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Optimal Control of a Stefan Problem Fully

Coupled with Incompressible Navier–Stokes

Equations and Mesh Movement

Björn Baran, Peter Benner, Jan Heiland, Jens Saak

Abstract

The optimal control of moving boundary problems receives growing
attention in science and technology. We consider the so called two-phase
Stefan problem that models a solid and a liquid phase separated by a
moving interface. The Stefan problem is coupled with incompressible
Navier–Stokes equations. We take a sharp interface model approach
and define a quadratic tracking-type cost functional that penalizes the
deviation of the interface from the desired state and the control costs.
With the formal Lagrange approach and an adjoint system we derive the
gradient of the cost functional. The derived formulations can be used
to achieve a desired interface position. Among others, we address how
to handle the weak discontinuity of the temperature along the interface
with mesh movement methods in a finite element framework.

1 Introduction

Free boundary and moving boundary problems can be used to model crystal
growth or the solidification and melting of pure materials. The optimal con-
trol of these problems is of great interest since certain desired shapes of the
boundaries improve, e.g., the material quality in the case of crystal growth [14].
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Problems with moving boundaries feature a strong coupling between geometric
and physical unknowns. As a consequence, these problems are non-linear and
their numerical solution as well as optimal control require the characterization
of the geometric unknowns. One instance of a free boundary problem is the
two-dimensional two-phase Stefan problem, fully coupled to the incompressible
Navier–Stokes equations. In this case, the geometrical unknown is an interface
that separates the domain into a liquid and a solid phase. Physical unknowns
are the velocity and pressure in the liquid phase and the temperature over the
whole domain. One difficulty, especially for the numerical solution, is the dis-
continuity of the temperature gradient across the interface. The temperature
and the inner boundary are coupled by the Stefan condition. This condition
connects the jump of the temperature gradient across the interface with the
normal velocity of the interface.

There exist several approaches to represent the interface and deal with the
discontinuity of the temperature gradient. One possibility is to formulate the
Stefan problem in enthalpy formulation, as done for example by White [18].
The interface can be treated implicitly with a mushy region of material and
no explicit representation or tracking of the inner boundary is necessary. This
is one advantage of the enthalpy formulation. Thereby, the implementation is
relatively simple [17, p. 219]. Nevertheless, for the optimal control, interface
tracking is required. Thus, a sharp interface representation is preferable. In
the literature, there are different ways to treat the moving inner boundary
explicitly. It can be represented as the zero level set of a time dependent,
implicit function as done by Nochetto et al. [12, 13] and Zabaras et al. [19].
The numerical solution of this level set function is done by the finite element
method (FEM). The temperature is approximated with the extended FEM (X-
FEM), where the FEM functions are modified in a narrow band around the
interface to deal with the discontinuity of the temperature gradient. Bernauer
uses this technique in his PhD thesis [7], combined with an adjoint-based
optimal control approach. An alternative approach is to use an adaptive mesh
for the spatial discretization. The jump in the temperature gradient can be
represented, if the edges of the mesh are aligned with the interface. To ensure
this in every time step, the corresponding edges can be moved together with
the moving interface. Ziegenbalg [10, 20] uses this technique combined with
finite differences, a graph representation of the interface and an adjoint-based
optimal control approach. Bänsch et al. [4, 3] use FEM and a variational form
of the Stefan condition to solve for the interface velocity. Both works couple
the Stefan problem with Navier–Stokes equations. A different name for these
mesh movement methods is arbitrary Lagrangian-Eulerian (ALE) methods. A
detailed overview of the existing literature can be found in [5].

In this work, we adapt the explicit representation of the interface as a
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graph from [20], use the heat equation for the temperature and Navier–Stokes
equations for the velocity of the fluid and combine them with the numerical
solution techniques from [4], which include FEM and mesh movement. Addi-
tionally, we add in- and outflow conditions on specific parts of the boundary.
We use the adjoint-based optimal control approach from [7, 20] and define a
quadratic tracking-type cost functional to steer the interface to a desired po-
sition. In contrast to the existing literature, we choose the pressure potential
at the inlet as the control variable. Further, the mesh movement is fully in-
tegrated into the partial differential equation (PDE) systems. This results in
a control which has a less direct influence on the interface than, for example,
controlling the temperature directly. With the formal Lagrange approach, we
derive an adjoint system of PDEs, which we use to compute the gradient of
the cost functional. This first order optimality system follows the “optimize-
then-discretize” paradigm. We plug the gradient into a gradient algorithm
and compute a step size with a quadratic line minimization algorithm similar
to the one in [20]. To solve the forward and adjoint PDE systems, we use
FEniCS [1].

The paper is organized as follows. In Section 2, we describe the state
equations which define the Stefan problem. This includes the heat equation
for the temperature together with the Stefan condition for the interface ve-
locity. Further, we describe the mesh movement equations in this section.
The velocity and pressure in the liquid phase are characterized by the Navier–
Stokes equations. The control variable appears in the boundary conditions
of the Navier–Stokes equations. In Section 3, we define a cost functional and
the optimization problem. We use a Lagrange functional to derive the adjoint
system and the gradient of the cost functional. At the end of this section,
we formulate the gradient and line minimization algorithms that we use to
approximate an optimal control. Section 4 contains a brief summary of the
time discretization with an implicit Euler scheme and the spatial discretiza-
tion with FEM techniques. The behavior of the mesh movement is illustrated
in this section. In Section 5, we illustrate the performance of the presented
approach with two numerical experiments.

2 Two-Phase Stefan Problem

In this section, we present the arrangement of the domain and its boundary
regions. Moreover, we define the graph representation of the interface and
the equations characterizing the temperature. Further, we describe the inter-
face movement in detail together with the corresponding boundary conditions.
Analogously, we do the same for the mesh movement and for the velocity and
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pressure in the liquid phase. The definitions in this section closely follow [5].

