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Abstract. In this paper, the optimal boundary control of a time-discrete Cahn–Hilliard–Navier–
Stokes system is studied. A general class of free energy potentials is considered which, in particular,
includes the double-obstacle potential. The latter homogeneous free energy density yields an op-
timal control problem for a family of coupled systems, which result from a time discretization of
a variational inequality of fourth order and the Navier–Stokes equation. The existence of an opti-
mal solution to the time-discrete control problem as well as an approximate version is established.
The latter approximation is obtained by mollifying the Moreau–Yosida approximation of the double-
obstacle potential. First order optimality conditions for the mollified problems are given, and in
addition to the convergence of optimal controls of the mollified problems to an optimal control of
the original problem, first order optimality conditions for the original problem are derived through
a limit process. The newly derived stationarity system is related to a function space version of
C-stationarity.
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1. Introduction. The coupled Cahn–Hilliard–Navier–Stokes (CH-NS) system is
a quantitative model which describes the hydrodynamics, such as demixing or phase
separation, of multiphase fluids. While the Navier–Stokes part of such a system
captures the fluid dynamics over time (see, e.g., [16]), the Cahn–Hilliard model is
related to an H−1-gradient flow for a Ginzburg–Landau free energy, which covers
the phase separation behavior [15]. Mathematically, a CH-NS system describing the
hydrodynamics of a two-phase fluid flow is given by

∂tv − 1

Re
Δv + v · ∇v +∇π +Kc∇w = 0 inΩT ,(1.1)

div v = 0 inΩT ,(1.2)

∂tc− 1

Pe
∇ · (b(c)∇w) + v · ∇c = 0 inΩT ,(1.3)

w ∈ ∂Φ(c)− γ2Δc inΩT ,(1.4)

c(0) = ca, v(0) = va inΩ at t = 0,(1.5)

∇c · �n = 0, ∇w · �n = 0 on ∂Ω× (0, T ),(1.6)

v = r on ∂Ω× (0, T ).(1.7)

Here, v denotes the velocity of the fluid and π the related pressure; c, typically with
values in [−1, 1], is the order parameter describing the mass concentrations c1 and c2
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748 M. HINTERMÜLLER AND D. WEGNER

of the fluid phases; and w is the associated chemical potential. The capillary number
K, the Reynolds number Re, the Péclet number Pe, and the diffusivity parameter
γ are given positive constants depending on material properties. The function b(·)
represents the mobility involved in the phase separation process. Further, the space-
time cylinder is given by ΩT := Ω× (0, T ), i.e., it is the Cartesian product of a spatial
domain Ω ⊂ R

n, n ∈ {2, 3}, and a time interval (0, T ) with T > 0 given. By ∂Ω we
denote the boundary of Ω and by �n the outward unit normal on ∂Ω. By r we denote
some prescribed boundary velocity, and ca and va are given initial data.

In the above system, which is related to Model H in [29], the mapping Φ corre-
sponds to the homogeneous free energy density contained in the Ginzburg–Landau
energy model. It is usually nonconvex for capturing spinodal decomposition. Popu-
lar physically relevant choices are the logarithmic potential Φ(c)(x) := Φψ(c)(x) :=
ψ(c(x))− 1

2c
2(x) for ψ(c) := (1+c) ln(1+c)+(1−c) ln(1−c), which can be found, e.g.,

in Cahn and Hilliard’s seminal paper [15] but also in the Flory–Huggins theory for
describing phase separation processes in the thermodynamics of polymer solutions,
and the double-obstacle potential [8, 9, 21], i.e., Φψ for ψ(c) := 0 if |c| ≤ 1 and ∞
otherwise, which, in the context of polymer solutions, appears appropriate to model
situations of rapid wall-hardening [37]. A frequently used but possibly less relevant
choice for Φ in material science is given by the double-well potential [18], i.e., Φψ for
ψ(c) := c4. While the logarithmic and double-well potentials enjoy differentiability
properties (allowing one to replace ∂Φ by the Fréchet derivative Φ′), respectively, the
double-obstacle potential has a possibly genuinely set-valued derivative ∂Φ(c) at c.
The latter clearly complicates the situation, both analytically and numerically, and
gives rise to a variational inequality in (1.4).

For the coupled CH-NS system, results on the existence of solutions were obtained
in [39] in the case Ω = R

2, in [12] for a periodical channel, and in [3, 2] for the general
case. There are various ways in which Model H can be generalized in order to allow for
fluids with different densities. Some of these models together with related analytical
and numerical results are discussed in [35, 13, 17, 2, 1, 23, 20]. On the numerical
level, for the CH-NS system with the double-well potential we refer to [30, 31, 32]
and we refer to [11] for three-phase flows; see also [12, 13, 10, 4, 34, 33]. In [25], an
adaptive solver based on reliable and efficient residual a posteriori error analysis for
the double-obstacle potential was developed.

In this paper we are interested in the optimal control of the coupled CH-NS
system. In this context, an objective functional J is minimized subject the CH-NS
system, i.e., we seek to solve the problem

(1.8) minimize J (c, v, u) subject to (1.1)–(1.6), v = u on ∂Ω× (0, T ),

where the control u is an element of a closed, linear control space U . A particular
instance of U is the closed, linear subspace of the trace space containing controls
operating in the direction normal to a nonempty subset Γc of the boundary ∂Ω of the
spatial domain Ω only. We also refer to Problem 3.2 below for a time-discrete version
of this optimization task (1.8).

With respect to applications the study of the above optimization problem is rel-
evant, for instance, in the formation of polymeric membranes in the context of an
immersion precipitation process. In this context, a polymer solution is immersed in a
coagulation bath which contains a nonsolvent. Due to the concentration difference be-
tween the polymeric solution and the nonsolvent, the polymeric solution decomposes
into two phases, a polymer-rich one and a polymer-poor one. It is well known [43]
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that the performance of the resulting polymer membrane depends significantly on its
morphology (i.e., the porosity structure), which is the result of the phase separation
process.

Optimal control problems for phase separation modeled by either the Cahn–
Hilliard or the Allen–Cahn system were previously studied in [22, 41, 42, 28, 19].
In these papers, however, no coupling with other physically relevant systems occur.
Concerning research on the coupled CH-NS system we mention that while some work
on the analysis and numerics for the coupled CH-NS system is available as discussed
above, to the best of our knowledge the literature on the optimal control of the
CH-NS system is essentially void. Hence, as a first step toward the optimal control
of the CH-NS system with a rather general choice of the free energy, in this paper we
study the optimal control of the time-discrete version of (1.8). We further note that
semidiscretization in time is a common approach toward the numerical solution of
time-dependent optimal control problems. In principle, however, we emphasize that
the analysis and the derivation of stationarity conditions are also of interest in the
time-continuous setting. This would require an analytic framework that extends the
one by Abels [2, 3] for the CH-NS system to the optimal control setting including
the corresponding adjoint system. This goes beyond the scope of the present paper
and remains for future research.

The rest of the paper is organized as follows. In section 2 the time-discrete CH-NS
system is stated and an appropriate solution concept is introduced. Further, energy
estimates are derived which are then used to prove existence of a solution of the time-
discrete CH-NS system for a given control action u. With respect to the choice of
the free energy, smooth as well as nonsmooth homogeneous free energy densities are
possible. This covers in particular the case of the double-obstacle potential giving
rise to a variational inequality. The associated semidiscrete optimal control problem
is studied in section 3, where, besides existence of an optimal solution, a first order
optimality system for a smooth free energy is derived. The latter includes the case
of a mollified version of the Moreau–Yosida approximation of the double-obstacle
potential. Finally, in section 4 a stationarity system for the double-obstacle potential
is derived through a limit process of the associated stationarity system of section 3.
The resulting system is of so-called C-stationarity type and is suitable for numerical
realization.

1.1. Notation. In order to simplify the notation and to ease the exposition,
from now on we set Re = Pe = K = 1, and we consider the constant mobility case
only, i.e., b(·) ≡ 1 in (1.1)–(1.6).

Further, N denotes the positive integers, and N
∗ := N ∪ {∞} and R := R ∪

{−∞,∞} are the extended positive natural and real numbers, respectively. The du-
ality pairing between a Banach spaceX and its dualX∗ is written as 〈., .〉X : X∗×X →
R. As usual, strong and weak convergence are denoted by → and⇀, respectively. For
a Hilbert space H its inner product is given by (.|.)H : H×H → R, whereas JH : H →
H∗ denotes the canonic isomorphism due to the Riesz theorem. Let N ∈ {2, 3} and
Ω ⊂ R

N be a bounded domain with smooth boundary. We define W0 := {c ∈ L2(Ω) :∫
Ω
c = 0}, W1 := H1(Ω) ∩W0 with the norm ‖c‖W1 := ‖∇c‖L2(Ω), and W−1 := W ∗

1

and −Δ :W1 →W−1 by 〈−Δw, ŵ〉W1
:=

∫
Ω∇w ·∇ŵ. Furthermore, the spacesWi for

i = 2, 3 are given byWi := −Δ−1(Wi−2) with the norms ‖ .‖Wi := ‖−Δ( . )‖Wi−2 and
W−i :=W ∗

i . Then, there is a natural embeddingW1 ↪→W0
∼=W ∗

0 ↪→W−1. Since −Δ
is injective on W1, these indeed are norms. Moreover, we set V1 := {v ∈ H1(Ω;RN ) :

div v = 0}, Ṽ1 := V1 ∩ H1
0 (Ω;R

N ), V0 := Ṽ0 := the closure of V1 in L2(Ω;RN ),
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750 M. HINTERMÜLLER AND D. WEGNER

V−1 := V ∗
1 , Ṽ−1 := Ṽ ∗

1 , and Yi := Wi × Vi, Ỹi := Wi × Ṽi for i ∈ {−1, 0, 1}. On Ṽ1
we use the norm ‖v‖

˜V1
given by the functional |ṽ|

˜V1
:= ‖∇ṽ‖V0 that is a seminorm

on V1. The other spaces are equipped with their standard norms. The space WM
1

denotes the M -times product W1× · · ·×W1. Other product spaces are denoted anal-
ogously. We define CP := ‖ Id ‖L(˜V1;V1)

. The subspace S1 of S := H1/2(∂Ω;RN )

is given by S1 := Tr(V1), where Tr denotes the usual zero order trace operator
Tr : H1(Ω;RN ) → H1/2(∂Ω;RN ). Moreover, S−1 := S∗

1 .
We fix a time step size τ > 0 and define for an arbitrary vector space X and

M ∈ N the operators D+, S+, S− : XM+1 → XM by

D+(x0, . . . , xM ) := 1
τ (x1 − x0, . . . , xM − xM−1),

S+(x0, . . . , xM ) := (x1, . . . , xM ),

S−(x0, . . . , xM ) := (x0, . . . , xM−1).

For ease of notation, we use the following convention: Whenever we add x ∈ XM1 to
y ∈ XM2 for M2 > M1, this is understood in the sense (x0 + y0, . . . , xM1−1 + yM1−1),
i.e., we project y onto its first M1 components.

Remark 1.1. For the proof of existence of a solution to the semidiscrete
CH-NS system below, we reduce the inhomogeneous, discretized version of the Navier–
Stokes equation (2.3) below to an equation satisfying homogeneous Dirichlet boundary
conditions. This will be done with the help of the operator F ∈ L(S1;V1) satisfying
Tr ◦F = IdS1 , where IdS1 denotes the identity operator on S1. Observe that such an
operator F always exists. Indeed, by a result due to Heron [24], the subspace S1 is
given by {u ∈ S :

∫
∂Ω u ·�n = 0}. In particular, S1 is a Hilbert space and the trace op-

erator regarded from V1 into S1 is a linear, bounded, and surjective mapping between
Hilbert spaces. Consequently, there exists a right inverse operator F ∈ L(S1;V1) to
Tr, i.e., Tr ◦F = IdS1 (cf. Aubin [5]). Moreover, we henceforth use the notation F for
a right inverse as defined above.

