-Mann matrices [54]. Probability representation is a
recent approach which involves constructing a map from quantum state (density operator)
to specific classical probability distribution. We use linear parametrization which in our
approach might be natural for computing gradient of the objective and for the subsequent
use of optimization tools. Use of direct matrix representation might be convenient, as was
done with genetic algorithm in [6].

Following [50], the computational approach reduces the system (1) including (2), (3), (7),
(8), and (9) with interaction operator V defined either by (5) or by (6) to the corresponding
form in terms of real states by considering real and imaginary parts of the matrix elements
of density matrix ρ. Taking into account the Hermiticity of the density matrix, denote

ρ =









ρ1,1 ρ1,2 ρ1,3 ρ1,4
ρ∗1,2 ρ2,2 ρ2,3 ρ2,4
ρ∗1,3 ρ∗2,3 ρ3,3 ρ3,4
ρ∗1,4 ρ∗2,4 ρ∗3,4 ρ4,4









=









x1 x2 + ix3 x4 + ix5 x6 + ix7
x2 − ix3 x8 x9 + ix10 x11 + ix12
x4 − ix5 x9 − ix10 x13 x14 + ix15
x6 − ix7 x11 − ix12 x14 − ix15 x16









, (10)

where xj ∈ R, j = 1, 2, . . . , 16. Used in the definition of density matrix condition Trρ = 1
implies linear constraint

x1 + x8 + x13 + x16 = 1. (11)

For the two types of V , we have two different dynamical systems written in [50] with
16-dimensional real-valued state x. Both these systems belong to the following general class
of bilinear homogeneous systems:

dx

dt
= (A+Buu+Bn1

n1 +Bn2
n2) x, x(0) = x0, (12)

where the 16× 16 matrices A, Bu, Bn1
, Bn2

are found after substituting the parameteriza-
tion (10) in the GKSL equation (1); x0 is found from a given ρ0.

For both types of V , the explicit forms for all the 16 differential equations and the cor-
responding initial conditions in (12) were obtained in [50]. For brevity, we do not reproduce
here these 32 differential equations and the corresponding 16× 16 matrices.

We denote the full control c = (u, n1, n2) and consider the following objective functional
to be minimized for a given target density matrix ρtarget and a given final time T — it
describes the problem of obtaining ρ(T ) being as close as possible to ρtarget in the Hilbert–
Schmidt distance:

Jdist.(c) = Fdist.(ρ(T ); ρtarget) := ‖ρ(T )− ρtarget‖2 → inf . (13)

In terms of the parameterization (10), the problem (13) is reformulated as the follow-
ing [50]:

Jdist.(c) = Fdist.(x(T );xtarget) := 〈x(T ), Zx(T )〉 + 〈b, x(T )〉+ d→ inf, (14)
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where Z = diag(β), b = −2β ⊙ xtarget, d = 〈β ⊙ xtarget, xtarget〉, β = (1, 2, 2, 2, 2, 2, 2, 1,
2, 2, 2, 2, 1, 2, 2, 1), and “⊙” denotes the Hadamard product. Thus, the terminal function
Fdist.(x;xtarget) is linear-quadratic and convex. Here βj = 1, if j ∈ {1, 8, 13, 16} that is
related to those components of x which are on the main diagonal in (10). At x = xtarget,
the function Fdist.(x, xtarget) has zero value.

The problem (13) can be used as an auxiliary problem with some T for the time-minimal
steering problem ρ0 → ρtarget (for an one-qubit case, this approach was used in [40]).

In this article, we consider variable in time coherent and incoherent controls, which, in
general, are piecewise continuous functions or, in particular, piecewise constant controls

u(t) =
N
∑

j=1

ujχ[tj−1,tj)(t), (15)

ni(t) =

N
∑

j=1

njiχ[tj−1,tj)(t), i = 1, 2 (16)

where 0 = t0 < t1 < · · · < tN = T and χ[tj−1,tj) is the characteristic function of [tj−1, tj).
When piecewise constant controls (15) and (16) are used, we combine all the variables

defining such controls u, n1, and n2 in one vector

a = (a1, a2, . . . , a3N ) :=
(

u1, u2, . . . , uN , n11, n
2
1, . . . , n

N
1 , n

1
2, n

2
2, . . . , n

N
2

)

. (17)

The objective functional Jdist.(c) then becomes the objective function:

gdist.(a) := Fdist.(ρ(T ;a); ρtarget) = Fdist.(x(T ;a);xtarget) → inf,

where ρ(·;a) and x(·;a) are the solutions, correspondingly, of the systems (1) and (12) for
piecewise constant controls corresponding to some admissible a.

