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Optimal Control of a Class of Hybrid Systems
Christos G. Cassandras, Fellow, IEEE, David L. Pepyne, Member, IEEE, and Yorai Wardi

Abstract—We present a modeling framework for hybrid systems
intended to capture the interaction of event-driven and time-driven
dynamics. This is motivated by the structure of many manufac-
turing environments where discrete entities (termedjobs) are pro-
cessed through a network of workcenters so as to change their
physical characteristics. Associated with each job is atemporal state
subject toevent-driven dynamicsand aphysical statesubject totime-
driven dynamics. Based on this framework, we formulate and ana-
lyze a class of optimal control problems for single-stage processes.
First-order optimality conditions are derived and several proper-
ties of optimal state trajectories (sample paths) are identified which
significantly simplify the task of obtaining explicit optimal control
policies.

Index Terms—Hybrid system, nonsmooth optimization, optimal
control.

I. INTRODUCTION

T HE term “hybrid” is used to characterize systems that com-
bine time-drivenandevent-drivendynamics. The former

are represented by differential (or difference) equations, while
the latter may be described through various frameworks used for
discrete event systems (DES), such as timed automata, max-plus
equations, or Petri nets (see [5]). Broadly speaking, two cat-
egories of modeling frameworks have been proposed to study
hybrid systems: Those that extend event-driven models to in-
clude time-driven dynamics; and those that extend the tradi-
tional time-driven models to include event-driven dynamics; for
an overview, see [1]–[3], [12].

The hybrid system modeling framework we consider in this
paper falls into the first category above. Although its scope is
general, it is largely motivated by the structure of many manu-
facturing systems. In these systems, discrete entities (referred to
asjobs) move through a network of workcenters which process
the jobs so as to change their physical characteristics according
to certain specifications. Associated with each job is atem-
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poral state and aphysicalstate. The temporal state of a job
evolves according to event-driven dynamics and includes infor-
mation such as the waiting time or departure time of the job at
the various workcenters. The physical state evolves according
to time-driven dynamics modeled through differential (or dif-
ference) equations which, depending on the particular problem
being studied, describe changes in such quantities as the temper-
ature, size, weight, chemical composition, or some other mea-
sure of the “quality” of the job. The interaction of time-driven
with event-driven dynamics leads to a natural tradeoff between
temporal requirements on job completion times and physical re-
quirements on the quality of the completed jobs. For example,
while the physical state of a job can be made arbitrarily close to
a desired “quality target,” this usually comes at the expense of
long processing times resulting in excessive inventory costs or
violation of constraints on job completion deadlines. Our objec-
tive, therefore, is to formulate and solve optimal control prob-
lems associated with such tradeoffs.

The analysis and synthesis of optimal controllers for hybrid
systems clearly requires a combination of techniques appli-
cable to both time-driven and event-driven systems. In the
latter case, although the parametric optimization of DES has
been extensively researched (e.g., see [5] and the references
therein), little progress has been reported in the area of optimal
control, short of stochastic control methods (e.g., stochastic
dynamic programming) that typically seek to optimize steady
state (as opposed to transient) performance metrics. There
are at least two important difficulties that have been blocking
such progress: 1) the absence of a synchronizing clock that
would permit the use of methodologies developed for classical
time-driven systems (e.g., [4]); and 2) nondifferentiabilities in
the event-driven state dynamics which limit the use of classical
gradient-based techniques. Recently, however, it has been
shown that these difficulties can be overcome in at least some
problems [10], [17].

In this paper, we formulate and analyze a large class of op-
timal control problems for hybrid systems. We then show how,
despite the difficulties mentioned above, the task of solving
these problems is greatly simplified by exploiting the properties
of the optimal state trajectories. In particular, an optimal state
trajectory can be decomposed into fully decoupled segments,
termed “busy periods.” Moreover, each busy period can be fur-
ther decomposed into “blocks” defined by certain jobs termed
critical; identifying such jobs and their properties is a crucial
part of the analysis and the key to developing effective algo-
rithms for solving the optimal control problems. This observa-
tion was first made in [17] where a simpler and somewhat dif-
ferent problem than those included in the general framework
of the present paper was analyzed without the use of any non-
smooth optimization techniques.
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Fig. 1. Hybrid system framework.

The main contributions of our analysis are the following.
First, we derive several conditions for identifying the critical
jobs in an optimal sample path: One is a necessary and sufficient
condition requiring minimal assumptions on the cost function;
two more are sufficient conditions satisfied when the system
has certain key properties. Second, for a class of problems with
separable cost structure, we show that these key properties are
indeed satisfied, which enables the development of efficient
solution algorithms. We do not dwell on such algorithms in this
paper, but refer the reader to related work reported elsewhere
[8], [16], [18], [20], which is based on the results of this
paper and is exclusively devoted to such algorithms and their
analysis. Third, we also establish that for this class of problems
the optimal solution isunique, despite the fact that the cost
functions involved arenot convexandnot differentiable.

The paper is organized as follows. In Section II, we present
a general framework for hybrid systems emphasizing the cou-
pling between the time-driven dynamics of the system and the
event-driven dynamics that govern switches in the system be-
havior. We also formulate an optimal control problem for the
class of hybrid systems we consider. Section III analyzes the
necessary conditions for optimality, introduces the nonsmooth
optimization elements needed to handle the nondifferentiabili-
ties involved, and concludes with a theorem that characterizes
an optimal control sequence. Section IV presents several prop-
erties of the optimal solutions and introduces the concept of
“critical jobs,” crucial in the characterization of optimal sample
paths. Conditions for identifying critical jobs are also derived in
this section. In Section V, we analyze a class of problems with
separable cost structure and show that a solution is unique even
though the problem is not convex and not differentiable. We es-
tablish four important properties of the optimal sample paths,
which facilitate the determination of critical jobs and hence the
evaluation of the optimal solution.

II. PROBLEM FORMULATION

The general hybrid system framework we consider is illus-
trated in Fig. 1. A system is initially at somephysicalstate at
time and subsequently evolves according to thetime-driven
dynamics

where is a control (assumed scalar). At time, a switch
(event) takes place causing the physical state to become

. In general, we allow for ,
and the physical state subsequently evolves according to new
time-driven dynamics with this initial condition. The time of
this switch, which we refer to as thetemporal state of the
system, depends onevent-drivendynamics of the form

In general, after theth switch, the time-driven dynamics are
given by

and the event-driven dynamics by

(1)

Note that the choice of control following theth switch affects
both the physical state and the next temporal state . Thus,
the switches at times are generallynot exogenous
events that dictate changes in the state dynamics, but rather tem-
poral states intricately connected to the control of the system.
We emphasize this fact since it is one of the crucial elements of
a “hybrid” system. In some applications, the event-driven dy-
namics (1) may be viewed as exogenous switching times, sub-
stantially simplifying the analysis; this is not the case in the
problems we tackle in what follows.

