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OPTIMAL CONTROL OF A SEMILINEAR PDE WITH NONLOCAL

RADIATION INTERFACE CONDITIONS∗

C. MEYER†, P. PHILIP‡§ , AND F. TRÖLTZSCH†

Abstract. We consider a control constrained optimal control problem governed by a semilinear
elliptic equation with nonlocal interface conditions. These conditions occur during the modeling of
diffuse-gray conductive-radiative heat transfer. The problem arises from the aim to optimize the
temperature gradient within crystal growth by the physical vapor transport (PVT) method. Based
on a minimum principle for the semilinear equation as well as L∞-estimates for the weak solution,
we establish the existence of an optimal solution as well as necessary optimality conditions. The
theoretical results are illustrated by results of numerical computations.

Key words. Optimal control, semilinear elliptic equations, nonlocal interface conditions, bound-
edness of solutions

AMS subject classifications. 49K20, 35J65, 49J20, 80M50

1. Introduction. In this paper, we investigate an optimal control problem re-
lated to the sublimation growth of silicon carbide single crystals (SiC) by the physical
vapor transport (PVT) method. The semiconductor material SiC is used in numerous
industrial applications, e.g. the production of optoelectronic devices such as blue and
green LEDs and lasers. For the PVT method, polycrystalline SiC powder is placed
under a low-pressure inert gas atmosphere at the bottom of a cavity inside a graphite
crucible. The crucible is heated up to temperatures between 2000 and 3000 K by
induction. Due to the high temperatures and the low pressure, the SiC powder sub-
limates and crystallizes at a single-crystalline SiC seed located at the cooled top of
the cavity, such that the single crystal grows into the reaction chamber. See [7, 8] for
more details.

Here, we neglect the electromagnetic induction problem and focus on the conductive-
radiative heat transfer in the growth apparatus. Therefore, we consider a simplified
setup of the growth apparatus, shown in Fig. 1.1, where Ωs denotes the domain of the
solid graphite crucible, whereas Ωg is the domain of gas phase inside.
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Fig. 1.1. 2-dimensional section through an exemplary domain for nonlocal radiative heat transfer.
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A very important determining factor for the crystal’s quality and growth rate are the
temperature distribution in the gas phase and, especially, the temperature gradient
close to the surface of the growing crystal [12]. Since we do not consider the electro-
magnetic induction, we will optimize the temperature gradient in the gas phase Ωg

by directly controlling the heat source u in Ωs.

The temperature y inside the growth apparatus arises as the solution of the con-
ductive-radiative heat transfer problem in the growth apparatus. Accounting for
radiative contributions is essential owing to the high temperatures. Thus, the problem
is described by the stationary heat equation with radiation interface and boundary
conditions on Γr and Γ0, respectively. We take Ωs to be entirely opaque, whereas Ωg

represents a transparent medium which does not interact with radiation. Furthermore,
the radiative surfaces Γ0 := ∂Ω and Γr := Ωs ∩ Ωg are presumed to be diffuse-gray,
i.e. the emissivity ε is independent of both the direction and the wavelength of the
radiation. In particular, the local radiative heat exchange on Γ0 can be modeled by
the Boltzmann radiation condition with an external temperature y0. Due to the heat
exchange between points on Γr, we obtain an additional radiative heat flux on Γr,
denoted by qr.
In addition to the stationary semilinear heat equation with radiation interface and
boundary conditions, we consider box constraints for the control function u. Thus,
the optimal control problem, considered here, reads as follows:

(P)















































































minimize J(y, u) :=
1

2

∫

Ωg

|∇y − z|2 dx+
ν

2

∫

Ωs

u2 dx

subject to −div(κs ∇y) = u in Ωs

−div(κg ∇y) = 0 in Ωg

κg

(

∂y

∂nr

)

g

− κs

(

∂y

∂nr

)

s

= qr on Γr

κs
∂y

∂n0
+ εσ |y|3y = εσ y4

0 on Γ0

and ua ≤ u(x) ≤ ub a.e. in Ω,

where n0 is the outward unit normal on Γ0, and nr is the unit normal on Γr facing
outward with respect to Ωs (cf. Fig. 1.1). Furthermore, z denotes the desired tem-
perature gradient and ν > 0 is a Tikhonov regularization parameter. In the state
equation, σ represents the Boltzmann radiation constant, and κs, κg denote the ther-
mal conductivities in Ωs, Ωg, respectively.

In contrast to the boundary condition on Γ0, the radiative heat transfer on Γr is
nonlocal. The corresponding mathematical model used here is described in detail,
e.g., in [11, 14]. It provides the additional radiative heat flux qr on Γr given by

qr = (I −K)(I − (1 − ε)K)−1ε σ|y|3y := Gσ|y|3y, (1.1)

where K is an integral operator representing the irradiation on Γr. The nonlocal
operators K and G will be specified in Section 3.1. The nonlocal radiation on Γr

represents the main characteristic of our problem, since the nonlinearity in the state
equation in (P) is in general not monotone due to nonpositivity of G (see Section 3
and [14]).
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The state equation in (P) is of semilinear elliptic type. Therefore, the optimal control
problem can be viewed as a semilinear elliptic optimal control problem. The list of
publications in this field is already quite extensive. We only mention Casas [3] or
Bonnans and Casas [2], who consider the Pontryagin principle, or Casas, Tröltzsch
and Unger [5], Bonnans [1], Casas and Mateos [4], who consider different aspects of
second-order sufficient optimality conditions. This list might be extended considerably
by including associated papers on different aspects of numerical analysis.

Our paper differs from all these contributions by the interface conditions containing
the nonmonotone and nonlocal operator G. Therefore, our boundary value problem
is of nonmonotone type so that special techniques must be applied.

The paper is organized as follows: After stating the mathematical setting in Section
2, we provide auxiliary results on the nonlocal operator G as well as a general bound-
edness result for a class of nonlinear equations, see Section 3. In Section 4, we prove
a weak maximum principle for the semilinear state equation and an L∞-estimate for
its solutions, followed by the existence of an optimal solution in Section 5. Section 6
is devoted to the existence and boundedness of a solution to the linearized equation.
In Section 7, we establish first order necessary optimality conditions based on the
differentiability of the solution operator associated with the semilinear equation. The
corresponding adjoint state is introduced at the end of Section 7. Finally, Section 8
presents some numerical results.

2. The mathematical setting. Throughout this paper, we assume the follow-
ing conditions (A1) – (A3) on the domain Ω and on the quantities and functions
occurring in (P):

(A1) We assume that Ω ⊂ R
3 is a bounded simply connected domain with Lipschitz

boundary Γ0. The boundary of the simply connected subdomain Ωg ⊂ Ω,
denoted by Γr, is assumed to be a closed Lipschitz surface that is piecewise
C1,δ. Notice that the distance of Γr to Γ0 is positive. Then, Ωs is defined by
Ωs = Ω\Ωg (cf. Fig. 1.1).

(A2) The Boltzmann radiation constant is assumed to be positive, i.e. σ ∈ R
+. For

the thermal conductivity, we assume κ ∈ L∞(Ω) with

κ(x) =

{

κs(x) in Ωs

κg(x) in Ωg

and κ(x) ≥ κmin > 0 a.e. on Ω. Furthermore, the emissivity ε ∈ L∞(Γ0 ∪ Γr) is
bounded by 1 ≥ ε ≥ εmin > 0 a.e. on Γ0 ∪ Γr.

