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Optimal Control of a Class of Hybrid Systems

Christos G. Cassandra=ellow, IEEE David L. PepyneMember, IEEEand Yorai Wardi

Abstract—We present a modeling framework for hybrid systems poral state and ghysicalstate. The temporal state of a job
intended to capture the interaction of event-driven and time-driven  evolves according to event-driven dynamics and includes infor-
dynamics. This is motivated by the structure of many manufac- mation such as the waiting time or departure time of the job at

turing environments where discrete entities (termedobs) are pro- . . .
cessed through a network of workcenters so as to change their the various workcenters. The physical state evolves according

physical characteristics. Associated with each job iseemporal state t0 time-driven dynamics modeled through differential (or dif-
subject toevent-driven dynamicand aphysical statesubjecttotime-  ference) equations which, depending on the particular problem
driven dynamicsBased on this framework, we formulate and ana- peing studied, describe changes in such quantities as the temper-
lyze a class of optimal control problems for single-stage Processes.aire. size, weight, chemical composition, or some other mea-

First-order optimality conditions are derived and several proper- u L . . . . .
ties of optimal state trajectories (sample paths) are identified which sure of the “quality” of the job. The interaction of time-driven

significantly simplify the task of obtaining explicit optimal control ~ With event-driven dynamics leads to a natural tradeoff between

policies. temporal requirements on job completion times and physical re-
Index Terms—Hybrid system, nonsmooth optimization, optimal quirements on the quality of the completed jobs. For example,
control. while the physical state of a job can be made arbitrarily close to

a desired “quality target,” this usually comes at the expense of
long processing times resulting in excessive inventory costs or
|. INTRODUCTION violation of constraints on job completion deadlines. Our objec-
HE term “hybrid” is used to characterize systems that cortive, therefore, is to formulate and solve optimal control prob-
bine time-drivenand event-driverdynamics. The former lems associated with such tradeoffs.
are represented by differential (or difference) equations, whileThe analysis and synthesis of optimal controllers for hybrid
the latter may be described through various frameworks used $ystems clearly requires a combination of techniques appli-
discrete event systems (DES), such as timed automata, max-gligle to both time-driven and event-driven systems. In the
equations, or Petri nets (see [5]). Broadly speaking, two cédater case, although the parametric optimization of DES has
egories of modeling frameworks have been proposed to stuegen extensively researched (e.g., see [5] and the references
hybrid systems: Those that extend event-driven models to therein), little progress has been reported in the area of optimal
clude time-driven dynamics; and those that extend the traglntrol, short of stochastic control methods (e.g., stochastic
tional time-driven models to include event-driven dynamics; fgtynamic programming) that typically seek to optimize steady
an overview, see [1]-[3], [12]. state (as opposed to transient) performance metrics. There
The hybrid system modeling framework we consider in th@re at least two important difficulties that have been blocking
paper falls into the first category above. Although its scope §ich progress: 1) the absence of a synchronizing clock that
general, it is largely motivated by the structure of many manwould permit the use of methodologies developed for classical
facturing systems. In these systems, discrete entities (referretinee-driven systems (e.g., [4]); and 2) nondifferentiabilities in
asjobs) move through a network of workcenters which procedbe event-driven state dynamics which limit the use of classical
the jobs so as to change their physical characteristics accordgigdient-based techniques. Recently, however, it has been
to certain specifications. Associated with each job igm- shown that these difficulties can be overcome in at least some
problems [10], [17].
_ _ _ In this paper, we formulate and analyze a large class of op-
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Fig. 1. Hybrid system framework.

The main contributions of our analysis are the followingwherew; is a control (assumed scalar). At timeg, a switch
First, we derive several conditions for identifying the criticajevent) takes place causing the physical state to become
jobs in an optimal sample path: One is a necessary and sufficiesttz;) = (. In general, we allow forz(x;) # z(x1),
condition requiring minimal assumptions on the cost functiomnd the physical state subsequently evolves according to new
two more are sufficient conditions satisfied when the systetime-driven dynamics with this initial condition. The time of
has certain key properties. Second, for a class of problems wttiis switch, which we refer to as thiemporal state of the
separable cost structure, we show that these key propertiessyttem, depends avent-driverdynamics of the form
indeed satisfied, which enables the development of efficient
solution algorithms. We do not dwell on such algorithms in this @1 = fi(wo, 21, w1, 1).
paper, but refer the reader to related work reported elsewhﬁ{

e . . . : .
[8]. [16], [18], [20], which is based on the results of this general, after théth switch, the time-driven dynamics are

paper and is exclusively devoted to such algorithms and th =¥en by
analysis. Third, we also establish that for this class of problems 2= gilzi, wiy £),  zi(w) = G
the optimal solution isunique despite the fact that the cost
functions involved areot convexandnot differentiable and the event-driven dynamics by
The paper is organized as follows. In Section II, we present
a general framework for hybrid systems emphasizing the cou- @i = filwio1, 2, wis ). @)

pling between the time-driven dynamics of the system and tRgye that the choice of control following thigh switch affects
event-driven dynamics that govern switches in the system kgsin the physical statg and the next temporal state, ;. Thus,
havior. We also formulate an optimal control problem for thg,o switches at times,, 2 ... are generallynot exogenous
class of hybrid systems we consider. Section Il analyzes tBgqnts that dictate changes in the state dynamics, but rather tem-
necessary conditions for optimality, introduces the nonsmogi 5| states intricately connected to the control of the system.
optimization elements needed to handle the nondifferentiabiligs emphasize this fact since it is one of the crucial elements of
ties involved, and concludes with a theorem that character|2§shybrid" system. In some applications, the event-driven dy-
an optimal control sequence. Section 1V presents several proRimics (1) may be viewed as exogenous switching times, sub-

ert?e.s of the optimalisolutions and i'ntrc.)duceS the concept &‘:antially simplifying the analysis; this is not the case in the
“critical jobs,” crucial in the characterization of optimal Samplﬁ)roblems we tackle in what follows.

paths. Conditions for identifying critical jobs are also derived in |, the context of manufacturing systems, the switches in
this section. In Section V, we analyze a class of problems wimg_ 1 correspond to jobs that we index by 1, ..., N. We
separable cost structure and show that a solution is unique e¥ga|| jimit ourselves to a single-stage process modeled as a
though the problem is not convex and not differentiable. We €Single-server queueing system. The objective is to prodess
tablish four important properties of the optimal sample pathgya) jops. The server processes one job at a time on a first-come
which facilitate the determination of critical jobs and hence thfst_served nonpreemptive basis (i.e., once a job begins service,

evaluation of the optimal solution. the server cannot be interrupted, and will continue to work
on it until the operation is completed). Jobs arriving when the
[I. PROBLEM FORMULATION server is busy wait in a queue whose capacityi§. As job

4_is being processed, igghysicalstate, denoted by; € R",
evolves according to time-driven dynamics of the general form

27 = gi(zia Ui, t)a Zi(Ti) = C7 (2)

wherer; is the time processing begins afids the initial state
Z21=g1(x, w1, t), z1(z0) =G at that time. The control variablg (assumed here to be scalar

The general hybrid system framework we consider is illu
trated in Fig. 1. A system is initially at sonphiysicalstate¢; at
time ¢ and subsequently evolves according totihee-driven
dynamics



400 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 3, MARCH 2001

and not time dependent for simplicity; however, see [11]) is usedThe problem defined above appears similar to classical dis-
to attain a final desired physical state corresponding to a targegte-time optimal control problems commonly found in the lit-
“quality level.” Specifically, if the service time for thi¢h job is erature (e.g., [4]) except for two issues. First, the index

s;(u;) andT;(u,;) C R™ is a given set (e.g., a threshold abové, ..., N does not count time steps, but rather asynchronously
which z; satisfies a desired quality level), then the contrpls departing jobs. Second, the presence of the “max” function in
chosen to satisfy the stopping rule the state equation (4) prevents us from using standard gradient-

" based techniques, since itintroduces a nondifferentiability at the
T

Aug) = min < £ > 0: | z(rs 4 1) = (i s ) d point whereai = i1

silus) mm{ - [7 (ri 1) /ﬂ_ gz, wi, v) dv Regarding the first issue, although the absence of a synchro-
nizing clock presents a difficulty encountered in all DES, note

+Q} € Fi(ui)} (3) that the mathematical treatment of the recursive equation (4) is

in fact no different than that of any other similar recursion where

whereu, takes a fixed constant value during the intefval ;+  the indexrepresents synchronized time steps as in classical dis-
#), and the “min” is assumed to exist. On the other hand, tif&ete-time optimal control problems. Therefore, this issue is not
temporalstate of theth job is denoted by; and represents the really problematic. Regarding the s.econd.iss_u.e, previous work
time when the job completes processing and departs from {A€1, [10] has shown that the nondifferentiability problem can
system. Lettingz; be the arrival time of théth job, the event- P& overcome in at least special cases of the problem formulated
driven dynamics describing the evolution of the temporal sta@@0Ve, and that the “max” function exhibits certain useful struc-

are given by the following “max-plus” recursive equation:  tural properties that can be exploited to simplify the analysis and
lead to efficient numerical solutions. For the more general class

z; = max(wi_1, a;) + s;(w;) (4) of problems considered here, we will invoke ideas and results
from nondifferentiable calculus (e.g., [6]) to deal with the non-

where we setr, = —oo in which caser; = ay + s1(ny) differentiability issue.
and the first job begins service as soon as it arrives. It is as-Example: To illustrate the use of the framework and
sumed that the job arrival sequengs, ..., ax} is given (in Problem formulation presented above, we outline below an
some earlier work [10], arrival times were considered to be cofPtimal control problem for steel heating/annealing manufac-
trollable). The recursive relationship (4) is known in queuein§"ing processes involving a furnace integrated with plant-wide
theory as the Lindley equation [5], and is the specific form dflanning and scheduling operations; full details and solutions
the event-driven dynamics (1) applicable to this particular hjpased on the methods presented in this paper may be found
brid system. In Fig. 1, an idle period corresponds to a situatiéh [7]. Individual steel “parts” (i.e., ingots or strips) undergo
wherea; 1 > x;, in which case there is an intenal;, a,,,] Various operations to achieve certain metallurgical properties
on the temporal state axis during which the physical state is that define the “quality” of the finished products. In particular,
defined. the steel heating/annealing process is an important step which
This system isybrid is the sense that it combines the timelnvolves slowly heating and cooling strips to some desired
driven dynamics (2) with the event-driven dynamics (4), the twimperatures. Before heating and cooling each roll of strips,
being coupled through the choice of the control sequence. Thehigher level controller determines the furnace reference

optimal control problem we consider has the general form temperature (more generally, a “furnace heating profile”)
which the strip should follow, as well as the amount of time that

N this strip is held in a furnace. Raw material, (e.g., a cold-rolled
Lmin - J = Z Li(zi, wi) (5) strip) is put on a pay-off reel on the entry side of the line and
R i=1 runs through with a certain line speed. The physical state of the

: . . . ith strip in this process is denoted by(t) and represents the
subject to (2)~(4), wheré;(z;, u;) IS a cost function associ- temperature at each point of the strip as it evolves through the

ated with jobi. Note that this formulation does not require an___.. . : :
- . . heating furnace. The strip temperature is basically dependent
explicit cost on the physical state, since (3) ensures that each

) - . ) i . on theline speedu;, which usually remains constant during
job satisfies a given quality requirement, i&47; +si(ui)) = 0 process, and thfernace reference temperatuf€, which
zi(z;) € T;(u;). This stopping rule defines a separate optimiz ' !

