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Optimal Control of a Nuclear Power Reactor Core
with a Coupled Nuclear Thermo-hydrodynamics Model

Ryuji KOGA*

-Synopsis

An optimal' c'ont:fol is giyen for regulating' po'Wer

distribution in a~uclea~ po~r reactor which has cylin
drical ·geometry. The space dependence o~ the system is

described by expanding space depenident variables by

Helmholtz modes. Results are obtained through the prin

ciple of optimality and are described by the Riccati-type

algebraic equation that the optimal feedback coefficients

should satisfy. Use of an integral equation as the sys

tem equation makes it possible to deal with actual con

trolling apparatuses: cDntrol rods or rod clusters.

1. Introduction

Growth of nuclear power reactors in size and in power density makes

its power distribution easy to transform in profile with small local

variation or nuclear parameters, and a coupled nuclear thermo-hydrodynam

ic model is necessary to be regarded for a power regulating purpose.
In the last decade, efforts have been devoted to synthesize the

optimal control for spatially distributed cores.

Weaver and Vanasse(/) devised a technique to determine the optimal

feedback coefficients for a system described in the frequency region,

and have applied their method to a nodally represented core and also to

a coupled core.
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Stacey~) and Hsu(3) used a partial differential form as the neutron

governing equation, and applied the calculus of variations to obtain the

control. Stacey's work provides a method to calculate an optimal open

loop control by the direct method of calculus of variations, which

yields an algebraic equation to be numerically solved. Hsu developed

Pontryagin's Maximum Principle(~) for distributed systems, and applied

his method to a regulator problem and a minimum time problem. Also a

Liapunov functional was constructed to verify the stability of a sys

tem, and was further utilized to find a suboptimal control law.
Wiberg(~} treated the optimal control of xenon spatial oscillation

to apply the modern control theory for lumped parameter systems, and the

optimal feedback coefficients are given formally as a solution of a re

gUlator problem. A numerical example is presented for a very simple

case.

Kyonga> applied the function space method to a regulator problem

of a prompt-neutron equation, and developed a method for solving an

integral equation numerically, which was derived from an open loop op

timal control problem for general linear systems, initially formulated
in an abstract space by Balakrishnan(7).

Kuroda and MakindS) dealt with a terminal cost problem with control

energy constraint by the principle of optimality. They also applied

the results by Lion~q} for a regulator problem of a linear one-group

neutron model without precursor.
Koga(lO) obtained an optimal solution for a model which takes only

the precursor density as the state variable but neglecting dynamics of

neutron flux because of its quickly decaying feature. The function

space method is used there to derive the equation that the optimal open

loop control should satisfy and some numerical characteristics of the

equation were found after numerical studies.

A terminal cost problem which transfers a core state to another

for a one-group neutron equation associated with precursor density was
studied by Iwazumi and Koga(fl). A feedback solution was obtained through

the Kaplan modeU2) expansion technique as well as by the function space

method. An idea was there devised to circumvent a space dependence of

core parameters that makes it difficult to obtain the Kaplan mode analyt
ically.

All these studies treated systems described in differential equa
tions with which difficulties arise to treat effect of control rods which
are pointwisely concentrated in the core. In this report this difficulty

is circumvented by reducing differential equations to an integral equa

tion.
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Here a thermo-hydrodynamic equation coupled through a steady state

neutron equation is chosen as a governing equation. The reactor at the

rated power should be regulated in the vicinity of the steady state with

respect to the coolant outlet temperature and the neutron flux level over

the reactor core.

Here we consider a single channel reactor(Appendix). The governing

equations with respect to fluctuated temperature B and precursor density

C are described as

.e ::

e =

A C + /> 1J4 ~

r (J + Kq ~ ,
( 1)

(2)

where ¢ is the neutron flux density. The precursor density is consi

dered to be of one group and the distributive neutron dynamics in a

single channel is assumed to be far quicker compared with the thermo

hydrodynamics of the moderator and the control motion. Reduction of

parameters r and /'I is presented in Appendix.
Two independent dynamics Eqs.(l) and (2) are coupled through the

quickly following neutron system steered by control absorber, namely,

v2 <p + ~2 ( koo - f) ¢ == - ( U - a.8) P + Ie
associated with a boundary condition,

(4)