(A3) The desired temperature gradient z is given in L2(Ωg) and ν is a positive con-
stant. For the box constraints, we assume ua, ub ∈ L∞(Ωs) and 0 ≤ ua(x) <
ub(x) a.e. in Ωs.

Notation. For a given p with 1 ≤ p ≤ ∞, an operator B : Lp(Γr) → Lp(Γr) is
said to be positive, if v ∈ Lp(Γr) and v ≥ 0 a.e. on Γr imply B v ≥ 0 a.e. on Γr.
Furthermore, 1 denotes the function e(x) ≡ 1 a.e., and I is the identity operator
in the respective function spaces. We introduce the set of admissible controls by
Uad := {u ∈ L∞(Ωs) |ua(x) ≤ u(x) ≤ ub(x) a.e. in Ωs}. The measure of a certain set
A ⊂ R

n, n ≥ 1 is denoted by |A|, and τr denotes the trace operator on Γr, whereas τ0
is the trace on Γ0. Throughout this paper, c is a generic constant.
Let W be a Banach space with its dual space W ∗. Then, for f ∈ W and g ∈ W ∗,
〈f , g〉 denotes the associated pairing.
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3. Auxiliary results. In Section 3.1, we present some properties of the nonlocal
radiation operator G. Since G is in general not positive, the nonlinearity in the
semilinear state equation is nonmonotone. However, G still has sufficiently benign
properties such that the nonlinear parts in the state equation are pseudomonotone
(see [10]). These properties of G are also used to prove the boundedness of the solution
in Section 4 below.
In Lemma 3.7 of Section 3.2, we will prove the boundedness of the solution y for a
general class of nonlinear equations that applies to both the semilinear case and its
linearized version.

3.1. The nonlocal radiation operator. The operators K and G arising from
the nonlocal radiation on Γr were investigated in detail by Laitinen and Tiihonen
[10, 14, 15]. We recall some of their results for convenience:

Definition 3.1. The integral operator K, representing the irradiation on Γr, is given
by

(K y)(x) =

∫

Γr

ω(x, z) y(z) dsz (3.1)

with a symmetric kernel ω which is, in the two-dimensional case, defined by

ω(x, z) = Ξ(x, z)
[nr(z) · (x− z)][nr(x) · (z − x)]

2|z − x|3 , (3.2a)

and, in the three-dimensional case, defined by

ω(x, z) = Ξ(x, z)
[nr(z) · (x− z)][nr(x) · (z − x)]

π|z − x|4 , (3.2b)

where x, z denote two points on Γr, and nr(x) is the unit normal at x facing outward
with respect to Ωs (see Fig. 1.1). Here, Ξ represents the visibility factor which is given
by

Ξ(x, z) =

{

0 if xz ∩ Ωg 6= ∅,
1 if xz ∩ Ωg = ∅.

In [15], it is proven that ω(x, z) can have a singularity at x of type |x−z|−(1−δ) in the
two-dimensional and |x − z|−2(1−δ) in the three-dimensional case, which is, in both
cases, integrable. This is the key point to the following lemma also derived in [15].

Lemma 3.2.

(i) K maps Lp(Γr) to Lp(Γr) for all 1 ≤ p ≤ ∞.
(ii) If Γr is a closed Lipschitz surface that is piecewise C1,δ, then K 1 = 1 holds

a.e. on Γr.
(iii) The operator I − (1 − ε)K : Lp(Γr) → Lp(Γr) is invertible.

With the help of Lemma 3.2, Tiihonen and Laitinen proved the following properties
of G = (I −K)(I − (1 − ε)K)−1ε (cf. [14, Lemma 6] and [10, Lemma 8]).

Lemma 3.3.

(i) G is a bounded linear operator from Lp(Γr) to itself for all 1 ≤ p ≤ ∞.
(ii) G can be written as G = I −H with a positive operator H.
(iii) For all y ∈ L5(Γr),

∫

Γr

G(σ|y|3y)y ds ≥ 0 holds true.
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Here, we show another property of G that we will use subsequently:

Lemma 3.4. For every function v(x) ≡ k = const. a.e. on Γr, we have G∗ v = 0.

Proof: Since K has a symmetric kernel, K is formally self-adjoint, i.e. 〈v , K w〉 =
〈K v , w〉 for all v ∈ Lp(Γr) and w ∈ Lq(Γr), 1/p + 1/q = 1. Thus, together with
Lemma 3.2, (ii), we obtain K∗ 1 = 1 a.e. on Γr. Therefore, with the definition of G,
we find

G∗v = ε(I −K∗(1 − ε))−1(I −K∗)v = ε(I −K∗(1 − ε))−1(k − k) = 0.

3.2. Boundedness for a nonlinear equation. We have to show the bound-
edness of the solution of the semilinear state equation and its linearization. To unify
the proofs, we first prove an auxiliary result for a nonlinear equation of the form

〈F (y) , v〉 = 〈f , v〉 ∀ v ∈W, (3.3)

where F : W → W ∗ is a certain mapping, and y is a given solution in a space
W ⊆ H1(Ω). It will be shown that, under suitable assumptions, a solution y belongs
to the function space

V∞ := H1(Ω) ∩ L∞(Ω), (3.4)

equipped with the norm

‖v‖V ∞ = ‖v‖H1(Ω) + ‖v‖L∞(Ω).

Remark 3.5. If y ∈ V∞, then τr y ∈ L∞(Γr), and τ0 y ∈ L∞(Γ0).

This is an immediate consequence of the following Lemma 3.6 that follows from Propo-
sition 5.2, part (ii) in [6].

Lemma 3.6. For a bounded Lipschitz domain Ω ⊂ R
n, n ∈ N, the trace operator

τ : H1(Ω) → H1/2(∂Ω) is positive, i.e. τv ≥ 0 a.e. on ∂Ω for v ≥ 0 a.e. on Ω.

To show the boundedness of a solution to (3.3), we use the following hypotheses:

Hypotheses for the nonlinear equation (3.3):

(H1) (Regularity of the inhomogeneity): The right-hand side of (3.3) can be expressed
as

〈f , v〉 =

∫

Ω

fΩ v dx+

∫

Γr

fr v ds+

∫

Γ0

f0 v ds,

where fΩ, fr, and f0 satisfy fΩ ∈ Lp1(Ω), fr ∈ Lp2(Γr), and f0 ∈ Lp2(Γ0), with
p1 = 6/(5 − s), p2 = 4/(3 − s) and 1 < s < 3.

(H2) (Coercivity): There is a constant k0 ≥ 0 such that, for the given solution y ∈W
and for each k > k0, the functions

ϕk(x) :=







y(x) − k , y(x) ≥ k,
0 , |y(x)| < k,

y(x) + k , y(x) ≤ −k,
(3.5)

are elements of W , and there is a constant c > 0 such that the nonlinearity in
(3.3) satisfies, for each k > k0:

〈F (y) , ϕk〉 ≥ c ‖ϕk‖2
H1(Ω).
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Lemma 3.7. Suppose that Ω ⊂ R
3 satisfies (A1), that y ∈ W is a solution to (3.3)

and that the Hypotheses (H1) and (H2) are fulfilled. Then y ∈ V ∞, and there exists
a constant c0 only depending on Ω such that

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c0(k0 + ‖fΩ‖Lp1(Ω) + ‖fr‖Lp2(Γr) + ‖f0‖Lp2(Γ0) ) (3.6)

holds true.