In post-optimization analysis for the problem (13) with optimized control c = (u, n1, n2)
and the corresponding solution ρ of the system (1), one can study, in addition, how the
values of Fdist.(ρ(t); ρtarget) are changed when t goes from t = 0 to t = T for a given target
density matrix ρtarget. For the same problem, (13), one can also analyze the behaviour of
such quantities characterizing the two-qubit system as von Neumann entropy and purity
versus time. They are defined as functions of density matrix ρ as:

• von Neumann entropy [51]

S(ρ) = −Tr (ρ loge ρ) = −
∑

λi 6=0

λi loge λi ∈ [0, loge dimH], (18)

• purity

P (ρ) = Trρ2 = 〈ρ, ρ〉 =
∑

i,j

|ρij |2 ∈
[

1

dimH , 1

]

, (19)

where λi are eigenvalues of the density matrix ρ and dimH is the dimension of the Hilbert
space, which is four in our case. As it is known, entropy is minimal for pure states for
which it equals to zero, i.e. if ρpure = |ψ〉〈ψ| is a pure state, then S(ρpure) = 0. Maximum
value of entropy is obtained for completely mixed quantum state ρ = I/dimH and equals
Smax = loge dimH. For the considered 4-dimensional system (1) we have Smax = S(I/4) =
loge 4 ≈ 1.386. Purity is the main quantity that characterizes how close the system state

6



is to a pure state. It attains maximum value Pmax = 1 at pure states and minimum value
Pmin = 1/dimH at the completely mixed state. In terms of the vector x, purity is

P =
∑

i,j

|ρij |2 = 〈β ⊙ x, x〉,

where β is defined after Eq. (14).
For the formulated above optimization problem (13), we also study the behavior of each

qubit individually. Corresponding reduced density matrices ρi ∈ C
2×2, i = 1, 2, are defined

via partial trace as:

ρ1 = TrH2
ρ =

2
∑

k=1

(I⊗ 〈k|)ρ(I ⊗ |k〉), (20)

ρ2 = TrH1
ρ =

2
∑

k=1

(〈k| ⊗ I)ρ(|k〉 ⊗ I), (21)

where I is identity operator on Hi, |k〉 are basis vectors in Hi, and ”⊗” denotes tensor
product. Density matrix of a qubit can be bijectively mapped to the Bloch ball (ball in R

3

with radius 1) via the following parameterization:

rj = Trρσj , j ∈ {x, y, z}, σ = (σx, σy, σz),

where σj are Pauli matrices and Bloch vector r = (rx, ry, rz) satisfies |r| ≤ 1. In terms of
vector x, Bloch vectors of the first and second qubits are

r1 =
(

2(x4 + x11), −2(x5 + x12), x1 + x8 − x13 − x16
)

, (22)

r2 =
(

2(x2 + x14), −2(x3 + x15), x1 + x13 − x8 − x16
)

. (23)

The optimization problem (13) was formulated for a general quantum system in [6],
where two-qubit case with time-independent incoherent controls was also studied. One-
qubit system driven by piecewise continuous coherent and incoherent controls was studied
in more details in [40], where the problem of minimizing the Hilbert–Schmidt distance’s
square for a fixed final time was studied as an auxiliary problem for solving a control prob-
lem of steering ρ0 → ρtarget in a minimal possible time. For the same one-qubit system,
the article [42] considered also time-minimal control problem, but with piecewise constant
coherent and incoherent controls together with the requirements to satisfy the terminal con-
straint ρ(T ) = ρtarget and minimize the final time T . Such class of controls was used in [42]
for considering these parameters together with T as outputs in the regression problem for
obtaining suboptimal solutions of the time-minimal problem; here certain machine learning
techniques were used. In [44], the problem of minimizing the Hilbert–Schmidt distance
with a fixed final time was used for numerical estimation of reachable and controllability
sets of a one-qubit system in the Bloch ball. In [41], the Uhlmann–Jozsa fidelity of the final
density matrix, ρ(T ), for the one-qubit system driven by piecewise continuous coherent and
incoherent controls was studied.