We define the domain as Ω(t) ⊂ R
2. It is split into the solid phase Ωs(t) and

the liquid phase Ωl(t). By Γint(t) we denote the interface which separates the
two phases as in Figure 1. The inflow and the heating with the temperature
Theat(t) are located at Γin(t), the outflow at Γout(t). At the bottom, there is the
cooling boundary Γcool(t) = [a, b] ⊂ R with the cooling temperature Tcool(t).
The remaining parts of the outer boundary are denoted ΓN (t). We denote the
boundary part at the top ΓÑ (t) ⊂ ΓN (t). The inner boundary Γint(t) moves
so that its position is time-dependent. Thus, the solid and liquid phases are
time-dependent as are their boundaries. For the sake of brevity, the explicit
mentioning of the time-dependence “(t)” is avoided in most places throughout
this work.

Γcool

ΓÑ

Ωl

Ωs

Γint

Γin

Γout

ΓN

ΓN

ΓN

ΓN

Figure 1: The domain Ω ⊂ R
2 for the Stefan problem.

As in [20], we assume that the interface can be represented as a graph

Γint(t) =

{[
x1

f(t, x1)

]

: x1 ∈ Γcool

}

, with f : [0, tf ]× Γcool → R,

where [0, tf ], tf > 0 is the time interval. We abbreviate the derivatives of f
with

fx1 :=
df

dx1
, ft := ∂tf.
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To map from Γcool to the interface Γint, the function Φ: [0, tf ] × Γcool →
[0, tf ]× Γint is used. It is defined as

Φ(t, x1) :=

(

t,

[
x1

f(t, x1)

])

.

The unit normal vector nint along the interface Γint is pointing from the solid
to the liquid phase. It can be expressed as (see [20, Sec. 2.1])

nint(t, x1) =
1

√

1 + fx1(t, x1)
2

[
−fx1

(t, x1)
1

]

. (1)

2.1 Heat Equation, Mesh Movement, Navier–Stokes Equations

We denote the temperature in the solid and liquid phases by T . It is modeled
by the heat equation:

∂tT + (v − Vmesh) · ∇T − α∆T = 0, on (0, tf ]× Ω, (2)

where v is the velocity of the fluid and Vmesh the mesh movement (for details
see equation (5)). We define the boundary conditions for equation (2) and
any further equations in (7). Whenever v is used over the whole domain Ω,
it is extended with 0 on Ωs. Additionally, the Stefan condition at the moving
interface Γint couples the temperature with the velocity of the interface in
normal direction:

[ks(∇T )s − kl(∇T )l] =: [k(∇T )]sl = L · Vint, on Γint, (3)

with ks and kl denoting the heat conductivities in the solid and liquid phases
and L denoting the latent heat, and with (∇T )s := ∂nintT

∣
∣
Ωs

, (∇T )l :=

∂−nintT
∣
∣
Ωl
. This equation can be used to determine Vint if T is known.

With (1), we can express the velocity Vint of the interface Γint in normal
direction nint as

Vint(t, x1) = ∂t

[
x1

f(t, x1)

]

· nint(t, x1) =

[
0

ft(t, x1)

]

· nint(t, x1)

=
ft(t, x1)

√

1 + fx1
(t, x1)2

= ft(t, x1)nint(t, x1) · e2.

(4)

We denote the unit vector in vertical direction as e2 = [0, 1]T. Using equa-
tion (4), the Stefan condition (3) can be reformulated to

√

1 + f2x1
· [k(∇T )]sl ◦ Φ = L · ft, on Γcool,



OPTIMAL CONTROL OF A STEFAN PROBLEM FULLY COUPLED WITH

INCOMPRESSIBLE NAVIER–STOKES EQUATIONS AND MESH MOVEMENT 16

√

1 + f2x1
· Vint ◦ Φ = ft, on Γcool.

We will need this reformulation to couple the whole system with the cost
functional. The mesh movement Vmesh and the velocity of the liquid v will be
discussed in the remaining part of this section.

In the initial partition, the edges of the mesh are aligned with the interface
Γint. To keep this for the next time step, we move the vertices on the interface
with Vint in normal direction. In order to prevent the mesh from degrading, i.e.
avoid extreme cell deformations, or mesh tangling, Vint is smoothly extended
to Vmesh on the whole domain Ω. For this, the following Laplace equation is
solved:

∆Vmesh = 0, on (0, tf ]× Ω, (5a)

Vmesh = Vint · nint, on (0, tf ]× Γint. (5b)

The second equation (5b) is a Dirichlet condition on the inner boundary Γint,
which ensures Vmesh = Vint · nint on Γint.

The interface Γint is a non-material surface. The movement Vint of the
interface and the mesh movement Vmesh are not related to the movement of any
physical material points. As pointed out in [4], the non-material movement
Vmesh needs to be separated from the material movement in T and v with
advection terms

−Vmesh · ∇T

for the heat equation (2) and

−(Vmesh · ∇)v

for the Navier–Stokes equations, which are denoted in the following. The
velocity v and the pressure p in the liquid phase are described with the incom-
pressible Navier–Stokes equations for Newtonian fluids [8]:

∂tv + ((v − Vmesh) · ∇)v − η∆v +∇p = 0, on (0, tf ]× Ωl, (6a)

∇ · v = 0, on (0, tf ]× Ωl, (6b)

p · n− η∂nv = u · n, on (0, tf ]× Γin. (6c)

The constant η is the kinematic viscosity. In addition to the momentum
and mass balance equations (6a)–(6b), equation (6c) defines an inflow bound-
ary condition on Γin. It is influenced by the control variable u which is constant
in space on Γin.