Proof: The proof is based on a technique introduced by Stampacchia and Kinderlehrer
[6, 13] in the linear case. For given k > k0, we define AΩ(k) := {x ∈ Ω | |y(x)| ≥ k}
and introduce Ar(k) and A0(k) analogously. Our aim is to show that there is a k > 0
with |AΩ(k)| = |Ar(k)| = |A0(k)| = 0. We start with Hypothesis (H2), that yields

〈F (y) , ϕk〉 ≥ c ‖ϕk‖2
H1(Ω) ≥ c (‖ϕk‖2

L6(Ω) + ‖ϕk‖2
L4(Γr)

+ ‖ϕk‖2
L4(Γ0)

)

≥ c







(

∫

AΩ(k)

(|y| − k)6dx
)1/3

+
(

∫

Ar(k)

(|y| − k)4ds
)1/2

+
(

∫

A0(k)

(|y| − k)4ds
)1/2






,

since ϕk equals 0 on Ω \ AΩ(k), on Γr \ Ar(k), and on Γ0 \ A0(k), respectively. If
h > k > k0 ≥ 0, then A(h) ⊆ A(k), where A stands generally for AΩ, Ar, and A0,
and we have for an arbitrary m ∈ N:

(

∫

A(k)

(|y| − k)mdx
)2/m

≥
(

∫

A(h)

(h− k)mdx
)2/m

= (h− k)2|A(h)|2/m.

Defining

ψ(h) := |AΩ(h)|1/3 + |A0(h)|1/2 + |Ar(h)|1/2, (3.7)

one obtains

‖ϕk‖2
H1(Ω) ≥ c (h− k)2ψ(h). (3.8)

Now, we investigate the right-hand side in (3.3). Hypothesis (H1), Hölder’s inequality,
and embedding theorems imply

〈f , ϕk〉 ≤ ‖fΩ‖L6/5(AΩ(k))‖ϕk‖L6(Ω) + ‖fr‖L4/3(Ar(k))‖ϕk‖L4(Γr)

+ ‖f0‖L4/3(A0(k))‖ϕk‖L4(Γ0)

≤ c
(

‖fΩ‖L6/5(AΩ(k)) + ‖fr‖L4/3(Ar(k)) + ‖f0‖L4/3(A0(k))

)

‖ϕk‖H1(Ω).

Applying (H2), (3.3), and Young’s inequality, we obtain

‖ϕk‖2
H1(Ω) ≤ c

(

‖fΩ‖2
L6/5(AΩ(k)) + ‖fr‖2

L4/3(Ar(k)) + ‖f0‖2
L4/3(A0(k))

)

. (3.9)

Using again Hölder’s inequality, the first norm on the right-hand side can be estimated
by

(

∫

AΩ(k)

f
6/5
Ω dx

)5/3

≤
(

‖f6/5
Ω ‖L5/(5−s)(AΩ(k))|AΩ(k)|s/5

)5/3

≤ ‖fΩ‖2
Lp1(Ω)|AΩ(k)|s/3 (3.10)
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with p1 = 6/(5 − s) and 1 < s < 3 as defined above. Similarly, we derive

(

∫

Ar(k)

f4/3
r dx

)3/2

≤ ‖fr‖2
Lp2(Γr)

|Ar(k)|s/2 (3.11)

with p2 = 4/(3 − s) (and analogously on A0).
Due to the Taylor expansion, we have for three abritrary real nonnegative numbers
a, b, and c that (as + bs + cs) ≤ (a + b+ c)s for all s > 1. Choosing a = |AΩ(k)|1/3,
b = |Ar(k)|1/2, and c = |A0(k)|1/2, combining (3.10), (3.11), and (3.9) yields

‖ϕk‖2
H1(Ω) ≤ c ̺f ψ(k)s,

with ̺f = ‖fΩ‖2
Lp1(Ω) + ‖fr‖2

Lp2(Γr)
+ ‖f0‖2

Lp2(Γ0), and ψ as defined in (3.7). Together

with (3.8), it follows that

ψ(h) ≤ c ̺f

(h− k)2
ψ(k)s, for h > k > k0 ≥ 0. (3.12)

Stampacchia proved in [13] that each nonnegative and nonincreasing function ψ = ψ(t)
satisfying (3.12) with some s > 1, has a zero at some t = d, d > 0 where

d = k0 + 2s/(s−1)(c|ψ(k0)|s−1)1/2√̺f ,

and, in our case, |ψ(k0)| = ψ(k0) can be estimated by

ψ(k0) ≤ ψ(0) = |Ω|1/3 + |Γ0|1/2 + |Γr|1/2

(see also Kinderlehrer and Stampacchia [6, Lemma B.1]). Due to the definition of ψ
in (3.7), this implies |y(x)| ≤ d a.e. on Ω and on Γr ∪ Γ0. Thus, with the definition of
̺f , we obtain

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ 2 d

≤ 2
(

k0 + 2s/(s−1)(c|ψ(0)|s−1)1/2√̺f

)

≤ c
(

k0 +
√

‖fΩ‖2
Lp1(Ω) + ‖fr‖2

Lp2(Γr)
+ ‖f0‖2

Lp2(Γ0)

)

≤ c0
(

k0 + ‖fΩ‖Lp1(Ω) + ‖fr‖Lp2(Γr) + ‖f0‖Lp2(Γ0)

)

,

by the equivalence of the Euclidian and the L1-norm in R
3.

Remark 3.8. Due to the positivity of the trace operator (cf. Lemma 3.6), in Lemma
3.7, it would have sufficed to prove the boundedness of y on Ω. However, this would not
have simplified the proof, as we still needed the direct estimates of the inhomogeneities
on Γ0 and Γr as carried out above.

4. The semilinear equation. Before we apply Lemma 3.7 to the semilinear
equation in (P), we will introduce the variational form of the state equation and
recall a theorem of Laitinen and Tiihonen [10] that covers its solvability.

With the help of Lemma 3.3, Section 3.1, we are now able to derive the weak formula-
tion of the state equation in (P). To fix G, we specify p in Lemma 3.3, (i), by p = 5/4
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and obtain G : L5/4(Γr) → L5/4(Γr). Then, formal integration by parts over Γ0 and
Γr yields

∫

Ω

κ∇y · ∇v dx+

∫

Γr

G(σ|y|3y)v ds+
∫

Γ0

εσ |y|3y v ds

=

∫

Ωs

u v dx+

∫

Γ0

εσ y4
0v ds ∀ v ∈ V,

(4.1)

with V = {v ∈ H1(Ω) | τr v ∈ L5(Γr) , τ0 v ∈ L5(Γ0)}. Clearly, due to G : L5/4(Γr) →
L5/4(Γr), we have G(σ|y|3y)v ∈ L1(Γr) for all y, v ∈ V . The state space V is equipped
with the norm

‖v‖V = ‖v‖H1(Ω) + ‖v‖L5(Γr) + ‖v‖L5(Γ0).

A function y ∈ V is said to be a weak solution of the state equation in (P), if (4.1) is
fulfilled for every v ∈ V .

Theorem 4.1. [10, Theorem 2] For every u ∈ H1(Ωs)
∗ and y0 ∈ L5(Γ0), the semi-

linear equation (4.1) admits a unique solution in V .