In the context of manufacturing systems, the switches in
Fig. 1 correspond to jobs that we index by . We
shall limit ourselves to a single-stage process modeled as a
single-server queueing system. The objective is to process
total jobs. The server processes one job at a time on a first-come
first-served nonpreemptive basis (i.e., once a job begins service,
the server cannot be interrupted, and will continue to work
on it until the operation is completed). Jobs arriving when the
server is busy wait in a queue whose capacity is . As job

is being processed, itsphysicalstate, denoted by ,
evolves according to time-driven dynamics of the general form

(2)

where is the time processing begins andis the initial state
at that time. The control variable (assumed here to be scalar
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and not time dependent for simplicity; however, see [11]) is used
to attain a final desired physical state corresponding to a target
“quality level.” Specifically, if the service time for theth job is

and is a given set (e.g., a threshold above
which satisfies a desired quality level), then the controlis
chosen to satisfy the stopping rule

(3)

where takes a fixed constant value during the interval
, and the “min” is assumed to exist. On the other hand, the

temporalstate of theth job is denoted by and represents the
time when the job completes processing and departs from the
system. Letting be the arrival time of theth job, the event-
driven dynamics describing the evolution of the temporal state
are given by the following “max-plus” recursive equation:

(4)

where we set in which case
and the first job begins service as soon as it arrives. It is as-
sumed that the job arrival sequence is given (in
some earlier work [10], arrival times were considered to be con-
trollable). The recursive relationship (4) is known in queueing
theory as the Lindley equation [5], and is the specific form of
the event-driven dynamics (1) applicable to this particular hy-
brid system. In Fig. 1, an idle period corresponds to a situation
where , in which case there is an interval
on the temporal state axis during which the physical state is un-
defined.

This system ishybrid is the sense that it combines the time-
driven dynamics (2) with the event-driven dynamics (4), the two
being coupled through the choice of the control sequence. The
optimal control problem we consider has the general form

(5)

subject to (2)–(4), where is a cost function associ-
ated with job . Note that this formulation does not require an
explicit cost on the physical state, since (3) ensures that each
job satisfies a given quality requirement, i.e.,

. This stopping rule defines a separate optimiza-
tion problem, which must be solved to obtain the service time
and its derivative. As an example, let be a function of
the control and suppose that the physical dynamics in (2) do
not depend directly on the control. Thus, (2) and (3) assume the
following respective forms: with initial condition

, and : . It
can be seen, by directly applying variational principles, that

assuming, of course, that the relevant derivatives exist.

The problem defined above appears similar to classical dis-
crete-time optimal control problems commonly found in the lit-
erature (e.g., [4]) except for two issues. First, the index

does not count time steps, but rather asynchronously
departing jobs. Second, the presence of the “max” function in
the state equation (4) prevents us from using standard gradient-
based techniques, since it introduces a nondifferentiability at the
point where .

Regarding the first issue, although the absence of a synchro-
nizing clock presents a difficulty encountered in all DES, note
that the mathematical treatment of the recursive equation (4) is
in fact no different than that of any other similar recursion where
the index represents synchronized time steps as in classical dis-
crete-time optimal control problems. Therefore, this issue is not
really problematic. Regarding the second issue, previous work
[17], [10] has shown that the nondifferentiability problem can
be overcome in at least special cases of the problem formulated
above, and that the “max” function exhibits certain useful struc-
tural properties that can be exploited to simplify the analysis and
lead to efficient numerical solutions. For the more general class
of problems considered here, we will invoke ideas and results
from nondifferentiable calculus (e.g., [6]) to deal with the non-
differentiability issue.

Example: To illustrate the use of the framework and
problem formulation presented above, we outline below an
optimal control problem for steel heating/annealing manufac-
turing processes involving a furnace integrated with plant-wide
planning and scheduling operations; full details and solutions
based on the methods presented in this paper may be found
in [7]. Individual steel “parts” (i.e., ingots or strips) undergo
various operations to achieve certain metallurgical properties
that define the “quality” of the finished products. In particular,
the steel heating/annealing process is an important step which
involves slowly heating and cooling strips to some desired
temperatures. Before heating and cooling each roll of strips,
a higher level controller determines the furnace reference
temperature (more generally, a “furnace heating profile”)
which the strip should follow, as well as the amount of time that
this strip is held in a furnace. Raw material, (e.g., a cold-rolled
strip) is put on a pay-off reel on the entry side of the line and
runs through with a certain line speed. The physical state of the
th strip in this process is denoted by and represents the

temperature at each point of the strip as it evolves through the
heating furnace. The strip temperature is basically dependent
on the line speed , which usually remains constant during
the process, and thefurnace reference temperature , which
is predesigned at a plant-wide planning level. The thermal
process in the heating furnace can be represented by a nonlinear
heat-transfer equation describing the dynamic response of each
strip temperature so that the temporal change in heat energy at
a particular location is equal to the transport heat energy plus
the radiation heat energy [9] as follows:

(6)

where
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and is the furnace length [m], is the heating start time,
is the Stefan–Boltzmann constant kcal/m h

, is the coefficient of radiative heat absorption
(determined as 0.17 from actual data),is the strip

specific heatkcal/m , and is the strip thickness [mm].
Since (6) is in nonlinear differential form, it is hard to rep-

resent solutions in an explicit form. It turns out, however, that
such solutions can be accurately approximated by exponential
functions obtained as solutions of

(7)

where is an arbitrary function appropriately chosen to
achieve a desired level of accuracy. In [7], is taken to be
a monotone increasing polynomial function of, i.e.,

for some , an approximation success-
fully employed in practice [21].

Next, the temporal state of theth strip consists of two vari-
ables, and , where represents the time when the job starts
processing at the furnace andrepresents the time when the job
completes processing and departs from the system. The need for
two variables is due to the fact that we must distinguish between
the starting time of the ( )th job and the completion time of
the th job (i.e., ), since each job is a continuous strip
of a typical length, not a discrete entity. Lettingbe the arrival
time of the th strip, the event-driven dynamics describing the
evolution of these temporal states are given by

and

subject to

(8)

where is the elapsed time for the whole body of the strip
to enter the furnace, which is dependent on the length of the
strip, and is the processing time for each point of the strip
to run through the furnace, which is dependent on the length of
the furnace. In addition, and are the minimum and
maximum allowable line speed respectively, and we assume that

.
In this system, we consider two control objectives: 1) to re-

duce temperature errors with respect to the furnace reference
temperature, and 2) to reduce the entire processing time for
timely delivery using acceptable levels of line speed,. Thus,
the optimal control problem of interest is

(9)

subject to (7) and (8). The function above is the cost re-
lated to jobs departing at time. For example,

is such that a job departing after the due dateincurs a tar-
diness cost completing before its due date incurs an inventory
(backlog) cost. The function is selected so as to penalize
the deviation of theth strip temperature from the reference tem-
perature,

(10)

where is the time each point of the strip stays in the furnace
and is a weighting factor.

III. N ECESSARYCONDITIONS FOROPTIMALITY

We begin by invoking basic variational calculus techniques
to study the minimization problem in (5) subject to (4). As in
standard discrete-time optimal control problems, we define the
augmented cost

(11)

where and are -dimensional vectors for the temporal state
and the control, and is an -dimensional vector for the costate
sequence used to adjoin the temporal dynamics in (4) to the cost
in (5). Throughout the rest of our analysis, we will make the
following assumptions.

AssumptionA1: The one-step costs and the ser-
vice functions are continuously differentiable for all

.
AssumptionA2: The service functions are monotoni-

cally increasing for all .
Note that AssumptionA2 can be replaced by service func-

tions that are monotonicallydecreasing, depending on the na-
ture of the control variables , yielding dual results to those we
will subsequently derive.