3 Adopting Gradient Ascent Pulse Engineering Approach

3.1 Exact Formula for the Gradient of the Objective Function

In this section, we adopt the general idea of the GRAPE method for finding optimal shape
of control for the problem (13). As a first step, we reduce the initial problem to a finite-
dimensional optimization problem with piecewise constant control. Then we compute an

7



analytical expression for the gradient which is then used for a gradient-based numerical
optimization method; in this work we use first-order gradient descent method. The main
advantage of this approach comes from the ability to compute analytical expression for the
gradient.

In the considered optimization problem, the system (12) is driven by coherent and
incoherent controls. Therefore implementing GRAPE method faces the obstacle: incoherent
control is bounded below by zero, so in the control space we have a boundary which is
undesirable for ordinary gradient methods. Here we analyse the unconstrained case. For
that let us make a change to other control variables wi(t) with values in R that are not
constrained, via the relation

ni(t) = w2
i (t), i = 1, 2, t ∈ [0, T ].

We approximate u, n1, and n2 by piecewise constant functions (15, 16). For uncon-
strained optimization, we introduce piecewise constant wi ∈ R and define

nji = (wj
i )

2, i = 1, 2, j = 1, . . . , N. (24)

Considering v = (u,w1, w2) as control we can implement GRAPE for the optimization
problem (13). After this piecewise constant approximation, the objective functional (14)
Jdist.(c) becomes a function of 3N variables that can be optimized by finite-dimensional
optimization methods.

Evolution of the system (12) is composition of matrix exponentials:

x(T ) = e∆tNLN · · · e∆t1L1x0, (25)

where ∆tj = tj − tj−1 and Lj is the right hand side matrix of the equation (12) at the
moment t ∈ [tj−1, tj), j = 1, . . . , N :

Lj = A+Buu
j +Bn1

(wj
1)

2 +Bn2
(wj

2)
2.

Gradient of the functional (14) with respect to control v = (u,w1, w2) can be computed
via the chain rule:

δJdist.
δv

=
δFdist.

δx(T )

δx(T )

δv
. (26)

Differentiating (14) gives us
δFdist.

δx(T )
= 2Zx(T ) + b.

Thus gradient of x(T ) with respect to the control v = (u,w1, w2) remains to be found. If
the control is piecewise constant (15, 24), then partial derivatives of x(T ) (25) with respect
to vj = (uj , wj

1, w
j
2) are computed as

∂x(T )

∂vj
= e∆tNLN · · · e∆tj+1Lj+1

d

dvj
(

e∆tjLj
)

e∆tj−1Lj−1 · · · e∆t1L1x0. (27)

Since A, Bu, Bn1
, Bn2

do not commute with each other, we have to use the following special
integral formula [55] for derivative of matrix exponential:

d

dvj
e∆tjLj = ∆tj

∫ 1

0
exp(α∆tjLj)

dLj

dvj
exp((1− α)∆tjLj)dα, (28)

where
dLj

dvj
have different forms for coherent and incoherent components of v:

∂Lj

∂uj
= Bu,

∂Lj

∂wj
i

= 2wj
iBni

, i = 1, 2. (29)

Now after obtaining the exact formula (27) – (29) for gradient of the functional (14) with
respect to piecewise constant control (15, 24), gradient search can be implemented for
numerical solving of the optimization problem (13).
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3.2 Numerical Results