The proof is mainly based on Brezis’ theorem [16, Theorem 27.A] for pseudomono-
tone operators. Laitinen and Tiihonen showed in [10] that the semilinear differential
operator defined by the left-hand side in (4.1) fulfills all assumptions of Brezis’ the-
orem, i.e. it is pseudomonotone, bounded, and coercive on V . Thus, (4.1) admits at
least one solution in V . The uniqueness then follows from a comparison principle [10,
Theorem 4].

Next, we show the boundedness of solutions to (4.1). This result has been obtained by
Tiihonen and Laitinen (see [10, Theorem 5]) in a slightly different setting by another
method. Here, we need it for the nonlinear equation (4.1) as well as for its linearized
version (see Section 6). In both cases, Lemma 3.7 can be applied.

Theorem 4.2. Assume that u ∈ L2(Ωs) and y0 ∈ L16(Γ0). Then, there exists a
constant c0 only depending on Ω such that

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c0(1 + ‖u‖L2(Ωs) + ‖y0‖4
L16(Γ0) ) (4.2)

is valid.

Proof: To apply Lemma 3.7, we have to verify the Hypotheses (H1) and (H2). Here,
we choose the state space V ⊂ H1(Ω) for the space W . Since y0 ∈ L16(Γ0) by
assumption, we have y4

0 ∈ L4(Γ0), and thus together with the assumed regularity of
u, (H1) is satisfied with s = 2. To verify (H2), we show

∫

Ω

κ∇y · ∇ϕk dx +

∫

Γr

G(σ|y|3y)ϕk ds+

∫

Γ0

εσ |y|3y ϕk ds ≥ c ‖ϕk‖2
H1(Ω) (4.3)

for each k ≥ 1, which we will use in the estimate of the Γ0-term. At first, we show
the positivity of the radiation term on Γr. To this aim, we split ϕk = ϕ+

k + ϕ−
k with

ϕ+
k (x) :=

{

y(x) − k , y(x) ≥ k,
0 , y(x) < k,

and ϕ−
k (x) :=

{

y(x) + k , y(x) ≤ −k,
0 , y(x) > −k.
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Hence, one obtains
∫

Γr

G(σ|y|3y)ϕk ds =

∫

Γr

G(σ|y|3y)ϕ+
k ds+

∫

Γr

G(σ|y|3y)ϕ−
k ds. (4.4)

Due to the linearity of G, the first integral on the right-hand side can be expressed
by

∫

Γr

G(σ|y|3y)ϕ+
k ds =

∫

Γr

G(σΦ)ϕ+
k ds+

∫

Γr

G(σΨ)ϕ+
k ds, (4.5)

where

Φ(x) :=

{

y(x)4 , y(x) ≥ k,
k4 , y(x) < k,

and Ψ(x) :=

{

0 , y(x) ≥ k,
|y(x)|3y(x) − k4 , y(x) < k.

This partition is necessary sinceG is nonlocal. Notice that Φ+Ψ = |y|3y and Ψ(x) ≤ 0
on Γr. For the first addend in (4.5), we have, with yk(x) := max{y(x), k},

∫

Γr

G(σΦ)ϕ+
k ds =

∫

Γr

G(σ y4
k)(yk − k) ds =

∫

Γr

G(σ y4
k)yk ds−

∫

Γr

σ y4
kG

∗k ds ≥ 0

because of Lemma 3.3, (iii), and Lemma 3.4. Due to G = I −H and the positivity of
H (see Lemma 3.3, (ii)), the second integral in (4.5) results in

∫

Γr

G(σΨ)ϕ+
k ds = σ

∫

Γr

Ψϕ+
k ds+ σ

∫

Γr

H(−Ψ)ϕ+
k ds ≥ 0,

since Ψ(x) 6= 0 implies ϕ+
k (x) = 0 and −Ψ, ϕ+

k ≥ 0 holds on Γr.
Similarly, we prove the positivity of the second integral on the right-hand side of (4.4)
with yk(x) := min{y(x),−k}, defining

Φ(x) :=

{

|y(x)|3y(x) , y(x) ≤ −k,
−k4 , y(x) > −k, and Ψ(x) :=

{

0 , y(x) ≤ −k,
|y(x)|3y(x) + k4 , y(x) > −k.

It remains to analyze the other integrals in (4.3). The first integral is estimated by
∫

Ω

κ∇y · ∇ϕk dx ≥ κmin‖∇ϕk‖2
L2(Ω),

since ∇ϕk(x) = 0 if ∇y(x) 6= ∇ϕk(x). On Γ0, using k ≥ k0 := 1, we obtain
∫

Γ0

εσ |y|3y ϕk ds ≥ εminσ k
3‖ϕk‖2

L2(A0(k)) ≥ εminσ ‖ϕk‖2
L2(Γ0)

,

as y ϕk = (signϕk)(|ϕk| + k)ϕk ≥ ϕ2
k is valid on A0(k) = {x ∈ Ω | ϕk(x) 6= 0}.

Due to the positivity of
∫

Γr
G(σ|y|3y)ϕk ds, we finally have

∫

Ω

κ∇y · ∇ϕk dx+

∫

Γr

G(σ|y|3y)ϕk ds+

∫

Γ0

εσ |y|3y ϕk ds

≥ c (‖∇ϕk‖2
L2(Ω) + ‖ϕk‖2

L2(Γ0)
) ≥ c ‖ϕk‖2

H1(Ω).
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Therefore, we can apply Lemma 3.7, and estimate (3.6) gives with s = 2, k0 = 1,
fΩ = u, and f0 = y4

0

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c0
(

1 + ‖u‖L2(Ωs) + ‖y4
0‖L4(Γ0)

)

≤ c0

(

1 + ‖u‖L2(Ωs) + ‖y0‖4
L16(Γ0)

)

.

For the discussion of the linearized equation, see Section 6, we need another property
of the semilinear solution, namely the following maximum principle:

Theorem 4.3. Suppose that u(x) ≥ 0 a.e. in Ωs and y0(x) ≥ ϑ > 0 a.e. on Γ0. If y
is the solution of (4.1), then y(x) ≥ ϑ holds a.e. on Ω and a.e. on Γr ∪ Γ0.

Proof: This time, we use the following test function in (4.1):

ρϑ(x) :=

{

y(x) − ϑ , y(x) ≤ ϑ,
0 , y(x) > ϑ.

Furthermore, we define Ω− = {x ∈ Ω | y(x) ≤ ϑ} and introduce analogous definitions
for Ω−

s , Γ−
0 and Γ−

r . Thus, we have ρϑ|Ω\Ω− = 0, and (4.1) reads

∫

Ω−

κ∇y · ∇ρϑ dx+

∫

Γr

G(σ|y|3y)ρϑ ds

+

∫

Γ−

0

εσ(|y|3y − y4
0) ρϑ ds =

∫

Ω−

s

u ρϑ dx.
(4.6)

Next, as in the proof of Theorem 4.2, one can show the positivity of the integral over
Γr by decomposition:

∫

Γr

G(σ|y|3y)ρϑ ds =

∫

Γr

G(σΦ)ρϑ ds+

∫

Γr

G(σΨ)ρϑ ds,

with

Φ(x) =

{

|y(x)|3y(x) , y(x) ≤ ϑ,
ϑ4 , y(x) > ϑ,

and Ψ(x) =

{

0 , y(x) ≤ ϑ,
|y(x)|3y(x) − ϑ4 , y(x) > ϑ.