We use the control u to influence the pressure and velocity gradient in
normal direction at the inflow boundary. It is used to steer the system to a
desired state.
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The whole system reads as follows:

∂tT + (v − Vmesh) · ∇T − α∆T = 0, on (0, tf ]× Ω,
√

1 + f2
x1

· [k(∇T )]sl ◦ Φ = L · ft, on (0, tf ]× Γcool,
√

1 + f2
x1

· Vint ◦ Φ = ft, on (0, tf ]× Γcool,

T = Theat, on (0, tf ]× Γin,

T = Tcool, on (0, tf ]× Γcool,

T = Tmelt, on (0, tf ]× Γint,

∂nT = 0, on (0, tf ]× (ΓN ∪ Γout),

T (0) = T0, on Ω,

Vint(0) = 0, on Γint,

f(0) = f0, on Γcool,

∆Vmesh = 0, on (0, tf ]× Ω,

Vmesh = Vint · nint, on (0, tf ]× Γint,

Vmesh = 0, on (0, tf ]× (Γcool ∪ ΓÑ ),

Vmesh · n = 0, on (0, tf ]× ∂Ω,

Vmesh(0) = 0, on Ω,

∂tv + ((v − Vmesh) · ∇)v − η∆v +∇p = 0, on (0, tf ]× Ωl,

∇ · v = 0, on (0, tf ]× Ωl,

v = 0, on (0, tf ]× (Γint ∪ (ΓN ∩ ∂Ωl)),

p · n− η∂nv = u · n, on (0, tf ]× Γin,

p · n− η∂nv = 0, on (0, tf ]× (Γout ∩ ∂Ωl),

v(0) = 0, on Ωl,

p(0) = 0, on Ωl.

(7)

In this PDE system, the control u is given and the functions T (tempera-
ture), f (interface graph), Vint (interface velocity), Vmesh (mesh movement), v
(velocity) and p (pressure) are unknowns. Throughout this work, the system
(7) is called the forward system. A detailed description of the equations can
be found in [5]. The next section describes the optimal control approach to
steer the interface to a desired position.

3 Optimization

In this section, we introduce the control problem and the derivation of the
adjoint system via the Lagrange formalism. The concrete control problem
is defined in terms of the underlying PDE system (7) together with a cost
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functional. To derive the adjoint system, a Lagrange functional is required.
We formulate a projected gradient algorithm combined with a quadratic line
minimization algorithm to compute a control, which steers the interface to a
desired position.

What follows is closely orientated towards [7, 20] and can be found with
additional details in [5]. More details on the Lagrange formalism for the
optimal control of PDEs can be found in [16].

For the state y from the state space Y and the control u, which is an element
of the control space U, the optimal control problem is defined as

min
y∈Y,u∈U

J(y, u)

subject to

e(y, u) = 0,

u ∈ Uad ⊂ U.

(8)

In the present Stefan problem, the state is defined as the tuple
y = [f, T, Vint, Vmesh, v, p]. The control functions u(x, t) = ũ(t) · Iin(x) are
chosen constant in space on Γin and will be identified with the scalar function
ũ : [0, tf ] → R in the remainder of this work. Further, the control constraint
u ∈ Uad defines restrictions on the control. The set of admissible controls Uad

is usually a convex subset of U. In the case that Uad = U, the problem is un-
restricted. The state equation e(y, u) = 0 connects the state and the control.
It represents the PDE-constraints of the Stefan problem, which are defined in
the forward system (7).

3.1 Definition of the Cost Functional and the Lagrange Functional

We define the cost functional to steer the position of the interface to a desired
one. The graph fd describes the desired position of the interface Γint. The
scalars Λ, Λ̄, and λ are weight factors for the cost functional J :

J(y, u) :=
Λ

2

∫

Γcool

(f(tf , x1)− fd(tf , x1))
2
dx1 +

Λ̄

2

tf
∫

0

∫

Γcool

(f(t, x1)− fd(t, x1))
2
dx1dt

+
λ

2

tf
∫

0

∫

Γin

(u(t))2 dx2dt.

(9)

The first term aims to steer the interface position to the desired position at
terminal time tf , while the second term penalizes the interface deviation over
the complete time horizon (0, tf ]. The third term models control costs and
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has a regularizing effect [16, p. 3]. Since we have no proof of the existence
and uniqueness of a solution to the forward system (7), the optimal control
techniques, which we apply here, are only formal. It is assumed that for every
u ∈ Uad, unique states T (u), f(u), Vint(u), Vmesh(u), v(u), and p(u) exist that
solve the forward system (7) and thus, the state equation e(y, u) = 0.

As a consequence, we can define the reduced cost functional K(u) :=
J(y(u), u) together with an optimal control problem (equivalent to (8)):

min
u∈Uad

K(u). (10)

To find a solution u∗ ∈ Uad for (10), we use first-order necessary optimality
conditions. These can be derived formally by applying the Lagrange formal-
ism. For this, we define the Lagrange multiplier as the tuple of adjoint states
ζ = [ω, ωint, ψ, ψcool, ψmesh, ψint, γ, π, ϕ, γout].