Ignoring for the moment the nondifferentiabilities associated
with the “max” operation in (11), the standard first-order neces-
sary conditions for optimality require that

for all

(12)
The first equation above gives the stationarity condition

(13)

The second equation in (12) recovers the state equation

(14)

with initial condition . Finally, the third equation
gives the costate equation

(15)

with boundary condition

(16)

Equations (13)–(16) define a two-point boundary-value
problem (TPBVP), whose solution provides a control sequence
satisfying the necessary conditions for optimality. TPBVPs are
notoriously hard; in our case, matters are further complicated
by the presence of the “max” function in the costate equation
(15). This function is Lipschitz continuous, differentiable in
everywhere except at the single point where with

if
if .

(17)
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Moreover, at the point where , the left and right
derivatives clearly exist, given by 0 and 1, respectively.

As the system operates, the sequence of arrival and depar-
ture times defines a state trajectory (or sample path). On any
sample path, the points where acquire special sig-
nificance, since they are responsible for the nondifferentiability
of the “max” function in the costate equation (15). When such
points are part of the optimal solution, the necessary conditions
above cannot be used to establish optimality, and we must ap-
peal to nonsmooth optimization theory, as described next. This
will lead to the main result of this section, Theorem 3.1.

1) Nonsmooth Optimization:Given AssumptionA1, the
augmented cost , as the sum of Lipschitz functions, is itself
a Lipschitz function. Such functions are continuous, but not
everywhere differentiable. They are, however, differentiable
almost everywhere(Radmacher’s theorem). For Lipschitz func-
tions, nonsmooth optimization gives the necessary conditions
for optimality [6], [15]. In particular, suppose is
a locally Lipschitz continuous function of , and let

denote the set of all sequences that
satisfy the following three conditions: i) as ,
ii) The gradient exists for all , iii)

exists. Then, thegeneralized gradient
of at is denoted by and defined as the convex hull
of all limits corresponding to every sequence .
The generalized gradient has the following three fundamental
properties [6]: i) is a nonempty, compact and convex
set in , ii) is a singleton iff is continuously
differentiable in some open set containing, in which case

, and iii) if is a local minimum of , then
. The last property is an extension of the classical

stationarity condition in (13), and becomes the first-order
optimality condition in nonsmooth optimization.

As described above, the necessary condition for the opti-
mization of nonsmooth Lipschitz functions is given in terms
of . Our task now, therefore, is to identify . In order
to do so, we introduce the following terminology that will be
essential to all subsequent analysis:

Definition 1: An idle period is a time interval
such that for any .

Definition 2: A busy periodis a time interval de-
fined by a subsequence such that i)

, ii) for all , and iii) .
These terms are borrowed from classical queueing theory. An

idle period is simply a time interval of strictly positive dura-
tion during which the server has no jobs to process, and a busy
period is a time interval during which the server is processing
jobs without any interruption caused by an empty input queue.
A busy period, initiated at time , must always follow an idle
period, be followed by another idle period, and allow no other
idle periods within it. We also set for consistency.
The next term is introduced to capture an important special fea-
ture which we will show characterizes optimal sample paths for
our problem.

Definition 3: A critical job with index is one that satisfies
.

Note that a critical job corresponds precisely to the situation
where the “max” function is not differentiable in (15). More-

over, note that a critical job cannot end a busy period; however,
a busy period may contain one or more critical jobs.

In order to identify the busy period structure and the locations
of critical jobs within a busy period, we associate with every job

the following two indices

(18)

(19)

In words, is the index of the last job in the busy period
containing job . Regarding , if job is critical or there
are critical jobs between joband the end of its busy period,
then is the index of the first such critical job; in this case,

and we have . If, on the other
hand, job is not critical and there are no critical jobs between
job and the end of its busy period, then is the index of
the job that ends the busy period, i.e., .

2) The Case: This is the simpler of the two
cases, where job is not critical, there are no critical jobs
between job and the end of its busy period, and we have

for all
and . Therefore, all
derivatives in the costate equation (15) exist and we get,

Then, the optimality condition (13) becomes

where we have omitted the arguments of the functions
and . Clearly, the same result holds when there are critical
jobs in the busy period containing job, as long as these critical
jobs precedejob in this busy period. In summary, we have
established the following result.

Lemma 3.1:Under AssumptionA1, if , then
is locally continuously differentiable in , and the opti-

mality condition is

Letting , it is clear that when we
get

(20)

Thus, if critical jobs were to never occur on an optimal sample
path [i.e., if for all ], then the
function would be differentiable at its minimum, the standard
conditions for optimality would apply, and a numerical solution
could be obtained by solving the TPBVP defined by (13)–(15).

3) The Case: Since, in general, will exhibit
the nondifferentiabilities associated with critical jobs, it is nec-
essary to study next the case where . For any such
job on an optimal sample path, we have
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and the corresponding derivative in the
costate equation (15) does not exist. Hence, the derivative

also fails to exist. To obtain the generalized gradient
in this case we proceed as follows. First, since jobsand
are in the same busy period and , we have

(21)

where the “max” accounts for the fact that jobmay be the first
in the busy period. Through (21) we see that the control for job

affects the departure time of job . Now suppose that we
fix all controls at their optimal values and perturb. Recalling
(17), the following one-sided derivatives exist:

(22)

Conceptually, the first limit in (22) corresponds to the process of
changing so that increases toward a fixed . Sim-
ilarly, the second limit corresponds to the process of changing

so that decreases toward and the same is true
for all other critical jobs between and .

Looking at (15), note that

for all

Thus, combining (11) and (15), we get

By AssumptionA2 and (21), is monotonically increasing
in and, using (22), the preceding equation leads to the one-
sided derivative

(23)

Similarly, we obtain

(24)

regardless of whether one or more critical jobs are present be-
tween and . For simplicity, we shall use the notation
and to denote the left and right derivatives above, i.e., set

(25)

Regarding and , we can easily establish the following.

Lemma 3.2:Under AssumptionsA1 andA2, for every

(26)

Proof: From (23) and (24)

giving (26).
Recalling the definition of , it is easy to see that when

we have

(27)

Notice that when , we get , in which case
the set defined by the closed interval above is a singleton
equal to the gradient as required. To summarize, we
present next the main result of this section:

Theorem 3.1:Under AssumptionsA1 and A2, an optimal
control , satisfies the following conditions:

1) , , where

2) .
Proof: The proof follows directly from the necessary con-

dition of nonsmooth optimization, that is, the requirement that
, and from Lemma 3.1 and (23)–(25).

Remark 3.1:Recalling Lemma 3.1, we see that when
, i.e., when job is not critical and there are no critical jobs

between job and the end of its busy period, then the first con-
dition of the theorem simply requires that .

Remark 3.2:For typical and , neither
nor when , i.e., in general, zero is not an
endpoint of the interval defining . Hence, when
the first condition of the theorem requires that these quantities
have opposite signs, i.e., . In general, however,

.
We should also point out that the use of the generalized gra-

dient is not indispensable for the solution of the problems con-
sidered here. In earlier work [17], for example, a specific hy-
brid system optimal control problem that belongs to the class of
problems being studied in this paper was solved using a defini-
tion of the derivative of the “max” function that allows its value
to be some arbitrary such that whenever
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. Finally, note that the problems can also be tackled through
constrained nonlinear programming techniques; the computa-
tional burden in this case, however, is prohibitive for values of

other than very small ones, and this serves to motivate the
analysis that follows.