The variables are assigned by following meanings,

fv12:= 2o.-/D2 :migration area,

!?ro== /)q/La. :multiplication factor for an infinite
medium,

:nominal neutron flux density,
:moderator temparature coefficient,

1 J...jIa.
The differential equation(3) together with the boundary condition

(4) can be transposed into the explicit form using Helmholtz mode ex

pansion technique as

~(w)=ifl!t({J)J.-r~((JJ')I(11.-f1.8)P-Ic) ,d..ev/, (5)
1."'1 //{; 112 l' (aJ )

where ~({J) is the Helmholtz eigenfunction corresponding to the eigen

value

::= (6 )
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Substitution of this expression into the state equations (1) and

(2) gives a system equation with respect to the state values C(w,t) and

8(w,t), and the control value U{W,t), in an evolution equation form

with an integral operator as a spatial operator, instead of the differ

ential operator, viz,

'J ... ... .... .... r -1: ....
at/(W,t):= -/\ nfAJ,t)-+ b}n '11lr (w/w') r(w:t> clw'

- bf m{.(.(wfw~) U( /C', T) daJ~,
:.n.....

where I is the state vector of C and (j, as

~

Coer c )r ;: (J),...
/\ , a diagonal matrix

-+ d£ag. (.A, r)A =-and b is given by

b = . col.c f))4, t< If) .

(7)

(7)

(8)

(9)

(10)

( ll)

(12)

The kernels of the integral operator, mr(wlw~) and '11'l-u Uu /tV'J, are

given by .
,00 .

Imr(w/anl ::: -.i:{; ~i ~(W)~ (w')(l(f.(Y) ~({.()') ,

{mr(lUlw~)}2== -! -!... ~'((J))~'(f.()~) ~(4}')'
and i :: 1 1- t 1-

~

mu(tvlw~);: J -k.~(aJ)tft·(W~Jffi(f.(f),
t =1 .,."

respectively.

3. Optimal Regulator Problem; Fully Distributed Control

(14)

as

~

Let us consider a problem to minimize a functional of rand U
00

J::= ~ H(r(tu, r:), U(W,7:») dc:,

choosing the control function U(W,~) suitably under the constraint,

Eq. (7) • The H function in Eq. (14) is also a functional of the form
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The r2 variable is a parameter which should be adjusted according to

the controlling object. The Q in the first term is a symmetric weight

ing matrix function which is considered to be dependent both on Wand

W' also symmetrically, though we shall not consider the spatial depend

ence. This is because we want to make the reduction clearly.

The minimization problem as stated leads to a problem of the calcu

lus of variations making use of the principle of optimality.

Let us introduce a functional 7C of F associated with a parameter

(6)

rewritten

7l:(rCi),t) :; ~ ~OCH{r, U J 7:) ely..
-r"c[t,CkI)

the principle of optimality, Eq.(16) is to be

form:

as

i
tT(/' -+

7l(rct>,tJ= -rr:f!i) [ H(r, u, T)dT + 7l(/(t+(f) , t+crJ]
-r"c [t,tKTl t

Gathering both sides into one and taking account of the" minimiza-

t

Following

in a separated

tion operation, we have

"~ rlt
+HcLr + 7l (ra-rc1), t+<rJ - n{rct), t}] = 0 •

-rt ft, t+a-J t .
Retaining the relation(18) to the limit 6-+0, we obtain

Tft1; [ H(ret), U(O) +itn{r(t), t JJ = 0,

for the optimal control U at an arbitrary calender time t.
The total time derivative of n: is written as

08-)

(20)

where the second term in the right side together means the Frechet

derivative of 1[ with respect to the variable 9r/'dt
Because only with the stationary case we are concerned, the a

ppiopi condition

o (21)

(22)

should be retained. Then substitution of Eq:(20) together with Eq.(2l)

into Eq.(18) yields

~ [H (ref), U(t)} -I- ff --if] ;:: o.
This is the fundamental equation after which we are going to obtain the

optimal feedback law analogously to the well known Hamilton-Jacobi theo

ry for lumped parameter systems.
From intuition, puggested from many stimulated former works on
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various quadratic performance problems of linear lumped parameter sys

tems, let us put a form of the functional 7T. {ret>} to be

n:{Tct) J~ ~fffit f{W,t){PCa),IJY) f(tU")dfA(dw (23)-by a square matrix function Pew,w'), which reduces to

~ ar 1 f,7{ ~ ..... t-+ .....,orat :: 2"11 ~r(C<),t;)J Pcw, to') r(aJ,i")dw'rJ.tU

+ f Ifft(w,t )p(W, W')/t F(w', t)da/dw (24)
..n

The substitution of Eq.(24) and the system equation(7) lnto Eq.(23) gives

::it> [J! F~tIJ,t)Q(w,C<)')F((J)')d{,tJ'dw + (2LilJ.(cv.>t)}2d a;

+if {a~ F(W, t ){ p(W, W') T(w', t') dw"cia;

+ IJ Ftw,t>p(W,W')lft F(w~t) daJ'dw ]
..12. .