For the sake of brevity dx, ds, dt are omitted in what follows. We define
the Lagrange functional as

L(y, u, ζ) := J(y, u)− e(y, u) · ζ

=
Λ

2

∫

Γcool

(f(tf , x1)− fd(tf , x1))
2 +

Λ̄

2

tf
∫

0

∫

Γcool

(f(t, x1)− fd(t, x1))
2

+
λ

2

tf
∫

0

∫

Γin

(u(t))2 −

tf
∫

0

∫

Ω

(∂tT + (v − Vmesh) · ∇T − α∆T ) · ω

−

tf
∫

0

∫

Γcool

(
√

1 + f2
x1

· [k(∇T )]sl ◦ Φ− L · ft) · ψ

−

tf
∫

0

∫

Γcool

(
√

1 + f2
x1

· Vint ◦ Φ− ft) · ψcool −

tf
∫

0

∫

Γint

(T − Tmelt) · ωint

−

tf
∫

0

∫

Ω

(∆Vmesh) · ψmesh −

tf
∫

0

∫

Γint

(Vmesh − Vint · nint) · ψint

−

tf
∫

0

∫

Ωl

(∂tv + ((v − Vmesh) · ∇)v − η∆v +∇p) · γ −

tf
∫

0

∫

Ωl

(∇ · v) · π

−

tf
∫

0

∫

Γin

(p · n− η∂nv − u · n) · ϕ−

tf
∫

0

∫

Γout∩∂Ωl

(p · n− η∂nv) · γout.

(11)
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The Lagrange multiplier ζ is also called adjoint state. As laid out in [5] for-
mally, the derivatives of L with respect to the states y = [f, T, Vint, Vmesh, v, p]
can be used to derive the adjoint system.

3.2 Derivation of the Adjoint System

The adjoint equation
e∗(y, u, ζ) = 0 (12)

is defined through the requirement that the first variation of the Lagrange
functional vanishes in all admissible directions δy ∈ Y, i.e.

e∗(y, u, ζ) = 0 ⇔ Ly(y, u, ζ)δy = 0.

All terms from (7), which do not appear in e(y, u) and thereby in the Lagrange
functional, are treated explicitly as conditions to the directions of variation
δy. For the Stefan problem, equation (12) has the form

D[f,T,Vint,Vmesh,v,p]L[δf, δT, δVint, δVmesh, δv, δp] = 0.

In the variation of the Lagrange functional with respect to the temperature,
the jump across the interface must be treated and additional jump terms occur.
Since this requires additional attention, we show this in detail. The variation
of the Lagrange functional with respect to the other states is rather standard
and can be found in [5].

The Variation with Respect to the Temperature T

The explicit conditions to the direction of variation δT are

δT = 0, on (0, tf ]× (Γcool ∪ Γin),

∂nδT = 0, on (0, tf ]× (ΓN ∪ Γout),

δT (0) = 0, on Ω.

(13)

The variation of the Lagrange functional with respect to T reads

0 = DTLδT

= DT

(

−

tf∫

0

∫

Ω

(∂tT + (v − Vmesh) · ∇T − α∆T ) · ω

)

· δT
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+DT

(

−

tf∫

0

∫

Γcool

(
√

1 + f2x1
· [k(∇T )]sl ◦ Φ− L · ft) · ψ

)

· δT

+DT

(

−

tf∫

0

∫

Γint

(T − Tmelt) · ωint

)

· δT.

We apply integration by parts as well as (13) to the variation of the first
integral in the equation above with respect to the temperature. This leads to

DT

(

−

tf∫

0

∫

Ω

(∂tT + (v − Vmesh) · ∇T − α∆T ) · ω

)

· δT

= −

tf∫

0

∫

Ω

∂tδT · ω −

tf∫

0

∫

Ω

(v − Vmesh) · ∇δT · ω +

tf∫

0

∫

Ω

α∆δT · ω

= −

tf∫

0

∫

Ωs

∂tδT · ω −

tf∫

0

∫

Ωl

∂tδT · ω −

tf∫

0

∫

Ωs

(v − Vmesh) · ∇δT · ω

−

tf∫

0

∫

Ωl

(v − Vmesh) · ∇δT · ω +

tf∫

0

∫

Ωs

ks∆δT · ω +

tf∫

0

∫

Ωl

kl∆δT · ω

= −

∫

Ωs

ω(tf )δT (tf ) +

∫

Ωs

ω(0) δT (0)
︸ ︷︷ ︸

(13)
== 0

+

tf∫

0

∫

Ωs

∂tω · δT

−

∫

Ωl

ω(tf )δT (tf ) +

∫

Ωl

ω(0) δT (0)
︸ ︷︷ ︸

(13)
== 0

+

tf∫

0

∫

Ωl

∂tω · δT

−

tf∫

0

∫

∂Ωs

(v − Vmesh) · (ω · n) · δT +

tf∫

0

∫

Ωs

(v − Vmesh) · ∇ω · δT

−

tf∫

0

∫

∂Ωl

(v − Vmesh) · (ω · n) · δT +

tf∫

0

∫

Ωl

(v − Vmesh) · ∇ω · δT
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+

tf∫

0

∫

∂Ωs

ksω∂nδT −

tf∫

0

∫

Ωs

ks∇ω · ∇δT

+

tf∫

0

∫

∂Ωl

klω∂nδT −

tf∫

0

∫

Ωl

kl∇ω · ∇δT

= −

∫

Ω

ω(tf )δT (tf ) +

tf∫

0

∫

Ω

∂tω · δT

+

tf∫

0

∫

Ω

(v − Vmesh) · ∇ω · δT −

tf∫

0

∫

Γout∩∂Ωl

v · (ω · n) · δT

+

tf∫

0

∫

Γint

ωks(∂nint
δT )s −

tf∫

0

∫

Γint

ωkl(∂nint
δT )l

−

tf∫

0

∫

Γint

ks(∂nω)sδT −

tf∫

0

∫

Γint

kl(∂nω)lδT

+

tf∫

0

∫

Ω

α∆ω · δT −

tf∫

0

∫

ΓN∪Γout

α∂nωδT +

tf∫

0

∫

Γin∪Γcool

αω∂nδT

= −

∫

Ω

ω(tf )δT (tf ) +

tf∫

0

∫

Ω

(∂tω + (v − Vmesh) · ∇ω + α∆ω) · δT

−

tf∫

0

∫

Γout∩∂Ωl

v · (ω · n) · δT +

tf∫

0

∫

Γint

ω[ks(∂nint
δT )s − kl(∂nint

δT )l]

−

tf∫

0

∫

Γint

[ks(∂nintω)s − kl(∂nintω)l]δT −

tf∫

0

∫

ΓN∪Γout

α∂nωδT

+

tf∫

0

∫

Γin∪Γcool

αω∂nδT.

