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We present a delay-differential equation model with optimal control that describes the interactions between human immuno-
deficiency virus (HIV), CD4+ T cells, and cell-mediated immune response. Both the treatment and the intracellular delay are
incorporated into the model in order to improve therapies to cure HIV infection. The optimal controls represent the efficiency of
drug treatment in inhibiting viral production and preventing new infections. Existence for the optimal control pair is established,
Pontryagin’s maximum principle is used to characterize these optimal controls, and the optimality system is derived. For the
numerical simulation, we propose a new algorithm based on the forward and backward difference approximation.

1. Introduction

Human immunodeficiency virus (HIV) is a lentivirus that
causes acquired immunodeficiency syndrome (AIDS), a con-
dition in humans in which the immune system begins to fail,
leading to life-threatening opportunistic infections. There
are several other ways the infection can transfer, for example,
open wound, saliva, and ulcers.

There are some antiretroviral (ARV) drugs available
nowadays which help the immune system in preventing the
infection due to HIV even though it is not possible to cure
it. Reverse transcriptase inhibitors (RTIs) are one of the
chemotherapies which oppose the conversion of RNA of the
virus to DNA (reverse transcription), so that the viral pop-
ulation will be minimum and on the other hand the CD4+

count remains higher and the host can survive. Another one
is the protease inhibitors (PIs) which prevent the production
of viruses from the actively infected CD4+ T cells.

In the literature, many mathematical models have been
developed in order to understand the dynamics of HIV infec-
tion [1–6]. In addition, optimal control methods have been

applied to the derivation of optimal therapies for this HIV

infection [7–13]. All these methods are based on HIV models

which ignore the intracellular delay by assuming that the

infectious process is instantaneous; that is, in the very

moment that the virus enters an uninfected cell, this one

starts to produce virus particles, and we know that this is not

biologically reasonable. In this paper, we consider the math-

ematical model for HIV infection with intracellular delay

and cell-mediated immune response presented by Zhu and

Zou in [6] and we introduce two controls, one simulating

effect of RTIs and the other control simulating effect of PIs,

incorporating drug efficacy. The intracellular delay repre-

sents the time needed for infected cells to produce virions

after viral entry.

The paper is organized as follows. Section 2 describes a
delayed mathematical model of HIV infection with two con-

trol terms. The analysis of optimization problems is pre-

sented in Section 3. In Section 4, we present a numerical
appropriate method and the simulation corresponding

results. Finally, the conclusions are summarized in Section 5.
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2. HIV Model with Intracellular Delay

We consider the mathematical model for HIV-1 infection
with intracellular delay and cell-mediated immune response
presented by Zhu and Zou in [6]. The dynamics of this model
are governed by the following equations:

dx

dt
= s− dx(t)− kv(t)x(t),

dy

dt
= ke−δτv(t − τ)x(t − τ)− δy(t)− py(t)z(t),

dv

dt
= Nδy(t)− µv(t),

dz

dt
= cy(t)z(t)− bz(t),

(1)

where x(t), y(t), v(t), and z(t) denote the concentrations of
uninfected cells, infected cells, and virus and cytotoxic T
lymphocytes (CTLs), respectively.

Susceptible host cells (x) are produced at a rate s, die at a
rate d, and become infected by virus at a rate k. Infected cells
die at a rate δ and are killed by the CTLs response at a rate p.
Free virus is produced by infected cells at a rate Nδ and
decays at a rate µ where N is the number of free virus
produced by infected cells. CTLs expand in response to viral
antigen derived from infected cells at a rate c and decay in the
absence of antigenic stimulation at a rate b. The intracellular
delay, τ, represents the time needed for infected cells to
produce virions after viral entry.

We introduce two controls u1 and u2 which measure the
efficiency of reverse transcriptase and protease inhibitors,
respectively. Hence, (1) becomes

dx

dt
= s− dx(t)− (1− u1(t))kv(t)x(t),

dy

dt
= (1− u1(t))ke−δτv(t − τ)x(t − τ)− δy(t)− py(t)z(t),

dv

dt
= (1− u2(t))Nδy(t)− µv(t),

dz

dt
= cy(t)z(t)− bz(t).

(2)

The control functions, u1(t) and u2(t), are bounded, Lebes-
gue integrable functions. The control u2(t) represents the
efficiency of drug therapy in inhibiting viral production,
such that the virion production rate under therapy is (1 −
u2(t))Nδ.