Here, a numerical simulation of GRAPE algorithm for the state-to-state transfer optimiza-
tion problem (13) is performed to demonstrate the abilities for using gradient search in solv-
ing problems of generating target states using coherent and incoherent controls in two-qubit
systems. For numerical simulation we consider the both types of the interaction operator
V , i.e. (5) and (6), and use the following values of the system’s parameters: ε = 0.1, ω1 = 1,
ω2 = 0.5, Λ1 = Λ2 = 0.05, and Ω1 = Ω2 = 0.05. For the state-to-state transfer problem
choice of the two parameters is important: final time T and number of partition intervals
N in (15) and (16). Changing the final time T can influence the ability of steering the
system to the target state. Generally one can expect that decreasing the final time T can
lead to smaller degree of controllability of the system. In opposite, increasing of N obvi-
ously gives more freedom for controlling the system. We consider here the final time T = 5
and regular partition of the segment [0, T ] into N = 10 time intervals ∆tj, so that each
∆tj = T/N = 0.5. For the initial and the target states we choose ρ0 = diag(0.9, 0.1, 0, 0) and
ρtarget = diag(0.2, 0.3, 0.2, 0.3), that in terms of x are x0 = (0.9, six zeros, 0.1, eight zeros)
and xtarget = (0.2, six zeros, 0.3, four zeros, 0.2, 0, 0, 0.3).

For numerical finite-dimensional optimization method we chose ordinary gradient de-
scent (similarly gradient ascent can be used for maximization). This is a first-order iterative
algorithm for finding local minimum (descent) or maximum (ascent) of differentiable func-
tion. In terms of the optimization problem (14), iterative formula for (k+1)-th step of the
algorithm can be written as follows:

v(k+1) = v(k) − hkgradvJ(v
(k)), k = 0, 1, . . . (30)

where

gradv =

(

∂

∂v1
, . . . ,

∂

∂vN

)

.

Thus gradvJ(v
(k)) is equal to (26) with v = v(k); hk are the values of the iterations steps.

In Eq. (30), the notation v means that this formula is written for each of three components
of v = (u,w1, w2).

For gradient descent method (30) we chose initial guess for the control v(0) = (u(0), w
(0)
1 , w

(0)
2 )

as u(0)
j
= cos(0.3tj) and w

(0)
1

j
= w

(0)
2

j
= exp

(

−5 (tj/T − 1/2)2
)

, j = 1, 2, . . . , N . Itera-

tions of the gradient descent stop when the following stopping criterion is satisfied:

Jdist.(ū, w̄1, w̄2) = Fdist (x(T );xtarget) < ǫ, (31)

thus we find control v̄ = (ū, w̄1, w̄2) which steer the system to the final state x(T ) that
almost equals xtarget, i.e. differs by not more than accuracy ǫ. Gradient descent over trap-
free quantum control landscapes can generally be faster than global optimization methods.
In presence of traps, global search methods would generally be more preferable. While the
structure of the landscape is not know for the considered control problem, we set a small
accuracy ǫ = 10−6. Finally, we set constant value of steps hk = h = 1.

Figure 1a shows the behaviour of Fdist.(ρ
(k)(T ); ρtarget) over the first 200 iterations for

the first type of interaction operator V = V1 (blue lines) and second type of interaction
operator V = V2 (purple line), where ρ(k)(t) is the density matrix of the system for kth
approximation (30) of control v = (u,w1, w2). Overall, it took ≈ 6600 iterations for V = V1
and ≈ 3500 iterations for V = V2 to reach the accuracy ǫ = 10−6. Comparing two different
types for the interaction operator V , it may be inferred that for the chosen parameters the
algorithm converges faster in the case V = V2. In the context of the problem of steering
a given initial state ρ0 to a specific target state ρtarget (13), this means that if this kind
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Figure 1: For Subsection 3.2. Optimal coherent u(t) (1c) and incoherent (n1(t), n2(t)) (1d)
controls for the problem of state-to-state transfer, i.e. minimizing of the functional (14)
for two types of interaction operator V = V1 (blue) and V = V2 (purple). Convergence of
Jdist.(v

(k)) = Fdist.(ρ
(k)(T ); ρtarget) to zero with iterations is shown on subplot 1a. Other

subplots show dynamics of Hilbert-Schmidt distance Fdist. (ρ(t); ρtarget) (1b), von Neumann
entropy S(ρ(t)) (1f) and purity P (ρ(t)) (1e) of the two-qubit density matrix ρ(t) of the
system evolving under optimal control shown on (1c, 1d). Dotted lines on subpots (1f) and
(1e) show, respectively, maximal value of entropy (entropy of the completely mixed state) ,
which is loge 4, and minimal value of purity (purity of the completely mixed state) , which
equals to 1/4.
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of difference remains for other parameters then the second type of interaction operator
V = V2 (6) can be more preferable.