== ~ [ If f~w,t)Q(('(),w"/F({,()~t)dw"'d.(,() + r2
( {U(W)]2da;

u ct) .n . .J.n.

-If F1 tiJ, t ) filP(w, aJ'l) + p((,().> tV")AJr(f.()'~ t) dw"daJ
.J"l

+ f[ r~tU,t >fl m.,.,((()'1 w)1/p(w~w''') dw'
( .- -- J1 ;t J- "+ J.S2 p((.(), w' ) bI'11'lr{t.(}'1 W")} dtv' I (aJ", t ) duJ dtU

- 2If u((() [11/ mu (l.v' JIV )"p(w', w") dw' ] f (V'~t) dl~/'cf(lj' ]
Q ~ .

:= O. (25)

Because no restriction is posed on the control U(~,t) , the mlnlmum

of Eq.(25) should be attained at U==U'k(w,f;) which makes the functional

derivative of the operand in Eq.(25) be zero, the optimal control should

be given by

U*({J), t) ;;:. r-2L[1/?7Zu (Co'/W) p([()~ tV")] T(W': t) ril(/', (26)

as a necessary condition for the optimality. Again sUbstituting this

intermediate result for U~(tu, t) into the stationary Hamilton-Jacobi

equation( 25), an equation with respect to P function which is as yet

undetermined, is obtained as
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(27)

(29) .

Equation(27) is ~or a two dimensional square matrix and does not change

in the ~orm a~ter transposing the whole equation or interchanging the-variable WI and W:?' and there~ore the solution p(aJ, {.()') should be sym-

metric not only in the ~orm but also with respect to the two arguments.

This equation is analogous to the Riccati-type di~~erential equation

which appears in ~eedback control problems ~or lumped systems.

4. Optimal Regulator Problem; Rod Cluster Control

A large reactor may be operated by many control rods which are

driven being grouped in a ~ew clusters according to a prescribedparti

tioning pattern. This operation allows us to restrict the control func

tion within the class that is expressed by
Nt

U (aJ > t) = 2. lLm. (t) 11m. ( to) ,. ( 28)
m=1

where 'lim (tv), m :::1;- -J Jv/ are prescribed distributions chosen so that the

control rod pattern may be well described.

Substitution of Eq.(28) into Eq.(7) gives a modi~ication,

d~ !(r.u,t) == - Ar(W, t) -r b.i (mr(W fuJ') t rUt); t) daf

-b{mu(aJ)}"t urt) ,
-7

where the modified part 1.nu (W) is an M-dimensional column vector func-

tion and is given by

and

The integrand o~ the cost ~unctional (15) should also be modified into

H == j fin {Puv,t)f Qov, {~y)f(w~ t) d~/'dtU

+ {f1 (t) }t R i1 (0 ,
...,.

where the positive definite square matrix R is introduced instead of
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r'J in Eq. (15) . Introduction of R allows us to evaluate the controlling

effort-on each controlling mode separately.
Parallel reduction along the previous section provides a stationary

Riccati equation

(1 {... Jt~ {~ }"t: R-.., ~ ~bt p-' ) dIU. dtd- JJ p((~J:J.lJJ1) b '7n(.J.(4h) mu(Cuq.) (WIj.,W3 ~:l

.n

+ 1[mr' (W21tU1) b"t P(4)2, tU3) + Po.u, ,tV2.)6{mr (t.U2!W3 )t 1d W2
:0.

~ -+ -+--:+
-/\Pcw,,,wa) - P(WI,W3)!i + Q(W1,W3) = 0, (33)

and an optimum feedback law

U(!) = R-'4. mu {wIJ1/p(Wf'W,:J)T(4)2)t) dCU2dCcJt,

for a solution of Eq.(33).