If u2 = 1, the inhibition is 100% effective, whereas if u2 =

0, there is no inhibition.
The control u1(t) represents the efficiency of drug ther-

apy in blocking new infection, so that infection rate in the
presence of drug is (1− u1(t))β.

Let C = C([−τ, 0],R4) be the Banach space of continu-
ous functions mapping the interval [−τ, 0] into R4 with the
topology of uniform convergence. It is easy to show that there
exists a unique solution (x(t), y(t), v(t), z(t)) of system (2)
with initial data (x0, y0, v0, z0) ∈ C.

In addition, for biological reasons, we assume that the
initial data for system (2) satisfy

x0(s) ≥ 0, y0(s) ≥ 0, v0(s) ≥ 0, z0(s) ≥ 0,

s ∈ [−τ, 0].
(3)

3. The Optimal Control Problems

The problem is to maximize the objective functional

J(u1,u2) =

∫ t f

0

{

x(t) + z(t)−

[

A1

2
u2

1(t) +
A2

2
u2

2(t)
]}

dt,

(4)

where the parameters A1 ≥ 0 and A2 ≥ 0 are based on the
benefits and costs of the treatment. Our target is to maximize
the objective functional defined in (4) by increasing the num-
ber of the uninfected cells, maximizing immune response by
CTLs, decreasing the viral load, and minimizing the cost of
treatment. In other words, we are seeking optimal control
pair (u∗1 ,u∗2 ) such that

J
(

u∗1 ,u∗2
)

= max{J(u1,u2) : (u1,u2) ∈ U}, (5)

where U is the control set defined by

U =
{

u = (u1,u2) : ui measurable,

0 ≤ ui(t) ≤ 1, t ∈
[

0, t f
]

, i = 1, 2
}

.
(6)

3.1. Existence of an Optimal Control Pair. The existence of
the optimal control pair can be obtained using a result by
Fleming and Rishel in [14] and by Lukes in [15].

Theorem 1. There exists an optimal control pair (u∗1 ,u∗2 ) ∈ U
such that

J
(

u∗1 ,u∗2
)

= max
(u1,u2)∈U

J(u1,u2). (7)

Proof. To use an existence result in [14], we must check the
following properties.

(1) The set of controls and corresponding state variables
is nonempty.

(2) The control U set is convex and closed.

(3) The right-hand side of the state system is bounded by
a linear function in the state and control variables.

(4) The integrand of the objective functional is concave
on U .

(5) There exists constants c1, c2 > 0, and β > 1
such that the integrand L(x, z,u1,u2) of the objective
functional satisfies

L(x, z,u1,u2) ≤ c2 − c1

(

|u1|
2 + |u2|

2
)β/2

. (8)

In order to verify these conditions, we use a result by Lukes in
[15] to give the existence of solutions of system (2) with
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bounded coefficients, which gives condition 1. We note that
the solutions are bounded. Our control set satisfies condition
2. Since our state system is bilinear in u1,u2, the right-
hand side of system (2) satisfies condition 3, using the
boundedness of the solutions. Note that the integrand of
our objective functional is concave. Also we have the last
condition needed

L(x, z,u1,u2) ≤ c2 − c1

(

|u1|
2 + |u2|

2
)

, (9)

where c2 depends on the upper bound on x and z, and c1 > 0
since A1,A2 > 0. We conclude that there exists an optimal
control pair.

3.2. Optimality System. Pontryagin’s minimum Principle
with delay given in [16] provides necessary conditions for an
optimal control problem. This principle converts (2), (4),
and (5) into a problem of maximizing an Hamiltonian, H ,
with

H
(

t, x, y, v, z, xτ , vτ ,u1,u2, λ
)

=
A1

2
u2

1 +
A2

2
u2

2 − x − z

+ λ1[s− dx − (1− u1)kvx]

+ λ2

[

(1− u1)ke−δτvτxτ − δy − pyz
]

+ λ3

[

Nδy − µv
]

+ λ4

[

cyz − bz
]

.

(10)

By applying Pontryagin’s minimum principle with delay
in state [16], we obtain the following theorem.