Further, inserting this into the variation of the Lagrange functional with re-
spect to T , gives
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0 = DTLδT

=

tf∫

0

∫

Ω

(∂tω + (v − Vmesh) · ∇ω + α∆ω) · δT −

∫

Ω

ω(tf )δT (tf )

−

tf∫

0

∫

Γout∩∂Ωl

(α∂nω + v · (ω · n)) · δT −

tf∫

0

∫

ΓN∪(Γout∩∂Ωs)

α∂nωδT

+

tf∫

0

∫

Γcool

(ω ◦ Φ−
√

1 + f2x1
· ψ) · [k(∇δT )]sl ◦ Φ

−

tf∫

0

∫

Γint

(ωint + [k(∇ω)]sl ) · δT +

tf∫

0

∫

Γin∪Γcool

αω∂nδT.

By proper variation of δT , certain terms can be eliminated from the equation
above. Thereby, terms which are integrated over the same domain and have
the same multiplier on the right can be consolidated into one equation so that
the following adjoint equations arise

∂tω + (v − Vmesh) · ∇ω + α∆ω = 0, on [0, tf )× Ω (14a)

α∂nω + v · (ω · n) = 0, on [0, tf )× (Γout ∩ ∂Ωl) (14b)

∂nω = 0, on [0, tf )× (ΓN ∪ (Γout ∩ ∂Ωs))
(14c)

ω = 0, on [0, tf )× (Γcool ∪ Γin) (14d)

ω ◦ Φ−
√

1 + f2x1
· ψ = 0, on [0, tf )× Γcool (14e)

ωint + [k(∇ω)]sl = 0, on [0, tf )× Γint (14f)

ω(tf ) = 0, on Ω. (14g)

The latter equations are the adjoint system for the adjoint state ω which can
be interpreted as the adjoint temperature variable. The first equation (14a) is
similar to the heat equation, while the equation (14f) is analogue to the Stefan
condition. The other equations can be understood as boundary conditions and
the initial condition at time t = tf . The sole source term in these equations
is
√
1 + f2x1

· ψ in equation (14e), which realizes the coupling to the adjoint
state ψ and through this to the distance terms in the cost functional (9).

The variation of the Lagrange functional with respect to Vint, Vmesh, v, p

and f are performed analogously.
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The Adjoint System

Similar to the state equation in (8), the adjoint equation (12) for the present
optimal control problem is a PDE system, which is called the adjoint system.

This formal approach leads to

∂tω + (v − Vmesh) · ∇ω + α∆ω = 0, on [0, tf )× Ω,

α∂nω + v · (ω · n) = 0, on [0, tf )× (Γout ∩ ∂Ωl),

∂nω = 0, on [0, tf )× (ΓN ∪ (Γout ∩ ∂Ωs)),

ω ◦ Φ =
√

1 + f2x1
· ψ, on [0, tf )× Γcool,

ω = 0, on [0, tf )× (Γcool ∪ Γin),

ω(tf ) = 0, on Ω,

∂tγ + ((v − Vmesh) · ∇)γ

−(∇v)T · γ + η∆γ +∇π = ω∇T, on [0, tf )× Ωl,

∇ · γ = 0, on [0, tf )× Ωl, (15)

(γ · n) · (v − Vmesh)

+η∂nγ + π · n = 0, on [0, tf )× (Γin ∪ (Γout ∩ ∂Ωl)),

γ = 0, on [0, tf )× (Γint ∪ (ΓN ∩ ∂Ωl)),

ϕ = −γ, on [0, tf )× Γin,

γ(tf ) = 0, on Ωl,

L · ∂tψ

+(1 + f2x1
) · [k(∂2x2

T )]sl ◦ Φ · ψ

−∂x1(2fx1 · [k(∂x2T )]
s
l ◦ Φ · ψ) = Λ̄(f − fd), on [0, tf )× Γcool,

ψ = 0, on [0, tf )× ∂Γcool,

ψ(tf ) +
Λ

L
(f(tf )− fd(tf )) = 0, on Γcool.

In this PDE system, the states T , Vmesh, v and f are given and the functions
ω, γ, π, ψ and ϕ are unknowns. Initial values for the adjoint states ω, γ and
ψ are given for the end time tf . Thus, in contrast to the forward system (7),
the equations in (15) have to be solved backwards in time.

3.3 Projected Gradient Method and Line Minimization Algorithm

The optimal control problem can be solved with a gradient method [16]. For
this, in addition to evaluations of the forward and backward systems, also the
gradient of the cost functional ∇K with respect to the control u is required.
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As shown in [5], ∇K can be expressed in terms of the Lagrange functional:

Ku(u)δu = Lu(y, u, ζ)δu =

tf∫

0

∫

Γin

(λu+ (n · ϕ))δu.