2. The semidiscrete CH-NS system. In our analysis we rely on the follow-
ing discretization schemes and the pertinent notion of solution. For the corresponding
mathematical description, below we use YM−1 = Y−1 × · · · × Y−1 (M -times) and anal-
ogously for the other relevant spaces. Further, the actions of operators like Δ and ∇
are understood in the componentwise sense whenever applied to elements ofWM

1 and
VM1 , respectively, and analogously for the multivalued operator A defined below.

Definition 2.1 (solution of the semidiscrete CH-NS system). Let M ∈ N, initial

data (ca, va) ∈ Y1, a right-hand side (f c, fv) ∈ ỸM−1, a boundary value r ∈ SM+1
1 , and a

multivalued operator A ⊂W1×W−1 be given. A pair (c, v) ∈ YM+1
1 is called a solution

to the semidiscrete CH-NS system with data I := (M, τ, (ca, va), (f
c, fv), r, A), if there

exists w ∈WM+1
1 such that Tr v = r ∈ SM+1

1 , c0 = ca, w0 = 0, v0 = va, and

D+c−ΔS+w +∇S−c · S+v = f c ∈WM
−1,(2.1)

−S+w −Δ(S+c)− I(S−c) +AS+c � 0 ∈ WM
−1,(2.2)

D+v −Δ(S+v) + (S−v · ∇)S+v − S+w∇S−c = fv ∈ ṼM−1 .(2.3)

In the definition above and depending on the context we consider the negative
Laplace operator −Δ incorporating respective boundary conditions either as a map-
ping from W1 into its dual W−1 or from V1 into Ṽ−1. Similarly, I represents the

canonical injection either of W1 into W−1 or V1 into Ṽ−1, again depending on the
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context. The operators −Δ :W1 →W−1 and I :W1 →W−1 are self-adjoint, whereas

the adjoints of −Δ : V1 → Ṽ−1 and I : V1 → Ṽ−1 read as follows:

−Δ∗ : Ṽ1 → V−1, 〈−Δ∗ṽ, v〉V1
:= 〈−Δv, ṽ〉

˜V1
,

I∗ : Ṽ1 → V−1, 〈I∗ṽ, v〉V1
:= 〈v, ṽ〉

˜V1
.

The evaluation of viscosity part (u ·∇)v in q for u, v, q ∈ V1 leads to the trilinear form
b(u, v, q), which, depending on the context, will be written in the following ways:

〈(u · ∇)v, q〉V1
:= 〈b1(v, q), u〉V1

:= 〈b2(u, q), v〉V1
:= b(u, v, q) :=

N∑
i,j=1

∫
Ω

ui∂ivjqj .

It is well known that 〈(u · ∇)ṽ, ṽ〉V1
= 0 for all u ∈ V1 and ṽ ∈ Ṽ1; see, e.g., [40,

Chapter 2, Lemma 1.3].
Remark 2.1. Let us consider b(c(x)) := 1 and Φ(c)(x) := ϕ(c)(x)− 1

2c
2(x) in the

system (1.1)–(1.7). If we replace ∂tc(t, x) by the forward difference 1
τ (S+c(x)−S−c(x))

and relate all other occurrences of c(t, x) either to S−c(x) or to S+c(x) and do the
same for v and w, then we obtain the weak formulation (2.1)–(2.3) with A := ∂ϕ.
Here, we assume the mean value of c to remain constant and use the fact that by
formulating the discrete version of (1.1) in the space ṼM1 , the pressure term drops
out. Note that discretizing the original system in this way the quadratic terms c∇w,
v·∇v, and v·∇c become linear in an iterative forward solver. Moreover, the nonconvex
part − 1

2c
2 of Φ(c) leading to the term −I(S−c) in (2.2) only contributes to the values

at the “old time slice” S−c and not to those at S+c.
Remark 2.2. Assume that (c, v) is a solution to the semidiscrete CH-NS system

with data (M, τ, (ca, va), (f
c, fv), r, A). Then it holds that

(2.4) S+w = (−Δ)−1(f c −D+c−∇S−c · S+v),

where (−Δ)−1 denotes the associated solution operator. Thus, the vector w is unique.
Moreover, note that the assumption Tr v = r implies r0 = Tr va. This condition
invokes compatibility of the boundary value r at initial time and the initial value va
of the fluid velocity.

Remark 2.3. Let (c, w, v) ∈ W 2
1 ×W 2

1 × V 2
1 with c0 ∈W2 and f c ∈W−1.

1. If (c, w, v) solves D+c − ΔS+w + ∇S−c · S+v = f c and if f c ∈ W0, so
is ∇S−c · S+v and therefore −ΔS+w = f c − D+c − ∇S−c · S+v as well.
Consequently, w1 ∈W2.

2. If −S+w −ΔS+c− IS−c+ a = 0 with a, S+w, S−c ∈ Wi for i ∈ {0, 1}, then
−Δc1 ∈Wi and therefore c1 ∈ Wi+2.

The next reformulation of the problem proves to be useful for the following exis-
tence result.

Lemma 2.2. The system (2.1)–(2.3) is equivalent to the system

(−Δ)−1D+c+ (−Δ+A)S+c− I(S−c)
+ (−Δ)−1(∇S−c · S+v)− (−Δ)−1f c � 0 ∈ WM

−1,(2.5)

−S+w + (−Δ)−1
[
f c − (D+c+∇S−c · S+v)

]
= 0 ∈ WM

1 ,(2.6)

D+v −Δ(S+v) + (S−v · ∇)S+v − S+w∇S−c− fv = 0 ∈ VM−1 .(2.7)

Proof. This result is easily seen by applying (−Δ)−1 to (2.1).
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Definition 2.3. We define the solution sets S(I) ⊂ YM+1
1 and Sw(I) ⊂ (W1 ×

W1 × V1)
M+1, respectively, as

S(I) := {(c, v) : (c, v) is a solution to the semidiscrete CH-NS system for

given data I = (M, τ, (ca, va), (f
c, fv), r, A)},

Sw(I) := {(c, w, v) : (c, v) ∈ S(I), w0 = 0, S+w satisfies (2.4)}.
2.1. Energy estimates I. Before establishing the existence of solutions to the

semidiscrete CH-NS system we study energy estimates. Such estimates are useful in
the existence proof in order to show that solutions to suitable auxilary problems yield
solutions to the original problem.

Definition 2.4 (energy functionals). For a given potential ϕ : W1 → R and
for (c, v) ∈ Y1 we define the free energy, the kinectic energy, and the (total) energy,
respectively, according to

Efree(c) :=
1

2

[‖c‖2W1
− ‖c‖2W0

]
+ ϕ(c), Ekin(v) :=

1

2
‖v‖2V0

,

E(c, v) := Efree(c) + Ekin(v).

Here and below for a convex functional ϕ ∂ϕ denotes the subdifferential of convex
analysis and D(A) denotes the domain of a given operator A.

Lemma 2.5. Assume that τ > 0, (c, ṽ) ∈ Ỹ 2
1 , w1 ∈W1, (f

c, fv) ∈ Ỹ−1, ϕ :W1 →
R convex, ϕ(c0) < ∞, A = ∂ϕ ⊂ W1 ×W−1, B ∈ L(V1; Ṽ−1) with 〈Bv̂, v̂〉

˜V1
= 0 for

all v̂ ∈ Ṽ1 and
(2.8)
D+c−Δw1 = f c, w1 ∈ −Δ(S+c)− I(S−c) +AS+c, D+ṽ −ΔS+ṽ +BS+ṽ = fv.

Then for c = (c0, c1) and ṽ = (ṽ0, ṽ1) it holds that

Efree(c1)− Efree(c0) ≤ τ
[ 〈f c, w1〉W1

− ‖w1‖2W1

]
,

Ekin(ṽ1)− Ekin(ṽ0) ≤ τ
[ 〈fv, S+ṽ〉˜V1

− ‖S+ṽ‖2
˜V1

]
.

Proof. The inclusion for w1 implies c1 ∈ D(A) and therefore ϕ(c1) < ∞. We
set v∗ := w1 − (−Δ(S+c) − I(S−c)), hence v∗ ∈ Ac1 = ∂ϕ(c1). Using the latter
equation, (2.8), 〈Tx, x− y〉 ≥ 1

2 [〈Tx, x〉 − 〈Ty, y〉] for any symmetric and positive
operator T ∈ L(X ;X∗), and the definition of the free energy and the given equation,
we find that

Efree(c1)− Efree(c0)

=
1

2

[‖c1‖2W1
− ‖c0‖2W1

]− 1

2

[‖c1‖2W0
− ‖c0‖2W0

]
+
[
ϕ(c1)− ϕ(c0)

]
≤ 〈−Δc1, c1 − c0〉W1

+ 〈−Ic0, c1 − c0〉W1
+ 〈v∗, c1 − c0〉W1

= τ
〈
w1, D

+c
〉
W1

= τ
〈
D+c, w1

〉
W1

= τ 〈f c +Δw1, w1〉W1

= τ
[ 〈f c, w1〉W1

− ‖w1‖2W1

]
.

Analogously, it follows that

Ekin(ṽ1)− Ekin(ṽ0)

=
1

2
‖ṽ1‖2V0

− 1

2
‖ṽ0‖2V0

≤ 〈ṽ1, ṽ1 − ṽ0〉V1
= τ

〈
D+ṽ, S+ṽ

〉
˜V1

= τ 〈fv +ΔS+ṽ −BS+ṽ, S+ṽ〉˜V1
= τ

[ 〈fv, S+ṽ〉˜V1
− ‖S+ṽ‖2

˜V1

]
,

which completes the proof.
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Next we provide an estimate for the total energy related to a modified version of
our original problem (2.1)–(2.3) which allows a specific nonlinear coupling.

Lemma 2.6. Let τ > 0, ϕ :W1 → R be convex, A = ∂ϕ, (c, w, v) ∈ W 2
1 ×W 2

1×V 2
1 ,

(f c, fv) ∈ Ỹ−1, r ∈ S2
1 , and ϕ(c0) < ∞. Moreover, assume we are given operators

B ∈ L(V1; Ṽ−1), Q = (Q1, Q2) : Ỹ1 → Ỹ−1 such that for all v̂ ∈ Ṽ1, ŵ ∈W1

〈Bv̂, v̂〉
˜V1

= 0, 〈Q(ŵ, v̂), (ŵ, v̂)〉
˜Y1

= 0.

For ṽ := v − Fr ∈ Ṽ 2
1 (with an implicit requirement for v) assume that

D+c−Δw1 +Q1(w1, S+ṽ) +∇c0 · FS+r = f c,(2.9)

w1 ∈ −Δ(S+c)− I(S−c) +AS+c,(2.10)

D+v −Δ(S+v) +BS+ṽ +Q2(w1, S+ṽ) = fv.(2.11)

Then for a constant C depending only on τ, Ω and ‖Fr‖V 2
1
, with z1 := f c−∇c0 ·FS+r

and z2 := fv − [FD+r + FS+r +BFS+r], it holds that

E(c1, v1)−E(c0, v0) +
τ

2

[‖w1‖2W1
+ ‖S+ṽ‖2

˜V1

] ≤ C(‖z1‖2W−1
+ ‖z2‖2

˜V−1
+ ‖ṽ0‖2V0

+1).