Theorem 2. Given optimal controls u∗1 , u∗2 , and solutions x∗,
y∗, v∗ and z∗ of the corresponding state system (2), there exists
adjoint variables, λ1, λ2, λ3, and λ4 satisfying the equations

λ′1(t) = 1 + λ1(t)
[

d +
(

1− u∗1 (t)
)

kv∗(t)
]

+ χ[0,t f −τ](t)λ2(t + τ)
(

u∗1 (t + τ)− 1
)

ke−δτv∗(t),

λ′2(t) = λ2(t)δ − λ3(t)
(

1− u∗2 (t)
)

Nδ

− cz∗(t)λ4(t) + pz∗(t)λ2(t),

λ′3(t) = λ1(t)
(

1− u∗1 (t)
)

kx∗(t) + µλ3(t)

+ χ[0,t f −τ](t)λ2(t + τ)
(

u∗1 (t + τ)− 1
)

ke−δτx∗(t),

λ′4(t) = 1 + py∗(t)λ2(t) + λ4(t)
(

b− cy∗(t)
)

,

(11)

with transversality conditions

λi
(

t f
)

= 0, i = 1, . . . , 4. (12)

Moreover, the optimal control is given by

u∗1 (t) = min

(

1, max

(

0,
k

A1

[

λ2(t)e−δτv∗(t − τ)x∗(t − τ)

−λ1(t)v∗(t)x∗(t)
]))

u∗2 (t) = min

(

1, max

(

0,
1

A2
λ3(t)Nδy∗(t)

))

.

(13)

Proof. The adjoint equations and transversality conditions
can be obtained by using Pontryagin’s minimum principle
with delay in state [16] such that

λ′1(t) = −
∂H

∂x
(t)− χ[0,t f −τ](t)

∂H

∂xτ
(t + τ), λ1

(

t f
)

= 0,

λ′2(t) = −
∂H

∂y
(t), λ2

(

t f
)

= 0,

λ′3(t) = −
∂H

∂v
(t)− χ[0,t f −τ](t)

∂H

∂vτ
(t + τ), λ3

(

t f
)

= 0,

λ′4(t) = −
∂H

∂z
(t), λ4

(

t f
)

= 0.

(14)

The optimal control u∗1 and u∗2 can be solved from the opti-
mality conditions

∂H

∂u1
(t) = 0,

∂H

∂u2
(t) = 0. (15)

That is,

∂H

∂u1
(t) = A1u1(t) + kv(t)x(t)λ1(t)

− ke−δτv(t − τ)x(t − τ)λ2(t) = 0,

∂H

∂u2
(t) = A2u2(t)−Nδy(t)λ3(t) = 0.

(16)

By the bounds in U of the controls, it is easy to obtain u∗1 and
u∗2 in the form of (13), respectively.



4 ISRN Biomathematics

If we substitute u∗1 and u∗2 in the systems (2) and (11), we
obtain the following optimality system:

dx∗

dt
= s− dx∗(t)−

(

1− u∗1 (t)
)

kv∗(t)x∗(t),

dy∗

dt
=
(

1− u∗1 (t)
)

ke−δτv∗(t − τ)x∗(t − τ)

− δy∗(t)− py∗(t)z∗(t),

dv∗

dt
=
(

1− u∗2 (t)
)

Nδy∗(t)− µv∗(t),

dz∗

dt
= cy∗(t)z∗(t)− bz∗(t),

dλ1

dt
= 1 + λ1(t)

[

d +
(

1− u∗1 (t)
)

kv∗(t)
]

+ χ[0,t f −τ](t)λ2(t + τ)
(

u∗1 (t + τ)− 1
)

ke−δτv∗(t),

dλ2

dt
= λ2(t)δ − λ3(t)

(

1− u∗2 (t)
)

Nδ

− cz∗(t)λ4(t) + pz(∗t)λ2(t),

dλ3

dt
= λ1(t)

(

1− u∗1 (t)
)

kx∗(t) + µλ3(t)

+ χ[0,t f −τ](t)λ2(t + τ)
(

u∗1 (t + τ)− 1
)

ke−δτx(t),

dλ4

dt
= 1 + py∗(t)λ2(t) + λ4(t)

(

b− cy∗(t)
)

,

u∗1 (t) = min

(

1, max

(

0,
k

A1

[

λ2(t)e−δτv∗(t − τ)x∗(t − τ)

−λ1(t)v∗(t)x∗(t)
]))

,

u∗2 (t) = min

(

1, max

(

0,
1

A2
λ3(t)Nδy∗(t)

))

,

λi
(

t f
)

= 0, i = 1, . . . , 4.

(17)

4. Numerical Simulations

In this section, we give a numerical method to solve the
optimality system (17) and present the results.

Let there exists a step size h > 0 and integers (n,m) ∈ N2

with τ = mh and t f − t0 = nh. For reasons of programming,
we considerm knots to left of t0 and right of t f , and we obtain
the following partition:

∆ =

(

t−m = −τ < · · · < t−1 < t0 = 0 < t1

< · · · < tn = t f < tn+1 < · · · < tn+m

)

.