With this, we can formulate the gradient condition:

〈Lu(y, u, ζ), ũ−u〉 =

tf∫

0

∫

Γin

(λu+(n ·ϕ))(ũ−u) ≥ 0, for all ũ ∈ Uad. (16)

We employ box constraints for the control Uad = {u ∈ U : u ≤ u(t) ≤ u, t ∈
[0, tf ]} with lower and upper bounds u < u. The unrestricted case Uad = U

can be expressed with u = −∞, u = ∞. In this case, (16) simplifies to the
gradient equation

0 = λu+
1

|Γin|

∫

Γin

n · ϕ, t ∈ (0, tf ]. (17)

As a consequence, the required gradient of the cost functional can be expressed
as

∇K = λu+
1

|Γin|

∫

Γin

n · ϕ, (18)

and is now available to be plugged into a gradient method.
Consider the optimal control problem

min
u∈Uad

K(u).

Given a control uk−1 ∈ Uad, the projected gradient method [16], described in
Algorithm 1, uses the negative gradient −∇K(uk−1) as the descent direction
(Step 6).

To proceed, a step size sk is computed in Step 5 with Algorithm 2. To
ensure that the computed control is admissible, the projection P[u, u] : U →
Uad is applied pointwise in time (Step 7).

P[u, u](u) := max{u,min{u, u}}.

Possible stopping criteria∗, evaluated in Step 2 of Algorithm 1, are the
norm of the step ||sk · dk|| < δ1 and the relative change of the cost functional

|K(uk−1)−K(uk)|

|K(uk−1)|
< δ2, (19)

∗Details can be found in the source code (Section 7, gradient method.py: line 100 – 114)



OPTIMAL CONTROL OF A STEFAN PROBLEM FULLY COUPLED WITH

INCOMPRESSIBLE NAVIER–STOKES EQUATIONS AND MESH MOVEMENT 26

with certain tolerances δ1, δ2 > 0. Besides that, we use a maximum iteration
number kmax. The choice of the step size sk is of great significance for the
performance of the projected gradient method.

Algorithm 1: Projected Gradient Method

Input: initial control u0

Output: control ukend

1 k = 1
2 while not converged do

3 solve forward problem (7)
4 solve backward problem (15)

5 compute step size sk

6 dk = λuk−1 + 1
|Γin|

∫

Γin

n · ϕ

7 uk = P[u, u](u
k−1 − sk · dk)

8 k = k + 1

9 end

Algorithm 2: Quadratic Line Minimization

Input: The step direction dk

Output: step size s

1 i = 1
2 choose s0 = 0 < s1 < s2, ǫ1

3 kj = K(P[u, u](u
k−1 − sj · dk)), j = 0, 1, 2 // Needs 2 evaluations of (7)

on (0, tf ]
4 while not converged do

5 q ∈ P2 : q(sj) = kj , j = 0, 1, 2
6 s = argmin

s̃∈[s0,s2]
q(s̃)

7 if |s− s2| < ǫ1 then

8 s0 = s1, k0 = k1, s1 = s2, k1 = k2
9 s2 = 2 · s2 // Alternative s2 = s2 + s1 − s0

10 k2 = K(P[u, u](u
k−1 − s2 · dk)) // Needs 1 evaluation of (7) on

(0, tf ]

11 else if s > s1 then

12 s0 = s1, k0 = k1, s1 = s

13 k1 = K(P[u, u](u
k−1 − s1 · dk)) // Needs 1 evaluation of (7) on

(0, tf ]
14 i = i+ 1

15 else

16 s2 = s1, k2 = k1, s1 = s

17 k1 = K(P[u, u](u
k−1 − s1 · dk)) // Needs 1 evaluation of (7) on

(0, tf ]
18 i = i+ 1

19 end

20 end
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The algorithm to compute the step size is a modification of the method
used in [20]. Three sampling points are evaluated to approximate q(s) ≈
K(P[u, u](u

k−1 − s · dk)) with a quadratic polynomial q ∈ P2. The local
minimum of q is used as the next sampling point to refine the approximation.

In every iteration of the Algorithm 2, the cost functional
K(P[u, u](u

k−1 − sj · d
k)) must be evaluated at least once. These evaluations

require the solution of the forward problem (7) and are computationally expen-
sive. To avoid excessive computational costs in the Quadratic Line Minimiza-
tion, we added a maximum iteration number imax in Step 4 of Algorithm 2.
If i > imax, the sampling point sj with the smallest cost value kj , j = 0, 1, 2 is
returned to Algorithm 1. Otherwise, with tolerances ǫ2, ǫ3 > 0, the algorithm
stops if the newly computed minimum s of the polynomial q is close to an
already existing sampling point

|s− sj | < ǫ2, for any j = 0, 1, 2,

or if the relative change of the value of K at the new sampling point s is small

|K(P[u, u](u
k−1 − s · dk))− kj |

|k1|
< ǫ3, for any j = 0, 1, 2.

A more detailed discussion of Algorithms 1 and 2 can be found in [5].

Complexity and Convergence

Each iteration step of the Algorithm 1 requires the solution of the forward
system (Step 3), the adjoint system (Step 4) and the step size computation
(Step 5).

For the forward system, linear PDEs for the temperature, the interface ve-
locity, and the mesh movement needs to be solved in every time step. Because
of the implicit time-integration, the solution for the velocity and pressure fields
amounts in the solution of a nonlinear system. Since the interface graph can
be updated explicitly with the interface velocity, no additional equation sys-
tem needs to be solved for the interface graph. The computational costs for
the solution of the forward system is dominated by the costs for the nonlin-
ear parts, which amounts to one linear solve per step of the applied Newton
method.

The numerical integration of the adjoint system, requires the solution of
linear PDEs for the adjoint temperature, the adjoint velocity and the adjoint
interface graph in every time step.

The step size computation with Algorithm 2 requires two evaluations of the
forward system at the initial step (Step 3) and one evaluation in every further
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iteration step (Steps 10, 13, 17). Thus, since the evaluation of the back-
ward system is comparatively cheap, the step size computation significantly
contributes to the overall complexity of every iteration step of Algorithm 1.
However, it seems to be crucial to have a fast (superlinear) growth of the
search interval (Step 9) for the step size in order to make the additional costs
pay off.