Therefore, (4.6) results in

∫

Γ−

0

εσ (y4
0 − |y|3y) ρϑ ds ≥

∫

Ω−

κ∇y · ∇ρϑ dx−
∫

Ω−

s

u ρϑ dx ≥ 0,
(4.7)

since ∇ρϑ = ∇y on Ω−, ρϑ ≤ 0 by definition, and u ≥ 0 by assumption. On Γ−
0 , we

also have y − ϑ ≤ 0 implying y4
0 − |y|3y ≥ 0. Thus, we obtain

0 ≤
∫

Γ−

0

εσ (y4
0 − |y|3y) ρϑ ds =

∫

Γ−

0

εσ (y4
0 − |y|3y)(y − ϑ) ds ≤ 0,

and, consequently, |Γ−
0 | = 0 or y = y0 or y = ϑ a.e. on Γ0, which, in each case, yields

the assertion on Γ0. Therefore, we have ρϑ ∈ H1
0 (Ω).
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Now, from (4.7), it follows that

κmin‖∇ρϑ‖L2(Ω) ≤
∫

Γ−

0

εσ (y4
0 − |y|3y) ρϑ ds+

∫

Ω−

s

u ρϑ dx ≤ 0,

since ∇ρϑ = 0 in Ω\Ω−. Hence ‖∇ρϑ‖L2(Ω) = ‖ρϑ‖H1
0 (Ω) = 0 (notice that we have

already shown ρϑ = 0 a.e. on Γ0). Thus ρϑ = 0 a.e. in Ω. Thus, we have shown y ≥ ϑ
a.e. on both Ω and Γ0, and Lemma 3.6 then ensures y ≥ ϑ a.e. on Γr.

5. Existence of an optimal solution. With the results of Section 4 at hand,
the proof of existence of an optimal solution for the optimal control problem (P) is
rather standard. We start with the following lemma:

Lemma 5.1. Let u ∈ L6/5(Ωs), y0 ∈ L16/3(Γ0) be given and assume that the hy-
potheses of Theorem 4.3 are fulfilled. Then a constant c1 exists only depending on Ω
with

‖y‖H1(Ω) ≤ c1

(

‖u‖L6/5(Ωs) + ‖y0‖4
L16/3(Γ0)

)

.

Proof: Using the solution y as a test function in (4.1) yields

∫

Ω

κ|∇y|2 dx+

∫

Γr

G(σ|y|3y)y ds+

∫

Γ0

εσ |y|3y2 ds =

∫

Ωs

u y dx+

∫

Γ0

εσ y4
0y ds.

Owing to Lemma 3.3, (iii), and the maximum principle in Theorem 4.3, we have

∫

Ω

κ|∇y|2 dx+

∫

Γr

G(σ|y|3y)y ds+

∫

Γ0

εσ |y|3y2 ds

≥ κmin ‖∇y‖L2(Ω) + εmin σ ϑ
3‖y‖L2(Γ0) ≥ c ‖y‖2

H1(Ω).

Therefore, by trace and embedding theorems,

‖y‖2
H1(Ω) ≤ c





∫

Ωs

u y dx+

∫

Γ0

εσ y4
0y ds





≤ c
(

‖u‖L6/5(Ωs)‖y‖L6(Ωs) + ‖y4
0‖L4/3(Γ0)‖y‖L4(Γ0)

)

≤ c1

(

‖u‖L6/5(Ωs) + ‖y0‖4
L16/3(Γ0)

)

‖y‖H1(Ω),

which establishes the case.

Theorem 5.2. Assume that ua ≥ 0, y0 ∈ L16(Γ0), and y0 ≥ ϑ > 0. Then there
exists a solution (ū, ȳ) ∈ L∞(Ωs) × V∞ to (P).

Proof: As mentioned above, the proof follows standard arguments. We start with a
sequence {(un, yn)}∞n=1 converging to the infimum J̄ ≥ 0 of the objective functional
in (P), i.e. J(un, yn) → J̄ . We will now show the convergence of a subsequence of
{(un, yn)}∞n=1 to an optimal solution (ū, ȳ).
The box constraints ensure that u is bounded in L2(Ωs). Thus, we can select a weakly
converging subsequence, w.l.o.g. again denoted by un, un ⇀ ū. Since Uad is a closed



12 C. MEYER, P. PHILIP, F. TRÖLTZSCH

and convex subset of L2(Ωs), we have ū ∈ Uad.
In addition to the boundedness, the un are also nonnegative because of ua ≥ 0.
Together with the assumptions on y0, this yields the boundedness of ‖yn‖H1(Ω) thanks
to Lemma 5.1. Hence, we can select a weakly converging subsequence and w.l.o.g. yn

itself, i.e. yn ⇀ ȳ, n→ ∞, in H1(Ω). The trace theorem and the compact embedding
of H1/2(Γr ∪ Γ0) in L2(Γr ∪ Γ0) then give

τyn → τ ȳ, n→ ∞ in L2(Γr ∪ Γ0).

Now, the convergence of the nonlinearities can be derived on Γr and Γ0. Since un,
n ∈ N, is uniformly bounded in L2(Ωs), and y0 ∈ L16(Γ0) by assumption, Theorem
4.2 ensures that a constant d exists with |y(x)| ≤ d a.e. in Ω and a.e. in Γr ∪ Γ0. One
can easily verify that the Nemytskii operator Φ(y) := |y|3y satisfies

‖Φ(yn) − Φ(ym)‖L2(Γr∪Γ0) ≤ L(d)‖yn − ym‖L2(Γr∪Γ0) (5.1)

for all yn, ym ∈ {y ∈ L∞(Γ0 ∪ Γr) | |y(x)| ≤ d a.e. on Γ0 ∪ Γr}. Since this set is closed
in L2(Γr∪Γ0), also |ȳ(x)| ≤ d holds true, and the convergence in L2(Γr∪Γ0) together
with (5.1) yields

|τyn|3τyn → |τ ȳ|3τ ȳ in L2(Γr ∪ Γ0). (5.2)

Consider now the variational equation (4.1) when passing to the limit. For (un, yn),
it reads

∫

Ω

κ∇yn · ∇v dx+

∫

Γr

G(σ|yn|3yn)v ds+

∫

Γ0

εσ |yn|3yn v ds =

∫

Ωs

un v dx+

∫

Γ0

εσ y4
0v ds.

Due to yn ⇀ ȳ in H1(Ω), the first integral on the left-hand side converges to
∫

Ω
κ∇ȳ ·

∇v dx. The boundary integrals on the left-hand side converge because of (5.2) and
the continuity of G. Finally, the inhomogeneity converges owing to un ⇀ ū in L2(Ωs).
Therefore, the limit (ū, ȳ) satisfies the weak formulation (4.1).

The optimality of (ȳ, ū) follows in a standard way by the lower semicontinuity of J .