(18)

Then, we have ti = t0 + ih(−m ≤ i ≤ n + m). Next, we define
the state and adjoint variables x(t), y(t), v(t), z(t), λ1(t),
λ2(t), λ3(t), λ4(t) and the controls u1(t), u2(t) in terms of
nodal points xi, yi, vi, zi, λ

i
1, λi2, λi3, ui1, and ui2.

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

Time (days)

x
(t

)

x without control

x with control

Figure 1: Uninfected cells x with and without control.
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Figure 2: Infected cells y with and without control.

Now a combination of forward and backward difference
approximation, we obtain Algorithm 1.

For this simulation, we use the parameter values given in
Table 1.

The graphs from simulating the model, given below, help
to compare the uninfected cells, the infected cells, and the
viral load before and after the treatments with controls.

Figure 1 shows that after the treatments, the CD4+ T
population grows significantly which improves the quality of
life of the patient.

In Figure 2, the number of infected CD4+ T cells at
the final time t f = 50 (days) is 0.1096 in the case with
control and 1.8439 without control, and the total cases in
blocking new infections at the end of the control program
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Table 1: Parameters, their symbols and values used in simulation.

Parameters Descriptions Values

s Source term for uninfected CD4+ T cells 5 day−1 mm−3

d Death rate of CD4+ T cells 0.03 day−1

k Rate CD4+ T cells become infected with virus 0.0014 mm3 virion−1 day−1

δ Death rate infectedCD4+ T cells 0.32 day−1

p Rate at which infected cells are killed by CTLs 0.05 mm3 day−1

N Number of free virus produced by infected cells 480

µ Clearance rate of free virus day −1

b Death rate of CTLs 0.3 day−1

c Immune response activation rate 0.2 mm3 day−1

τ Time delay 0.5 day

The period of the therapy considered is 50 days.
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Figure 3: Virus v with and without control.
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Figure 4: Function z with and without control.
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Figure 5: The controls u1 and u2.

is 1.7343, then the efficiency of drug therapy in blocking the
new infections is 94%.

Figure 3 shows that after introducing therapy, the viral
load declines towards zero. Specifically, the number of free
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Step 1: for i = −m, . . . , 0, do :

xi = x0, yi = y0, vi = v0, zi = z0, ui1 = 0, ui2 = 0.

end for

for i = n, . . . ,n + m, do :

λi1 = 0, λi2 = 0, λi3 = 0, λi4 = 0.

end for

Step 2: for i = 0, . . . ,n− 1, do :

xi+1 = xi + h[s− dxi − (1− ui1)kvixi],

yi+1 = yi + h[k(1− ui1)e−δτvi−mxi−m − δyi − pyizi],

vi+1 = vi + h[(1− ui2)Nδyi − µvi],

zi+1 = zi + h(cyizi − bzi),

λn−i−1
1 = λn−i1 − h{1 + λn−i1 [d − (1− ui1)kvi+1]

+ χ[0,t f −τ](tn−i)λ
n−i+m
2 (ui+m1 − 1)ke−δτvi+1},

λn−i−1
2 = λn−i2 − h[λn−i2 δ − λn−i3 (1− ui2)Nδ − czi+1λ

n−i
4 + pzi+1λ

n−i
2 ],

λn−i−1
3 = λn−i3 − h[λn−i1 (1− ui1)kxi+1 + µλn−i3

+χ[0,t f −τ](tn−i)λ
n+m−i
2 (ui+m1 − 1)ke−δτxi+1],

λn−i−1
4 = λn−i4 − h[1 + pλn−i2 yi+1 + λn−i4 (b − cyi+1)],

Ri+1
1 = (k/A1)(λn−i−1

2 e−δτvi−m+1xi−m+1 − λn−i−1
1 vi+1xi+1),

Ri+1
2 = (1/A2)λn−i−1

3 Nδyi+1,

ui+1
1 = min(1, max(Ri+1

1 , 0)),

ui+1
2 = min(1, max(Ri+1

2 , 0)).

end for

Step 3: for i = 1, . . . ,n, write

x∗(ti) = xi, y∗(ti) = y∗i , v∗(ti) = vi, z∗(ti) = zi, u
∗
1 (ti) = ui1, u∗2 (ti) = ui2.

end for

Algorithm 1

virus at the final time is 0.0250 in the case with control and
162.7342 without control, and the total cases in blocking
viral production at the end of the control program is
162.7092, then the efficiency of drug therapy in inhibiting
viral production is 99.98%.