Figures 1c and 1d show the optimal coherent u(t) and incoherent n(t) = (n1(t), n2(t))
controls for two types of the interaction operator V (5) and (6), which were found numeri-
cally with accuracy ǫ = 10−6 (31).

Figure 1b shows the dynamics of the Hilbert-Schmidt distance between ρ(t) and ρtarget,
i.e. values of the following functional depending on time t ∈ [0, T ]:

Fdist (ρ(t); ρtarget) = ‖ρ(t)− ρtarget‖2. (32)

This distance decreases with time t, starting from some value at t = 0 and tends to almost
zero at t = T , when it coincides with the value of the optimized functional (31).

Figure 1f shows evolution of the von Neumann entropy for V = V1, which is defined
by (18), of the density matrix ρ(t) evolving under the controls obtained after the optimiza-
tion. Figure 1f shows that entropy has the value of S ≈ 0.3 at t = 0, then increases with
some fluctuations with increasing time t and ends at the higher value S ≈ 1.366 at t = T
that is very close to the value of completely mixed state Smax = 1.386 (dashed line in figure
1f). This is because the system starts at the state ρ0 = diag(0.9, 0.1, 0, 0) that is close
to the pure state ρ = diag(1, 0, 0, 0) (ground state) and reaches the target state ρtarget =
diag(0.2, 0.3, 0.2, 0.3) that is close to completely mixed state ρ = diag(0.25, 0.25, 0.25, 0.25).

The main quantity that characterizes how close the system is state to pure states,
is purity defined by Eq. (19). Figure 1e shows evolution of purity P (ρ(t)) of the state
ρ(t) for the two-qubit system with first type of the interaction operator V = V1 evolving
under the controls obtained after the optimization. The system in the initial state ρ(0) =
diag(0.9, 0.1, 0, 0) at t = 0 has purity P ≈ 0.82 relatively close to maximum Pmax = 1, then
purity decreases with increasing time t and approaches the final value γ ≈ 0.26 at t = T ,
which is close to the minimal value of purity Pmin = 1/4 = 0.25 (which is shown by dashed
line in figure 1e).

Finally, figures 2a and 2b show the dynamics of the two qubits as the evolution of Bloch
vectors (22, 23) of their reduced density matrices (20, 21) under the obtained optimal
control (shown on figures 1c and 1d) for both types of interaction operator V = V1 (blue
line) and V = V2 (purple line).

The initial state ρ0 = diag(0.9, 0.1, 0, 0) and the target state ρtarget = diag(0.2, 0.3, 0.2,
0.3) are separable so that they can be represented as tensor product of reduced density
matrices ρ0 = ρ10 ⊗ ρ20 and ρtarget = ρ1target ⊗ ρ2target. The corresponding Bloch vectors of
the initial states are r10 = |0〉 = (0, 0, 1) (ground state) and r20 = (0, 0, 0.8) (green points
in figure 2a, 2b), the target states are r1target = (0, 0, 0) (completely mixed state) and
r2target = (0, 0,−0.2) (red points in figure 2a, 2b).

It can be noted that trajectories of the first and second Bloch vectors for V = V2 (purple
lines in 2a and 2b) are straight, while trajectories in case V = V1 are curved. For second type
of interaction coordinates x and y are zeros on [0, T ], so figures 2c and 2d show dynamics
of z-coordinates of first and second Bloch vectors r1z(t) and r

2
z(t). This behavior of x- and

y-coordinates of Bloch vectors in case V = V2 can be explained as follows. Consider vector
x̃ combining certain components of vector x which correspond to some of the non-diagonal
elements of density matrix ρ (10):

x̃ = (x2, x3, x4, x5, x11, x12, x14, x15).