6. The linearized equation. In this section, we investigate the linearization
of the state equation (4.1) at a fixed reference pair (ȳ, ū) ∈ V ∞ × L2(Ωs)

1. The
linearized equation arises from the differentiation of the solution operator associated
with the semilinear state equation S : L2(Ωs) → V∞ mapping u to y. This derivative
of S at (ȳ, ū) appears in the variational inequality (see Section 7). More precisely, we
consider the linearized equation with a more general inhomogeneity, i.e. in the form

−div(κ∇y) = fΩ in Ω

κs

(

∂y

∂nr

)

s

− κg

(

∂y

∂nr

)

g

+ 4G(σ|ȳ|3y) = fr on Γr

κs
∂y

∂n0
+ 4 εσ|ȳ|3y = f0 on Γ0

(6.1)

1Here and in the following, we will denote a fixed solution of the semilinear equation as well as
an optimal solution by (ū, ȳ).
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with ȳ = S ū ∈ V∞ and arbitrary functions (fΩ, fr, f0) in L2(Ω) × L2(Γr) × L2(Γ0).
In the next section, we will show that S is indeed Fréchet differentiable and that
its derivative y = S ′(ū)u corresponds to the solution of (6.1) with fΩ = u, fr = 0,
and f0 = 0. However, we first focus on (6.1), and, in the present section, prove the
existence of a unique solution in V∞. The existence theory is based on the theory of
Fredholm operators and has to account for eigenvalues. This is due to the fact that
the Lax-Milgram lemma cannot directly be applied because of the lack of coercivity,
caused by the radiation operator G in the linearized case. The boundedness of the
solution is again shown by Lemma 3.7.

The variational equation of (6.1) reads

∫

Ω

κ∇y · ∇v dx+

∫

Γ0

4 εσ |ȳ|3y v ds

=

∫

Ω

fΩ v dx+

∫

Γr

(fr − 4G(σ|ȳ|3y)) v ds+

∫

Γ0

f0 v ds ∀ v ∈ H1(Ω).

(6.2)

In view of ȳ ∈ V∞ and ȳ ≥ ϑ > 0 (Theorem 4.3), the bilinear form defined by the
left-hand side of (6.2) is bounded and coercive in H1(Ω). Therefore, the Lax-Milgram
lemma yields continuous linear operatorsBΩ : L2(Ω) → H1(Ω), Br : L2(Γr) → H1(Ω),
and B0 : L2(Γ0) → H1(Ω) such that, with ỹ := τr y:

y = BΩ fΩ +Br (fr − 4G(σ|τrȳ|3ỹ)) +B0 f0. (6.3)

We are now in a position to formulate the existence theorem for (6.1):

Theorem 6.1. Assume ȳ ∈ V∞, ȳ ≥ ϑ > 0, and that λ = 1 is not an eigenvalue
of B(ȳ)( · ) := −τrBr(4G(σ|τrȳ|3 · ) with B(ȳ) : L2(Γr) → L2(Γr). Then, to every
(fΩ, fr, f0) ∈ L2(Ω) × L2(Γr) × L2(Γ0), there exists a unique solution y of (6.1) in
H1(Ω).

Proof: In the following, we will suppress the dependency of B on ȳ, since ȳ is fixed.
Thus, we simply write B instead of B(ȳ). Applying the trace operator τr to both
sides, (6.3) it results in

(I −B)ỹ = ỹ + τrBr(4G(σ|τrȳ|3ỹ)) = τr (BΩ fΩ +Br fr +B0 f0). (6.4)

Since Br : L2(Γr) → H1(Ω), and ȳ ∈ V∞ by assumption, and, thus, τrȳ ∈ L∞(Γr),
it follows that B maps all ỹ ∈ L2(Γr) to H1/2(Γr). Due to the compact embedding,
B is a compact operator from L2(Γr) to L2(Γr). Therefore, λ = 1 is either one of
the countably many eigenvalues of B, or (I −B) is continuously invertible. Thus, we
obtain a unique solution ỹ ∈ L2(Γr) of (6.4) prescribed that λ = 1 is not an eigenvalue
of B.
Furthermore, for every ỹ ∈ L2(Γr), we haveG(σ|τrȳ|3ỹ) ∈ L2(Γr) by means of ȳ ∈ V∞,
and, hence, (6.3) admits a unique solution in H1(Ω).

Theorem 6.2. Suppose that the assumptions of Theorem 6.1 hold true. Then, for all
fΩ ∈ L2(Ω), fr ∈ L4(Γr), and f0 ∈ L4(Γr), there exists a constant c2 only depending
on Ω such that

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c2
(

‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖f0‖L4(Γ0)

)

(6.5)
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holds true.

Proof: Again, we use Lemma 3.7 to prove the boundedness, this time with W =
H1(Ω). We apply it to (6.2) for F defined by

〈F (y) , v〉 =

∫

Ω

κ∇y · ∇v dx +

∫

Γ0

4 εσ |ȳ|3y v ds.

Hypothesis (H2) clearly holds with k0 = 0, owing to the coercivity of the bilinear
form.
Now, Hypothesis (H1), i.e. the regularity of the right-hand side is the critical point,
since the inhomogeneity on Γr in (6.2) depends on the solution y. As before, we choose
s = 2 in (H1), and, thus, the required regularities coincide with the assumptions on
fΩ, fr, and f0.
The part of the inhomogeneity depending on y and ȳ is given by −4G(σ|ȳ|3y). It
belongs to L4(Γr), since y ∈ H1(Ω), and, therefore, τry ∈ L4(Γr) in addition to
ȳ ∈ V∞. Consequently, also (H1) is satisfied, and Lemma 3.7 can be applied.

It remains to verify that a bound exists that is independent of y. With k0 = 0,
estimate (3.6) on page 6 gives

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0)

≤ c0
(

‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖4G(σ|ȳ|3y)‖L4(Γr) + ‖f0‖L4(Γ0)

)

.
(6.6)

We estimate the term with y by

‖G(σ|ȳ|3y)‖L4(Γr) ≤ c‖G‖L(L4(Γr)) ‖ȳ‖3
L∞(Γr)

‖y‖H1(Ω). (6.7)

With (6.3) and the continuity of BΩ, Br, and B0, we obtain because of the bounded-
ness of ȳ:

‖y‖H1(Ω) ≤ ‖BΩ fΩ +Br fr +B0 f0‖H1(Ω)

+ c ‖Br‖L(L2(Γr),H1(Ω))‖G‖L(L2(Γr))‖ȳ‖3
L∞(Γr)

‖ỹ‖L2(Γr)

≤ c (‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖f0‖L4(Γ0) + ‖ỹ‖L2(Γr)). (6.8)

Due to (6.4), ‖ỹ‖L2(Γr) is bounded by

‖ỹ‖L2(Γr) ≤ ‖(I −B)−1‖L(L2(Γr)) · ‖BΩ fΩ +Br fr +B0 f0‖L2(Γr)

≤ c(‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖f0‖L4(Γ0)), (6.9)

where Fredholm theory grants ‖(I−B)−1‖L(L2(Γr)) <∞. Combing (6.7) – (6.9) yields

‖G(σ|ȳ|3y)‖L4(Γr) ≤ c̃ (‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖f0‖L4(Γ0)) (6.10)

with a constant c̃ only depending on Ω. Inserting (6.10) in (6.6) finally gives

‖y‖L∞(Ω) + ‖y‖L∞(Γr∪Γ0) ≤ c0(1 + c̃)
(

‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖f0‖L4(Γ0)

)

≤ c2
(

‖fΩ‖L2(Ω) + ‖fr‖L4(Γr) + ‖f0‖L4(Γ0)

)

.
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7. First order necessary optimality conditions. With the results of Sections
4 and 6, we are now able to show the Fréchet differentiability of the semilinear PDE
solution operator S : u 7→ y from L2(Ωs) to V∞, see Sec. 7.1. Defining J(y, u) =
J(S u, u) =: j(u), a standard argument then yields the variational inequality for the
optimal pair (ū, ȳ):

j′(ū)(u − ū) = (∇ȳ − z,∇y)L2(Ωg) + ν(ū, (u − ū))L2(Ωs) ≥ 0 ∀u ∈ Uad, (7.1)

with ȳ = S ū and y = S ′(ū)(u − ū). The latter relation means that y satisfies the
PDE

−div(κs ∇y) = u− ū in Ωs,

−div(κg ∇y) = 0 in Ωg,

κs

(

∂y

∂nr

)

s

− κg

(

∂y

∂nr

)

g

+ 4G(σ|ȳ|3y) = 0 on Γr,

κs
∂y

∂n0
+ 4 εσ|ȳ|3y = 0 on Γ0.