IV. PROPERTIES OFOPTIMAL SOLUTIONS

Based on the necessary conditions for optimality in Theorem
3.1, in this section we present some fundamental properties of
optimal sample paths.

A. Decoupling Properties

The presence of the “max” function appearing in the state
and costate equations leads to decoupling properties which
decompose sample paths into independent segments. The first
such property is a consequence of the “regenerative” nature of
the state trajectory. Because of the “max” function in the state
equation, information is not propagated in the forward direction
across idle periods. In addition, because of the “max” function
in the costate equation, information does not propagate in the
backward direction across idle periods. As a result, we obtain
what we callidle period decoupling.

Lemma 4.1:Consider a busy period defined by
and let . The optimal

control depends only on (it does not depend
on the arrival times of jobs in any other busy period).

Proof: In view of Theorem 3.1, observe that the state
equation does not propagate information in the forward di-
rection across the idle period that precedes the busy period
containing job , i.e.,

Hence, the control for jobdoes not depend on the arrival times
of jobs in earlier busy periods. Moreover, the costate equation
does not propagate information in the backward direction across
the idle period that follows the busy period containing job, i.e.,

and the same is true for in (24), since . Since,
by Theorem 3.1, the optimal control is determined by ,

, it follows that it does not depend on the arrival times of jobs
in subsequent busy periods.

Because of idle period decoupling, the controls for individual
busy periods can be determined independently of each other.
Therefore, idle period decoupling decomposes a large TPBVP
consisting of jobs into several smaller subproblems, one for
each busy period. Of course, since the identification of busy pe-
riods themselves is not a simple matter, this only partially sim-
plifies the solution approach. Nonetheless, this decomposition
can be used to develop efficient numerical algorithms (see [8],
[16], [18], and [20]). Moreover, it is also useful in the theoretical

analysis of the optimal sample path, since it allows us to study
its properties by analyzing a single isolated busy period.

Whereas idle periods decompose the problem into a collec-
tion of independent busy periods, critical jobs further decom-
pose the problem by partitioning busy periods into collections
of blocks, where a block is defined as follows.

Definition 4: Consider a busy period consisting of jobs
. A block is a subset
such that

1) for all , ;
2) for all and ,

.
In other words, any busy period on an optimal sample path

can be partitioned into blocks, where the first block begins with
the first job and ends with the first critical job (if any). The
second block begins with the job that follows the first critical
job and ends with the second critical job, and the last block ends
with the last job in the busy period (therefore, it never contains a
critical job). Clearly, if a busy period consists ofblocks, then
there are critical jobs in this busy period. Moreover, every
block starts with an arrival time such that for the first
block and for the remaining blocks. The notion of
blocks leads to what we call thepartial couplingproperty.

Lemma 4.2:Consider a block defined by and
let . The optimal control depends only on

and (it does not depend on any other arrival times).
Proof: Consider a busy period containing at least one crit-

ical job. Notice that the state equation does not propagate across
critical jobs, i.e., . Hence,
the optimal controls for jobs can be obtained by
solving the following optimization problem:

subject to for all
and terminal constraint

provided this is not the last block in the busy period; if it is
the last block, then the constraint is . Thus,
the solution depends only on and (and of course

).
Because of partial coupling, the controls for those jobs that

follow a critical one are independent of the controls for the jobs
that precede it. This property forms the basis of algorithms one
can develop to explicitly solve the problem under study, as fur-
ther discussed in what follows.

B. Critical Job Characterization

Critical jobs play a crucial role in obtaining explicit solutions
for the optimal control problem under consideration. This is ob-
vious from the decoupling properties of the previous section; if
we could easily identify the various indices and for
each job , then we could solve the problem by
solving a collection of TPBVP’s, one for each block. Some of
these TPBVP’s would have a terminal constraint on the final
state to force the departure time of the last job in the block to
equal the arrival time of the job that begins the next block, while
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others would not have terminal constraints when the block ends
a busy period.

Although the possibility of critical jobs depends on the spe-
cific forms of the one-step costs and the service func-
tions , we point out that for most problems of practical in-
terest the occurrence of critical jobs is not an “unusual” or patho-
logical case, but an integral part of a typical optimal sample path,
as demonstrated in our earlier work [17], [10].

Before proceeding, we shall make one additional assumption
regarding the nature of the functions and :

AssumptionA3: The one-step costs are strictly convex
functions and the service functions are convex functions of
their arguments for all .

Let us also define

(28)

and note that, by definition (25), we have

and

Thus, if job is critical, then and , an
observation that turns out to be very useful in our analysis.

The following theorem gives necessary and sufficient condi-
tions that must be satisfied by a critical job (a similar result can
be established if AssumptionA2 is changed to consider mono-
tonically decreasingservice functions).

Theorem 4.1:Under AssumptionsA1–A3, job is critical on
an optimal sample path if and only if

1) ;
2) ;

where is the optimal control for job, is the index of the
job that ends the busy period containing jobunder the control

in (1) and in (2), and is
some arbitrarily small perturbation satisfying ,

.
Proof: Throughout the proof, recall that the index

depends on the control sequence, although for notational sim-
plicity this dependence is not explicitly shown.

First, suppose jobis critical on an optimal sample path. We
will then show that conditions (1) and (2) hold. Under the op-
timal control we have . By AssumptionA2,
is increasing in ; therefore, decreasing the control by
decreases the service time for job. This introduces an idle pe-
riod between jobs and , in which case , and con-
dition (1) immediately follows. Regarding condition (2), since
job is critical, we have , in which case The-
orem 3.1 requires that

, , where we have
used (28). This requires that and have opposite sign.
Hence, condition (2) holds for . It also holds for arbi-
trarily small since i) byA1, is a continuous function
of , and ii) for arbitrarily small positive perturbations in the
control, the index remains fixed [i.e., job still ends the
busy period].

Conversely, if conditions (1) and (2) hold for some jobon an
optimal sample path, we shall show thatis critical. UnderA3,

and in view of (28), condition (1) implies that . There-
fore, decreasing the control for jobby decreases its depar-
ture time (fromA2) and the perturbed sample path contains an
idle period between joband job [since is now
the last job in the busy period]. This implies that on the optimal
path (prior to thearbitrarily small perturbation in ) either
i) job is critical, or ii) job is the last job in its busy period. If
iii) is the case, then on the optimal sample path jobis followed
by an idle period of finite duration. Hence, for small positive
perturbations in the control, jobis still the last in its busy pe-
riod, i.e., in such a perturbed path, and

. However, this contradicts the assumption
that condition (2) holds. Hence, jobcannot be the last job in
its busy period and case i) must hold, i.e., jobis indeed critical,
and the proof is complete.

The importance of this result manifests itself in algorithms
we can develop (see [17], [18]) for the numerical solution of
the optimal control problem. By iteratively evaluating the quan-
tities and , the two conditions in the theorem
allow us to identify critical jobs (with arbitrary accuracy depen-
dent on ). This, as previously argued, makes it possible to de-
compose a sample path into blocks which can be separately an-
alyzed to determine the optimal control sequence within each
one, a significant computational simplification when it comes
to a TPBVP.