It turns out that they evolve independently on other components of vector x, i.e.

dx̃

dt
= Ãx̃,
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Figure 2: Evolution of the Bloch vectors of the reduced density matrices for the first (subplot
(a)) and second (subplot (b)) qubit under optimal control (Figs. 1(c) and 1(d)) for first
(blue) and second (purple) type of interaction V . The parameters are the same as on Fig. 1.
Green points show Bloch vectors of the initial states and red points show Bloch vectors of
the target states for each qubit. Subplots 2c and 2d reveal dynamics of z-coordinate of
Bloch vectors of the first (left) and second (right) qubit.

where Ã is a 8×8 matrix. If the initial state ρ0 is diagonal, then x̃(0) = 0, so that x̃(t) ≡ 0
for all t ∈ [0, T ]. Since x- and y-coordinates of Bloch vectors r1 (22 and r2 23) are linear
combinations of vector x̃ components, they also remains equals to zero if initial state is
diagonal.

As another example, we study steering the entangled Bell state |Φ〉 = (|00〉 + |11〉)/
√
2

into the separable mixed state ρtarget = diag(0.2, 0.3, 0.2, 0.3). The results are provided on
Fig 3. In this case, the subplot 3a shows that gradient search for the model with interaction
Hamiltonian V2 converges, while for the interaction V1 drastically different behaviour is
observed with significantly slower convergence and by several orders of magnitudes higher
obtained value of the objective.

Formulae associated with gradient computation in our realization were computed via
various numerical instruments (numerical methods, libraries, etc.). Almost all computations
were performed using NumPy Python library, which is very efficient in computing matrix
operations. Matrix exponentials were computed via the function scipy.linalg.expm of
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Figure 3: For Subsection 3.2. The same as on Fig. 1 but for the problem of transferring the
Bell state |Φ〉 = (|00〉+ |11〉)/

√
2 to a separable mixed state ρtarget = diag(0.2, 0.3, 0.2, 0.3).

While for the interaction Hamiltonian V2 the algorithm converges fast, highly inefficient
behaviour for the interaction Hamiltonian V1 is observed on the subplot 3a, with slow con-
vergence and higher by several orders of magnitude obtained minimal value of the Hilbert-
Schmidt distance.

SciPy library that uses Padé’s approximation. The main complexity for performed numeri-
cal simulations are related to the computation of the integral formula for matrix exponential
gradient (28). Integral of the matrix function was computed using trapezoidal formula with
error of computation equal to

ǫjint ≤
1

3N3
int

(

T

N

)3

‖Lj‖2
∥

∥

∥

∥

dLj

dvj

∥

∥

∥

∥

∥

∥

∥

∥

exp

(

T

N
Lj

)∥

∥

∥

∥

.
1

N3
int

≈ 10−4,

where Nint is the number of points that interpolate the function via trapezoidal rule. We
used Nint = 20 which ensures appropriate accuracy ǫint ≈ 10−4.

4 Conclusions

In this work, we have studied a system of two qubits driven by coherent and incoherent time-
dependent controls. Two physically different models of interaction with coherent control in
the Hamiltonian are considered. In the first model, the same coherent control drives the
qubits independently and acts as magnetic field along x axis, while in the second model
coherent control induces a joint dynamics of both qubits via controlled XX interaction. The
decoherence term is the same for both cases and corresponds to the weak coupling model
well known in theory of open quantum systems and quantum optics. Coherent control
models either laser or magnetic field, while incoherent control models spectral density of
incoherent photons. For this controlled system, the control problem of minimization of the
Hilbert–Schmidt distance’s square for the final density matrix and a given target density
matrix is considered and a gradient based optimization approache is adopted, GRadient
Ascent Pulse Engineering (GRAPE), which is applied to find close to optimal controls.
GRAPE depends on its parameters to be adjusted in simulations. For GRAPE, taking
into account that incoherent control by its physical meaning is a non-negative function
of time, we derive an analytical expression for the gradient of the objective and develop
optimization approach based on adaptation for this problem of GRAPE strategy. Gradient
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computation is then reduces to matrix multiplication without the need for solving differential
evolution equations. In the numerical simulations with GRAPE, steering either a mixed
separable or Bell entangled state into a target mixed separable state is analyzed. We studied
evolution of the von Neumann entropy, purity, reduced density matrices, and analyzed the
two physically different models of interaction with coherent control in the Hamiltonian,
for which a significantly different behavior under optimization was found. Namely, for the
second model we observe significantly faster convergence of GRAPE algorithm towards
minimum of the objective that indicates, based on the considered examples, that finding
optimal controls in the second model appears to be relatively simpler and joint controlled
XX interaction between the qubits allows for simpler finding of close to optimal controls.
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R.; Montangero, S.; Schulte-Herbrüggen, T.; Sugny, D.; Wilhelm, F.K. Quantum
optimal control in quantum technologies. Strategic report on current status, vi-
sions and goals for research in Europe. EPJ Quantum Technol., 2022, 9, 19, doi:
10.1140/epjqt/s40507-022-00138-x.