Proof. Since ṽ ∈ Ṽ1 satisfies

D+ṽ −ΔS+ṽ +BS+ṽ = z2 −Q2(w1, S+ṽ),

it follows from Lemma 2.5 that

Efree(c1)− Efree(c0) ≤ τ
[ 〈z1, w1〉W1

− 〈Q1(w1, S+ṽ), w1〉W1
− ‖w1‖2W1

]
,

Ekin(ṽ1)− Ekin(ṽ0) = τ
[ 〈z2, S+ṽ〉˜V1

− 〈Q2(w1, S+ṽ), S+ṽ〉˜V1
− ‖S+ṽ‖2

˜V1

]
.

In order to pass from Ekin(ṽi) to Ekin(vi) we use

2
[
Ekin(v1)− Ekin(v0)

]
= 2

[
Ekin(ṽ1 + Fr1)− Ekin(ṽ0 + Fr0)

]
= ‖ṽ1 + Fr1‖2V0

− ‖ṽ0 + Fr0‖2V0

= (ṽ1 + ṽ0 + F (r0 + r1)|ṽ1 − ṽ0 + F (r1 − r0))V0

≤ ‖ṽ1‖2V0
− ‖ṽ0‖2V0

+ 2(‖ṽ1‖V0 + ‖ṽ0‖V0)(‖Fr0‖V0 + ‖Fr1‖V0)

+ (‖Fr0‖V0 + ‖Fr1‖V0)
2

≤ 2
[
Ekin(ṽ1)− Ekin(ṽ0)

]
+ C(‖ṽ1‖V0 + ‖ṽ0‖V0 + 1)

≤ 2
[
Ekin(ṽ1)− Ekin(ṽ0)

]
+ τ

2 ‖ṽ1‖2˜V1
+ C(‖ṽ0‖2V0

+ 1)

for constants C depending only on Ω, τ and ‖Fr‖V 2
0
. From this relation we obtain

the estimate

E(c1, v1)− E(c0, v0)

≤ Efree(c1)− Efree(c0) + Ekin(ṽ1)− Ekin(ṽ0) +
τ
4‖ṽ1‖2V1

+ C(‖ṽ0‖2V0
+ 1)

≤ τ
[ 〈z1, w1〉W1

+ 〈z2, S+ṽ〉˜V1
− ‖w1‖2W1

− 3
4‖S+ṽ‖2

˜V1

]
+ C(‖ṽ0‖2V0

+ 1)

≤ − τ
2

[‖w1‖2W1
+ ‖ṽ1‖2

˜V1

]
+ C(‖z1‖2W−1

+ ‖z2‖2
˜V−1

+ ‖ṽ0‖2V0
+ 1).

This yields the assertion.

D
ow

nl
oa

de
d 

04
/2

9/
14

 to
 3

7.
14

3.
17

7.
14

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

754 M. HINTERMÜLLER AND D. WEGNER

Corollary 2.7. Let the assumptions of Lemma 2.6 be satisfied. If the functional
ϕ :W1 → R satisfies

(H1) ϕ(f)− 1
2‖f‖2W0

≥ Cϕ

for a constant Cϕ ∈ R and every f ∈ W1, then there exists a constant m > 0
depending on τ,Ω, c0, v0, ϕ(c0), Cϕ, and Fr such that every solution (c, w, v) to (2.9)–
(2.11) satisfies

‖w1‖2W1
+ ‖ṽ1‖2

˜V1
≤ m2.

Proof. This is a direct consequence of Lemma 2.6 and E(c1, v1) ≥ Cϕ.

2.2. Existence of solutions to the semidiscrete CH-NS system. The ex-
istence of a solution to the semidiscrete CH-NS system for one time step is studied
next. For an arbitrary finite number of steps M , this result will be applied iteratively
in the proof of Theorem 2.11 below.

In the existence proof we utilize results on several classes of operators. For the
reader’s convenience we briefly recall the definitions of these classes. A multivalued
operator A ⊂ X × X∗ mapping a Banach space X into its dual is called (strongly)
monotone if there exists a constant α ≥ 0 (α > 0) such that

〈x∗1 − x∗2, x1 − x2〉X ≥ α‖x1 − x2‖2X
for all (x1, x

∗
1), (x2, x

∗
2) ∈ A, and it is maximal monotone if it is maximal among all

monotone operators. A single-valued operator A : X → X∗ is pseudomonotone if and
only if for every sequence (xn) in X with xn⇀x the implication

lim 〈Axn, xn − x〉 ≤ 0 =⇒ 〈Ax, x − v〉X ≤ lim 〈Axn, xn − v〉X
is satisfied for every v ∈ X . Here and below, lim and lim denote the limit inferior and
the limit superior, respectively. Finally, A : X → X∗ is said to be totally continuous
if xn⇀x in X implies Axn→Ax in X∗. Thus, every totally continuous operator is
pseudomonotone.

Proposition 2.8. Let (ca, va) ∈ Y1, (ĝc, ĝv) ∈ Ỹ−1, and r ∈ S2
1 with Tr va = r0.

Assume that A ⊂ W1 ×W−1 is maximal monotone and R = (R1, R2) : Ỹ1 → Ỹ−1 is

pseudomonotone and bounded such that for some constant C1 and all (ĉ, v̂) ∈ Ỹ1 it
holds that

(2.12) 〈R(ĉ, v̂), (ĉ, v̂)〉
˜Y1

≥ −C1(1 + ‖ĉ‖W1 + ‖v̂‖
˜V1
).

Moreover, suppose that the operators A1,Bva : Y1 → Y−1 are defined for all (ĉ, v̂) ∈ Y1
by

A1(ĉ, v̂) :=
(
( 1τ (−Δ)−1 −Δ)ĉ, ( 1τ −Δ)v̂

)
, Bva(ĉ, v̂) := (

0, (va · ∇)v̂
)
.

Then there exists a pair (c, v) ∈ Y 2
1 such that

Tr v = r, c0 = ca, v0 = va,(2.13)

(−Δ)−1D+c+ (−Δ+A)S+c− IS−c+R1(S+c, S+v − FS+r) � ĝc,(2.14)

D+v −Δ(S+v) + (S−v · ∇)S+v +R2(S+c, S+v − FS+r) = ĝv.(2.15)

D
ow

nl
oa

de
d 

04
/2

9/
14

 to
 3

7.
14

3.
17

7.
14

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL CONTROL OF CAHN–HILLIARD–NAVIER–STOKES 755

Proof. Using D+c = 1
τ (S+c− S−c) and an analogue relation for v, the pair (c, v)

solves (2.14)–(2.15) if and only if

( 1τ (−Δ)−1 −Δ+A)S+c+R1(S+c, S+v − FS+r) � ĝc + ( 1τ (−Δ)−1 + I)S−c,

( 1τ −Δ)S+v + (S−v · ∇)S+v +R2(S+c, S+v − FS+r) = ĝv + 1
τ S−v.

If we set (ĉ, v̂) := (S+c, S+v − FS+r) ∈ Ỹ1 and (gc, gv) :=
(
ĝc + ( 1τ (−Δ)−1 +

I)S−c, ĝv+ 1
τ S−v−

[
( 1τ −Δ)FS+r+(S−v ·∇)FS+r

]) ∈ Y−1 and define the operator
A2 ⊂ Y1 × Y−1 by A2(ĉ, v̂) := (Aĉ, 0), then (c, v) ∈ Y 2

1 is a solution of (2.13)–(2.15) if

and only if (ĉ, v̂) ∈ Y1 satisfies v̂ ∈ Ṽ1 and

(A1 +A2 + Bva +R)(ĉ, v̂) � (gc, gv),

which we regard as an equation in Ỹ−1. The operator A1 is strongly monotone,
A2 is maximal monotone, and the operators Bva and R are pseudomonotone and
bounded. These properties remain valid if we restrict these operators and regard
them as mappings from Ỹ1 into Ỹ−1. Moreover, A1 + Bva + R is coercive on Ỹ1.

Therefore, Browder’s theorem [14] implies that A1 + A2 + Bva + R ⊂ Ỹ1 × Ỹ−1 is
surjective. This finishes the proof.

In the following lemma we study properties of the terms coupling the Cahn–
Hilliard and Navier–Stokes systems.

Lemma 2.9. Let cb ∈ W1 be given. Then the operator P = (P1, P2) : Y1 → Y−1

defined by

P1(ŵ, v̂) := ∇cb · v̂, P2(ŵ, v̂) := −ŵ∇cb
is bilinear, bounded, and totally continuous and satisfies 〈P (ŵ, v̂), (ŵ, v̂)〉Y1

= 0 for
(ŵ, v̂) ∈ Y1.

Proof. By Sobolev’s embedding theorem and since N ≤ 3, the mappings (ĉ, v̂) �→
∇ĉ · v̂ : W1 × V1 → W−1 and (ĉ, ŵ) �→ ŵ∇ĉ : W1 ×W1 → V−1 are bilinear, bounded,
and compact in both components. Thus, P is totally continuous and bounded and
satisfies 〈P (ŵ, v̂), (ŵ, v̂)〉Y1

= 0.
Proposition 2.10. Suppose we are given 0 < τ , (ca, va), (cb, vb) ∈ Y1, (f c, fv) ∈

Ỹ−1, r ∈ S2
1 with Tr va = r0, a proper, convex, and lower-semicontinuous functional

ϕ : W1 → R satisfying (H1) for a constant Cϕ ∈ R and ϕ(ca) < ∞. Let A :=
∂ϕ ⊂ W1 ×W−1. Then there exists a triple (c, w, v) ∈ (W1 ×W1 × V1)

2 such that
c0 = ca, w0 = 0, v0 = va, Tr v = r, and

D+c−Δw1 +∇cb · S+v = f c,

w1 ∈ (−Δ+A)S+c− IS−c,
D+v −ΔS+v + (vb · ∇)S+v − w1∇cb = fv.

In particular, if (ca, va) = (cb, vb), then (c, w, v) ∈ Sw(1, τ, (ca, va), (f c, fv), r, A).
Proof. The proof is decomposed into several steps. First we show the bound-

edness of solutions independently of the involved operators followed by the precise
construction of the associated operators. In step 3 the total continuity of one of these
operators is proved. The last two steps show applicability of Proposition 2.8 and the
fact that we obtain a solution of the original problem by our proof technique.

1. Assume that we are given an operator Q = (Q1, Q2) : Ỹ1 → Ỹ−1 satisfying

〈Q(ŵ, v̂), (ŵ, v̂)〉
˜Y1

= 0 for all (ŵ, v̂) ∈ Ỹ1. By Corollary 2.7 there exists a constant
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m > 0 depending on τ,Ω, F r, ca, va, f
c, and fv such that every solution (c, w, v) ∈

(W1 ×W1 × V1)
2, ṽ := v − Fr ∈ Ṽ1, to

Tr v = r, c0 = ca, v0 = va,

D+c−Δw1 +Q1(w1, S+ṽ) +∇cb · FS+r = f c, w1 ∈ −Δ(S+c)− I(S−c) +AS+c

D+v −Δ(S+v) + (vb · ∇)S+v +Q2(w1, S+ṽ) = fv,

satisfies the estimate

‖w1‖2W1
+ ‖S+ṽ‖2

˜V1
≤ m2.

In particular, m does not depend on Q. Moreover, with P1(ŵ, v̂) := ∇cb · v̂ and

P2(ŵ, v̂) := −ŵ∇cb according to Lemma 2.9, for (ŵ, v̂) ∈ Ỹ1 we have that

‖P1(ŵ, v̂)‖W−1 = ‖∇cb · v̂‖W−1 ≤ β1‖v̂‖˜V1
,

‖P2(ŵ, v̂)‖˜V−1
= ‖ − ŵ∇cb‖˜V−1

≤ β2‖ŵ‖W1

for constants β1, β2 > 0 depending on Ω and cb. The operator −Δ : W1 → W−1 is
strongly monotone with constant 1.