The convergence of Algorithm 1 strongly depends on the problem settings
and the initial guess for the control. Also, different choices of the weights in
the cost functional influence the convergence behavior as well as the choice
of the desired interface position. Several choices for the weights, the desired
interface position and the initial guess are discussed in Section 5.

4 Implementation and Discretization

In this section, we explain our discretization of the systems and the imple-
mentation in FEniCS.

Step 3 of Algorithm 1 requires the forward system to be solved numerically.
The same holds for the backward system in Step 4 and the evaluation of the
cost functional in Algorithm 2. The domain Ω ⊂ R

2 is partitioned with a mesh
of triangles. The mesh used in our experiments in Section 5 for t = 0 can be
found in Figure 2. The interface Γint is respected by the triangulation. It is
represented explicitly by edges of the mesh (−). These edges move in direction
Vint ·nint together with Γint as illustrated in Figure 3. In order to prevent the
triangulation from extreme deformation, Vint · nint is extended smoothly to
Vmesh over the whole domain and the whole mesh is moved with Vmesh. Thus,
the domain is discretized with a varying mesh for each time step.

The PDE systems (7) and (15) are discretized with finite elements and an
implicit Euler scheme. A detailed derivation of the weak formulations of the
equations in (7) and (15) can be found in [5].

For the numerical implementation, the software FEniCS 1.5.0 [1] is used in
Python 2.7.6 [15] together with the Python package SciPy 0.15.1 [11].

5 Numerical Experiments

In this section, two experiments are presented to illustrate the performance of
the presented optimal control approach of a Stefan problem. The experiments
aim to stabilize the interface to a flat position. They demonstrate that not all
desirable interface positions are reachable due to the model chosen in this work.
Further, the influence of the selection of an initial guess and the importance
of well-chosen weights λ,Λ, Λ̄ in the cost functional are highlighted. For the
two experiments, we choose the following setting, which is the same as in [5].
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Figure 2: Triangulation of the do-
main Ω(0) respecting the interface
position (−).

Figure 3: Triangulation of the do-
main Ω(tf ) respecting the moved
interface position.

The domain described in Section 2 is a unit square Ω = [0, 1]× [0, 1]. The
boundary regions are

Γin = {0} × [0.6, 0.8],

Γcool = [0, 1]× {0},

Γout = {1} × [0.2, 0.4],

ΓÑ= [0, 1]× {1},

ΓN= ({0} × ([0, 0.6] ∪ [0.8, 1])) ∪ ({1} × ([0, 0.2] ∪ [0.4, 1])) ∪ ([0, 1]× {1}),

and the initial interface position is Γint = [0, 1] × { 1
6}. The constants for the

two-phase Stefan problem are

Tcool = −0.6, Theat = 4, Tmelt = 0, η = 0.05, ks = 1, kl = 0.6, L = 150, tf = 1.

We have chosen T0 = 4x2 − 2
3 as the initial temperature distribution. The

tolerances and maximum iteration numbers of the gradient algorithm and the
line minimization are

δ1 = 10−8, δ2 = 10−4, kmax = 100,

ǫ1 = 10−12, ǫ2 = 10−4, ǫ3 = 10−4, δ = 0.05, imax = 5.

Figure 4 illustrates the numerical solution of (7).
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Velocity in the liquid (arrows, lower
color bar) with temperature distribu-
tion (background color, upper color
bar) and interface position (white line).

Interface velocity (red arrows) which is
extended to the mesh movement on the
whole domain (background color, mag-
nitude plot).

Figure 4: Numerical solution of the forward problem.

The control constraints are set to

u := 0 ≤ u(t) ≤ 20 =: u, for all t ∈ [0, 1].

In the majority of cases, the control constraints are inactive for the computed
control. Nevertheless, the control constraints can become active for the sample
points within the line minimization algorithm if the step size is overestimated.
This behavior mainly depends on the choice of the weight parameters in the
cost functional.

5.1 Experiment 1: Stabilizing to a Flat Position

The desired interface position is a straight line moving from the start position
at x2 = 1

6 to x2 = 0.166:

fd(x1, t) =
1

6
− t · (

1

6
− 0.166), t ∈ [0, 1].

The weight parameters in the cost functional are set to

Λ = 100, Λ̄ = 0, λ = 10−10.

So, the cost functional primarily measures the distance of the interface to
the desired interface at the end of the time interval and does not track the
interface position for all points in time. Since the two-phase Stefan problem is
non-linear, the cost functional must be assumed non-convex [7]. Consequently,
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iteration

K

u1: initial guess u
0
1

u2: initial guess u
0
2

u3: initial guess u
0
3

Figure 5: Cost functional for different initial guesses.

the projected gradient algorithm can only approximate stationary points of the
cost functional. To which stationary point the algorithm converges, primarily
depends on the initial guess. The following functions u01, u

0
2, and u

0
3 are taken

as initial guesses for the projected gradient algorithm to compute the controls
u1, u2, and u3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

t

u

control u1 initial guess u01
control u2 initial guess u02
control u3 initial guess u03
control constraints

Figure 6: Computed controls u1, u2, u3 with different initial guesses.
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u01 ≡ 1,

u02 ≡ 12,

u03(t) =

{

20, t ∈ [0, 0.17],

10, t ∈ (0.17, 1].

Due to the initial values, where the interface is located close to the cooling
boundary, the interface always moves upwards in the beginning of a forward
simulation. The initial guesses u02 and u

0
3 tend to induce higher velocities of the

fluid at the beginning of the time interval to prevent the interface from moving
upwards. Through this, the algorithm is expected to show better convergence
behavior.