Noncritical Departures and Their Properties:The re-
mainder of this section is devoted to further identifying
conditions that lead to critical jobs and provide insight to their
importance in this class of problems. Let us consider a busy
period containing jobs on an optimal sample path. Because
of idle period decoupling (Lemma 4.1), there is no loss of
generality if we index the first job in the busy period as job 1
[and relabel accordingly all cost components , so that

]. Then, is the number of jobs in this
busy period. When the busy period does not contain any critical
jobs, i.e., when , let the optimal departure
times be denoted by . Thus, in the notation

, denotes the index of the job within the busy period and
is the total number of jobs in the busy period.
Definition 5: The optimal departure times when there are no

critical jobs in a busy period defined by are de-
noted by and referred to asnoncritical de-
partures. The corresponding optimal controls are denoted by

and referred to asnoncritical controls.
An important property of the noncritical departures, shown

next, is that they can all beprecomputed offlinefor any given
positive integer and any specified arrival time for the first job
in the busy period, . Thus, strictly speaking we should write

, but omit the dependence onfor simplicity. Observe
that any jobs may be selected, re-indexed
as , and then assigned values .
In other words, any set of jobs may be used in a simple
“thought experiment” that allows us to evaluate their departure
times as if these formed a busy period with no critical jobs.

Lemma 4.3:The noncritical departures
depend only on and .

Proof: Consider a busy period consisting of jobs
on an optimal sample path and assume that none
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of these jobs is critical. If this is the case, then the noncritical
departures are optimal by definition. By Theorem 3.1, the
optimal controls corresponding to these noncritical departures
must satisfy i) the state equation (14), and ii) the condition

, where is a closed interval defined by and .
From i), the state equation for time associated with any job

gives

(29)

From ii), since there are no critical jobs during this busy period,
, and

(30)
The above expressions depend only on and , since
the functions and are independent of the
arrival sequence . Therefore, the controls

obtained by solving (29) and (30) depend
only on and , and, consequently, the noncritical departures

obtained through (29) depend only on
and .

Note that an alternative definition of the noncritical depar-
tures is that they are the unique solution obtained from (29) and
(30).

The next two lemmas provide characterizations of critical
jobs on an optimal sample path based on the relative ordering
of the known arrival sequence and the noncritical departures
which, we reiterate, may be precomputed for any given arrival
time and positive integer . These characterizations are de-
rived under four conditions, referred to as propertiesP1–P4
below. The significance of these properties will become ap-
parent in the next section where we show that a large class of
problems indeed satisfies all four conditions. In what follows,
given a busy period consisting of jobs on an optimal
sample path, we shall denote theoptimaldeparture times for the
jobs in this busy period by .

PropertyP1 (Uniqueness):The optimal control sequence is
unique.

PropertyP2 (Monotonicity in ): For a given arrival time
that starts a busy period, the noncritical departure times are

monotonically decreasing in the number of jobs in the busy pe-
riod, i.e., for all and .

PropertyP3 (Lower Bounds for Optimal Departures):In a
busy periodconsisting of jobs indexed , the noncrit-
ical departure times lower bound the optimal departure times,
i.e., for all .

PropertyP4 (Upper Bounds for Optimal Departures):In a
block consisting of jobs , the noncritical departure
times upper bound the optimal departure times, i.e.,
for all (Note: In this case, refers to the arrival
time of the first job in theblock, and not necessarily the arrival
time of the first job in thebusy periodthat contains this block.)

Lemma 4.4:Consider a busy period on an optimal sample
path consisting of jobs indexed and let
denote the number of jobs remaining to be processed starting
with job 1. UnderP1–P4, if there exists some such that

for all and
, then job is critical.
Proof: We proceed by contradiction and show that neither

nor can be optimal, which implies that
, i.e., is critical.

First, suppose . Then, there is an idle period be-
tween jobs and . By P2, . Since we as-
sume for all , we also have

for all . Recalling Definition
2, uniqueness of the optimal solution (PropertyP1) implies a
busy period consisting of jobs in which there
are no critical jobs. If this is the case, then the noncritical de-
partures are by definition optimal for all .
However, contradicts the assumption that

.
On the other hand, suppose . Then, jobs and

are in the same block. Moreover, we show next that this
must be thefirst block in the busy period (i.e., the one that be-
gins with job 1 and starts at time ). In particular, suppose the
first block in the busy period ends with some job . Then,

by P2; by P3; and , since
ends the block, giving

where ( ) is the number of jobs in the busy period
containing job . Since job ends a block, either i) job is not
critical, or ii) job is critical. If i) is true, then also ends the
busy period, i.e., and since noncritical
departures must be optimal. UsingP2, we then get

If ii) is true, then and

where the first inequality follows fromP2 and the second from
P3. Now, suppose . Then, in either case above, we are
led to a contradiction of the assumption that for
all and that . Therefore, we must
have , that is, and are both members of the
first block of a busy period, and this block contains
jobs. However, if job is in a block that contains
jobs then, usingP4 andP2, we get

which contradicts the assumption that . We
have, therefore, established that , i.e., job must
be critical.

The conditions of Lemma 4.4 are only sufficient, i.e., there
are other conditions that will result in critical jobs. The next
result gives a different, more general, characterization of the
conditions satisfied by critical jobs.

Lemma 4.5:Consider a busy period on an optimal sample
path consisting of jobs indexed . UnderP1–P4, if

for any , then the busy period
contains at least one critical job. Moreover, the first critical job
in the busy period satisfies .
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Fig. 2. Critical intervals for an example withN = 3.

Proof: First, by Definition 2, because the busy period con-
tains jobs, we must have for all .

To prove the first part of the lemma, suppose that
for one or more jobs , but the busy

period doesnotcontain any critical jobs. If the busy period does
not contain any critical jobs, then the noncritical departures are
optimal by uniqueness (PropertyP1), i.e., for all

. But, contradicts the assumption
that , implying that the busy period must contain
at least one critical job.

Regarding the second part of the lemma, first note thatP2
guarantees that indeed . Then, if job is critical,
we have , and the result follows directly fromP3,
i.e., , and fromP4, i.e., for all

, hence, .
Critical Intervals: According to Lemma 4.5, a crit-

ical job will occur whenever a situation arises such that
for some . To reflect this

fact, we refer to the time intervals as critical
intervals. Clearly, the wider the critical intervals, the greater the
likelihood that the optimal solution will contain critical jobs.
Once again, we remind the reader that all such critical intervals
can be precomputed through Lemma 4.3, so that the condition

is one that may be tested off line for any given arrival time
and positive integer .

To illustrate the use of the preceding lemmas, consider the
example shown in Fig. 2 for the case . In the figure,

, , , , , have been computed for a
given arrival time and 1, 2, and 3. First, consider the
implications of Lemma 4.4. With and ,
according to the lemma if , as shown in
Fig. 2(a), then job 1 is critical (regardless of). Therefore,
the optimal departure time for job 1 is . Note that if

then job 2 is definitely in the same busy period as job
1, whereas if then job 2 must start a separate busy
period. Thus, the location of relative to the critical interval

allows us to determine whether job 1 is critical,

whether it ends the first busy period, or whether it is included
in a busy period containing at least the first two jobs. Similarly,
with , if and , as shown in
Fig. 2(b), then job 2 is critical.