. . X UMIZge predesigned at a plant-wide planning level. The thermal
tion F’“’b'ef“’ Wh'Ch must be solved to obtain the service t'mpPTocess in the heating furnace can be represented by a nonlinear
and its derivative. As an example, [Ef(u,) be a function of

the control and suppose that the physical dynamics in (2) Ee)at-transfer equation describing the dynamic response of each
not depend directly on the control. Thus, (2) and (3) assume t rip temperature so that the temporal change in heat energy at

e . T

following respective forms; = gi(z) with initial condition particular location is equal to the transport heat energy plus
T T T\~

Zi(Ti) = Ci, andsi(ui) = min{t > 0: Zi(Ti =+ t) = Fz(uz)} It

the radiation heat energy [9] as follows:
can be seen, by directly applying variational principles, that di}—it) Kt Kol — U
ds 1 _dbi, i
du;  gi(z(ri + si(w;))) du i where

F,— 2z (to) . 20—5b¢5
assuming, of course, that the relevant derivatives exist. i3 ’ 27 60d,10-37



CASSANDRASet al. OPTIMAL CONTROL OF A CLASS OF HYBRID SYSTEMS 401

and L is the furnace length [m}, is the heating start timer,, [Il. NECESSARYCONDITIONS FOROPTIMALITY
is the Stefan—Boltzmann constdrt4.88 x 10~ 3[kcal/n? - h

. . L . We begin by invoking basic variational calculus techniques
deg)), ¢, is the coefficient of radiative heat absorptith < gin by 1voing e vanat L 1

to study the minimization problem in (5) subject to (4). As in

¢s < .1) (determined as 0.17 “OF“ actualldatdfg,is the strip standard discrete-time optimal control problems, we define the
specific heafkcal/m® - deg], and is the strip thickness [mm]. augmented cost

Since (6) is in nonlinear differential form, it is hard to rep-
resent solutions in an explicit form. It turns out, however, that N
such solutions can be accurately approximated by exponentl&k; A, w) = > {Li(z;, u;)
functions obtained as solutions of =1 Al ( ) () N
dz;(t 1 + Aimax(xi—1, a;) + si(ui) — T4,
20 L m—am). tzte.
dt f(u) (11)
\;V:rﬁgi (gigelsirzg Izz/t:alfrg; );égﬂf;fn lip[%op)r '?St?gkg:?cs)il t(\)/vherex andu are N-dimensional vectors for the temporal state
B e o nomiaI)/f'unctiogrL]Z fie. flu) = and the control, andis an/V-dimensional vector for the costate
g poly i l.e., jlui) = sequence used to adjoin the temporal dynamics in (4) to the cost

m r o H : a
2o cku; fOr somem =1, 2, ..., an approximation success in (5). Throughout the rest of our analysis, we will make the

fUI:\)lle?(rtm:rIw%yfedn":n ggcsflt:tae[zo%]t.hm strip consists of two vari- following assumptions.
' P P . AssumptionAl: The one-step cost&;(-, -) and the ser-
ables;z; andy;, wherex; represents the time when the job starts

. . _vice functionss;(-) are continuously differentiable for all
processing atthefurnaceamdepresentsthetlmewhenthejobylz 1u IN si(+) inuously ¢l '

completes processing and departs from the system. The need f%ss’ﬁrﬁr;tionAZ' The service functions(-) are monotoni-
two variables is due to the fact that we must distinguish betwegg”y increasing f-or ali = 1 N !
the starting time of the: (+ 1)th job and the completion time of Note that Assumptiom2 7c'a'r'1 7be .replaced by service func-
theith job (i.e.,z;11 # u;), since each job is a continuous striqiO

. : ) . i ns that are monotonicallgecreasingdepending on the na-
of a typical length, not a discrete entity. Lettingbe the arrival : P
time of theith strip, the event-driven dynamics describing thture of the control variables;, yielding dual results to those we

evolution of these temporal states are given b il subsequently derive.
P 9 y Ignoring for the moment the nondifferentiabilities associated

r; = max(a;, v;1) +s1(w;) and y; = z; + s2(u;) with the “max” operation in (11), the standard first-order neces-
subject toumin < 1 < Umax, i=1,..., N sary conditions for optimality require that
® a7 T oJ :
wheres: (u;) is the elapsed time for the whole body of the strip 8, ~ 0 a%, — ' oy~ ° foralli=1,..., N.
to enter the furnace, which is dependent on the length of the _ _ _ . - 12)
strip, ands,(w; ) is the processing time for each point of the strig he first equation above gives the stationarity condition
to run through the furnace, which is dependent on the length of OLi(z;, w;) dsi(u;)
the furnace. In additiony,,;, andw,,.,. are the minimum and " i T =0 (13)
maximum allowable line speed respectively, and we assume that ! !
To = —00. The second equation in (12) recovers the state equation

In this system, we consider two control objectives: 1) to re-
duce temperature errors with respect to the furnace reference
temperature, and 2) to reduce the entire processing time {@ih initial condition zy = —oo. Finally, the third equation
timely delivery using acceptable levels of line speed,Thus, gives the costate equation
the optimal control problem of interest is

x; = max(a;, ;—1) + s;(w;) (14)

dmax(z;, a;y1)

A + A (15)
min 7= 3" [6u;) + ¢(y,)] © D T
{u1,..., un} — . .
=1 with boundary condition
subject to (7) and (8). The functiof(y;) above is the cost re-
lated to jobs departing at timg. For exampleg(y;) = (y; — Ay = ILn(xn, “N)_ (16)

d;)?is such that a job departing after the due datiacurs a tar- dzn

diness cost completing before its due date incurs an inventoryequations (13)—(16) define a two-point boundary-value
(backlog) cost. The functiofi(v,) is selected so as to penaliz&yroplem (TPBVP), whose solution provides a control sequence
the deviation of théth strip temperature from the reference temsatisfying the necessary conditions for optimality. TPBVPs are

perature.F; notoriously hard; in our case, matters are further complicated
) L/ ) by the presence of the “max” function in the costate equation
O(ui) = |Fi = z:(L/w)|” + B /0 (5 = zi(1))" dt, (15). This function is Lipschitz continuous, differentiablezin
i=1,...,N (10) everywhere except at the single point wheye= a;, with
whereL /u; is the time each point of the strip stays in the furnace d 0, ifz;<a;n

(17)

andg is a weighting factor. dz; max(i, aip1) = { 1, if 2> aig.
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Moreover, at the point where; = a;41, the left and right over, note that a critical job cannot end a busy period; however,
derivatives clearly exist, given by 0 and 1, respectively. a busy period may contain one or more critical jobs.

As the system operates, the sequence of arrival and depain order to identify the busy period structure and the locations
ture times defines a state trajectory (or sample path). On awfycritical jobs within a busy period, we associate with every job
sample path, the points whesg = ;1 acquire special sig- ¢ = 1, ..., N the following two indices
nificance, since they are responsible for the nondifferentiability
of the “max” function in the costate equation (15). When such
points are part of the optimal solution, the necessary conditions m(i) = min{m > é: T, < apyr}- (19)

above cannot be used'to. est.ablish optimality, ar_ld we must ﬂ?'words,n(i) is the index of the last job in the busy period
pe_:al to nonsmooth optlmlzatlon_ theory, as described next. T'E'éntaining jobi. Regardingm(i), if job i is critical or there
will lead to the main result of this section, Theorem 3.1. are critical jobs between joband the end of its busy period,

1) Nonsmooth OptimizationGiven AssumptionAl, the then,(;) is the index of the first such critical job; in this case,

augmented cosf, as the sum of Lipschitz functions, is itselfm(i) < n(i) and we haver,,,;) = 41 If, on the other

a Lipschitz function. Such functions are continuous, but Nty ioh; is not critical and there are no critical jobs between
everywhere differentiable. They are, however, dlfferentlabjgbi and the end of its busy period, then(i) is the index of
almost everywhergRadmacher’s theorem). For Lipschitz funcyyq job that ends the busy period, i#(i) = n(i).

tions, nonsmooth optimization gives the necessary conditionsz) Them(i) = n(i) Case: Thi,s is the simpler of the two
for optimality [6], [15]. In particular, suppos¢: R" — RS 4565 where job is not critical, there are no critical jobs
a locally Lipschitz continuous function of € R", and let patveen jobi and the end of its busy period, and we have
S(g) denote the. set of all seq.qencéism}f,j’zl C R™ that max(z;, aj11) = x; > ajqq forall j = 4, ..., n(i) — 1
satisfy the following three conditions: 4),, — v asm — o0, gn4 MAX(Zn(i), An(ie1) = Gn(iyer > Tngpy. Therefore, all

ii) The gradientV f(u.) exists for allm = 1,2, ..., i)  gerivatives in the costate equation (15) exist and we get,
lim,, oo Vf(um) = ¢ exists. Then, thgeneralized gradient o

n(t) = min{n > ¢: z,, < apy1}, (18)

of f atw is denoted by? f(w) and defined as the convex hull 8L

of all limits ¢ corresponding to every sequente,,} € S. Ai = Z Oz

The generalized gradient has the following three fundamental i=i
properties [6]: i)Jf(u) is a nonempty, compact and convexX hen, the optimality condition (13) becomes
set in R™, i) Jdf(u) is a singleton iff f is continuously _ (i)
differentiable in some open set containing in which case 0J _ oL ds 3 9L; _,
df(u) = {Vf(w)}, and iii) if » is a local minimum off, then Gui  Ou;  du; £ Ox;