[3] Pechen, A.; Prokhorenko, D.; Wu, R.; Rabitz, H. Control landscapes for two-
level open quantum systems. J. Phys. A: Math. Theor. 2008, 41, 045205, doi:
10.1088/1751-8113/41/4/045205.

[4] Wu, R.; Pechen, A.; Rabitz, H.; Hsieh, M.; Tsou, B. Control landscapes for observ-
able preparation with open quantum systems. J. Math. Phys. 2008, 49, 022108, doi:
10.1063/1.2883738.

[5] Oza, A.; Pechen, A.; Dominy, J.; Beltrani, V.; Moore, K.; Rabitz, H. Op-
timization search effort over the control landscapes for open quantum systems
with Kraus-map evolution. J. Phys. A: Math. Theor. 2009, 42, 205305, doi:
10.1088/1751-8113/42/20/205305.

[6] Pechen, A.; Rabitz, H. Teaching the environment to control quantum systems. Phys.
Rev. A. 2006, 73 (6), 062102, doi: 10.1103/PhysRevA.73.062102.

[7] Higgins, K.D.B.; Benjamin, S.C.; Stace, T.M.; Milburn, G.J.; Lovett, B.W.; Gauger,
E.M. Superabsorption of light via quantum engineering. Nat. Commun. 2014, 5, 4705,
doi: 10.1038/ncomms5705.

[8] Hwang, B.; Goan, H.-S. Optimal control for non-Markovian open quantum systems.
Phys. Rev. A 2012, 85:3, 032321, doi: 10.1103/PhysRevA.85.032321.

14

https://doi.org/10.1140/epjd/e2015-60464-1
https://doi.org/10.1140/epjqt/s40507-022-00138-x
https://doi.org/10.1088/1751-8113/41/4/045205
https://doi.org/10.1063/1.2883738
https://doi.org/10.1088/1751-8113/42/20/205305
https://doi.org/10.1103/PhysRevA.73.062102
https://doi.org/10.1038/ncomms5705
https://doi.org/10.1103/PhysRevA.85.032321


[9] Lucas, F.; Hornberger, K. Adaptive Resummation of Markovian Quantum Dynamics.
Phys. Rev. Lett. 2013, 110:24, 240401, doi: 10.1103/PhysRevLett.110.240401.

[10] Linington, I.E.; Garraway, B.M. Dissipation control in cavity QED with oscillating
mode structures. Phys. Rev. A 2008, 77:3, 033831, doi: 10.1103/PhysRevA.77.033831.

[11] Volovich, I.V., Kozyrev, S.V. Manipulation of states of a degenerate quantum system.
Proc. Steklov Inst. Math. 294, 241–251 (2016), doi: 10.1134/S008154381606016X.

[12] Zhong, H.; Hai, W.; Lu, G.; Li, Z. Incoherent control in a non-Hermitian Bose-Hubbard
dimer. Phys. Rev. A 2011, 84, 013410, doi: 10.1103/PhysRevA.84.013410.

[13] Singh, K.P.; Rost, J.M. Femtosecond photoionization of atoms under noise. Phys. Rev.
A 2007, 76:6, 063403, doi: 10.1103/PhysRevA.76.063403.