Next, consider Lemma 4.5. Suppose that and
. Then, with and , if and

, job 1 is the only job in the busy period satisfying the
condition of this lemma, and, hence, job 1 must be critical. On
the other hand, suppose and

, as shown in Fig. 2(c). In this case, both satisfy
the conditions of the lemma; therefore, either or both of jobs 1
and 2 might be critical. Without explicitly solving the problem,
however, it is not possible to make a final determination.

To summarize, while Lemma 4.5 can be used to determine
whether or nota busy period will contain critical jobs by
checking if , it cannot be used to determine
which jobs in the busy period will be critical. To answer
this question one must explicitly solve the problem with an
iterative algorithm, unless the conditions of Lemma 4.4 are
also satisfied; in that case, we can further identify the critical
jobs, which significantly simplifies the effort that goes toward
an explicit solution of the problem.

V. ANALYSIS OF A PROBLEM CLASS WITH SEPARABLE COST

STRUCTURE

For the remainder of the paper, we concentrate on a family of
problems for which the cost functions are separable
in the sense that

(31)

for all . In addition, we will make the following
assumptions regarding the functions , and .

AssumptionC1: For each , is strictly
convex, twice continuously differentiable, and monotonically
decreasing with

and .
AssumptionC2: For each , is strictly

convex, twice continuously differentiable, and its minimum is
obtained at a finite point .
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AssumptionC3: For each , is monoton-
ically increasing and linear: , .

In the context of manufacturing systems, under Assumption
C3 we consider problems where processing times are propor-
tional to the control. In the simplest case, we directly control
processing times (i.e., ) so as to trade off quality mea-
sured through against timely job completion measured
through . For a concrete example, let ,

, and , which satisfy Assump-
tionsC1–C3respectively. In this case, each job is penalized for
deviating from a desired target completion time. In addition,
short service times are penalized so as to ensure that each job
is processed long enough to achieve its desired “quality” target
[recall the stopping rule (3)]. Note that this is a different family
of problems from those studied in earlier work in this framework
[17], where and were strictly convex and monoton-
ically increasing for positive arguments and processing times

were inversely proportional to the control.
The main result of this section is to show that this class of

problems possesses PropertiesP1–P4identified in the previous
section. Recall that it is under these properties that we were
able to identify characterizations of critical jobs (Lemmas 4.4
and 4.5). This, therefore, allows us to develop iterative algo-
rithms for the explicit solution of the problem which are com-
putationally efficient, since they help to decompose a TPBVP
into several smaller decoupled (or partially coupled) TPBVPs.
The uniqueness propertyP1 is particularly interesting, because
this class of optimization problems isnotconvex, despite condi-
tionsC1–C3; this issue is addressed in Section V-B. Note that,
in order to maintain the flow of the presentation, all proofs of as-
sertions made in this section have been placed in the Appendix.

A. Generalized Gradient Properties

Under AssumptionsC1–C3, we can establish the following
two properties of the generalized gradientsand defined
in (25).

Lemma 5.1:Under AssumptionsC1–C3, on an
optimal sample path.

Proof: See the Appendix.
Lemma 5.2:Under Assumptions C1–C3, for every

on an optimal sample path,

and (32)

Proof: See the Appendix.
Remark 5.1:The previous result can be obtained under

weaker conditions thanC3. Specifically, as long as
satisfy A2 and have bounded derivatives, the perturbations

and to the service times of jobs and , used in
the proof, respectively, may be replaced by and

with .

B. Existence and Uniqueness of Optimal Control Sequence

The existence of a nontrivial bounded solution to the op-
timal control problem (5) under (31) and AssumptionsC1–C3
is easy to verify, and we omit it. In what follows, we establish
the uniqueness of the optimal solution, a property which is not
as obvious as might appear at first sight.

A sufficient, but not necessary, condition for uniqueness is
the strict convexity of the objective function

in the control sequence . Since the functions
are convex (fromC1), their sum is convex. Thus, the

convexity of depends on whether the composite functions
are also convex in the controls; this would

be ensured if the functions , in addition to being convex
underC2, were also nondecreasing. However, this is not the
case in our problem setting, since weonly assume are
strictly convex.

Example: We illustrate the nonconvexity of our cost function
through the following simple example with . Let
and and define cost functions as follows:

This gives the cost function

The last term above is not a convex function of, although it
is convex in . This nonconvexity is visualized in Fig. 3 where

is plotted. Note that there is a single optimal point for
this function.

In summary, establishing the uniqueness of an optimal solu-
tion for the optimal control problem (5) under (31) and Assump-
tionsC1–C3is not a straightforward task. We are, nevertheless,
able to prove uniqueness by proceeding in two steps. First, in
Lemma 5.3, we show thatthe busy period structure of an op-
timal sample path is unique. Second, in Theorem 5.1, we show
that the controls within each busy period are unique.

Lemma 5.3:Under AssumptionsC1–C3, the busy period
structure of an optimal sample path is unique in the sense that
the indices , for all , are unique.

Proof: See the Appendix.
Given the uniqueness of the busy period structure, the lin-

earity of the service functions (AssumptionC3) makes it pos-
sible to establish that the controls within the busy periods are
unique, and hence the entire optimal control sequence is unique.

Theorem 5.1:Under AssumptionsC1–C3, the optimal con-
trol sequence is unique.

Proof: See the Appendix.
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Fig. 3. An example of a nonconvex cost functionJ(u ; u ).

C. Properties of Noncritical Departures

In Section IV-B, we presented four propertiesP1–P4which
allow us to derive conditions for identifying critical jobs, a cru-
cial step for developing efficient solution algorithms for the
problem. For the class of problems considered in this section,
under (31) andC1–C3, we have already established the first
property (uniqueness of solution) in Theorem 5.1. We shall now
show that the remaining properties,P2–P4, are also satisfied.

As in previous sections, given a busy period consisting of
jobs on an optimal sample path, we shall denote
the optimal departure times for the jobs in this busy period by

. We also denote by the noncritical departure
of the th job in this busy period and remind the reader that
noncritical departures are quantities that may be precomputed
off line for any given arrival time (initiating the busy period)
and positive integer . We begin by proving that PropertyP2
holds.

Theorem 5.2:Under AssumptionsC1–C3and a given arrival
time , the noncritical departure times are monotonically de-
creasing in the number of jobs in a busy period , i.e.,

for all and .
Proof: See the Appendix.

Note that when the noncritical departures are not monotoni-
cally decreasing in (i.e., PropertyP2 is not satisfied), then the
solution may not be unique and the critical intervals discussed
in the previous section shrink to points (i.e., in order for a job
to be critical it must arrive exactly coincident with a noncritical
departure). Thus, when the noncritical departures are not mono-
tonically decreasing, critical jobs are not likely to occur.

In order to prove PropertiesP3andP4, we will need the fol-
lowing additional result that identifies a monotonicity property
of the optimal controls within ablock. In particular, we show that
if the end of a block is perturbed so as to increase (decrease) its
length, then the optimal controls associated withall the jobs in
this block must increase (decrease).

Lemma 5.4:Consider a block consisting of jobs
on an optimal sample path and let the block be

such that it does not end a busy period. Under Assumptions
C1–C3, for all .

Proof: See the Appendix.
We can now prove PropertyP3, as shown next.
Theorem 5.3:Under AssumptionsC1–C3, the noncritical

departure times in a busy period lower bound the optimal de-
parture times, i.e., for all .

Proof: See the Appendix.
Finally, we establish PropertyP4. Recall that in this case

indexes jobs within a block of jobs and is
evaluated as a noncritical departure with respect to a busy period
starting with the first job in the block and containingjobs.