0 € df(u). The last property is an extension of the classical

stationarity condition in (13), and becomes the first-ord¥here we have omitted the arguments of the functibgs ) -
optimality condition in nonsmooth optimization. ands;(-). Clearly, the same result holds when there are critical

As described above, the necessary condition for the opPS in the busy period containing jebas long as these critical
mization of nonsmooth Lipschitz functions is given in termiPbs precedejob i in this busy period. In summary, we have

of 9f(w). Our task now, therefore, is to identify7. In order €stablished the following result.

to do so, we introduce the following terminology that will be_ Lémma 3.1:Under Assumptioml, if m(:) = n(i), then
essential to all subsequent analysis: J(-) is locally continuously differentiable in;, and the opti-

Definition 1: An idle periodis a time interval(zx, az,,] Mality condition is

such thatey, < ag4q foranyk =1, ..., N — 1. — ‘ - n(i) )
Definition 2: A busy periods a time interval(ay, z,] de- g—] = % + % Z % =0.
fined by a subsequendé;, k+ 1, ..., n} such that iye;_; < i Wi Ui S O
ag, ) ©; > a;pp foralli =k, ..., n—1,andiii) z,, < apt1. m

These terms are borrowed from classical queueing theory. An etting 3.7, = 9.7 /9, itis clear that whem: (i) = n(i) we
idle period is simply a time interval of strictly positive duraget

tion during which the server has no jobs to process, and a busy ‘
period is a time interval during which the server is processing _ 9L, ds; @) dL;
jobs without any interruption caused by an empty input queue. 9.1 = o dus
A busy period, initiated at time;,, must always follow an idle ‘
period, be followed by another idle period, and allow no othemus, if critical jobs were to never occur on an optimal sample
idle periods within it. We also sety; = oo for consistency. path [i.e., ifm(i) = n(:) foralli = 1,..., N], then the
The next term is introduced to capture an important special f@anction.7 would be differentiable at its minimum, the standard
ture which we will show characterizes optimal sample paths fgpnditions for optimality would apply, and a numerical solution

—_—. 20
dui i 8a:j ( )

our problem. could be obtained by solving the TPBVP defined by (13)—(15).
Definition 3: A critical job with index: is one that satisfies  3) Them(i) < n(i) Case: Since, in general] will exhibit
Ti = Q41 the nondifferentiabilities associated with critical jobs, it is nec-

Note that a critical job corresponds precisely to the situati@ssary to study next the case whet&) < n(¢). For any such
where the “max” function is not differentiable in (15). Morejob i on an optimal sample path, we havex(z,, ¢y, Gm(i)+1)



CASSANDRASet al. OPTIMAL CONTROL OF A CLASS OF HYBRID SYSTEMS 403

= Tm@) = am()4+1 and the corresponding derivative in the Lemma 3.2:Under Assumptioné&\1 andA2, for every: =
costate equation (15) does not exist. Hence, the derivative..., N
dJ /ou,; also fails to exist. To obtain the generalized gradient (i)
in thls case we proceed as follows. F|rst, since jphadm (%) e =y ds; Z % (26)
are in the same busy period andi) > ¢, we have i C D du; o dx;

J=m(z

Proof: From (23) and (24)

m(z)
Zingy = max(zi_1, a;) + si(w) + > s;(uy)  (21)

j=itl + 8LZ dSZ 8Lj
P = + Z a5
where the “max” accounts for the fact that jpimay be the first Ou; — du; = dx;
in the busy period. Through (21) we see that the control for job ‘ ‘
¢ affects the departure time of jeh(¢). Now suppose that we oL, ds; () aL; ds; @) JL;
fix all controls at their optimal values and pertuth Recalling ~ ou, + du; &~ Ox; + du; Z _J
(17), the following one-sided derivatives exist: g=i g=m(i)+1
ds; oL,
lim max \Tm)s Am(i =0 25; + ! it
B L (@m@)> Gm@iy+1) du; ,»:,%;)H Bz,
lim max (a:m(i), am(i)_,_l) =1. (22) giving (26). u
Ton(iy L@y 1 (i) Recalling the definition o/, it is easy to see that when
Conceptually, the firstlimitin (22) corresponds to the process 8?( i) < n(i) we have

changingy; sothate,,,(;) increases toward afixed,, ;1. Sim- dJ; = [min (&, &), max (&7, M) C R (27)
ilarly, the second limit corresponds to the process of changing

u; S0 thatz,,,;, decreases toward,, 1, and the same is true Notice that whenn(i) = n(1), we get§;” = &, inwhich case
for all other critical jobs betweem(i) andn(i). the setd.J; defined by the closed interval above is a singleton

Looking at (15), note that equal to the gradient.J/9v; as required. To summarize, we
present next the main result of this section:

Theorem 3.1:Under Assumption®\1 and A2, an optimal
controlw;, i = 1, ..., N satisfies the following conditions:

1) 0 € 8J; = [min(¢;, £F), max(¢;, £7)] € R, where

d max(a:j s aj+1)

o -1 forallj =4, ..., m(i) — 1.

Thus, combining (11) and (15), we get

m(i)

97 _9L;  ds; N e L Z '
ou; o, | du, du; cluZ gt 835] ou; cluZ gt 8x J
m(i) o1, " dmax (%m(i)7 am(i)-l—l) m(L) = m%n{m > L T < Qg1 )s
p ox, m(i)+1 AT n(4) = min{n > i: x, < Gp41};
_ _ _ _ _ 2) x; = max(a;, x;—1) + $;(u;) 29 = —00.
By AssumptionA2 and (21),z,,,(;) is monotonically increasing Proof: The proof follows directly from the necessary con-
in u(z) and, using (22), the preceding equation leads to the oRgrion of nonsmooth optimization, that is, the requirement that
sided derivative 0 € 8J;, and from Lemma 3.1 and (23)—(25). n
_ m() Remark 3.1: Recalling Lemma 3.1, we see thatwhe() =
<8_J> — 9L + dsi Z % (23) (i), i.e., when johi is not critical and there are no critical jobs
du; Oui — du; <= Ow; between jok and the end of its busy period, then the first con-
dition of the theorem simply requires thgft = & = 0.
Similarly, we obtain Remark 3.2: For typical L;(-, -) ands;( - ), neitheré;” = 0
oy (i) nor & = 0 whenm(i) < n(i), i.e., in general, zero is not an
<3J> _dL; | ds; Z (24) endpoint of the interval defining.J;. Hence, whem:(i) < n(i)
ou; )  Ou;  duy aa: 4 the first condition of the theorem requires that these quantities

have opposite signs, i.€£;7) - (&) < 0. In general, however,
regardless of whether one or more critical jobs are present - ) - (&) < 0.
tween: andn(z). For simplicity, we shall use the notathfg We should also point out that the use of the generalized gra-
andé’;r to denote the left and right derivatives above, i.e., set dient is not indispensable for the solution of the problems con-
sidered here. In earlier work [17], for example, a specific hy-
_ al\ n CAN brid system optimal control problem that belongs to the class of
& = <auz> o &= <8uz> ’ (25) problems being studied in this paper was solved using a defini-
tion of the derivative of the “max” function that allows its value
Regardingt;” and¢;T, we can easily establish the following.  to be some arbitrarp; such that < A; < 1 whenevers; =
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a;+1. Finally, note that the problems can also be tackled throughalysis of the optimal sample path, since it allows us to study
constrained nonlinear programming techniques; the compuita-properties by analyzing a single isolated busy period.

tional burden in this case, however, is prohibitive for values of Whereas idle periods decompose the problem into a collec-
N other than very small ones, and this serves to motivate ttien of independent busy periods, critical jobs further decom-

analysis that follows. pose the problem by partitioning busy periods into collections
of blocks where a block is defined as follows.
IV. PROPERTIES OFOPTIMAL SOLUTIONS Definition 4: Consider a busy period consisting of jobs

" L k,...,n(k)}. A block is a subset{j, ..., m(j)} C
Based on the necessary conditions for optimality in Theore 0 n(k)} such that

3.1, in this section we present some fundamental properties‘of ~ "’

optimal sample paths. 1) foralli € {j, ..., m(5)}, m(i) = m(j);
2) forali € {k,...,n(k)} andé ¢ {4, ..., m(y)},
A. Decoupling Properties m(i) # m(j).

The presence of the “max” function appearing in the stateln other words, any busy period on an optimal sample path

and costate equations leads to decoupling properties whi@{’ t_)e partitioned into blgcks, where th,e_ first' bloqk begins with
decompose sample paths into independent segments. The I§tfirSt job and ends with the first critical job (if any). The
such property is a consequence of the “regenerative” natureS§Fond block begins with the job that follows the first critical
the state trajectory. Because of the “max” function in the st iob and ends with the second critical job, and the last block ends
equation, information is not propagated in the forward directiof{ith the 1astjob in the busy period (therefore, it never contains a
across idle periods. In addition, because of the “max” functiditical job). Clearly, if a busy period consists biblocks, then

in the costate equation, information does not propagate in thé'e arél —1 critical jobs in this busy period. Moreover, every

backward direction across idle periods. As a result, we obt H)Ck starts with an arrival time, s_ugh thayj = & for the first
what we callidle period decoupling block anda; = x;_; for the remaining blocks. The notion of

Lemma 4.1:Consider a busy period defined b)}Jlocks leads to wha_t we call tlﬁartigl couplbingproperbty.

{k, ..., n(k)} and leti € {k, ....n(k)}. The optimal Lgmma4.2:Coq&derablogkdefmed By, ..., m(j)}and
controlu? depends only omy, .. ., a, (it does not depend leti € {j, ..., m(j)}. The optimal control;; depends only on
on the arrival times of jobs in any other busy period). aj ANdam ;)41 (it _does not depe_nd on any c_)ther arrival t|mes).