[14] Mukhopadhyay, C. Generating steady quantum coherence and magic through an au-
tonomous thermodynamic machine by utilizing a spin bath. Phys. Rev. A 2018, 98:1,
012102, doi: 10.1103/PhysRevA.98.012102.

[15] Qutubuddin, Md.; Dorfman, K.E. Incoherent control of optical signals:
Quantum-heat-engine approach. Phys. Rev. Res. 2021, 3:2, 023029, doi:
10.1103/PhysRevResearch.3.023029.

[16] Laforge, F.O.; Kirschner, M.S.; Rabitz, H.A. Shaped incoherent light for control of
kinetics: Optimization of up-conversion hues in phosphors. J. Chem. Phys. 2018, 149,
054201, doi: 10.1063/1.5035077.

[17] Pechen, A.N.; Trushechkin, A.S. Measurement-assisted Landau-Zener transitions,
Phys. Rev. A 2015, 91:5, 052316, doi: 10.1103/PhysRevA.91.052316.

[18] Davies, E.B. Quantum theory of open systems. Academic Press (1976).

[19] Accardi, L., Lu; Y.G., Volovich I. Quantum Theory and Its Stochastic Limit. Springer
(2002). doi: 10.1007/978-3-662-04929-7.

[20] Trushechkin, A. Unified Gorini–Kossakowski–Lindblad–Sudarshan quantum master
equation beyond the secular approximation, Phys. Rev. A, 103 (2021), 062226, doi:
10.1103/PhysRevA.103.062226.

[21] Pechen, A. Engineering arbitrary pure and mixed quantum states. Phys. Rev. A 2011,
84 (4), 042106, doi: 10.1103/PhysRevA.84.042106.

[22] Wu, R.; Pechen, A.; Brif, C.; Rabitz, H. Controllability of open quantum systems
with Kraus-map dynamics. J. Phys. A: Math. Theor. 2007, 40:21, 5681–5693, doi:
10.1088/1751-8113/40/21/015.

[23] Lokutsievskiy, L.; Pechen, A. Reachable sets for two-level open quantum systems driven
by coherent and incoherent controls. J. Phys. A: Math. Theor. 2021, 54, 395304, doi:
10.1088/1751-8121/ac19f8.

[24] Boscain, U.; Sigalotti, M.; Sugny, D. Introduction to the Pontryagin maximum
principle for quantum optimal control. PRX Quantum 2021, 2:3, 030203, doi:
10.1103/PRXQuantum.2.030203.

[25] Gross, P.; Neuhauser, D.; Rabitz, H. Optimal control of curve-crossing systems,
J. Chem. Phys. 1992, 96 (4), 2834–2845, doi: 10.1063/1.461980.

15

https://doi.org/10.1103/PhysRevLett.110.240401
https://doi.org/10.1103/PhysRevA.77.033831
https://doi.org/10.1134/S008154381606016X
https://doi.org/10.1103/PhysRevA.84.013410
https://doi.org/10.1103/PhysRevA.76.063403
https://doi.org/10.1103/PhysRevA.98.012102
https://doi.org/10.1103/PhysRevResearch.3.023029
https://doi.org/10.1063/1.5035077
https://doi.org/10.1103/PhysRevA.91.052316
https://doi.org/10.1007/978-3-662-04929-7
https://doi.org/10.1103/PhysRevA.103.062226
https://doi.org/10.1103/PhysRevA.84.042106
https://doi.org/10.1088/1751-8113/40/21/015
https://doi.org/10.1088/1751-8121/ac19f8
https://doi.org/10.1103/PRXQuantum.2.030203
https://doi.org/10.1063/1.461980


[26] Tannor, D.J.; Kazakov, V.; Orlov, V. Control of photochemical branching: Novel
procedures for finding optimal pulses and global upper bounds. In Time-Dependent
Quantum Molecular Dynamics; Broeckhove, J., Lathouwers, L., Eds.; Springer: Boston,
MA, 1992; pp. 347–360, doi: 10.1007/978-1-4899-2326-4 24.
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