Theorem 5.4:Under AssumptionsC1–C3, the noncritical
departure times in a block upper bound the optimal departure
times, i.e., for all .

Proof: See the Appendix.

VI. SUMMARY AND CONCLUSION

In this paper, we defined a hybrid system modeling frame-
work (motivated from manufacturing environments) which
combines the time-driven dynamics of various physical pro-
cesses with the event-driven dynamics describing switches
between the physical processes. Characteristic of the frame-
work are “max-plus” equations describing the state dynamics.
The nondifferentiability of the “max” function leads to non-
smooth optimization problems. However, exploiting properties
of the optimal sample paths allows us to decompose it into a
collection of independent busy periods and to partition the busy
periods into blocks defined by “critical jobs.” Since critical
jobs are responsible for making the problem nonsmooth, we
have studied their properties and derived several conditions for
identifying them in an optimal sample path. For a large class
of problems, we have also shown that the optimal solution is
unique, despite the fact that the cost functions involved arenot
convexandnot differentiable, and that some additional struc-
tural properties hold, which enable the development of efficient
solution algorithms. The development of such algorithms is the
subject of a parallel research effort. Ongoing work is aimed at
extending our analysis to systems with more complex dynamics
(e.g., multistage processes), incorporating uncertainty into the
modeling framework, and considering problems where the
control sequence is time-dependent, i.e.,may vary over the
duration of the physical process corresponding to theth job.

APPENDIX

Proof of Lemma 5.1:Under Assumption C3, let
. In view of (31), Lemma 3.2 gives

(33)

Without loss of generality, let us assume there are no critical
jobs between and the end of the busy period that contains
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job . Then, the optimality conditions in Theorem 3.1 require
that and we get

By AssumptionC1, , from which it follows that

and (33) implies that .
Proof of Lemma 5.2:To show that on an optimal

sample path, let and . By
definition (19), we have . Moreover, for all

we have , hence

for all (34)

Consider a perturbation in about its optimal value and a
simultaneous perturbation in . UnderC3, let

. It follows that the perturbed service times of jobsand
are and respectively. For sufficiently

close to 0, we can preserve the inequality for all
and leave unaffected. Conse-

quently, is locally continuously differentiable in about
. In addition, since we are assuming an optimal sample

path, at .
Clearly, the only effects of on come from the terms

, , and for ,
since the departure times of jobs are perturbed as
a result of through (34). Therefore,

Adding and subtracting the term above
gives

where we have used the definition (23) and the fact that
. This establishes the first part of (32). The second part

follows directly from Lemma 3.2.
Proof of Lemma 5.3:The proof is by contradiction. In par-

ticular, suppose that, for a given arrival sequence, there exist two
different sample paths that both satisfy the optimality conditions
in Theorem 3.1; we shall then establish a contradiction.

Due to the idle period decoupling property (Lemma 4.1), we
can assume, without loss of generality, that the difference be-
tween the two sample paths is in their respective first busy pe-

riods. Let us denote the two sample paths byand , respec-
tively. Let be the last job in the first busy period on sample
path , be the last job in the first busy period on sample path

, and assume (without loss of generality) that . Using the
subscripts and to indicate variables on the corresponding
sample paths, we will show that, for all , the fol-
lowing two inequalities hold

(35)

and,

(36)

In view of the state equations and

, these two inequalities clearly contra-
dict one another. This contradiction implies that , i.e., the
busy periods must coincide, and the proof is complete. Thus, it
remains to prove that (35) and (36) indeed hold under the as-
sumption .

We prove (35) and (36) through a backward induction argu-
ment. That is, we first show the result for job, then assume the
result holds for jobs , and prove that
it must also hold for job .

For job , we proceed as follows. On sample path, job
ends the first busy period, in which case we must have

. On sample path , however, job does not
end the first busy period, implying that . Conse-
quently, , establishing (35) for .

To establish (36) for job , first note that since on sample
path job is the last job in the first busy period, Theorem 3.1
requires that . In view of (23) and (31) this
implies that

(37)

On sample path , however, jobs and are in the same
busy period. If job is critical, then Theorem 3.1 requires that

and have opposite sign, which in view of Lemma 5.1
implies that

If, on the other hand, jobis not critical, then
and by Lemma 5.2, we have . Thus, from

(23) and (31),

By subtracting common terms above, we obtain
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where the inequality follows fromC1. We have, therefore, es-
tablished that

(38)

regardless of whether job is critical or not. Since we have
already established that , we have, byC2,

. Therefore, comparing (37) and
(38) it follows that:

which, byC1, implies that . Finally, because of
C3, this establishes (36) for job.

Next, suppose that (35) and (36) are both satisfied for jobs
. We will now proceed to show that

they are also satisfied for .
First, from the state equation (14) we have

and . Since (35) and (36) hold for
job , it immediately follows that , i.e., (35)
is satisfied for job .

Now, consider (36). On sample path, if job is not
critical and there are no critical jobs between job and job

(which ends the busy period on sample path), then Theorem
3.1 requires that . If, on the other hand, job
is critical or there are critical jobs between job and job ,
then Theorem 3.1 and Lemma 5.1 require that . In
view of (24) and (31), we have, therefore, established that

(39)

Next, for all , we have . Since,
as shown above, (35) holds for all , we have

, , and it follows that
for all . This means that on sample paththere
can be no critical jobs between and . Regarding job ,
there are two cases. First, ifis critical, i.e., ,
then by Theorem 3.1 and Lemma 5.1,

Second, if job is not critical, we have
and, by Lemma 5.2, . Thus, from (23)

which after subtracting common terms gives

where the inequality follows fromC1. This proves that

(40)

whether job is critical or not. Since, as already shown above,
(35) holds for all , it follows by AssumptionC2
(strict convexity) that

Therefore, comparing (39) and (40) it follows that

and the strict convexity of in C1 implies that
. By AssumptionC3, this yields (36) for job and

completes the inductive argument, thus establishing (35) and
(36) which were needed to complete the proof.

Proof of Theorem 5.1:Consider a busy period on the
optimal sample path that consists of jobs . From
Lemma 5.3, the order of this busy period in the sample path
and its composition are unique. By Assumption
C3, let with . Thus, the optimal control
sequence minimizes the cost function

(41)

subject to the linear constraints

(42)

Using the strict convexity of in Assumption C1,
the function is strictly convex as the sum of
strictly convex functions. Using the strict convexity of
in AssumptionC2, the function
is convex, as a strictly convex function of a linear function
in (note, however,that it is not necessarilystrictly
convex). Therefore, is the sum of the
strictly convex function and the convex function

, which yields astrictly
convex function. Thus, the problem of minimizing (41) subject
to the constraints (42) is a convex program, which, therefore,
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has a unique solution. Since there is a unique optimal control
sequence for jobs in every busy period and since the busy
period structure itself is unique from Lemma 5.3, it follows that
the optimal control sequence is unique.