Proof: In view of Theorem 3.1. observe that the state Proof: Consider a busy period containing at least one crit-
equation does not propagate information in the forward d’f;gl_job._Notic_e that the state equation does not propagate across
rection across the idle period that precedes the busy perFﬁH'cal Jobs, i.e.w; = a; + sj(u;j) + -+ + si(u;). Hence,
containing jobs, i.e. the optimal controls for job§y, ..., m(j)} can be obtained by

T solving the following optimization problem:

Tp—1 < ap = max(Tp_1, ar) = ap = &; 0

miy

:ak—i_sk(uk)—i_.“—i_si(ui)' min Z Li(%ﬁ uz)
. L Ujyeosthm(s) S
Hence, the control for jobdoes not depend on the arrival times v=J
of jobs in earlier busy periods. Moreover, the costate equatigﬂ :

) o S bject toxz; = a; (u; (u;) for all
does not propagate information in the backward direction acrc;ssJ i o + 5i(u;) +- +osi(w)

; . . o v = j, ..., m(j) and terminal constraint,,;y = am(j)+1
the idle period that follows the busy period containingjobe., provided this is not the last block in the busy period; if it is

dmax(Tp (), Cn(k)+1) the last block, then the constraintis, ;) < am(;)+1- Thus,

_ + :
Tn(k) < Gn(k)+1 = Drngi) =0=4 the solution depends only ar; and a,,(j);1 (and of course
m(J))- n
aL; ds; *) a1 Because of partial coupling, the controls for those jobs that
= ou + dus Z Ere follow a critical one are independent of the controls for the jobs
‘ b= that precede it. This property forms the basis of algorithms one

can develop to explicitly solve the problem under study, as fur-

and the same is true f@f in (24), sincem(i) < n(k). Since, X ;
’ ther discussed in what follows.

by Theorem 3.1, the optimal contraf is determined by;,
i+, it follows that it does not depend on the arrival times of jobs - o
in subsequent busy periods. m B. Critical Job Characterization
Because of idle period decoupling, the controls for individual Critical jobs play a crucial role in obtaining explicit solutions

busy periods can be determined independently of each otHer.the optimal control problem under consideration. This is ob-
Therefore, idle period decoupling decomposes a large TPBVP@us from the decoupling properties of the previous section; if
consisting ofV jobs into several smaller subproblems, one fore could easily identify the various indices(:) andn(¢) for
each busy period. Of course, since the identification of busy peach jobi = 1, ..., NV, then we could solve the problem by
riods themselves is not a simple matter, this only partially sinselving a collection of TPBVP’s, one for each block. Some of
plifies the solution approach. Nonetheless, this decomposititese TPBVP’s would have a terminal constraint on the final
can be used to develop efficient numerical algorithms (see [8}ate to force the departure time of the last job in the block to
[16], [18], and [20]). Moreover, itis also useful in the theoreticadqual the arrival time of the job that begins the next block, while
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others would not have terminal constraints when the block enaisd in view of (28), condition (1) implies that= n(¢). There-

a busy period. fore, decreasing the control for jalkby A decreases its depar-
Although the possibility of critical jobs depends on the spdure time (fromA2) and the perturbed sample path contains an

cific forms of the one-step cosfs;(-, -) and the service func- idle period between joband jobi + 1 [sincei = n(¢) is now

tionss;( - ), we point out that for most problems of practical inthe last job in the busy period]. This implies that on the optimal

terestthe occurrence of critical jobs is not an “unusual” or pathpath (prior to thearbitrarily small perturbationA in ;) either

logical case, but an integral part of a typical optimal sample pathjob < is critical, or ii) job< is the last job in its busy period. If

as demonstrated in our earlier work [17], [10]. iii) is the case, then on the optimal sample pathéjabfollowed
Before proceeding, we shall make one additional assumptiby an idle period of finite duration. Hence, for small positive
regarding the nature of the functiofig(-, -) ands;( - ): perturbations in the control, jobis still the last in its busy pe-

AssumptiorA3: The one-step costs;(-) are strictly convex riod, i.e.,s = n(i) in such a perturbed path, agd;(«} + A)
functions and the service functiosg-) are convex functions of = ¢&; ;) (v} + A). However, this contradicts the assumption

their arguments foral = 1, ..., V. that condition (2) holds. Hence, jabcannot be the last job in
Let us also define its busy period and case i) must hold, i.e., jadindeed critical,
X and the proof is complete. [ |

€y = OL; | ds; aL; (28) The importance of this result manifests itself in algorithms
" Ou;  duy gt Ox;j we can develop (see [17], [18]) for the numerical solution of
the optimal control problem. By iteratively evaluating the quan-

and note that, by definition (25), we have tities & ;(-) and&; »(;)( - ), the two conditions in the theorem
allow us to identify critical jobs (with arbitrary accuracy depen-
&omey =& and & niy = & dent onA). This, as previously argued, makes it possible to de-

L ) ) B compose a sample path into blocks which can be separately an-
Thus, if job is critical, theni = m(i) and§; i = &, @n  gy7ed to determine the optimal control sequence within each

observation that turns out to be very useful in our analysis. ne 4 significant computational simplification when it comes
The following theorem gives necessary and sufficient condjs 5 TPBVP.

tions that must be satisfied by a critical job (a similar result can Ngncritical Departures and Their PropertiesThe re-
be established if AssumptiokZ is changed to consider mono-mainder of this section is devoted to further identifying

tonically decreasingservice functions). conditions that lead to critical jobs and provide insight to their
Theorem 4.1:Under Assumption&1-A3, jobi s critical on - jmnortance in this class of problems. Let us consider a busy

an optimal sample path if and only if period containingB jobs on an optimal sample path. Because
1) & i(uf — A) = & nepy(uf — A); of idle period decoupling (Lemma 4.1), there is no loss of
2) & i(uf +A) & ey (uf +4A) <0; generality if we index the first job in the busy period as job 1

whereuw} is the optimal control for jol, »(¢) is the index of the [and relabel accordingly all cost componetitg-, -), so that

job that ends the busy period containing jolnder the control : = 1, ..., B]. Then,n(1) = B is the number of jobs in this

u; = ul —Ain (1) andu; = uj + Ain (2), andA > 0is busy period. When the busy period does not contain any critical
some arbitrarily small perturbation satisfyiéig; (v +A) # 0, jobs, i.e., wherm(1) = n(1) = B, let the optimal departure
Eineiy(uf +A) #0. times be denoted byz1 g, ..., x5, 5}. Thus, in the notation
Proof: Throughout the proof, recall that the index:) x; g, denotes the index of the job within the busy period and
depends on the control sequence, although for notational siBiis the total number of jobs in the busy period.
plicity this dependence is not explicitly shown. Definition 5: The optimal departure times when there are no
First, suppose jobis critical on an optimal sample path. Wecritical jobs in a busy period defined by, ..., B} are de-
will then show that conditions (1) and (2) hold. Under the omoted by{z: &, ..., x5, g} and referred to asoncritical de-
timal controlw we haver; = a;;. By AssumptionrA2, s;(u;) partures The corresponding optimal controls are denoted by
is increasing inu;; therefore, decreasing the controlbly> 0 {4y g, ..., up, g} and referred to asoncritical controls
decreases the service time for jollhis introduces an idle pe- An important property of the noncritical departures, shown
riod between jobg and< + 1, in which casew(:) = ¢, and con- next, is that they can all berecomputed offlinéor any given
dition (1) immediately follows. Regarding condition (2), sincgositive integei3 and any specified arrival time for the first job
job ¢ is critical, we have = m(¢) < n(¢), in which case The- in the busy periodg;. Thus, strictly speaking we should write
orem 3.1 requires thate 9.7 = [min(&;, &), max(&, £M)] i, p(a1), butomitthe dependence anfor simplicity. Observe
= [min(&;, m(iys &0, n(i)) MaX(&s, m(iys &, ni))], Where we have thatanyB jobs{j, ..., j+ B —1} may be selected, re-indexed
used (28). This requires th&t ; and¢; ,.(;y have opposite sign. as{1, ..., B}, and then assigned valu¢s, g, ..., v5, B}.
Hence, condition (2) holds foA = 0. It also holds for arbi- In other words, any set oB3 jobs may be used in a simple
trarily smallA > 0 since i) byAl, & i is a continuous function “thought experiment” that allows us to evaluate their departure
of u;, and ii) for arbitrarily small positive perturbations in thetimes as if these formed a busy period with no critical jobs.

control, the index.(¢) remains fixed [i.e., jol(¢) stillends the ~ Lemma 4.3: The noncritical departurege: 5, ..., B, B}
busy period]. depend only or; and B.
Conversely, if conditions (1) and (2) hold for some jaim an Proof: Consider a busy period consisting of jobs

optimal sample path, we shall show thas critical. UnderA3, {1, ..., B} on an optimal sample path and assume that none
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of these jobs is critical. If this is the case, then the noncritical; < T, F foralle=1,...,L—1landzy ry1 < arq1 <
departures are optimal by definition. By Theorem 3.1, they r, then jobL is critical.

optimal controls corresponding to these noncritical departures Proof: We proceed by contradiction and show that neither
must satisfy i) the state equation (14), and ii) the condition; < ar4+1 norzy > ar41 can be optimal, which implies that
0 € dJ;, wheredJ; is a closed interval defined ki~ and&t.  zp = aryq, i.e., L is critical.