Figure 4 shows that the cell-mediated immune response
is always maintained at a positive level and it is never elimi-
nated. We also note that an increase in infection is followed
by a corresponding increase in the immune response, which
then serves to remove infection by killing off infected cells.
Once the infection is low, the immune response is not
needed at such high levels and this is why it drops off too.
Finally, Figure 5 represents the optimal controls u∗1 and u∗2
in blocking new infection and inhibiting viral production.

5. Conclusion

The purpose of this work is two-fold. Firstly, we gave a delay
mathematical model with two controls that describe HIV
infection of CD4+ T cells during therapy. Currently, there is
no effective therapy for HIV infection and the cost of treat-
ment is beyond reach of many infected patients. Hence, we
presented an optimal therapy in order to minimize the cost
of treatment, reduce the viral load, and improve immune

response. Secondly, we presented an efficient numerical
method based on optimal control to identify the best treat-
ment strategy of HIV infection in order to block new infec-
tion and prevent viral production by using drug therapy with
minimum side effects.

Our numerical results show that the optimal treatment
strategies reduce viral load and increase the uninfected CD4+

T-cell count after five days of therapy.

Acknowledgment

The authors would like to thank the anonymous referee for
his/her valuable comments on the first version of the paper
which have led to an improvement in this revised version.

References

[1] K. Hattaf and N. Yousfi, “Dynamics of HIV infection model
with therapy and cure rate,” International Journal of Tomogra-
phy and Statistics, vol. 16, no. 11, pp. 74–80, 2011.

[2] K. Hattaf, N. Yousfi, and A. Tridane, “Mathematical analysis of
a virus dynamics model with general incidence rate and cure
rate,” Nonlinear Analysis: Real World Applications, vol. 13, no.
4, pp. 1866–1872, 2012.



ISRN Biomathematics 7

[3] A. S. Perelson and P. W. Nelson, “Mathematical analysis of
HIV-1 dynamics in vivo,” SIAM Review, vol. 41, no. 1, pp. 3–
44, 1999.

[4] A. S. Perelson, A. U. Neumann, M. Markowitz, J. M. Leonard,
and D. D. Ho, “HIV-1 dynamics in vivo: Virion clearance rate,
infected cell life-span, and viral generation time,” Science, vol.
271, no. 5255, pp. 1582–1586, 1996.

[5] X. Zhou, X. Song, and X. Shi, “A differential equation model
of HIV infection of CD4+ T-cells with cure rate,” Journal of
Mathematical Analysis and Applications, vol. 342, no. 2, pp.
1342–1355, 2008.

[6] H. Zhu and X. Zou, “Dynamics of a HIV-1 infection model
with cell-mediated immune response and intracellular delay,”
Discrete and Continuous Dynamical Systems, Series B, vol. 12,
no. 2, pp. 511–524, 2009.

[7] K. Hattaf and N. Yousfi, “Two optimal treatments of HIV
infection model,” World Journal of Modelling and Simulation,
vol. 8, pp. 27–36, 2012.

[8] K. R. Fister, S. Lenhart, and J. S. McNally, “Optimizing chemo-
therapy in an HIV model,” Electronic Journal of Differential
Equations, vol. 1998, pp. 1–12, 1998.

[9] H. R. Joshi, “Optimal control of an HIV immunology model,”
Optimal Control Applications and Methods, vol. 23, no. 4, pp.
199–213, 2002.

[10] J. Karrakchou, M. Rachik, and S. Gourari, “Optimal control
and infectiology: application to an HIV/AIDS model,” Applied
Mathematics and Computation, vol. 177, no. 2, pp. 807–818,
2006.

[11] D. Kirschner, S. Lenhart, and S. Serbin, “Optimal control of
the chemotherapy of HIV,” Journal of mathematical biology,
vol. 35, no. 7, pp. 775–792, 1997.

[12] H. D. Kwon, “Optimal treatment strategies derived from a HIV
model with drug-resistant mutants,” Applied Mathematics and
Computation, vol. 188, no. 2, pp. 1193–1204, 2007.

[13] R. V. Culshaw, S. Ruan, and R. J. Spiteri, “Optimal HIV treat-
ment by maximising immune response,” Journal of Mathemat-
ical Biology, vol. 48, no. 5, pp. 545–562, 2004.

[14] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic
Optimal Control, Springer, New York, NY, USA, 1975.

[15] D. L. Lukes, Differential Equations: Classical To Controlled, vol.
162 of Mathematics in Science and Engineering, Academic
Press, New York, NY, USA, 1982.
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