2. We define a function d : R → R and a norm |||.||| on Ỹ−1 by

d(t) :=

⎧⎪⎨⎪⎩
1 if t ≤ 1,

2− t if 1 < t < 2,

0 if 2 ≤ t,

|||(w∗, v∗)||| := 1

2m

(
1

β1
‖w∗‖W−1 +min

(
1

β2
,

1

4β1β2

)
‖v∗‖

˜V−1

)
.

Furthermore, we define the operators Q = (Q1, Q2) : Ỹ1 → Ỹ−1 and Qv̂1,Mv̂ : W1 →
W−1 for v̂ ∈ Ṽ1 as

Q(ŵ, v̂) := d
(|||P (ŵ, v̂)|||)P (ŵ, v̂),

Qv̂1ŵ := Q1(ŵ, v̂),

Mv̂ŵ := −Δŵ +Qv̂1ŵ.

The operator Q inherits the property 〈Q(ŵ, v̂), (ŵ, v̂)〉
˜Y1

= 0 from P . For ŵ1, ŵ2 ∈W1

and v̂ ∈ Ṽ1 we have

‖Qv̂1ŵ1 −Qv̂1ŵ2‖W−1 = ‖d(|||P (ŵ1, v̂)|||
)
P1(ŵ1, v̂)− d

(|||P (ŵ2, v̂)|||
)
P1(ŵ2, v̂)‖W−1

=
∣∣d(|||P (ŵ1, v̂)|||

)− d
(|||P (ŵ2, v̂)|||

)∣∣ ‖P1(ŵ1, v̂)‖W−1 ,

since P1(ŵ1, v̂) = P1(ŵ2, v̂) = P1(0, v̂). If ‖P1(0, v̂)‖W−1 ≥ 4β1m, then |||P (ŵi, v̂)||| ≥
|||P (0, v̂)||| ≥ 2 and therefore d

(|||P (ŵi, v̂)|||) = 0. Consequently, we continue the
above estimation by

‖Qv̂1ŵ1 −Qv̂1ŵ2‖W−1(2.16)

≤
∣∣∣|||P (ŵ1, v̂)||| − |||P (ŵ2, v̂)|||

∣∣∣ 4β1m
= 4β1m

∣∣∣ 1

2m
min

( 1

β2
,

1

4β1β2

)[‖P2(ŵ1, v̂)‖˜V−1
− ‖P2(ŵ2, v̂)‖˜V−1

]∣∣∣
≤ 1

2
‖ŵ1 − ŵ2‖W1 ,
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where we use the Lipschitz continuity of d with modulus 1 for the first inequality and
the reverse triangle inequality for (2.16). From this we infer that Qv̂1 : W1 → W−1

is Lipschitz continuous with constant 1
2 . Thus Mv̂ : W1 → W−1 is also Lipschitz

continuous and strongly monotone with constant 1
2 . Therefore, the mapping S1 :

Ỹ1 →W1 given by

S1(ĉ, v̂) := M−1
v̂

[
f c − 1

τ (ĉ− ca)−∇cb · FS+r
]

is well defined.
3. Now we show that S1 is totally continuous. For this purpose assume that

(ĉn, v̂n)⇀(ĉ, v̂) in Ỹ1 as n→∞. Then fn := f c − 1
τ (ĉn − ca)−∇cb · FS+r converges

strongly to f := f c− 1
τ (ĉ− ca)−∇cb ·FS+r in W−1 due to the compact embedding of

W1 into W−1. With ŵn := S1(ĉn, v̂n) =M−1
v̂n
fn, which implies −Δŵn+Qv̂n1 ŵn = fn,

and

‖Qv̂n1 ŵn‖W−1 = ‖d(|||P (ŵn, v̂n)|||)P1(ŵn, v̂n)‖W−1 ≤ 1 · ‖P1(ŵn, v̂n)‖W−1

≤ β1‖v̂n‖˜V1

we obtain that (Qv̂n1 ŵn) and (−Δŵn) are bounded in W−1 and (ŵn) is bounded in
W1. For any weakly converging subsequence (ŵm) of (ŵn) with weak limit ŵ ∈W1 it
holds that Qv̂m1 ŵm→Qv̂1ŵ since P is totally continuous by Lemma 2.9. Consequently,

‖ŵm − ŵ‖2W1
≤ 〈−Δ(ŵm − ŵ), ŵm − ŵ〉W1

= 〈fm − f, ŵm − ŵ〉W1
−
〈
Qv̂m1 ŵm −Qv̂1ŵ, ŵm − ŵ

〉
W1

→ 0 as m→∞.

Since ŵ is the unique solution to −Δŵ +Qv̂1ŵ = f , S1 must be totally continuous.

4. Consider the operator R = (R1, R2) : Ỹ1 → Ỹ−1 given by

R1(ĉ, v̂) := (−Δ)−1Q1(S1(ĉ, v̂), v̂),

R2(ĉ, v̂) := Q2(S1(ĉ, v̂), v̂).

We show now that R satisfies the assumptions of Proposition 2.8. We start by estab-
lishing the boundedness of R and (2.12). We use d

(|||P (ŵ, v̂)|||) = 0 if |||P (ŵ, v̂)||| ≥ 2
and |||P (ŵ, v̂)||| ≥ γ‖P (ŵ, v̂)‖

˜Y−1
for γ := 1

2m min( 1
β1
,min( 1

β2
, 1
4β1β2

)) to estimate

‖Q(ŵ, v̂)‖
˜Y−1

=
∣∣d(|||P (ŵ, v̂)|||)∣∣ ‖P (ŵ, v̂)‖

˜Y−1
≤ 2

γ
.

Consequently, R is bounded and satisfies (2.12). In order to realize that R is pseu-
domonotone it suffices to note that with S1 and P alsoQ and R are totally continuous,
which implies that R is indeed pseudomonotone.

5. Note that A is maximal monotone by assumption. Therefore, by Proposi-
tion 2.8 there exists a pair (c, v) ∈ Y 2

1 satisfying for ṽ := v − Fr

Tr v = r, c0 = ca, v0 = va,

(−Δ)−1D+c+ (−Δ+A)S+c− IS−c+R1(S+c, S+ṽ) � (−Δ)−1(f c −∇cb · FS+r),

D+v −Δ(S+v) + (vb · ∇)S+v +R2(S+c, S+ṽ) = fv.
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Let us define w := S1(S+c, S+ṽ). Thus we obtain

D+c−Δw+Q1(w, S+ṽ) +∇cb ·FS+r =
1

τ
(S+c− ca) +MS+ṽw+∇cb ·FS+r = f c,

which furthermore shows that

w = (−Δ)−1(−Δw) = (−Δ)−1(f c −∇cb · FS+r) − (−Δ)−1D+c−R1(c, S+ṽ)

∈ (−Δ+A)S+c− IS−c.

Therefore, by (2.9), (2.11), and Corollary 2.7 we infer

‖w‖2W1
+ ‖S+ṽ‖2

˜V1
≤ m2.

This implies

|||P (w, S+ṽ)||| ≤ 1

2m

(
1

β1
β1‖S+ṽ‖˜V1

+
1

β2
β2‖w‖W1

)
≤ 1

2m

√
2(‖w‖2W1

+ ‖S+ṽ‖2
˜V1
) ≤ 1.

Hence, from the definition of Q we conclude d(|||P (w, S+ ṽ)|||) = 1 and thus
Q(w, S+ṽ) = P (w, S+ṽ). This proves the assertion.

Theorem 2.11 (existence of solutions of the semidiscrete CH-NS system). For

every (M, τ, (ca, va), (f
c, fv), r) ∈ N×R×Y1×ỸM−1×SM+1

1 with Tr va = r0 and 0 < τ ,

and for every proper, convex, and lower-semicontinuous functional ϕ :W1 → R satis-
fying (H1) for a constant Cϕ ∈ R and ϕ(ca) <∞, the set S(M, τ, (ca, va), (f

c, fv), r, ∂ϕ)
is nonempty.

Proof. We prove this theorem by induction over M . For M = 0, the assertion is
immediate. Hence, we consider (M +1, τ, (ca, va), (f

c, fv), r) ∈ N×R×Y1 ×YM+1
−1 ×

SM+1
1 with Tr va = r0 and 0 < τ .

Assuming that we have (c1, v1) ∈ S(M, τ, (ca, va), (S−f c, S−fv), S−r, ∂ϕ), by
Proposition 2.10, there exists (c2, v2) ∈ S(1, τ, (c1M , v1M ), (f cM+1, f

v
M+1), (rM , rM+1), ∂ϕ).

Therefore (c, v) := ((c10, . . . , c
1
M , c

2
1), (v

1
0 , . . . , v

1
M , v

2
1)) is an element of the solution set

S(M + 1, τ, (ca, va), (f
c, fv), r, ∂ϕ).

2.3. Energy estimates II. In order to pass to the limit in the semidiscrete
CH-NS system with approximating sequences, we need some a priori estimates for
the energy. These are proved next.

Proposition 2.12. Consider M ∈ N, τ > 0, the initial data (ca, va) ∈ Y1,
as well as bounds Cr, Cϕ, Cca ∈ R. Then there exists a constant C depending only
on Ω, τ,M, (ca, va), Cr, Cϕ, and Cca such that for all r ∈ SM+1

1 with ‖Fr‖VM+1
1

≤
Cr, and all convex functionals ϕ : W1 → R satisfying (H1) with constant Cϕ, and
ϕ(ca) ≤ Cca , every solution (c, w, v) ∈ Sw(M, τ, (ca, va), 0, r, ∂ϕ) is bounded such that
‖(c, w, v)‖(W1×W1×V1)M+1 ≤ C and max{E(ci, vi) : i = 0, . . . ,M} ≤ C.

Proof. We prove the proposition by induction over M . For M = 0, the assertion
is obvious. Now, suppose it is valid for some M ∈ N. Let a solution (c, w, v) ∈
Sw(M + 1, τ, (ca, va), 0, r, ∂ϕ) be given with r ∈ SM+2 and ‖Fr‖VM+2

1
≤ Cr and with

ϕ : W1 → R convex such that ϕ(f) − 1
2‖f‖2W0

≥ Cϕ and ϕ(ca) ≤ Cca . By our induc-
tion hypothesis there exists a constant C1 depending only on Ω, τ,M, (ca, va), Cr, Cϕ,
and Cca such that ‖(c, w, v)‖XM+1 ≤ C1 and max{E(ci, vi) : i = 0, . . . ,M} ≤ C1.
Here, we use the definition X := W1 ×W1 × V1 and the notation ‖(c, w, v)‖XM+1 =
‖((c0, . . . , cM ), (w0, . . . , wM ), (v0, . . . , vM ))‖XM .
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By Lemma 2.6 and with ṽ := v−Fr, Bv := (vM ·∇)v, and Q := P given in Lemma 2.9
(with cb := cM ) there exists a constant C2 depending only on Ω, τ and Cr with

E(cM+1, vM+1) +
τ
2 (‖wM+1‖2W1

+ ‖ṽM‖2
˜V1
)

≤ E(cM , vM ) + C2(‖(cM , vM )‖2Y1
+ 1)

≤ C1 + C2
1C2 + C2 =: C3,

where we use that ‖BFrM+1‖˜V−1
= ‖(vM · ∇)FrM+1‖˜V−1

≤ C‖vM‖V1 and an ana-

log estimate for ∇cM · FrM+1. In particular, E(cM+1, vM+1) ≤ C3. Because of
E(cM+1, vM+1) ≥ Efree(cM+1) ≥ 1

2‖cM+1‖2W1
+ Cϕ ≥ Cϕ, we have

‖cM+1‖2W1
≤ 2(C3 − Cϕ)

as well as

‖wM+1‖2W1
+ ‖ṽM‖2

˜V1
≤ 2

τ (C3 − E(cM+1, vM+1)) ≤ 2
τ (C3 − Cϕ).