From i), the state equation for time associated with any job First, suppose < ar+1. Then, there is an idle period be-

te{l,..., B} gives tween jobsL and L + 1. By P2, », < z; r. Since we as-
sumea;4+1 < x, y foralli = 1,..., L — 1, we also have
xi, B = ay+s1(ur)+- - +si(ug), i=1,...,B. (29 a1 < x; gforalli =1,..., L — 1. Recalling Definition
o o . _ 2, uniqueness of the optimal solution (PropePt}) implies a
Fromiii), since there are no critical jobs during this busy periogysy period consisting of jobs = 1, ..., L in which there
m(i) = n(i), and are no critical jobs. If this is the case, then the noncritical de-
B parturese; ; are by definition optimal for alt = 1, ..., L.
_ .y 0Ly ds; oL; L However,z;, = zr ; < a1 contradicts the assumption that
& =¢h= > =0, i=1,...,B. 7
8ui dU,Z =i a.ILB ar4+1 S XL, L-

(30) On the other hand, supposg > ar+1. Then, jobs. and

The above expressions depend only en and B, since L + 1are inthe same block. Moreover, we show next that this
the functionsL;(x;, u;) and s;(u;) are independent of the must be thdirst block in the busy period (i.e., the one that be-
arrival sequence{as, ..., ay}. Therefore, the controls 9ins with job 1 and starts at tima ). In particular, suppose the
{u1 B, ..., us, p} obtained by solving (29) and (30) dependirst block in the busy period ends with some jpl>> 1. Then,
only ona; andB, and, consequently, the noncritical departure®; ¥ < @, 8 by P2 z; 5 < ; by P3 andz; < a;41, sincej
{1, p, ...,z p} Obtained through (29) depend only en €nds the block, giving
andB. m

Note that an alternative definition of the noncritical depar-

tures is that they are the unique solution obtained from (29) %‘/ﬂereB (j < B < N)is the number of jobs in the busy period

(SC_?H £ WO | ide ch terizati £ crit containing jobj. Since jobj ends a block, either i) job is not

. € next two lemmas provide characterizations ot cri IC%lritical, or ii) job j is critical. If i) is true, thenj also ends the

jobs on an optimal sample path based on the relative order v period, i.ej = B < N andz; ; = 2, since noncritical
e — P 733 — i

of 'Fhe knowq arrival sequence and the noncritical_departgrg partures must be optimal. UsiRg, we then get
which, we reiterate, may be precomputed for any given arrival
time a; and positive integeB. These characterizations are de- v, Sy =5 < g1
rived under four conditions, referred to as propertids-P4 ’

below. The significance of these properties will become affii) is true, thenj < B < N and

parent in the next section where we show that a large class of

problems indeed satisfies all four conditions. In what follows, T, N ST5B ST = a4
given a busy period consisting of jolis..., B on an optimal
sample path, we shall denote thgtimaldeparture times for the

TN ST, ST S G

where the first inequality follows fror®2 and the second from
P3. Now, supposg < L+ 1. Then, in either case above, we are

jobs in this busy period byl’_ -5 LB ._led to a contradiction of the assumption that, < z, + for
PropertyP1 (Unigueness): The optimal control sequence is_. . 4
unique alli=1,..., L —1andthate; > ar41. Therefore, we must

havej > L + 1, thatis,L andL + 1 are both members of the
a1‘Lirrst block of a busy period, and this block contajny L + 1
o_%s. However, if jobL is in a block that containg > L + 1
JObs then, using?4 andP2, we get

Property P2 (Monotonicity inB): For a given arrival time
a; that starts a busy period, the noncritical departure times
monotonically decreasing in the number of jobs in the busy
riod, i.e.x; 5 < @, pforali=1,..., BandB < B.

Property P3 (Lower Bounds for Optimal Departures)n a
busy perioctonsisting of jobs indexefll, . .., B}, the noncrit-
ical departure times lower bound the optimal departure timeshich contradicts the assumption thef ;41 < ar4:i. We
ie,x; p<aforali=1,..., B. have, therefore, established that = ar41, i.e., job L must

Property P4 (Upper Bounds for Optimal Departures)n a  be critical. ]
block consisting of jobs{1, ..., L}, the noncritical departure  The conditions of Lemma 4.4 are only sufficient, i.e., there
times upper bound the optimal departure times, &<’ «; 1, are other conditions that will result in critical jobs. The next
foralli =1, ..., L (Note In this caseq; refers to the arrival result gives a different, more general, characterization of the
time of the first job in theblock and not necessarily the arrivalconditions satisfied by critical jobs.
time of the first job in thébusy periodhat contains this block.) Lemma 4.5:Consider a busy period on an optimal sample

Lemma 4.4: Consider a busy period on an optimal samplpath consisting of jobs indexed, ..., B}. UnderP1-P4 if
path consisting of jobs indexefl, ..., B} and letN < N =, p < a;4, foranyj = 1, ..., B — 1, then the busy period
denote the number of jobs remaining to be processed startountains at least one critical job. Moreover, the first critical job
with job 1. UnderP1-P4 if there exists somé& < N such that in the busy period satisfies; g < a;11 < @ ;.

ary1 <z <xp,j XL L4
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Fig. 2. Critical intervals for an example witN' = 3.

Proof: First, by Definition 2, because the busy period conwhether it ends the first busy period, or whether it is included

tainsB jobs, we must have;.; < x; foralli =1, ..., B—1. inabusy period containing at least the first two jobs. Similarly,
To prove the first part of the lemma, suppose thats < with L = 2, if az < x1. 3 andzz, 3 < ag < 22,2, as shown in
aj4+1 for one or more jobg = 1, ..., B — 1, but the busy Fig. 2(b), then job 2 is critical.

period doesiotcontain any critical jobs. If the busy period does Next, consider Lemma 4.5. Suppose thak =1 » andas <
not contain any critical jobs, then the noncritical departures ate 3. Then, withy = 2 andB = 3, if x1 3 < a2 < 21,2 and
optimal by uniqueness (Propeml), i.e.,z; = x; g forallj = a3 < x2 3, job 1isthe only job in the busy period satisfying the
1,..., B.But,z; = z; g > a,;41 contradicts the assumptioncondition of this lemma, and, hence, job 1 must be critical. On
thatz; g < a,41, implying that the busy period must contairthe other hand, supposg 5 < a2 < x1,2 andzs 3 < az <
at least one critical job. x2. 2, @s shown in Fig. 2(c). In this case, bgth= 1, 2 satisfy

Regarding the second part of the lemma, first note Biat the conditions of the lemma; therefore, either or both of jobs 1
guarantees that indeed g < =z, ;. Then, if jobj is critical, and 2 might be critical. Without explicitly solving the problem,
we havez; = a;+1, and the result follows directly fro®3, however, it is not possible to make a final determination.
ie,z; p < x; = a;j41, and fromP4, i.e.,z; < x; ; for all To summarize, while Lemma 4.5 can be used to determine
t=1,...,75,hencegjt1 =x; < x5 ;. m whether or nota busy period will contain critical jobs by

Critical Intervals: According to Lemma 4.5, a crit- checking ifa; 41 € [x; B, % 4], it cannot be used to determine
ical job will occur whenever a situation arises such thathich jobs in the busy period will be critical. To answer
a;+1 € [z; B, x5 4] forsomej = 1, ..., B. To reflect this this question one must explicitly solve the problem with an
fact, we refer to the time intervalg:; g, =, ;] as critical iterative algorithm, unless the conditions of Lemma 4.4 are
intervals Clearly, the wider the critical intervals, the greater thelso satisfied; in that case, we can further identify the critical
likelihood that the optimal solution will contain critical jobs.jobs, which significantly simplifies the effort that goes toward
Once again, we remind the reader that all such critical intervala explicit solution of the problem.
can be precomputed through Lemma 4.3, so that the condition

V. ANALYSIS OF A PROBLEM CLASS WITH SEPARABLE COST
aj41 € [%;, B, @j,5] STRUCTURE

is one that may be tested off line for any given arrival time  For the remainder of the paper, we concentrate on a family of

and positive integeB. problems for which the cost functiors («;, ;) are separable
To illustrate the use of the preceding lemmas, consider tifethe sense that

example shown in Fig. 2 for the cagé = 3. In the figure, .

Z1,1, T1,2, T2,2, 1,3, T2 3, 3,3 have been computed for a Liwi, i) = 6i(us) +4hi(w:) (31)

given arrival timea; andB = 1, 2, and 3. First, consider thefor all : = 1, ..., N. In addition, we will make the following

implications of Lemma 4.4. WitilV. = N = 3 andL = 1, assumptions regarding the functiohs- ), v;(-), ands;(-).

according to the lemma if; » < a2 < 21 1, as shown in AssumptiorC1l: For eachi = 1, ..., N, 6,(-) is strictly

Fig. 2(a), then job 1 is critical (regardless @f). Therefore, convex, twice continuously differentiable, and monotonically

the optimal departure time for job 1 is = a.. Note that if decreasing withim,,. o+ 6;(u;) = —lim,. .o+ (d6;/du;) =

as < x1,2 then job 2 is definitely in the same busy period as jobo andlim,,, o 6;(w;) = lim,, .o (d6;/du;) = 0.

1, whereas ifzo > x; 1 then job 2 must start a separate busy AssumptiorC2: For eachi = 1, ..., N, ¢;(-) is strictly

period. Thus, the location af; relative to the critical interval convex, twice continuously differentiable, and its minimum is

[#1,2, z1,1] allows us to determine whether job 1 is criticalpbtained at a finite poird;.
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AssumptiorC3: Foreach =1, ..., N, s;(-)ismonoton- A sufficient, but not necessary, condition for uniqueness is
ically increasing and linear; (u;) = au;, o > 0. the strict convexity of the objective function

In the context of manufacturing systems, under Assumption
C3 we consider problems where processing times are propor- N
tional to the control. In the simplest case, we directly control J(ug, .., un) = Z {0:(w;) + i ()}
processing times (i.es; = ;) so as to trade off quality mea- i=1
sured througl®;(w;) against timely job completion measured
through+;(z;). For a concrete example, 16t(w;) = 1/u;, in the control sequencéu,, ..., ux}. Since the functions
pi(x;) = (x; — )%, ands; = au;, which satisfy Assump- 6;(u;) are convex (fromC1), their sum is convex. Thus, the
tions C1-C3respectively. In this case, each job is penalized f@onvexity of / depends on whether the composite functions
deviating from a desired target completion ticheln addition, 1;(x; (v, ..., ux)) are also convex in the controls; this would
short service times are penalized so as to ensure that eachetensured if the functior;( - ), in addition to being convex
is processed long enough to achieve its desired “quality” targ#tder C2, were also nondecreasing. However, this is not the
[recall the stopping rule (3)]. Note that this is a different familgase in our problem setting, since waly assumey;(-) are
of problems from those studied in earlier work in this frameworgtrictly convex.
[17], whered,( - ) ands;( - ) were strictly convex and monoton-  Example: We illustrate the nonconvexity of our cost function
ically increasing for positive arguments and processing tim#wough the following simple example with = 2. Leta; =1
s;(-) were inversely proportional to the control. andas = 2 and define cost functions as follows:

The main result of this section is to show that this class of
problems possesses Properfds-P4identified in the previous 1 1 . N2
section. Recall that it is under these properties that we were 01 (ur) = u B2(u2) = u’ Y1(e1) = (21— 5)%,
able to identify characterizations of critical jobs (Lemmas 4.4 Po(2) = (3 — 10)?
and 4.5). This, therefore, allows us to develop iterative algo- ' >\ 2 2 '
rithms for the explicit solution of the problem which are com- )
putationally efficient, since they help to decompose a TPBVBIS gives the cost function
into several smaller decoupled (or partially coupled) TPBVPs.