<34 )

5. Optimal Regulator Problem; A Few Regulating Rods

N

I
n=1

==

Let us consider a reactor equipped with a few regulating rods sepa

rately located in a core. Effect of slight motion of the control rods

is described by

Substituting this equation into Eq.(7) instead of Eq.(28), the same re

sults with Eqs.(33) and (34) are obtained except for the definition of

~u{W), which should be substituted by

, N. (36)

6. Reduction of the Space-Dpendent Riccati-type Equation to a Set of

Algebraic Equations

One method to solve the Riccati-type equation(33) can be foun in
a literature by Liomfq) which has expanded the functi.on P(w, W') in

terms of eigenfunctions of the system operator. These eigenfunctions

coincide with the "natural mode" introduced by Kaplan and are known to

require much effort to obtain numerical solution for existing reactors.

We can expand the P function also in terms of the Helmholtz mode.
which is given a ppiopi for a specific core geometry, as
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(38)
k=1,2, ... ,

Substituting this form into Eq. (33) and multiplying it by lfJe'(uJ) and

~~ from the left and from the right respectively, we obtain a series

of equations
00 ~ t~'- ,DO _ t~ I 00 _ --+

-j?;=f 1ft'} ~l 11k + 2{ "Ii/~ {B.ti} 11k + It '1kt, Pa~ ~k

- 7L~k - ~k /\ + Qik == 0,

where

with

(39)

and
(40)

(41)

with

and

"'.L'k 1b ==:.a ac w) ~(UJ) ~ (4») ~ (w) dw

Qik == ffn t.fi{tV,) Q(lV1J W3)tfJk ( tUiJ) d«J3 dv, .

(42)

7. Results and Discussions

Thus a Riccati type equation in an integral equation form has been

obtained for a system of power distribution in s nuclear power reactor

core. This integral equation expression of the system has enabled us to

describe actual control-rod operations which are specifically limited

from the structures of the reactors.

The Riccati type equation for the optimal feedback control describ

ed in terms of distributed parameter system has been reduced to a set

of coupled algebraic equations using the Helmholtz mode expansion. Dif

ferent from the result by Lion, which uses the eigenfunction expansion

and there the system is divided into decoupled subsystems, our equations

retain couplings and we must deal with the whole system together instead

of decoupled equations in numerical calculation.
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For a nuclear reactor, however"the eigenfunction under consider

ration is called as the natural mode which should be obtained numerical

ly, unless all nuclear parameters are homogeneous over the core. If

error is contained in the obtained natural modes, their profit of finite

ness is canceled considering the labour required for obtaining this mode

numerically.

Use of Helmholtz modes for expansion does not require sophisti

cated calculations to obtain them prior to dealing with dynamics of the

reactor and it is desirable in setting up a short model for specific

object which does not require high accuracy. The reduced Riccati-type

equations are, however, coupled each other, since the Helmholtz modes

do not have the finality which the Kaplan modes retain. The relation

between the number of truncation and the accuracy should be studied nu

merically for specific reactors and is a further problem to be solved.
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Appendix: A Model for a Single Channel Thermo-hydrodynamics

Argument is made on an assembly illustrated in Fig. A.

Fig.A. Single fuel assembly.
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-----':~J f~1coolant chan'" r~

An assembly is composed of fuel pins and coolant channels, and is in

stalled in the reactor core at (r,~) parallel to the axial Z direction,
and a reactor core is of the assemblies. Assuming a reactor dynamics

whose rate of change is within a range of controlling action, the thermo

hydrodynamics about a channel is described as

(AI)

where the nomenclatures are given as
8e CY.,t)

P
C

A
V

: fractional temperature of the coolant,

:density of coolant,

specific heat of coolant,
cross sectional area of the coolant channel
speed of coolant flow,
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total linear heat release from the fuel pind

brlonging to the assembly.

Assuming that the temperature-increase profile of the coolant along

the longitudinal 'direction is fixed at It 00 as

(A2)

where 8i stands for an inlet temperature. Substitution of Eq.(A2) into

Eq.(Al) yields

Rcn 8ct) -to VIi R.,CZ) &(t) == (PeA F' 3- (2, t). (A3)

Also assuming that thermal flux distribution along the axial direction

at the assembly can be factorized by ~~, the heat release density
:z

~ (lit> is expressed as

~(~,t)= AfEq~ ~~ ~, (A4)

area of fuel pins,

nomenclatures are given as

AI total cross sectional

£
2f
~

where

energy released per fission,
macroscopic fission cross section,

thermal flux density averaged over the full length
of the assembly.

Substituting Eq.(A4) into Eq.(A3) and integrating the both sides

with weight ~(~) over full length of the assembly, the system with

respect to the representative coolant temperature B is obtained as

(A5)

where

r ::::

and

I< - 2. EAf
- 7l peA

which have been required.

(A6)