Proof of Theorem 5.2:Consider a busy period containing
jobs on an optimal sample path, and suppose that none of the

jobs in the busy period are critical. By idle period decoupling
(Lemma 4.1), we lose no generality by indexing the first job in
this busy period as , in which case the last job has index

. Now, suppose we change the arrival sequence in such a way
that when the optimal controls are recomputed, the busy period
now contains jobs, none of which are critical. We now
proceed to show that the optimal departure times (coinciding
with the noncritical departure times since the busy periods do
not contain any critical jobs) satisfy for all

.
The proof is by induction. We begin by showing the result

for job (basis step). Then, assuming the result holds for
jobs , we show that it also holds for job

.
The proof of is by contradiction. Suppose that

. Then, since both busy periods begin at a common
time, the state equation (14) andC3 imply that .
As a consequence, AssumptionsC1 andC2 give

and . Recalling Theorem
3.1, optimality of the controls and requires that

which, in light of the two previous inequalities, implies that

(43)

Continuing, optimality of the controls and requires
that

(44)

which, given (43), implies that . By
AssumptionC1, it follows that . Substituting this
into the state equation, and recalling the assumption

, we get . Thus, by AssumptionC2, we have,
, which, from (44), gives

This argument is carried forward for jobs leading
to the conclusion

(45)

This, however, is a contradiction, since optimality for job
requires

(46)

which, givenC1, requires

In summary, assuming leads to a contradiction
and this establishes the inequality .

Next, assuming the result holds for jobs
we will show that it holds for . The proof here

is virtually identical to the one used above for job . That
is, suppose that . The state equation gives

and, since the result holds for all , we must
have . Thus, by C1,

, and, by C2,
. Using these inequalities and the op-

timality equation

we infer that

Proceeding exactly as before, we arrive at the conclusion that

which, by the optimality of the control for job in (46)
andC1, gives a contradiction. This contradiction establishes that

, and, hence, completes the proof.
Proof of Lemma 5.4:Consider the conditions that must be

satisfied by the jobs in a block on an optimal sample path. These
conditions are obtained from the cost function

subject to

and

as long as the block is not the last in a busy period. Adjoining
the two constraints to the cost gives
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where is the th costate and is an additional multiplier. The
necessary conditions for optimality that must be satisfied by the
jobs in the block are

for all , along with boundary conditions
and . Comparing the optimality equations

for , we get

Cancelling common terms we get

and differentiating with respect to gives

Recalling that , therefore,
, we get

By the strict convexity of the functions and (Assumptions
C1 andC2), the expression above implies that and

must have the same sign.
Proceeding the same way for , we can show that

, , and all have the same sign. Con-
tinuing the argument for all remaining , we reach
the conclusion that all , , have the same
sign. Moreover, note that

and differentiating with respect to gives

implying that for at least one .
However, since all , , have the same sign,
it follows that for all .

Proof of Theorem 5.3:Consider a busy period consisting
of jobs on an optimal sample path. As usual, there is no loss of
generality if we index the first job in this busy period as , in
which case the last job in the busy period is . Denoting the
noncritical departure times by and the optimal
departures by , we will now show that, for a fixed

, for all .
The result is trivial when the busy period does not contain any

critical jobs, since in this case the optimal departures coincide,
by definition, with the noncritical departures, i.e.,
for . Let us, therefore, consider a busy period
that containsat least onecritical job. Consider the inequality
for the case , and suppose that it does not hold, i.e., let

. By AssumptionC2, this implies that

. Recalling the optimality equation from Theorem
3.1 for job in this case, the noncritical departures and corre-
sponding controls must satisfy

whereas in the busy period that contains at least one critical job
we have

since job cannot be the critical one. Comparing the last two
equalities and in view of , we must
have , which, by AssumptionC1,
gives .

Using the state equation andC3, we have

and it follows that .
Next, consider the optimality equation for job . The

noncritical departures and corresponding controls must satisfy

whereas in the busy period that contains at least one critical job
we have

where the inequality accounts for the fact that it is possible that
job is critical. Since we have shown that for

, it follows fromC2 that for
. Therefore, comparing the two equations above,

we conclude that , which by
C1, gives .

Continuing this argument for jobs , we ar-
rive at the conclusion that and . However

implying that which contradicts . This
contradiction establishes the result for job .

We can now use the inequality , just established,
to show the result for all of the other jobs in thelast blockin the
busy period. Thus, if is the last critical job in the busy period,
we have for all . For job , using
the optimality equation as before, we have

Since we have (byC2) ,
therefore the equation above implies that

. By C1, this implies that . Using the
state equation andC3, we then get

Repeating this process for , we establish
the result for every job in the last block, including the last critical
job in the busy period.
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It remains to show that the result holds for the remaining
jobs in the busy period. To do so, let us first suppose that
the busy period contains only two blocks, i.e., only one
critical job. Index the first job in the busy period as 1, the
critical job as , and the last job as . We just showed
that for all , hence .
Recalling Lemma 4.2, the optimal controls, and hence optimal
departures, in a block of jobs are obtained as
the solution of an optimization problem involving the cost
functions satisfying A1, with
the terminal constraint . Thus, for all ,

and are continuous functions of for
. When we get

and for all we have since the
block becomes a busy period without any critical jobs, therefore
the optimal departures are given by the noncritical departures

. We may now use Lemma 5.4, which asserts
that , therefore, (from the state equation andC3)

for all in the block. In particular,
since

i.e., the sum of the optimal controls in the block is greater than
the sum of the controls under noncritical departures. Thus, at
least one of the controls must have increased as the length of the
block increases from to . From Lemma 5.4, however,
this immediately implies that the controls forall jobs must have
increased. Hence, the departure times of all the jobs in the block
increase, thus establishing the inequality for all

.
Finally, we must show the result also holds when the busy

period has more than one block, i.e., two or more critical
jobs. Let be the first and second critical job respectively
in a busy period with three blocks. Then, consider jobs

and note that the noncritical departures
depend only on and on

(Lemma 4.3). Therefore, we may treat as a
separate busy period initiated by for the purpose of eval-
uating these noncritical departures. Moreover,
depend only on and (Lemma 4.2) and, similarly
for , i.e., are independent of any
arrival times prior to . Therefore, the result previously
obtained for two blocks over , applies to the two
blocks and , and by repeating
this argument to more than three blocks the proof is complete.

Proof of Theorem 5.4:Consider a block consisting of
jobs on an optimal sample path. Index the first job in the block
as job 1 and suppose the block begins at time. We begin by
showing the result for job , i.e., . Because job is
critical, the optimality condition in Theorem 3.1 gives

By the definition of , it must satisfy

Comparing the two equations above we get

Now, assume that . If this is true, then
(AssumptionC2). The inequality above then

implies that , which, by C1, implies
. Invoking the state equation andC3, we get

and it follows that . Re-
peating the process for job (which is not critical) we get
from Theorem 3.1

and, by the definition of

Comparing the two equations in view of the inequalities previ-
ously derived, i.e., for ,
we conclude that , therefore
(by C1) . Using the state equation andC3 as
before, we get . Continuing this argument for
jobs we finally get , .
The state equation andC3 once again give

which contradicts the fact that . This contradiction
establishes that .

Given , the result for the remainder of the jobs in
the block follows from Lemma 5.4, again noting (as in the proof
of the previous lemma) that is a continuous function
of . In particular, note that

i.e., the sum of the controls in the block decreases relative to
the controls under noncritical departures. Thus, as the length of
the block decreases from to at least one of the controls
must decrease. From Lemma 5.4, however, this immediately im-
plies that the controls forall jobs must have decreased. Hence,
the departure times of all the jobs in the block decrease, i.e.,

for all .
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