The uniqueness properBL is particularly interesting, because J(ug, ug) = 1 + 1 + (21— 5)% + (22 — 10)?
this class of optimization problemsnstconvex, despite condi- up o U2

tionsC1-C3 this issue is addressed in Section V-B. Note that, 1 .

in order to maintain the flow of the presentation, all proofs of as- T wn T (a1 +u1 = 5)

sertions made in this section have been placed in the Appendix. + [max(ay + w1, as) +uz — 10]2

A. Generalized Gradient Properties — ui + ui + (14 uy — 5)?
1 2

+ [max(1 4w, 2) +ug — 10]2.

Under Assumption€1-C3 we can establish the following
two properties of the generalized gradiegfsand¢;™ defined

in (25).
I(_err)1ma 5.1:Under Assumption€1-C3 & < & on an  The last term above is not a convex functionugf although it
optimal sample path. is convex inus. This nonconvexity is visualized in Fig. 3 where
Proof: See the Appendix. J(u1, ug)is plotted. Note that there is a single optimal point for
Lemma 5.2:Under Assumptions C1-C3 for every this function.
v =1, ..., m(¢) on an optimal sample path, In summary, establishing the uniqueness of an optimal solu-
tion for the optimal control problem (5) under (31) and Assump-
& =¢, and 5? =& (32) tionsC1-C3is not a straightforward task. We are, nevertheless,
) able to prove uniqueness by proceeding in two steps. First, in
Proof: See the Appendix. Lemma 5.3, we show thahe busy period structure of an op-

Remark 5.1:The previous result can be obtained undgfma| sample path is uniquéecond, in Theorem 5.1, we show
weaker conditions tharC3. Specifically, as long asi(ui) thatthe controls within each busy period are unique
satisfy A2 and have bounded derivatives, the perturbations| emma 5.3: Under Assumption€€1-C3 the busy period
aA and —aA to the service times of jobs andw, used i girycture of an optimal sample path is unique in the sense that
the proof, respectively, may be replaced (@; /du;)A and  he indicesa(4), for all i = 1, ..., NV, are unique.
—y(dsi/dui) A with v = (ds,, /du, ) [(dsi/dui). Proof: See the Appendix.
Given the uniqueness of the busy period structure, the lin-
earity of the service functions (Assumpti@8) makes it pos-
The existence of a nontrivial bounded solution to the ogible to establish that the controls within the busy periods are
timal control problem (5) under (31) and Assumptid@s-C3 unigue, and hence the entire optimal control sequence is unique.
is easy to verify, and we omit it. In what follows, we establish Theorem 5.1:Under Assumption€1—-C3 the optimal con-
the uniqueness of the optimal solution, a property which is nwbl sequence is unique.
as obvious as might appear at first sight. Proof. See the Appendix.

B. Existence and Unigueness of Optimal Control Sequence
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such that it does not end a busy period. Under Assumptions
C1-C3 du;/dzy, > Oforalli =1, ... L.
Proof: See the Appendix.

We can now prove Proper§3, as shown next.

Theorem 5.3:Under Assumptions1-C3 the noncritical
departure times in a busy period lower bound the optimal de-
parture times, i.es; p <z foralli =1, ..., B.

Proof. See the Appendix.

Finally, we establish Properti?4. Recall that in this case
¢ =1, ..., Lindexes jobs within a block ot jobs andz; , is
evaluated as a noncritical departure with respect to a busy period
starting with the first job in the block and containifigobs.

Theorem 5.4:Under Assumption€C1-C3 the noncritical
departure times in a block upper bound the optimal departure
times,ie.x; <o pforali=1, ..., L.

Proof: See the Appendix.

Fig. 3. An example of a nonconvex cost functidfu, uz). VI. SUMMARY AND CONCLUSION

In this paper, we defined a hybrid system modeling frame-
work (motivated from manufacturing environments) which
combines the time-driven dynamics of various physical pro-
cesses with the event-driven dynamics describing switches
cial step for developing efficient solution algorithms for th&@&tween Ehe phy5|c”al processes. Characteristic of the frame-
problem. For the class of problems considered in this SeCti(Wl(,)rk are “max-plus” equations describing the state dynamics.

under (31) andC1-C3 we have already established the first Ne nondifferentiability of the “max” function leads to non-

property (uniqueness of solution) in Theorem 5.1. We shall ngf'°0th optimization problems. However, exploiting properties
show that the remaining properti®32—P4 are also satisfied. of the optimal sample paths allows us to decompose it into a

As in previous sections, given a busy period consisting Spllection of independent busy periods and to partition the busy
jobs 1, ..., B on an optimal sample path, we shall denotReriods into blocks defined by “critical jobs.” Since critical

the optimal departure times for the jobs in this busy period BYPS aré responsible for making the problem nonsmooth, we
21, ..., z5. We also denote by; g the noncritical departure Have studied their properties and derived several conditions for
of the ith job in this busy period and remind the reader tha@€ntifying them in an optimal sample path. For a large class
noncritical departures are quantities that may be precompufiigProPlems, we have also shown that the optimal solution is
off line for any given arrival time (initiating the busy period)un'que* despite the fact that the cost functions involvechate

and positive integeB. We begin by proving that Propers2 convexand not differentiable and that some additional struc-
holds. tural properties hold, which enable the development of efficient

Theorem 5.2:Under Assumption€1-C3and a given arrival solution algorithms. The development of such algorithms is the
time a,, the noncritical departure times are monotonically dgubject of a parallel research effort. Ongoing work is aimed at
creasing in the number of jobs in a busy per{dd. . ., B}, i.e. extending our analysis to systems with more complex dynamics
v, =<z pforalli =1 BandB < B T (e.g., multistage processes), incorporating uncertainty into the

B P_roozf7' See the App’endijx - modeling framework, and considering problems where the

' o control sequence is time-dependent, we.may vary over the

Note that when the noncritical departures are not monotory- .. , : b

cally decreasing i (i.e., PropertyP2is not satisfied), then the diration of the physical process corresponding tathgob.

solution may not be unique and the critical intervals discussed
in the previous section shrink to points (i.e., in order for a job
to be critical it must arrive exactly coincident with a noncritical
departure). Thus, when the noncritical departures are not mono- Proof of Lemma 5.1:Under Assumption C3, let
tonically decreasing, critical jobs are not likely to occur. ds;/du; = o > 0. In view of (31), Lemma 3.2 gives

In order to prove Propertié®3 andP4, we will need the fol-
lowing additional result that identifies a monotonicity property .
of the optimal controls within block In particular, we show that I X dip;
if the end of a block is perturbed so as to increase (decrease) its § & =a Z d—a;} (33)
length, then the optimal controls associated waiithe jobs in g=m()+
this block must increase (decrease).

Lemma 5.4:Consider a block consisting of jobsWithout loss of generality, let us assume there are no critical
¢t = 1, ..., L on an optimal sample path and let the block bmbs betweenn(:) and the end of the busy period that contains

C. Properties of Noncritical Departures

In Section IV-B, we presented four propertieé—P4which
allow us to derive conditions for identifying critical jobs, a cru

APPENDIX
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job i. Then, the optimality conditions in Theorem 3.1 requirdods. Let us denote the two sample pathsbgnd B, respec-

thatg";l(i)Jrl = 5:5(1)+1 = 0 and we get tively. Let ¢ be the last job in the first busy period on sample
pathA, b be the last job in the first busy period on sample path

n(d) B, and assume (without loss of generality) that b. Using the
M +a Z W =0. subscripts4 and B to indicate variables on the corresponding

B (i) +1 jmm()+1 da sample paths, we will show that, for @l= 1, ..., a, the fol-

lowing two inequalities hold
By AssumptionC1, d6;/du,; < 0, from which it follows that
Ti, A <Xy B (35)
n() and
d a4 L
> o

T Si,A > Si,B- (36)
j=m(i)+1 J

. In view of the state equatio = ;4 and
and (33) implies thag;” < & [ view quations;, 4 = a1 +E; 1%, A
Proof of Lemma 5.2:To show that;” = & onan optimal %5 = %1 + Z =1 5i, B, (hese wo |n.equt':1llt|es clearly contra-
sample path, let € {1, ..., N} andv € {s, ..., m(i)}. By dict one gnother ThIS. cqntradlcuon |mpI|es_ that b, i.e., the _
busy periods must coincide, and the proof is complete. Thus, it

definition (19), we haven ) = Moreover, for allj € ! !
(19), (l ) = mli). J remains to prove that (35) and (36) indeed hold under the as-

— 1} we haver; , hence )
{i, ooy mli) =1} 7> sumptiona < b.
We prove (35) and (36) through a backward induction argu-
z;=a;+ Z sk forall j =1, ..., m(i). (34) ment. That s, we first show the result for jabthen assume the

result holds for jobs =k, ..., a (1 < k < a), and prove that
it must also hold for job = k£ — 1.