Finally, we note that

‖vM+1‖2V1
= ‖ṽM+1 + FrM+1‖2V1

≤ 2
(‖ṽM+1‖2V1

+ ‖FrM+1‖2V1

)
≤ 2CP ‖ṽM+1‖2

˜V1
+ 2‖FrM+1‖2V1

.

This completes the proof.

3. Optimal control of the semidiscrete CH-NS system. Now we are ready
to state the optimization problem under investigation, prove existence of a solution,
and establish a suitable stationary characterization. For the application of the theory
developed in section 2 we invoke the following assumption.

Assumption 3.1. The space U1 is a closed, linear subspace of S1 with induced
inner product and with its dual denoted by U−1 := U∗

1 . We fix M ∈ N, M ≥ 2, initial
values (ca, va) ∈ Y1 with ca ∈ H2(Ω) and Tr va ∈ U1, right-hand sides (f c, fv) ∈ Y−1,
γ ≥ 0, and a desired concentration ce ∈W1. Moreover, let 0 < τ0 ≤ 2 be given.

Problem 3.2. Given a proper, convex, and lower-semicontinuous functional
ϕ :W1 → R we consider the problem (Pϕ)

(Pϕ) inf{J(c, u) | (c, v, u) ∈ WM+1
1 × VM+1

1 × UM+1
1 , (c, v) ∈ Sϕu},

where the functional J : WM+1
1 × UM+1

1 → R and the set Sϕu for u ∈ UM+1
1 are

given by

J(c, u) :=
1

2

(
γ‖cM − ce‖2W0

+ ‖u‖2
UM+1

1

)
,

Sϕu := S(M, τ, (ca, va), (f
c, fv), u, ∂ϕ).

Moreover, we write Swϕ u := Sw(M, τ, (ca, va), (f
c, fv), u, ∂ϕ).

Before we address the existence of minimizers of problem (Pϕ) we need a closed-
ness result for the solution sets along a sequence (u(n)) and for a sequence (ϕ(n))
approximating ϕ(∞) := ϕ.

Proposition 3.1. Assume we are given a bounded sequence (u(n))n∈N in UM+1
1

and a sequence (ϕ(n))n∈N∗ of proper, convex, and lower-semicontinuous functionals
from W1 into R satisfying (H1) of Corollary 2.7 for a common constant C = Cϕ(n) for

all n ∈ N. In addition, suppose that sequence (A(n)) with A(n) := ∂ϕ(n) ⊂W1 ×W−1

for n ∈ N
∗ fulfills one of the following conditions:

D
ow

nl
oa

de
d 

04
/2

9/
14

 to
 3

7.
14

3.
17

7.
14

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

760 M. HINTERMÜLLER AND D. WEGNER

(H2) Whenever A(m) � (ĉ(m), â(m))⇀(ĉ(∞), â(∞)) in W1 ×W−1 for a subsequence
m ∈M ⊂ N with

lim
M�m→∞

〈
â(m) − â(∞), ĉ(m) − ĉ(∞)

〉
W1

≤ 0,

then (ĉ(∞), â(∞)) ∈ A(∞) and
〈
â(m) − â(∞), ĉ(m) − ĉ(∞)

〉
W1

→ 0.

(H3) It holds that A(n)(W1) ⊂ W0 and
(−Δĉ(n)

∣∣â(n))
W0

≥ 0 for all n ∈ N and

all (ĉ(n), â(n)) ∈ A(n) with −Δĉ(n) ∈ W0. Moreover, whenever A(m) �
(ĉ(m), â(m))⇀(ĉ(∞), â(∞)) in W1 × W0 for a subsequence m ∈ M ⊂ N,
then (ĉ(∞), â(∞)) ∈ A(∞).

Then there exists a subsequence (u(m)) of (u(n)) converging weakly to u(∞) in UM+1
1

and a sequence of solutions (c(n), w(n), v(n)) ∈ Sw
ϕ(n)u

(n) for n ∈ N
∗ such that (c(m))

converges strongly in WM+1
1 to c(∞) and (w(m), v(m)) converges weakly in (W1 ×

V1)
M+1 to (w(∞), v(∞)). Moreover, if (H3) holds true, then the sequences (c(n)) and

(S+a
(n)) are bounded in H2(Ω)M+1, respectively, WM

0 , for a(n) ∈ A(n)c(n) given by

S+a
(n) = (−Δ)−1f c

−[(−Δ)−1D+c(n) + (−Δ+A)S+c
(n) − IS−c(n) + (−Δ)−1(∇S−c(n) · S+v

(n))].

Proof. By Theorem 2.11 we can find a solution (c(n), w(n), v(n)) ∈ Sw
ϕ(n)u

(n) for

every n ∈ N satisfying

Tr v(n) = u(n), c
(n)
0 = ca, w

(n)
0 = 0, v

(n)
0 = va,

(−Δ)−1D+c(n) −ΔS+c
(n) + S+a

(n) − IS−c(n) + (−Δ)−1(∇S−c(n) · S+v
(n))

= (−Δ)−1f c,

S+w
(n) = (−Δ)−1

[
f c − (D+c(n) +∇S−c(n) · S+v

(n))
]
,

D+v(n) −ΔS+v
(n) + (S−v(n) · ∇)S+v

(n) − S+w
(n)∇S−c(n) = fv

for a(n) ∈ A(n)c(n). Proposition 2.12 shows that the sequence (c(n), w(n), v(n)) is
bounded in the space (W1 ×W1 × V1)

M+1. Hence, we can pass to a subsequence
(c(m), w(m), v(m), u(m)) that converges weakly to some (c(∞), w(∞), v(∞), u(∞)) in (W1×
W1 × V1 × U1)

M+1. Exploiting the weak continuity of linear, bounded operators and
the total continuity of (ĉ, v̂) �→ ∇ĉ·v̂, (ĉ, v̂) �→ ŵ∇ĉ and (v̂1, v̂) �→ (v̂1 ·∇)v̂ we conclude
that S+a

(m) converges weakly to some S+a
(∞) in WM−1 and

Tr v(∞) = u(∞), c
(∞)
0 = ca, w

(∞)
0 = 0, v

(∞)
0 = va,

(−Δ)−1D+c(∞) −ΔS+c
(∞) + S+a

(∞) − IS−c(∞) + (−Δ)−1(∇S−c(∞) · S+v
(∞))

= (−Δ)−1f c,

S+w
(∞) = (−Δ)−1

[
f c − (D+c(∞) +∇S−c(∞) · S+v

(∞))
]
,

D+v(∞) −ΔS+v
(∞) + (S−v(∞) · ∇)S+v

(∞) − S+w
(∞)∇S−c(∞) = fv.

In order to finish the proof, it remains to show the boundedness of (c(n)) and (a(n))
in H2(Ω), respectively, W0, in the case of (H3), and moreover, the strong convergence

properties and that (c
(∞)
i , a

(∞)
i ) ∈ A(∞) for i = 1, . . . ,M . This will be done by

induction over i together with −Δc
(m)
i ∈ W0 for the case of (H3). We obviously
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have c
(n)
0 = ca ∈ V1 ∩ H2(Ω) for all n ∈ N

∗. This concludes the basis step of the

induction. Let us suppose that c
(m)
i → c

(∞)
i in W1 for some i = 0, . . . ,M − 1 as well

as w
(m)
i ⇀w

(∞)
i in W1 and v

(m)
i ⇀v

(∞)
i in V1. Using the equations above we obtain

−Δ(c
(m)
i+1 − c

(∞)
i+1 ) + a

(m)
i+1 − a

(∞)
i+1

= −
[
(−Δ)−1(D+c

(m)
i −D+c

(∞)
i )− I(c

(m)
i − c

(∞)
i )

+(−Δ)−1(∇c(m)
i · v(m)

i+1 −∇c(∞)
i · v(∞)

i+1 )
]

and therefore by the compactness of I (−Δ)−1I, I : W1 → W−1, and (v̂1, v̂) �→
(v̂1 · ∇)v̂ : V1 × V1 → Ṽ−1 that

lim
m→∞

[ 〈
−Δ(c

(m)
i+1 − c

(∞)
i+1 ), c

(m)
i+1 − c

(∞)
i+1

〉
W1

+
〈
a
(m)
i+1 − a

(∞)
i+1 , c

(m)
i+1 − c

(∞)
i+1

〉
W1

]
= 0.

Hence, we find

lim
m→∞

〈
a
(m)
i+1 − a

(∞)
i+1 , c

(m)
i+1 − c

(∞)
i+1

〉
W1

(3.1)

= − lim
m→∞

〈
−Δ(c

(m)
i+1 − c

(∞)
i+1 ), c

(m)
i+1 − c

(∞)
i+1

〉
W1

= − lim
m→∞

‖c(m)
i+1 − c

(∞)
i+1 ‖2W1

≤ 0.

If (H2) is satisfied, it follows directly that (c
(∞)
i+1 , a

(∞)
i+1 ) ∈ A(∞) as well as the conver-

gence
〈
a
(m)
i+1 − a

(∞)
i+1 , c

(m)
i+1 − c

(∞)
i+1

〉
W1

→ 0 and therefore c
(m)
i+1 → c

(∞)
i+1 in W1. In the case

of (H3), notice that from

−Δc
(n)
i+1 + a

(n)
i+1 = (−Δ)−1(f ci −∇c(n)i · v(n)i+1 −D+c

(n)
i ) + Ic

(n)
i(3.2)

= w
(n)
i+1 + Ic

(n)
i := g(n)

and g(n) ∈ W0 as well as A(n)(W1) ⊂ W0 it follows that −Δc
(n)
i+1 ∈ W0. Moreover,

since (g(n)) is bounded in W0, the assumption (H3) yields

‖a(n)i+1‖2W0
=

(
g(n) + 1

2Δc
(n)
i+1

∣∣∣a(n)i+1

)
W0

≤
(
g(n)

∣∣∣a(n)i+1

)
W0

≤ ‖g(n)‖W0‖a(n)i+1‖W0 .

Consequently, (a
(n)
i+1) is bounded inW0 and therefore (c

(n)
i+1) in H

2(Ω) by (3.2). Hence,

we can assume without loss of generality that (a
(m)
i+1) converges weakly in W0 and

strongly in W−1 to a
(∞)
i+1 . By (H3) it follows that (c

(∞)
i+1 , a

(∞)
i+1 ) ∈ A(∞) and by (3.1)

that c
(m)
i+1 → c

(∞)
i+1 in W1. This completes the proof.

Remark 3.3. It is well known that for a maximal monotone operator A ⊂ W1 ×
W−1 its Yosida approximations A(n) := Aλn with parameter λn := 1

n as well as the

sequence A(n) := A itself satisfy the condition (H2). This condition is used in order
to show the existence of minimizers for a fixed potential ϕ, whereas (H3) will be the
appropriate condition for the approximation procedure which we apply below.

The existence result is stated next.
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Theorem 3.2. For every proper, convex, and lower-semicontinuous functional
ϕ :W1 → R fulfilling (H1) and ϕ(ca) <∞, problem (Pϕ) admits a minimizer.

Proof. Let (c(n), u(n)) ∈ UM+1
1 × WM+1

1 be an infimizing sequence for prob-
lem (Pϕ) and (w(n), v(n)) ∈ WM+1

1 × VM+1
1 such that (c(n), w(n), v(n)) ∈ Swϕ u(n).