(7.2)

Note that (7.2) constitutes a special case of (6.1).
In Section 7.2, we transform the variational inequality (7.1) into the standard projec-
tion formula depending on the adjoint state p.

7.1. Differentiability of the control-to-state operator. We show the dif-
ferentiability of S by the implicit function theorem. To that end, let us introduce an
auxiliary operator T , such that S is implicitly defined by T (u, S(u)) = 0. Preparing
the definition of T , we consider the following equation that is equivalent to the weak
formulation of the semilinear PDE (4.1):

∫

Ω

κ∇y · ∇v dx+

∫

Γ0

λ y v ds

= −
∫

Γr

G(σ|y|3y)v ds+

∫

Γ0

(λ y + εσ y4
0 − εσ |y|3y) v ds+

∫

Ωs

u v dx,

(7.3)

with a fixed λ > 0. Due to the positivity of λ, the left-hand side in (7.3) represents a
bounded, coercive bilinear form in H1(Ω). Thus, for every right-hand side in H1(Ω)∗,
we have a unique solution in H1(Ω). Furthermore, similar to the proof of Theorem
6.2, it follows that this solution is bounded if the right-hand side is sufficiently regular,
i.e. in L2(Ω) × L4(Γr) × L4(Γ0). Thus, continuous operators B̃Ωs : L2(Ωs) → V∞,
B̃0 : L4(Γ0) → V∞, and B̃r : L4(Γr) → V∞ exist with

y = B̃Ωs u− B̃r (G(σ|y|3y)) + B̃0 (λ y + εσ y4
0 − εσ |y|3y),

and our auxiliary operator is given by

T (u, y) := y − B̃Ωs u+ B̃r (G(σ|y|3y)) − B̃0 (λ y + εσ y4
0 − εσ |y|3y), (7.4)

with T : L2(Ωs) × V∞ → V∞.

Theorem 7.1. Assume that ua ≥ 0, y0 ∈ L16(Γ0), y0 ≥ ϑ > 0 and λ = 1 is not an
eigenvalue of B, where B = B(ȳ) is as defined in Theorem 6.1. Then, S : L2(Ωs) →
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V∞ is Fréchet differentiable at (ū, ȳ), and y := S ′(ū)(u − ū) is given by the solution
of the linearized equation (7.2).

Proof: According to the definition of T in (7.4) and because of Theorems 4.1 and 4.2,
y = S(u) if, and only if, T (u, y) = T (u, S u) = 0, since this equation corresponds to
the semilinear equation (4.1). To prove the differentiability of S, it thus suffices to
verify the hypotheses of the implicit function theorem for T .
The Nemytskii operator Φ(y) = |y|3y is continuously Fréchet differentiable from
L∞(Γr ∪ Γ0) to L∞(Γr ∪ Γ0), see [9]. The other operators in the definition of T
are all continuous and linear operators, and, thus, trivially continuously Fréchet dif-
ferentiable on their particular spaces, i.e. G from L∞(Γr) to L∞(Γr), B̃Ωs from L2(Ωs)
to V∞, B̃r from L∞(Γr) to V∞, and B̃0 from L∞(Γr) to V∞. By the chain rule, T
is continuously Fréchet differentiable from L2(Ωs) × V∞ to V∞, and, in particular,
continuous.

It remains to show the invertibility of ∂T
∂y (ū, ȳ). For a given f ∈ V∞, we have to prove

the existence of a unique y ∈ V∞ satisfying ∂T
∂y (ū, ȳ)y = f , i.e., in view of (7.4),

y + 4B̃r (G(σ|ȳ|3y)) = f + B̃0 (λ y − 4εσ |ȳ|3y).

With the substitution y = f − w ∈ V∞, this is equivalent to the following weak
formulation

∫

Ω

κ∇w · ∇v dx+

∫

Γr

4G(σ|ȳ|3w)v ds+

∫

Γ0

4 εσ |ȳ|3w v ds

=

∫

Γr

4G(σ|ȳ|3f)v ds−
∫

Γ0

(λ− 4 εσ |ȳ|3)f v ds ∀ v ∈ H1(Ω),

whose bilinear form coincides with the one of (6.2). Here, the inhomogeneity is given
by fΩ = 0, f0 := (εσ |ȳ|3 − λ)f ∈ L∞(Γ0), and fr := 4G(σ|ȳ|3f) ∈ L∞(Γr). Thus,
it fulfills the hypotheses of Theorems 6.1 and 6.2. We therefore have w ∈ V ∞, and,
hence, to every f ∈ V∞, there exists a unique solution y ∈ V∞, that yields the desired
bijectivity of ∂T

∂y (ū, ȳ).

Now, since all hypotheses are satisfied, we can apply the implicit function theorem to
(7.4) and obtain, as derivative of S,

y := S′(ū)(u − ū) = −
(

∂T

∂y
(ū, ȳ)

)−1
∂T

∂u
(ū, ȳ)(u − ū). (7.5)

Finally, a straightforward computation shows that y satisfies (7.5) if, and only if, y is
the solution of the linearized equation (7.2).

7.2. The adjoint equation. A standard technique formally gives the following
adjoint equation associated with (P)

div(κg ∇p) = ∆ȳ − div z in Ωg

div(κs ∇p) = 0 in Ωs

κs

(

∂p

∂nr

)

s

− κg

(

∂p

∂nr

)

g

+ 4σ |ȳ|3G∗p =
∂y

∂nr
− z · nr on Γr

κs
∂p

∂n0
+ 4εσ |ȳ|3p = 0 on Γ0.

(7.6)
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Formal integration by parts, also on the right-hand side, yields the corresponding
weak formulation of (7.6):

∫

Ω

κ∇p · ∇v dx+ 4

∫

Γr

σ |ȳ|3G∗(p) v ds+ 4

∫

Γ0

εσ |ȳ|3 p v ds

=

∫

Ωg

(∇ȳ − z) · ∇v dx =: 〈w, v〉 ∀ v ∈ H1(Ω)

(7.7)

with w ∈ H1(Ω)∗, since ȳ ∈ V∞ and z ∈ L2(Ωg) by assumption (A3).

To show the existence of a unique solution to (7.7), we use a similar technique as for
the linearized equation (6.1) based on the Fredholm alternative (see Section 6).
To that end, we transform (7.7) into

∫

Ω

κ∇p · ∇v dx+ 4

∫

Γ0

εσ |ȳ|3 p v ds = 〈w, v〉 − 4

∫

Γr

σ |ȳ|3G∗(p) v ds.