Consider a perturbatiof in u; about its optimal value and a  For job a, we proceed as follows. On sample path job
simultaneous perturbationA in «,.. UnderC3, letds; /du; = a ends the first busy period, in which case we must have
« > 0. It follows that the perturbed service times of jabsnd  %a,4 < aa4+1. On sample pati3, however, joba does not
v ares; + aA ands, — oA respectively. ForA sufficiently end the first busy period, implying that, 5 > a,+1. Conse-
close to 0, we can preserve the inequality > a;; for all quently,z,, 4 < x,, 5, establishing (35) fof = a.

j € {i,...,m(i) — 1} and leaver,,;, unaffected. Conse- To establish (36) for jolu, first note that since on sample
quently,.J( - ) is locally continuously differentiable i about PathA job ais the Iastjob in the first busy period, Theorem 3.1
A = 0. In addition, since we are assuming an optimal samplequires that; , = &, = 0. In view of (23) and (31) this

path,dJ(A)/dA = 0 atA = 0. implies that

Clearly, the only effects ofs on J( -) come from the terms 46, b
97;(u7;+A),9,,(u,,—A),andz/)j(a:j—i—aA)forj:i, o, v—1, du Oédx — = 0. (37)
since the departure times of jobs. .., » — 1 are perturbed as ad ad
a result ofA through (34). Therefore, On sample pattB, however, jobs: anda + 1 are in the same

busy period. If joba is critical, then Theorem 3.1 requires that

dJ(A) dy;  db, & and&’: g have opposite sign, which in view of Lemma 5.1
A |, duz -+ a Z dr;  duy =0 implies that
e = dé, n dipg, <0
Adding and subtracting the teras >-/- (’ (dy;/dz;) above aB T du, g “ dxe p ’
gives
If, on the other hand, jokis not critical, thenn g (a) = mp(a+
m(i) m(i) 1) > aand by Lemma5.2, we ha¥g ; =&, . Thus, from
dy; de, di; B . B a+1,B
=& — ¢ = 23) and (31),
cluZ Z dxj ( Z} dxj> & =0 (23 (31)
mp(a)
__ dba AP dba

where we have used the definition (23) and the facthb@) = {oB = du. 5 ta Z da:,»JB = tlB
m(v). This establishes the first part of (32). The second part “ j=a ot
follows directly from Lemma 3.2. | mp(a)

Proof of Lemma 5.3:The proof is by contradiction. In par- +a Z dip; =& g
ticular, suppose that, for a given arrival sequence, there exist two jmatl dzj B ot
different sample paths that both satisfy the optimality conditions
in Theorem 3.1; we shall then establish a contradiction. By subtracting common terms above, we obtain

Due to the idle period decoupling property (Lemma 4.1), we

can assume, without loss of generality, that the difference be- dé, dpg  dfaq1

tween the two sample paths is in their respective first busy pe- dua, B Ta dza B - duot1, B <0
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where the inequality follows fron€1. We have, therefore, es-where the inequality follows fror® 1. This proves that
tablished that

dfr_1 Ny,
db, dipg +a § L <0 (40)

0 38 :
dua,B + o d{]ja7B < ( ) duk_LB Pt dﬂ?g,B

regardless of v_vhether job is critical or not. Since we have whether joba is critical or not. Since, as already shown above,
already established that, « < =z, 5, we have, byC2, (35) holds for allk — 1, ..., a, it follows by AssumptionC2

dipe/dze, 4 < dipa/dze p. Therefore, comparing (37) and(strict convexity) that
(38) it follows that:

a

dip; L diy
df, S df, Z Z d-Tj,B'

dz;
jek—1 I

duayA dumB

_ o ) Therefore, comparing (39) and (40) it follows that
which, by C1, implies thatu, 4 > u, g. Finally, because of

C3, this establishes (36) for joh. dfr_1 dfy—1
Next, suppose that (35) and (36) are both satisfied for jobs dun_1,4 - duk_1 B
t=k,...,a(l <k < a). We will now proceed to show that
they are also satisfied far= k£ — 1. and the strict convexity df,_1 (- ) in Climplies thatu,—; 4 >

First, from the state equation (14) we haye 4 = xx—1, 4+ ux—1 5. By AssumptionC3, this yields (36) for jobk — 1 and
sk, 4 andzy, g = x1—1, B + sk, . Since (35) and (36) hold for completes the inductive argument, thus establishing (35) and

job k, itimmediately follows thatex—;1 4 < zx—1, B, 1.€.,(35) (36) which were needed to complete the proof. [ ]
is satisfied for jobt — 1. Proof of Theorem 5.1:Consider a busy period on the
Now, consider (36). On sample path if job £ — 1 is not optimal sample path that consists of jobs, ..., n}. From
critical and there are no critical jobs between job 1 and job Lemma 5.3, the order of this busy period in the sample path
a (which ends the busy period on sample pajhthen Theorem and its composition(k, ..., n} are unique. By Assumption
3.1 requires tha‘f,j_1 4 = 0.1f, on the other hand, job —1 C3, lets;(u;) = cu,; + 8 with &« > 0. Thus, the optimal control
is critical or there are critical jobs between jbb- 1 and joba, sequencguy, ..., u, } minimizes the cost function
then Theorem 3.1 and Lemma 5.1 require #jat, 4 >0.1In
view of (24) and (31), we have, therefore, established that T, (U -y Up)
_ di  diy =3 " {0:(wi) + ()}
§1,a= g1 A t+a _zk: Zia 2 0. (39) i=k
j=k—1
Next, foralli = & — 1, ..., a, we haver; 4 > a;4;. Since, = Z{ w;) + 1 (ak + Z o +/3)> } (41)
as shown above, (35) holds for al= &£ — 1, ..., a, we have : j=k
;a4 <z p,i=k—1,...,a anditfollowsthat; p > a;1; . . .
foralli = k—1, ..., a. This means that on sample pdhhere subject to the linear constraints
can be no critical jobs betwedn— 1 anda. Regarding johz, i
there are two cases. Firstdfis critical, i.e.,mp(k — 1) = q, ax + Z (ou; + f) > ai, i=Fk ... on—1
then by Theorem 3.1 and Lemma 5.1, =
&= dbr—1 Yo Z dip; <o. ag + Z (ou; + B) <antr
: dui_1 B ParniiLCINY J=k
u; >0, =k, ...,n. (42)
Second, if jobz is not critical, we haven g (k—1) = mp(a+1)
and, by Lemma 5.%;" | 5 =&, - Thus, from (23) Using the strict convexity of¢;(-) in Assumption C1,
the function"" , 6:(w;) is strictly convex as the sum of
s (k1) s (k1) strictly convex functions. Using the strict convexity #f( - )
-y ) dipj i 4% in AssumptionC2, the functionyy;(ax + 35_, (au; + )
duk_1,8 Paralt dr; B dugy1,B Pt dr; p is convex, as a strictly convex function of a linear function
in ug, ..., u; (note, however,that it is not necessarstyictly
convex). Therefore,Ji ,(ux, ..., u,) is the sum of the

which after subtracting common terms gives ; ! " .
strictly convex functiond ", 6;(u;) and the convex function

o “ oy " Sk Yi (@ + 325 (o + B)), which yields astrictly
IRl L s = atl ¢ convex function. Thus, the problem of minimizing (41) subject
dup—1,8 1 drjp  duetr,B to the constraints (42) is a convex program, which, therefore,
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has a unique solution. Since there is a unique optimal contiidhis, however, is a contradiction, since optimality for jBbt 1
sequence for jobs in every busy period and since the bugguires
period structure itself is unique from Lemma 5.3, it follows that _
the optimal control sequence is unique. [ | dfpy1 5 dib;

Proof of Theorem 5.2:Consider a busy period containing Z
B jobs on an optimal sample path, and suppose that none of the
jobs in the busy period are critical. By idle period decouplingshich, givenC1, requires
(Lemma 4.1), we lose no generality by indexing the first job in 5
this busy period as = 1, in which case the last job has index dip;
B. Now, suppose we change the arrival sequence in such a way @ Z
that when the optimal controls are recomputed, the busy period
now containsB > B jobs, none of which are critical. We now!n summary, assuming, 5 > 1, p leads to a contradiction
proceed to show that the optimal departure times (coincidigéd this establishes the mequal:ttyB < 71, B-

=0 (46)

duB+1,§ j=B+1 dxj,B

j=B+1 j,B

with the noncritical departure times since the busy perlods doNext, assuming the result holds for jobs= 1, ..., k <
not contain any critical jobs) satisty, 5 < «;,  forall i = B — 1 we will show that it holds fot = k + 1. The proof here
1 B. ’ is virtually identical to the one used above for jbb= 1. That

The proof is by induction. We begin by showing the resuis, suppose that, ,, 5 > z+1, 5. The state equation gives
for job : = 1 (basis step). Then, assuming the result holds for
jobsi =1, ..., k < B — 1, we show that it also holds for job
i=k+1. and, since the result holds for all = 1, ..., k, we must

The proof ofa:]L 5 < 71, g is by contradiction. Suppose thathave U 1§ 2 Uk+l, B Thus, by C1, d9k+1/duk+1 5
5 2 T1,B- Then, since both busy periods begin at a common d9k+1/duk+1 B, and, by C2 d1/1k+1/dxk+173
t|me the state equation (14) a8 imply thatu1 5 = B > dippt+1/dziy1, . Using these inequalities and the op-

Ty =45 T QU B2 Tk B+ QULLL B = Thy1, B

As a consequence, Assumptidds andC2 give del/dul timality equation
df /duy, p anddipy/dz| 5 = dip1/dx:, p. Recalling Theorem = 5
3.1, optimality of the controIsL1 5 anduy, p requires that AOr1 ta Z dipy by ta Z d;
_ dupi1 5 j=ht1 dz; 5 durtip k+1 *i.B
B B
db, Z dp; _ b 3 di we infer that
dul B E dul B da:j B —
s =1 ’ 1 ’ B B
3 dy 3 dy,
which, in light of the two previous inequalities, implies that Pt da?jﬁ - Pl dz; B

B B Proceeding exactly as before, we arrive at the conclusion that
dip; dip;
«@ E <a E . (43) B
j=2 J B =2 de:B d’(/) < 0
= s = (8% E
, de, =
j=B+1 4B

Continuing, optimality of the controls, ; andu., g requires

that which, by the optimality of the control for jo8 + 1 in (46)
_ andC1, gives a contradiction. This contradiction establishes that
B
d92 dip; dbo dip; Tp41. 5 < Tr+1, B, @nd, hence, completes the proof. |
J_ = + o —,J =0 (44) Proof of Lemma 5.4:Consider the conditions that must be
du2 B dx B
3,B s i=92 s

satisfied by the jobs in a block on an optimal sample path. These

which, given (43), implies than/duQ > i /dus, 5. By conditions are obtained from the cost function