The coercivity of J in the second component and the boundedness imply that (u(n))
is bounded in UM+1

1 . We choose ϕ(n) := ϕ in Proposition 3.1 and Remark 3.3
to conclude the existence of a weakly convergent subsequence (c(n), w(n), v(n)) in
(W1 ×W1 × V1)

M+1 with limit within Swϕ u(∞) and (u(n)) in UM+1
1 with limit u(∞).

The weak lower semicontinuity of J implies that this limit is indeed a minimizer
of (Pϕ). This finishes the proof.

For the proof of the subsequent theorem we need the following auxiliary result.

Lemma 3.3. Let ϕ : W1 → R be a proper, convex, and lower-semicontinuous
functional with a single-valued subdifferential A := ∂ϕ, which is defined on all of
W1. Moreover, suppose that A : W1 → W−1 is continuously Fréchet differentiable in
w0 ∈ W1 with derivative Q := DA(w0) ∈ L(W1;W−1). Then ϕ0(w) :=

1
2 〈Qw,w〉W1

is a proper, convex, and lower-semicontinuous functional on W1 and its subdifferential
A0 := ∂ϕ0 is single-valued, defined on all W1, and continuously Fréchet differentiable
with DA0(w) = Q for all w ∈ W1.

Proof. Since Aw is a singelton and continuous for every w ∈ W1, ϕ is Gâteaux
differentiable (cf. Showalter [38]). Consequently, Q ∈ L(W1;W−1) is symmetric and
positive. Hence, the assertion follows.

Next we study the adjoint system pertinent to (Pϕ). This system is relevant
for deriving first order optimality conditions of approximate versions of (Pϕ) with a
smooth potential ϕ.

Theorem 3.4. Assume that (co, uo) is a minimizer of (Pϕ), (c
o, wo, vo) ∈ Sϕuo,

and that A = ∂ϕ ⊂W1×W−1 is single-valued, defined on W1, and maps W3 continu-
ously Fréchet differentiable intoW1. Moreover, for c ∈W3, DA(c) can be continuously

extended to an operator DA(c) ∈ L(W1;W1). Then there exists (p, q) ∈ ỸM1 such that

0 = −D+p+ (−Δ+DA(S+S−co))∗(−ΔS−p−∇S−S−co · S−q)
−I∗(−ΔS+p−∇S+S−co · S+q)− div(S+pS+S+v

o)

+ div(S+S+w
oS+q),

JW1(c
o
M − ce) =

1

τ
pM−1 + (−Δ+DA(coM ))∗(−ΔpM−1 −∇coM−1 · qM−1),

(JU1PU1 Tr)
∗S+u

o = −I∗D+q −Δ∗S−q + b1(S+S+v
o, S+q) + b2(S−S−vo, S−q)

+S−p∇S−S−co,

(JU1PU1 Tr)
∗uoM =

(1
τ
I∗ −Δ∗

)
qM−1 + b2(v

o
M−1, qM−1) + pM−1∇coM−1,

where the last two equations are understood in the sense of (Z∗)M−1 and Z∗ for
Z := {v ∈ V1 : PU⊥

1
Tr v = 0} with PU1 and PU⊥

1
denoting the orthogonal projections

of S1 onto U1 and its orthogonal complement U⊥
1 and w is given according to (2.4).

Proof. We split the proof into three steps. Our goal is to apply the theory
developed by Zowe and Kurcyusz [44]. For this purpose, in the first step of the proof
we define relevant quantities. Then we apply [44] in the second step. And finally, in
the third step, we rearrange terms in order to derive the asserted adjoint system.
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1. In the proof we utilize the sets and spaces

X1 :=WM+1
3 × VM+1

1 × UM+1
1 ,

X2 :=WM
−1 × ṼM−1 × UM−1,

C(cb,vb) := {(c, v, u) ∈ X1 : (c0, v0) = (cb, vb), Tr vb = u0, PU⊥
1
Tr v = 0}

and the mappings Q : X1 → X2 and g : X1 → R defined by

Q(c, v, u) :=
(
D+c−Δ((−Δ+A)S+c− IS−c) +∇S−c · S+v − f c ,

D+v −ΔS+v + (S−v · ∇)S+v − ((−Δ+A)S+c− IS−c)∇S−c− fv ,

S+JU1(PU1 Tr v − u)
)
,

g(c, v, u) := J(c, u),

where JU1 denotes the duality mapping from U1 to U−1. With DA being the Fréchet
derivative of A :W3 →W1, their derivatives at (c, v, u) ∈ X1 in direction (cδ, vδ, uδ) ∈
X1 read as follows:

DQ(c, v, u; cδ, vδ, uδ)

=
(
D+cδ −Δ((−Δ+DA(S+c))S+c

δ − IS−cδ) +∇S−cδ · S+v +∇S−c · S+v
δ,

D+vδ −ΔS+v
δ + (S−vδ · ∇)S+v + (S−v · ∇)S+v

δ

−((−Δ+A)S+c− IS−c)∇S−cδ − ((−Δ+DA(S+c))S+c
δ − IS−cδ)∇S−c,

S+JU1(PU1 Tr v
δ − uδ)

)
,

Dg(c, v, u; cδ, vδ, uδ) = γ
(
cM − ce

∣∣cδM)
W0

+
(
u
∣∣uδ)

UM+1
1

.

2. The triple (co, vo, uo) is a minimizer of g on the set Z := C(ca,va) ∩ Q−1(0);
cf. Remark 2.3. For the application of the existence result of Lagrange multipliers by
Zowe and Kurcyusz [44], it has to be shown that (co, vo, uo) is regular in the sense

of [44]. For this purpose we fix an arbitrary (f̂ c, f̂v, f̂u) ∈ X2 and show the existence

of a (cδ, vδ, uδ) ∈ C(0,0) such that DQ(co, vo, uo; cδ, vδ, uδ) = (f̂ c, f̂v, f̂u). This is
equivalent to

cδ0 = 0, vδ0 = 0, uδ0 = 0, S+JU1(PU1(Tr v
δ − uδ)) = f̂u,(3.3)

D+cδ −Δ((−Δ+DA(S+c))S+c
δ − IS−cδ) +∇S−co · S+v

δ

= gc(cδ, vδ, uδ),(3.4)

D+vδ −ΔS+v
δ + (S−vo · ∇)S+v

δ − ((−Δ+DA(S+c))S+c
δ − IS−cδ)∇S−co

= gv(cδ, vδ, uδ),(3.5)

where the right-hand-sides gc and gv correspond to

gc(cδ, vδ, uδ) := f̂ c −∇S−cδ · S+v
o,

gv(cδ, vδ, uδ) := f̂v − (S−vδ · ∇)S+v
o + ((−Δ+A)S+c− IS−c)∇S−cδ.

As in Theorem 2.11, the existence of a triple (cδ, vδ, uδ) satisfying the above equations
will be proved by induction over M ′. Moreover, we show that it is possible to satisfy
the additional condition Tr vδ = 0. In case ofM ′ = 0, the conclusion is evident. Now,

D
ow

nl
oa

de
d 

04
/2

9/
14

 to
 3

7.
14

3.
17

7.
14

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

764 M. HINTERMÜLLER AND D. WEGNER

we assume that the system is satisfied for some M ′ with 0 ≤M ′ < M . We apply the
assumption on A, the previous lemma, Proposition 2.10, and Remark 2.3 in order to
conclude the existence of (c2, v2) ∈ (W1 × V1)

2 such that

c20 = cM ′ , v20 = vM ′ , u20 = 0, u2 = −J−1
U1

(f̂uM ′ , f̂uM ′+1),

D+c2 −Δ((−Δ+DA(S+c
o))S+c

2 − IS−c2) +∇S−co · S+v
2 = gc(cδ, vδ, uδ),

D+v2 −ΔS+v
2 + (S−vo · ∇)S+v

2 − ((−Δ+DA(S+c
o))S+c

2 − IS−c2)∇S−co

= gv(cδ, vδ, uδ).

Consequently, ((c0, . . . , cM ′ , c21), (v0, . . . , vM ′ , v21), (u0, . . . , uM ′ , u21)) solves the system
(3.3)–(3.5) for M ′ + 1.

3. The result of Zowe–Kurcyusz now implies that for some (p, q, r) ∈WM
1 × ṼM1 ×

UM1
∼= X∗

2

Dg(co, vo, uo; cδ, vδ, uδ) =
〈
DQ(co, vo, uo; cδ, vδ, uδ), (p, q, r)

〉
X∗

2

for all (cδ, vδ, uδ) ∈ C(0,0) holds true.
First notice that for c1, c2 ∈ W1, v, v1, v2 ∈ V1 we have〈
(−Δ)−1(∇c1 · v), c2

〉
W1

=
〈
c2, (−Δ)−1(∇c1 · v)

〉
W1

=
〈∇c1 · v, (−Δ)−1c2

〉
W1

=
〈− div((−Δ)−1c2v), c1

〉
W1

=
〈
(−Δ)−1c2∇c1, v

〉
V1

as well as〈
(−Δ)−1(∇c2 · v2)∇c1, v1

〉
V1

=
〈∇c1 · v1, (−Δ)−1(∇c2 · v2)

〉
W1

=
〈∇c2 · v2, (−Δ)−1(∇c1 · v1)

〉
W1

=
〈
(−Δ)−1(∇c1 · v1)∇c2, v2

〉
V1
.

Choosing (cδ, 0, 0) ∈ C(0,0), passing to adjoint operators, and collecting terms involv-

ing cδi we obtain

γ
(
coM − ce

∣∣cδM)
W0

=
〈
D+cδ −Δ((−Δ+DA(S+c))S+c

δ − IS−cδ) +∇S−cδ · S+v
o, p

〉
WM

1

− 〈
(−Δ+A)S+c− IS−c∇S−cδ + ((−Δ+DA(S+c))S+c

δ − IS−cδ)∇S−c, q
〉
˜VM+1
1

=

M−1∑
i=1

〈 1

τ
(pi−1 − pi) + (−Δ+DA(coi ))

∗(−Δ)pi−1 + I∗Δpi − div(piv
0
i+1)

+ div((−Δ+A)ci+1 − Iciqi)− (−Δ+DA(ci))
∗(∇ci−1 · qi−1)

+I∗(∇ci · qi) , cδi
〉
W1

+

〈
1

τ
pM−1 + (−Δ+DA(cM ))∗[−ΔpM−1 −∇cM−1 · qM−1], c

δ
M

〉
W1

.

Hence, we can choose cδi arbitrarily for i > 0, which implies the assertion on p.
Next, we use (0, 0, uδ) ∈ C(0,0) and find

(
uo

∣∣uδ)
UM+1

1
=

(−S+u
δ
∣∣r)

UM
1

and hence

r + S+u
o = 0. Finally, choosing (0, vδ, 0) ∈ C(0,0) and proceeding as before yields
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0 =
〈
D+vδ −ΔS+v

δ + (S−vδ · ∇)S+v
o + (S−vo · ∇)S+v

δ, q
〉
˜VM
1

+
〈∇S−co · S+v

δ, p
〉
WM

1
+
(
S+PU1 Tr v

δ
∣∣r)

UM
1

=
M−1∑
i=1

〈 1

τ
I∗(qi−1 − qi)−Δ∗qi−1 + b1(v

o
i+1, qi) + b2(v

o
i−1, qi−1)

+pi−1∇coi−1 − Tr∗P ∗
U1
uoi , v

δ
i

〉
V1

+
〈 1

τ
I∗qM−1 −Δ∗qM−1 + b2(v

o
M−1, qM−1) + pM−1∇coM−1 − Tr∗P ∗

U1
uoM , vδM

〉
V1

.