Due to the positivity of ȳ, the bilinear form defined by the left-hand side is bounded
and coercive in H1(Ω). Thus, we again obtain linear continuous operators BΩ :
H1(Ω)∗ → H1(Ω) and Br : L2(Γr) → H1(Ω) such that

p = BΩ w +Br (−4 σ|ȳ|3G∗(τrp))

(similar to (6.3), p. 13). Now we can argue as in the proof of Theorem 6.1 and, thus,
obtain the following result:

Theorem 7.2. Assume ȳ ∈ V∞, ȳ ≥ ϑ > 0, and that λ = 1 is not an eigenvalue
of B(ȳ)( · ) := −τrBr(4 σ|ȳ|3G∗( · )) with B(ȳ) : L2(Γr) → L2(Γr). Then, to every
w ∈ H1(Ω)∗, there exists a unique solution of (7.7) in H1(Ω).

Now, if we choose v = p as test function in the weak formulation of the linearized
equation (7.2), we obtain

∫

Ω

κ∇y · ∇p dx + 4

∫

Γr

G(σ |ȳ|3y)p ds+ 4

∫

Γ0

εσ |ȳ|3 y p ds =

∫

Ωs

(u− ū)p dx.

On the other hand, we insert v = y in the weak formulation of the adjoint equation:
∫

Ω

κ∇p · ∇y dx + 4

∫

Γr

σ |ȳ|3 y G∗(p) ds+ 4

∫

Γ0

εσ |ȳ|3 p y ds =

∫

Ωg

(∇ȳ − z) · ∇y dx.

Substracting one equation from the other yields (∇ȳ− z,∇y)L2(Ωg) = (u− ū, p)L2(Ωs)

for the first expression in the variational inequality (7.1) . Thus, (7.1) can be trans-
formed into

j′(ū)(u − ū) =

∫

Ωs

(u − ū)(p+ νū) dx ≥ 0 ∀u ∈ Uad,

and, finally, a standard pointwise discussion leads to the projection formula

ū(x) = P[ua,ub]

{

−1

ν
p(x)

}

, (7.8)

where P[ua,ub] denotes the pointwise projection operator on [ua, ub].
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8. Numerical tests. In this section, we report on some two-dimensional numer-
ical tests. For the computational domain, we chose the square presented in Figure 1.1,
p. 1, which is naturally academic. In contrast to this, the material parameters were
chosen to approximate the realistic distributions given in [11]. Two different temper-
ature levels were investigated in our calculations. At the lower level, the temperature
in the gas phase amounts to about 450 K, whereas, at the higher level, it constitutes
approximately 2000 K and, thus, is sufficiently high for the PVT method mentioned
in Section 1. In the low-temperature example, the thermal conductivity2 in the gas
phase is fixed at κg ≡ 0.03 and, having in mind a graphite crucible, at κs ≡ 35.0 in the
solid. At the higher temperatures, we obtain κg ≡ 0.08 and κs ≡ 24.0. The emissivity
is set to ε ≡ 0.65 at the lower temperature level and ε ≡ 0.8 in the high temperature
case. In all cases, the Boltzmann radiation constant3 is given by σ = 5.6696 · 10−8

and the external temperature by y0 = 293.0 K.

As this paper is concerned with first order sensitivity analysis, we implemented a
gradient type method to be consistent with the theory. More precisely, we used a
projected gradient method with a line search according to the Armijo rule. Although
the projected gradient method needs a quite large number of iterations, each step is
comparatively cheap and fast. The only time-consuming part of each iteration is to
solve the semilinear equation which was done by the Newton method. The linearized
PDE and the adjoint equation were approximated by linear finite elements. The
integral operators G and K arising from the nonlocal radiation condition on Γr were
discretized by a summarized midpoint rule.

We present three numerical examples. In the first example, at the lower temperature
level, the optimal temperature profile nearly reaches the desired temperature gradi-
ent. The other two examples refer to the higher temperature level. In these cases,
the desired temperature gradient is hardly been achieved. This applies especially to
the last example, where the optimal control is almost bang-bang, since the desired
temperature gradient is quite large compared to the bounds ua and ub.

In the first example, the desired temperature gradient4 was given by z = (0, 20)T , and
we took ua = 2000, and ub = 8000 for the control constraints5. To compensate for the
comparatively large values of the control, we choose a small Tikhonov regularization
parameter ν = 5 · 10−7. Because of the bounds for the heat sources, the average
temperature in the gas phase is significantly lower than in the other examples. The
pictures 8.1–8.4 show the optimal control, state, and adjoint state, calculated by the
projected gradient method. The optimal control shown in Fig. 8.1 is only defined in
the solid parts Ωs, and, therefore, its graph shows a hole in the inner square, where
the gas phase is located.

2in W/(m K)
3in W/(m2K4)
4in K/m
5in W/m3
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Fig. 8.1. Control u in the first example.
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Fig. 8.2. Adjoint state p in the first example.
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Fig. 8.3. State y in the first example.
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Fig. 8.4. Isotherms in the gas phase Ωg.

As one can see in Fig. 8.4, the desired temperature gradient is nearly reached. Fur-
thermore, the control u possesses peaks in the corners of the inner boundary Γr. As
we observed the same behavior in calculations on two different meshes with 2705 and
16474 grid points, respectively, this does not seem to show a numerical effect. A
possible explanation is that the temperature tends to decrease in the corners, as one
can see in the other two examples, where the optimal temperature gradient differs
significantly from the desired one. Since a constant temperature distribution in the
x1-direction is required, the optimal control must increase in the corners to compen-
sate for the decrease of the temperature.

To deal with higher temperatures in the gas phase, we now set ua = 125000 and ub =
725000. Accordingly, the Tikhonov regularization parameter is reduced to ν = 3·10−9.
As in the first example, the desired temperature gradient is given by z = (0, 20)T .
The following pictures show the optimal control and state in the gas phase for this
setting.
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Fig. 8.5. Control u in the second example.
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Fig. 8.6. Isotherms in the gas phase Ωg.

In this example, the optimal temperature distribution in the gas phase differs consider-
ably from the desired temperature gradient. The difference between the temperature
at x2 = 0.5 and x2 = 1.5 amounts to about 14 K and, thus, is significantly smaller
than the desired value of 20 K. Furthermore, the temperature is no longer constant
in the x1-direction.

This behavior especially occurs in the cor-
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Fig. 8.7. State y in the second example.

ners, although we again obtain the peaks of
the control u in these corners, as one can
see in Fig. 8.5. A possible explanation for
this result is the strong cooling effect due to
the relatively low external temperature. Be-
cause of the comparatively large difference
of about 1700 K between the temperature in
the gas phase and the external temperature
outside the crucible, one obtains quite steep
gradients in the solid part Ωs, as one can see
in Fig. 8.7. Therefore, it is no longer pos-
sible to generate a temperature distribution
that is constant in the x1-direction.

This behavior is even more pronounced in the third example, as one can see in Fig. 8.9.
In this example, we set ua = 200000, ub = 300000, and z = (0, 100)T . As indicated at
the beginning of this section, the desired x2-derivative z2 is comparatively steep and,
therefore, cannot be achieved with these bounds on the control. Thus, the optimal
control is almost bang-bang, as Fig. 8.8 shows.
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Fig. 8.8. Control u in the third example.
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Fig. 8.9. Isotherms in the gas phase Ωg.
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