AssumptionC1, it follows thatu, 5 > uz, p. Substituting this _
into the state equation, and recalling the assumptior; > 7= z_: {6:(ws) + ilaa)}
r1, B, We getr, 5 2> 72, 5. Thus, by Assumptio€2, we have, . =t
d"(/}g/d.TQ & > dips/das, 5, which, from (44), gives subject to
B ) B ) 377;:@14-04211,]' and T = ar41
oS Wi 3 LV =
— da:,E - d$j7B . . . e
=2 J=3 as long as the block is not the last in a busy period. Adjoining
This argument is carried forward for jobs= 3, ..., B leading the two constraints to the cost gives

to the conclusion

M=

J= ALE (i) + Ai j— T
= . 1 (ui) + s () + al—i—ocjz::luj z
> <o (45)

j=B+1 dxj,B +virr —apt1)

-
Il
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where); is the:th costate and is an additional multiplier. The > di g /dx 5. Recalling the optimality equation from Theorem
necessary conditions for optimality that must be satisfied by tBel for job B in this case, the noncritical departures and corre-

jobs in the block are sponding controls must satisfy
o _ b o i L B
d Bl 1 da:i ’ dU,B7B daZB7B
= N whereas in the busy period that contains at least one critical job
foralli =1,..., L, along with boundary conditions;, = \ye have
ar+1 andAy, = dvr, /dz . Comparing the optimality equations 4o i)
fori:1,2,weget =" 1a—"L =0
dU,B d.TB
d91 Z i = ﬁ Z d; since jobB cannot be the critical one. Comparing the last two
dul da; dej equalities and in view oflyp /dzp, p > dig/dzp, we must

havedfg/dug g < dfg/dup, which, by AssumptionC1,
givesup B < uB.

a6y o dipy - 62 Using the state equation a@B, we have

dul da:l dU,Q

and differentiating with respect toy, gives

Cancelling common terms we get

Tp,B=2%p-1,Bt+toup p > Tp_1+aup =2p

d291 duy d?wl dry 2 92 dU,Q and it f0||OWS.that’L'B_17B-> x_B—l- . -
—— T tao—% T —= Next, consider the optimality equation for ja — 1. The
dui dxp, dxy dey du2 da:L S . .
noncritical departures and corresponding controls must satisfy
Recalling thatz; = a1 + «uy, therefore,dzi/dz; = B
alduy /dzr), we get dfp_1 dip;
2 2 2 - LB dUB—1B+a Z dxfB_O
<d 91 2 d ”(/)1) dul d 92 dUQ ? j=B-1 5
—— T« —= = .
du? de? ) dzp  duj drg whereas in the busy period that contains at least one critical job
By the strict convexity of the function& ands (Assumptions We have
C1 andC2), the expression above implies thét; /dzr and deB L
duy/dxy, must have the same sign. &b, = Z dwj 20
Proceeding the same way for= 2, 3, we can show that j=B-1
duy [dr, dug/drr, anddus/dry, all have the same sign. Con-where the inequality accounts for the fact that it is possible that
tinuing the argument for all remaining= 4, ..., I, we reach job B — 1 is critical. Since we have shown thaf 5 > =; for
the conclusion that allu; /dz,, + = 1, ..., L, have the same ; = p—1, B, itfollows fromC2thatds; /dx;, p > di;/dx; for
sign. Moreover, note that i = B — 1, B. Therefore, comparing the two equations above,
we conclude thaiHB,l/duB,L B < derl/dU,Bfl, which by
rr =a1 +« Zuj C1, giVGSU,B_L B < Up—1.
Continuing this argument for jobs= B — 2, ..., 1, we ar-

and differentiating with respect te;, gives rive at the conclusion that; g > z1 anduy, g < u;. However

r1,p=a1t+au, g >x1 =a+auw

1— du;
-« Z drr implying thatw; g > w1 which contradictsy g < ;. This
=t contradiction establishes the result for jos B.
implying thatdu; /dzy, > 0 for atleastong € {1,..., L}.  we can now use the inequalitys p < =, just established,
However, since alfw; /dxr,i =1, ..., L, have the same sign, 1o show the result for all of the other jobs in thast blockin the
it follows thatduw; /dz, > 0 for all i= 1 , L. B pusy period. Thus, if is the last crltlcal job in the busy period,
Proof of Theorem 5.3:Consider a busy period consistingye havet = Oforalli =j+1, — 1. For jobB, using

of B jobs on an optimal sample path. As usual, there is no losstak optimality equation as before we have
generality if we index the first job in this busy periodias 1, in d0 i d0 i
which case the last job in the busy period is B. Denoting the B o B 7B 4 28
noncritical departure times by g, ..., p, g and the optimal dup,p drp,p  dup dap
departures by, ..., 5, we will now show that, for a fixed Sincexrs g < xp we have (bYC2) diop/dzp, g < diyp/dz g,
a1,z p < xforali=1,..., B. therefore the equation above implies thdtz/dug g
The resultis trivial when the busy period does not contain afy df 5 /du 5. By C1, this implies thatug, 5 > ug. Using the
critical jobs, since in this case the optimal departures coincid#ate equation an@3, we then get
by definition, with the noncritical departures, i.ey, g = ;
fori = 1, ..., B. Let us, therefore, consider a busy period
that containsat least onecritical job. Consider the inequality Repeating this process foe= j + 1, ..., B — 1, we establish
for the caseé = B, and suppose that it does not hold, i.e., lehe result for every job in the last block, including the last critical
xp, B > xp. By AssumptiorC2, this implies thatly's /dzs 5 job in the busy period.

=0.

TB-1,B —TB,B— QUB,B S TR — QUB = LB—1-
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It remains to show that the result holds for the remainingomparing the two equations above we get
jobs in the busy period. To do so, let us first suppose that do d do d
the busy period contains only two blocks, i.e., only one 7 L +a% < P L +ad1/)L .
critical job. Index the first job in the busy period as 1, the “r L duL L TL,L
critical job as L, and the last job as3. We just showed Now, assume that; > zr . If this is true, thendy, /dxy,

thatz; p < z; foralli = L, ..., B, hencexy g < zr. > dyp/drr, 1 (AssumptionC2). The inequality above then
Recalling Lemma 4.2, the optimal controls, and hence optimaiplies thatdfr, /duy, < dfr/dur 1, which, by C1, implies
departures, in a block of job$l, ..., L} are obtained as u; < wuy, . Invoking the state equation a@B, we get

the solution of an optimization problem involving the cost

functions Ly (z1, u1), ..., Ly (zr, ug) satisfying AL, with TL-1 = &L — QUL > TL, L — QUL L = FL-1,L

the terminal constraint;, = ar41. Thus, foralli =1, ..., L, and it follows thatdy,_; /dzp—1 > dipr_1/dx_1 1. Re-

ui{ag41) andz;(az41) are continuous functions afz11 for  peating the process for jab — 1 (which is not critical) we get
ary1 < op p. Whenapyy = xp, L We getzi(ary1) = @i,z from Theorem 3.1
and for allap+1 > zr 1 we haver;(ar+1) = z; 1 since the

block becomes a busy period without any critical jobs, therefore dfr—. Ta EL: dy; -0

the optimal departures are given by the noncritical departures dup_1 Pyl dx;

z1 L, ---, L, . We may now use Lemma 5.4, which asserts o

thatdu; /dzy, > 0, therefore, (from the state equation 2p@ and, by the definition o0&z,

dx;/dxy > 0forall¢ =1, ..., L in the block. In particular, 40 L dios

sincezy g < xL St Tl BTN Z Vi -0
dur—1,1 L dagr

L L J
Trp,B =01+« Z uj,p < a1+ Z Uj = T, Comparing the two equations in view of the inequalities previ-
j=1 j=1 ously derived, i.e.dip; /dz; > dip;/dx;  fori = L —1, L,

i.e., the sum of the optimal controls in the block is greater tha# conclude thadfy,/dur—, < dfr_,/dur—., 1, therefore
the sum of the controls under noncritical departures. Thus,(BY C1) uz—1 < ur-1, 1. Using the state equation a@8 as
least one of the controls must have increased as the length ofRRETe, We getrz—» > zr_ 1. Continuing this argument for
block increases from;, g to zz,. From Lemma 5.4, however,100S¢ = L —3, ..., 1 we finally getuy < ui,r, z1 > w1, 1.
this immediately implies that the controls falf jobs must have The state equation ar@3 once again give
increased. Hence, the departure times of all the jobs in the block
increase, thus establishing the inequatitys < z; for all i =
1,..., L—1. which contradicts the fact that; < «; 5. This contradiction
Finally, we must show the result also holds when the busgtablishes that; < zr, 1.
period has more than one block, i.e., two or more critical Givenz, < zy_r, the result for the remainder of the jobs in
jobs. Letk, j be the first and second critical job respectivelyhe block follows from Lemma 5.4, again noting (as in the proof
in a busy period with three blocks. Then, consider jolaf the previous lemma) that;(ay+1) is a continuous function

T1 =01+ Qur > a1 +oul L =1L

{k + 1,..., B} and note that the noncritical departuresfary; = «r. In particular, note that

ZTk+1, Bk, -- -, TB—k, B—k depend only ony, and onB — k I I

(Lemma 4.3). Thgrefo_rg,_ we may tregt + 1, ..., B} as a T =a +o Z wi <ai+a Z wir =21

separate busy period initiated hy.; for the purpose of eval- = =

uating these noncritical departures. Moreovef,i, ..., z; . i ]

depend only onu.; anda;4; (Lemma 4.2) and, similarly -€- the sum of the controls in the block decreases relative to

for x4, rp, i.e lej rp are independ,ent of any the controls under noncritical departures. Thus, as the length of
Jtls < es LBy L8, Thg1, - -,

arrival times prior toa,,. Therefore, the result previously € Plock decreases fromy,, 1, toz;, atleast one of the controls

obtained for two blocks ovef1 B}, applies to the two must decrease. From Lemma 5.4, however, this immediately im-

, ..., B},

blocks{k + 1, ..., 5} and{j + 1, ..., B}, and by repeating plies that the controls faall jobs must have decreased. Hence,
this argument to more than three blocks the proof is commietd!® departure times of all the jobs in the block decrease, i.e.,

Proof of Theorem 5.4:Consider a block consisting @f  %i < @i,z foralli=1,..., L. u
jobs on an optimal sample path. Index the first job in the block

as job 1 and suppose the block begins at timeWe begin by REFERENCES
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