This concludes the proof.

Lemma 3.5. Let (c, v) ∈ Y1, (f
p, f q) ∈ Ỹ−1, and Ψ be the set of all solutions

(p, q, A) to

1

τ
p+ (−Δ+A)∗(−Δp−∇c · q) = fp,(3.6) (1
τ
I∗ −Δ∗

)
q + b2(v, q) + p∇c = f q(3.7)

with (p, q) ∈ Ỹ1 and A ∈ L(W1;W−1) monotone and such that A(W1) ⊂ W1,

〈−Δr, Ar〉W1
≥ 0 for all r ∈W3. Then {(p, q) : (p, q, A) ∈ Ψ} is bounded in Ỹ1.

Proof. Let (p, q, A) ∈ Ψ. Then, there is an r ∈W1 with (−Δ+A)r = p. Moreover,
−Δr = p − Ar ∈ W1 implies that r belongs to W3. Testing r with this equation, it
follows that

〈p, r〉W1
≥ 〈(−Δ+A)r, r〉W1

≥ ‖r‖2W1
.

Testing (3.6) with r we obtain

1

2τ
‖r‖2W1

+
τ

2
‖fp‖2W−1

≥ ‖fp‖W−1‖r‖W1

≥ 1

τ
〈p, r〉W1

+ 〈−Δp−∇c · q, (−Δ+A)r〉W1

≥ 1

τ
‖r‖2W1

+ ‖p‖2W1
− g(c, p, q).

Testing (3.7) with q it follows that

1

2
‖q‖2

˜V1
+

1

2
‖f q‖2

˜V−1
≥ ‖f q‖

˜V−1
‖q‖

˜V1
≥ 1

τ
‖q‖2V0

+ ‖q‖2
˜V1

+ 0 + g(c, p, q),

and summing both inequalities

1

2τ
‖r‖2W1

+ ‖p‖2W1
+

1

2
‖q‖2

˜V1
+

1

τ
‖q‖2V0

≤ τ

2
‖fp‖2W−1

+
1

2
‖f q‖2

˜V−1

gives the result.

Theorem 3.6. Let (ϕ(n))n∈N∗ be a sequence of proper, convex, and lower-semi-
continuous functionals from W1 into R satisfying (H1) for a common constant C =
Cϕ(n) for all n ≥ 1 as well as (H2) or (H3) and let A(n) = ∂ϕ(n) fulfill the assumptions

of Theorem 3.4. Suppose that (c(n), u(n)) ∈ WM+1
1 ×VM+1

1 ×UM+1
1 are minimizers for
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766 M. HINTERMÜLLER AND D. WEGNER

(Pϕ(n)) for all n ∈ N, (c(n), w(n), v(n)) ∈ Sϕ(n)u(n) with (J(c(n), u(n))) being bounded.

Then there exist (p(n), q(n)) ∈ WM
1 × ṼM1 satisfying

0 = −D+p(n) + (−Δ+DA(n)(S+S−c(n)))∗
(−ΔS−p(n)(3.8)

−∇S−S−c(n) · S−q(n)
)− I∗(−ΔS+p

(n)

−∇S+S−c(n) · S+q
(n))− div(S+p

(n)S+S+v
(n))

+ div(S+S+w
(n)S+q

(n)),

JW1(c
(n)
M − ce) =

1

τ
p
(n)
M−1(3.9)

+ (−Δ+DA(n)(c
(n)
M ))∗(−Δp

(n)
M−1 −∇c(n)M−1 · q(n)M−1),

(JU1PU1 Tr)
∗S+u

o = −I∗D+q(n) −Δ∗S−q(n) + b1(S+S+v
(n), S+q

(n))(3.10)

+ b2(S−S−v(n), S−q(n)) + S−p(n)∇S−S−c(n),

(JU1PU1 Tr)
∗uoM =

(1
τ
I∗ −Δ∗

)
q
(n)
M−1 + b2(v

(n)
M−1, q

(n)
M−1) + p

(n)
M−1∇c(n)M−1,(3.11)

where the last two equations are understood in the sense of (Z∗)M−1 and Z∗ for
Z := {v ∈ V1 : PU⊥

1
Tr v = 0}. For a subsequence (denoted by index m) it holds that

c(m) → c(∞) in WM+1
1 ,

(w(m), v(m), u(m)) ⇀ (w(∞), v(∞), u(∞)) in WM+1
1 × VM+1

1 × UM+1
1 ,

(p(m), q(m)) ⇀ (p(∞), q(∞)) in WM
1 × VM1 ,

DA(m)(S+c
(m))∗(−Δp(m) −∇S(m)

c · q(m)) ⇀ λ(∞) in WM
−3.

Moreover, (c(∞), u(∞)) is a minimizer of (Pϕ(∞)) and we have that

0 = −D+p(∞) −Δ∗(−ΔS−p(∞) −∇S−S−c(∞) · S−q(∞))(3.12)

+λ(∞) − I∗(−ΔS+p
(∞) −∇S+S−c(∞) · S+q

(∞))

− div(S+p
(∞)S+S+v

(∞)) + div(S+S+w
(∞)S+q

(∞)),

JW1(c
(∞)
M − ce) =

1

τ
p
(∞)
M−1 −Δ∗(−Δp

(∞)
M−1 −∇c(∞)

M−1 · q(∞)
M−1) + λ

(∞)
M−1,(3.13)

(JU1PU1 Tr)
∗S+u

o = −I∗D+q(∞) −Δ∗S−q(∞) + b1(S+S+v
(∞), S+q

(∞))(3.14)

+ b2(S−S−v(∞), S−q(∞)) + S−p(∞)∇S−S−c(∞),

(JU1PU1 Tr)
∗uoM =

(1
τ
I∗ −Δ∗

)
q
(∞)
M−1 + b2(v

(∞)
M−1, q

(∞)
M−1) + p

(∞)
M−1∇c(∞)

M−1,(3.15)

Proof. We split the proof into three steps. We first prove the strong convergence
of a subsequence (c(m)) and the weak convergence of a subsequence (w(m), v(m), u(m))
and then we establish the weak convergence of the adjoint state. Finally, we pass to
the limit in the first order system.

1. Using Theorem 3.4 we find sequences (p(n))n≥1 in WM
1 and (q(n))n≥1 in VM1

satisfying the desired system. Moreover, the coercivity of J in u and the boundedness
of (J(c(n), u(n))) imply that (u(n)) is bounded in UM+1

1 . Taking advantage of Propo-
sition 3.1 it follows that we can pass to subsequences (c(m)) and (v(m), u(m)) that
converge strongly to c(∞) in WM+1

1 and weakly to (v(∞), u(∞)) in VM+1
1 × UM+1

1 ,
respectively, with (c(∞), v(∞), u(∞)) being a minimizer of (Pϕ(∞)).
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2. Now we show that (p(n)) and (q(n)) are bounded in WM
1 , respectively, ṼM1 .

This is done by induction. First observe that for n ∈ N, i ∈ {0, . . . ,M−1}, (p(n)i , q
(n)
i )

satisfies

1

τ
p
(n)
i + (−Δ+DA(c

(n)
i+1))

∗(−Δp
(n)
i −∇c(n)i · q(n)i ) = g

(n)
i ,(

1

τ
I∗ −Δ∗

)
q
(n)
i + b2(v

(n)
i , q

(n)
i ) + p

(n)
i ∇c(n)i = h

(n)
i

for

g
(n)
i :=

⎧⎪⎨⎪⎩
1
τ p

(n)
i+1 + I∗(−Δp

(n)
i+1 −∇c(n)i+1 · q(n)i+1)

+ div(p
(n)
i+1v

(n)
i+2)− div(w

(n)
i+2q

(n)
i+1) if i < M − 1,

JW1(c
(n)
M − ce) if i =M − 1,

h
(n)
i :=

{
(JU1PU1 Tr)

∗u(n)i+1 +
1
τ I

∗q(n)i+1 + b1(v
(n)
i+2, q

(n)
i+1) if i < M − 1,

(JU1PU1 Tr)
∗u(n)M if i =M − 1.

Since (c
(n)
M , u

(n)
M ) is bounded in W1 × U1, so is (g

(n)
M−1, h

(n)
M−1) in Ỹ−1. Therefore, let

us assume that (g
(n)
i , h

(n)
i ) is bounded in Ỹ−1 for some i = 0, . . . ,M − 1 as well as

(p
(n)
j , q

(n)
j ) in Ỹ1 for all j > i. Lemma 3.5 now implies that also (p

(n)
i , q

(n)
i ) is bounded

in Ỹ1 and thus (g
(n)
i−1, h

(n)
i−1) in Ỹ−1 if i > 0.

3. By (3.8), λ(n) := DA(n)(S+S−c(n))∗(−ΔS−p(n)−∇S−S−c(n) ·S−q(n)) remains
bounded in WM−1

−3 . Therefore, we pass to subsequences (denote by index m again) to

obtain the desired convergence result for (p(m)), (q(m)), and (λ(m)). Using the strong
and weak convergences and the properties of the operators involved and passing to
the limit in (3.8)–(3.11) as m→∞ we finally end up with (3.13)–(3.15).

4. Application to the double-obstacle potential. In this section we con-
sider the case where ϕ is given by the indicator function of a special convex subset
of W1. This corresponds to the Cahn–Hilliard system with double-obstacle potential.
Moreover, the ϕ(n) are defined as mollified versions of the Moreau–Yosida approxima-
tions in W0 of ϕ := ϕ(∞). In this setting, the optimization problem (Pϕ) becomes a
mathematical program with complementarity constraints since (2.2) indeed becomes
a variational inequality. In this context our approach yields a function space version
of C-stationarity; see [26] for the latter.

In this section, we use the notation of the previous sections and suppose Assump-
tion 3.1 to hold.

Double-obstacle potential. Let k1, k2 ∈ R with k1 < 0 < k2. We define

K := [k1, k2], ψ := ıK : R → R, θ := ∂ψ ⊂ R× R,

K0 := {c ∈W0 : c(x) ∈ K for a.e. x ∈ Ω}, K1 := K0 ∩W1.

Then ϕ := ıK1 :W1 → R defines a so-called double-obstacle potential.
Moreover, let ρ ∈ C1(R) denote a fixed mollifier with supp ρ ⊂ [−1, 1],

∫
R
ρ = 1,

and 0 ≤ ρ ≤ 1 a.e. on R, and let ε : R+ → R
+ be a function with ε(α) > 0 and

ε(α)
α → 0 as α→ 0. We consider the Yosida approximation θα (with parameter α > 0)

of θ (for the general definition we refer to [6]) and define

ρε(s) :=
1

ε
ρ
(s
ε

)
, βα := θα ∗ ρε(α), θ̃α(s) :=

∫ s

0

θα, ϕα(c) :=

∫
Ω

θ̃α ◦ c,
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where ∗ denotes the usual convolution operator. Let τ1 > 0 be fixed such that the
sequence of functionals (ϕ(n))n∈N∗ given by

ϕ(∞) := ϕ, αn := τ1n
−1, ϕ(n) := ϕαn

satifies conditions (H3) and (H1) for some common constant C. Finally, A(n) :=
∂ϕ(n).

In what follows we collect a few useful properties of ϕ and its approximations
ϕ(n). For proofs and further details we refer to [28].

Remark 4.1.

1. The mapping βα : R → R is a regularization of the Yosida approximation θα
of θ and ϕα :W1 → R a regularization of the Moreau–Yosida approximation
of ϕ in L2(Ω).

2. The existence of τ1 > 0 such that (ϕ(n))n∈N∗ satisfies conditions (H3) and (H1)
for some common constant C was shown in Proposition 4.3 of [28].

3. The subdifferentials A(n) = ∂ϕ(n) meet the assumption on the operator A
given in Theorem 3.6. For a proof we again refer to the arguments provided
in [28].

4. For sufficiently small α, βα vanishes identically in a neighborhood of 0. Note
further that we could choose different mollifiers ρ1 and ρ2 instead of ρ in
the definition of βα(s) for either positive s or negative s, respectively. Thus,
conditions (H1) and (H3) remain true also in this case.

Theorem 4.1. Consider the setting of this section and suppose that h : R → R is
a Lipschitz function with h(k1) = h(k2) = 0. Then, the optimization problem (Pϕ(n))

admits a minimizer (c(n), u(n)). Moreover, we can find (c(n), w(n), v(n)) ∈ Swϕ u(n) and
(p(n), q(n)) according to Theorem 3.6 such that for the sequences (a(n)) and (λ(n))

given by a
(n)
0 = 0 and

S+a
(n) := (−Δ)−1f c

−[(−Δ)−1D+c(n) −ΔS+c
(n) − IS−c(n) + (−Δ)−1(∇S−c(n) · S+v

(n))],

λ(n) := DA(n)(S+c
(n))∗p(n),

ξ(n) := DA(n)(S+c
(n))∗(−Δp(n) −∇S−c(n) · q(n)),

there exist subsequences (denoted by index m) with

c(m) → c(∞) in WM+1
1 ,

(w(m), a(m), v(m)) ⇀ (w(∞), a(∞), v(∞)) in WM+1
1 ×WM+1

−1 × VM+1
1 ,

(u(m), p(m), q(m), ξ(m)) ⇀ (u(∞), p(∞), q(∞), ξ(∞)) in UM+1
1 ×WM

1 × VM1 ×WM
−3,

such that (c(∞), u(∞)) is a minimizer of (Pϕ) and

f c = D+c(∞) −ΔS+w
(∞) +∇S−c(∞) · S+v

(∞),

S+w
(∞) = −ΔS+c

(∞) − IS−c(∞) + a(∞),

fv = D+v(∞) −ΔS+v
(∞) + (S+v

(∞) · ∇)S+v
(∞)

−S+w
(∞)∇S−c(∞),

0 = −D+p(∞) −Δ∗(−ΔS−p(∞) −∇S−S−c(∞) · S−q(∞)) + ξ(∞)

− I∗(−ΔS+p
(∞) −∇S+S−c(∞) · S+q

(∞))

− div(S+p
(∞)S+S+v

(∞)) + div(S+S+w
(∞)S+q

(∞)),
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JW1 (c
(∞)
M − ce) =

1

τ
p
(∞)
M−1 −Δ∗(−Δp

(∞)
M−1 −∇c(∞)

M−1 · q(∞)
M−1) + ξ

(∞)
M−1,

(JU1PU1 Tr)
∗S+u

(∞) = −I∗D+q(∞) −Δ∗S−q(∞) + b1(S+S+v
(∞), S+q

(∞))

+ b2(S−S−v(∞), S−q(∞)) + S−p(∞)∇S−S−c(∞),

(JU1PU1 Tr)
∗u(∞)
M =

(1
τ
I∗ −Δ∗

)
q
(∞)
M−1 + b2(v

(∞)
M−1, q

(∞)
M−1) + p

(∞)
M−1∇c(∞)

M−1.

Furthermore, if (λ(n)) remains bounded in (H1(Ω)∗)M with λ(m)⇀λ(∞), then we have
for a subsequence (λ(k)) of (λ(m)) and all i = 0, . . . ,M − 1 that(

S+a
(∞) |h(S+c

(∞))
)
L2 = 0,

(
λ(∞) |h(S+c

(∞))
)
L2 = 0,

lim
(
S+a

(m) | p(m)
)
L2 = 0, lim

(
λ(m) | p(m)

)
L2 ≥ 0,

λ
(k)
i → 0 a.e. on {x ∈ Ω : k1 < ci+1(x) < k2}.

Proof. 0. Since the double-obstacle potential ϕ satisfies the conditions (H3)
and (H1) for a common constant and since all A(n) = ∂ϕ(n) satisfy the assumptions
of Theorem 3.6, it remains to show that (J(c(n), u(n))) is bounded for a sequence of
minimizers (c(n), u(n)) as given in Theorem 3.6. But this is easily seen by our energy

estimates, the fact that J(c, u) ≤ C + Eϕ
(n)

free (cM ) + 1
2‖u‖2UM+1

1

for a constant C and

sufficiently large n and by choosing u+ = 0.
1. We start by showing the complementarity condition

(
S+a

(∞) |h(S+c
(∞))

)
L2 =

0. Since (S+c
(∞), S+a

(∞)) ∈ A by Proposition 3.1 and since A is the superposition

operator of θ = ∂ıK ⊂ R× R, we conclude that (c
(∞)
i , a

(∞)
i ) ∈ θ for almost all x ∈ Ω

and i > 0 and therefore a
(∞)
i (x)h(c

(∞)
i (x)) = 0 since one of the factors equals 0.

Integration yields the complementarity condition.
2. Next, we prove lim

(
λ(m) |h(S+c

(m))
)
L2 = 0. Denoting the metric projection

of R ontoK = [k1, k2] by pK and the metric projection ofW0 onto {f ∈ L2(Ω) : f(x) ∈
K a.e. on Ω} by P (which is the superposition operator of pK), respectively, and
taking advantage of the continuity of the superposition operator of h on W1 (cf. [36]),
it follows that P (W1) ⊂ H1(Ω) and limPc(m) = Pc(∞) = c(∞), limh(Pc(m)) =
h(Pc(∞)) = h(c(∞)) = limh(c(m)) in (H1(Ω))M+1. Moreover, it holds that |β′

α(s)| ≤
1
α for all s and β′

α(s) = 0 for k1 + ε(α) ≤ s ≤ k2 − ε(α); see [28] for details. If
Lh is the Lipschitz constant of h, then |h(s)| ≤ Lhmin(|s − k1|, |s − k2|) for r ∈ R.
Consequently, it follows that

|(λ(m) |h(PS+c
(m))

)
L2 |2 = |( p(m) |DA(m)(S+c

(m))h(PS+c
(m))

)
L2 |2

≤ || p(m) ||2L2

M∑
i=1

∫
Ω

|β′
αm

(c
(m)
i )h(Pc

(m)
i )|2

≤
(
M |Ω| || p(m) ||L2 Lh

ε(αm)

αm

)2

→ 0

as m→∞. Moreover, since (λ(m)) is supposed to be bounded in (H1(Ω)∗)M we have
that

lim
(
λ(m) |h(S+c

(m))
)
L2

= lim
(
λ(m) |h(PS+c

(m))
)
L2 + lim

〈
λ(m), h(S+c

(m))− h(PS+c
(m))

〉
H1(Ω)M

= 0.
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770 M. HINTERMÜLLER AND D. WEGNER

3. We set gm(s) := βαm(s)− β′
αm

(s)κ(s) with s− pK(s) = κ(s). Then we obtain(
S+a

(m) | p(m)
)
L2 =

(
p(m) |βαm(S+c

(m))
)
L2

=
(
p(m) | gm(S+c

(m))
)
L2 +

(
λ(m) |S+c

(m) − PS+c
(m)

)
L2 .

By Lemma 4.2 in [28], for m sufficiently large it holds that |gm(s)| = |βαm(s) −
β′
αm

(s)κ(s)| ≤ C ε(αm)
αm

. Hence, the first term on the right-hand side converges to 0.

This is also true for the second since (λ(m)) is bounded in (H1(Ω)∗)M and (c(m)) and
(Pc(m)) both converge to c(∞) in H1(Ω)M .

4. The fact that lim
(
λ(m) | p(m)

)
L2 ≥ 0 is a consequence of the monotonicity of

DA(n)(c) :W1 →W−1 for every c ∈ W1. Indeed, given c ∈ W1 we have〈
DA(n)(c)c, c

〉
W1

= lim
t→ 0

1

t2

〈
A(n)(c+ tc)−A(n)c, (c+ tc)− c

〉
W1

≥ 0

by the monotonicity of A(n).
5. Let us fix i ∈ {0, . . . ,M − 1} and representatives of the equivalence classes

c(∞), (c(m)). Further, define Z := {x ∈ Ω : k1 < c
(∞)
i+1 (x) < k2}. Since c

(m)
i+1 converges

to c
(∞)
i+1 in W1, a subsequence converges almost everywhere on Ω. Without loss of

generality, we assume that (c
(m)
i+1) itself has this convergence property. Moreover, we

know that ε(αm)→ 0. Hence, for almost all x ∈ Z there exists m0(x) such that

k1 + ε(αm) < c
(m)
i+1(x) < k2 − ε(αm) for all m ≥ m0(x).

From the properties of βα it follows that λ
(m)
i (x) = 0 for almost all x ∈ Z and

m ≥ m0(x). Consequently, λ
(m)
i converges to 0 almost everywhere on Z.

We remark that compared to weaker forms of stationarity, for instance, those con-
tained in [7] for certain classes of optimal control problems for variational inequalities,
C-stationarity represents a sharper stationarity notion avoiding spurious stationarity
points. A numerical realization based on an extension of the algorithms in [27] to the
CH-NS setting will be the subject of future work.
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à divergence nulle, Comm. Partial Differential Equations, 6 (1981), pp. 1301–1334.

[25] M. Hintermüller, M. Hinze, and C. Kahle, An adaptive finite element Moreau-Yosida-based
solver for a coupled Cahn-Hilliard/Navier-Stokes system, J. Comput. Phys., 235 (2013),
pp. 810–827.

[26] M. Hintermüller and I. Kopacka, Mathematical programs with complementarity constraints
in function space: C- and strong stationarity and a path-following algorithm, SIAM J.
Optim., 20 (2009), pp. 868–902.

[27] M. Hintermüller and M. H. Tber, An inverse problem in American options as a mathemat-
ical program with equilibrium constraints: C-stationarity and an active-set Newton solver,
SIAM J. Control Optim., 48 (2010), pp. 4419–4452.

[28] M. Hintermüller and D. Wegner, Distributed optimal control of the Cahn-Hilliard system
including the case of a double-obstacle homogeneous free energy density, SIAM J. Control
Optim., 50 (2012), pp. 388–418.

[29] P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Modern
Phys., 49 (1977), pp. 435–479.

[30] D. Kay, V. Styles, and R. Welford, Finite element approximation of a Cahn-Hilliard-
Navier-Stokes system, Interfaces Free Bound., 10 (2008), pp. 15–43.

[31] D. Kay and R. Welford, A multigrid finite element solver for the Cahn-Hilliard equation,
J. Comput. Phys., 212 (2006), pp. 288–304.

[32] D. Kay and R. Welford, Efficient numerical solution of Cahn–Hilliard–Navier–Stokes fluids
in 2D, SIAM J. Sci. Comput., 29 (2007), pp. 2241–2257.

[33] J. Kim, K. Kang, and J. Lowengrub, Conservative multigrid methods for Cahn–Hilliard
fluids, J. Comput. Phys., 193 (2004), pp. 511–543.

[34] J. Kim, A diffuse-interface model for axisymmetric immiscible two-phase flow, Appl. Math.
Comput., 160 (2005), pp. 589–606.

[35] J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topologi-
cal transitions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 454 (1998), pp. 2617–2654.

[36] M. Marcus and V. J. Mizel, Every superposition operator mapping one Sobolev space into
another is continuous, J. Funct. Anal., 33 (1979), pp. 217–229.

D
ow

nl
oa

de
d 

04
/2

9/
14

 to
 3

7.
14

3.
17

7.
14

7.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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