Since the described problem domain is not symmetric, the interface move-
ment is not symmetric, as illustrated by the uncontrolled interface graph in
Figure 7. This implies that the controlled interface can not be expected to be
completely flat and to match the desired interface perfectly.

The presented algorithm is able to compute a control u1 after 4 iteration
steps, which keeps the interface close to the desired interface. It mainly acts
at the beginning of the time interval (see Figure 6) to stop the interface from
moving upwards and moves it back downwards to the desired position.

The control constraints are inactive at all points. We introduce the quan-
tities

d :=

∫

Γcool

(f(tf , x1)− fd(tf , x1))
2, dall :=

tf∫

0

∫

Γcool

(f(t, x1)− fd(t, x1))
2,

p :=

tf∫

0

∫

Γin

(u(t))2, #it := number of iterations,

that quantify the distance and control cost terms from the cost functional and
the number of iterations for the outcomes of the optimizations using Algo-
rithm 1. The results for the different controls are listed in Table 1.

The algorithm stops after 3 iterations with the control u2. As expected, it
converges slightly faster with the initial guess u02 than with u01 (see Figure 5)
but does not reach a considerable smaller cost value. On the contrary, the al-
gorithm converges clearly faster towards u3, which also has a notable smaller
cost value. In this case, it stopped after 2 iterations. Looking at the computed
controls in Figure 6, the algorithm appears to converge to completely differ-
ent stationary points which result in different interface graphs (see Figure 7).
Again the control constraints are inactive for all controls and all points in time.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.164

0.166

0.168

0.17

0.172

0.174

0.176

0.178

x1

f
desired graph
u1 controlled graph
u2 controlled graph
u3 controlled graph
uncontrolled graph

Figure 7: Interface graphs for the controls u1, u2, u3.

Overall, the stationary points and thus the interface positions to which Algo-
rithm 1 converges strongly depend on the initial guess.

Due to the already mentioned asymmetry of the problem domain, the in-
terface positions for the computed controls clearly deviate from the desired
interface and do not match it perfectly. To improve this situation, the perfor-
mance of Algorithm 1 is analyzed for an actually reachable desired interface
position in the next experiment.

5.2 Experiment 2: Stabilizing to a Reachable Flat Position

We run the forward simulation with the control ũd:

ũd :=







20, t ∈ [0, 0.17],

8.5, t ∈ (0.17, 0.25],

7.5, t ∈ (0.25, 0.63),

8.5, t ∈ [0.63, 1].

The resulting interface position and corresponding interface graph fd are
clearly reachable. We use this graph fd as the desired graph for the optimiza-
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Table 1: Distance and control cost terms for the controls u1, u2, u3.
u1 u2 u3

d 1.4317 · 10−7 1.4710 · 10−7 7.7936 · 10−8

dall 7.0578 · 10−7 1.7631 · 10−6 6.0702 · 10−7

p 15.3800 19.9472 19.4810
#it 4 3 2

tion problem and set the weight parameters and initial guess as

Λ = 105, Λ̄ = 0, λ = 10−10,

ũ0 ≡ 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.165

0.17

0.175

x1

f

ũd : desired graph
ũ1 : controlled graph

ũ0 : uncontrolled graph

Figure 8: Interface graphs with a reachable interface position ũd.

The control ũ1, computed by the projected gradient algorithm, is able
to approximate the desired interface position closely. It can be seen in Fig-
ure 8, that it is almost indistinguishable from the desired interface graph.
The projected gradient algorithm converges after 37 iteration steps with a
significantly more accurate interface approximation than in the first experi-
ment. The higher iteration count compared to the first experiment is due to
the higher accuracy of this experiment. The stopping criterion (19) is not
satisfied in the first iteration steps as for the first experiment.
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10−10

10−9

10−8

10−7

10−6

10−5

10−4

iteration

d
ũ1 : Λ = 105, Λ̄ = 0 , λ = 10−10

ũ2 : Λ = 106, Λ̄ = 0 , λ = 10−10

ũ3 : Λ = 104, Λ̄ = 105, λ = 10−10

ũ4 : Λ = 105, Λ̄ = 104, λ = 10−10

ũ5 : Λ = 105, Λ̄ = 0 , λ = 10−4

Figure 9: Interface distance d at t = tf for different parameter sets.

The convergence behavior is influenced by the choice of the weight factors
in the cost functional. Running the algorithm with different sets of weights

ũ1 : Λ = 105, Λ̄ = 0 , λ = 10−10,

ũ2 : Λ = 106, Λ̄ = 0 , λ = 10−10,

ũ3 : Λ = 104, Λ̄ = 105, λ = 10−10,

ũ4 : Λ = 105, Λ̄ = 104, λ = 10−10,

ũ5 : Λ = 105, Λ̄ = 0 , λ = 10−4,

changes the convergence speed and quality of the computed control. The
algorithm shows a different convergence behavior if only the weight factor
Λ is changed as for the control ũ2 (see Table 2). Weight factors that pro-
duce good results for this experiment do not necessarily produce good re-
sults for Experiment 1 and vice versa. With Λ̄ 6= 0, the interface position is
tracked over the whole time interval by the cost functional. Since the cost
functional is not comparable among these parameter sets, instead of the cost
functional, the two distances d and dall are displayed in Figures 9 and 10.
In case of the controls ũ3 and ũ4, the interface can be moved closer to the de-
sired position over the whole time interval at the expense of a larger distance
at t = tf .

The factor λ, which penalizes the control cost p in the cost functional, can
be used to reduce the control cost and acts as a regularization. This could
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ũ1 : Λ = 105, Λ̄ = 0 , λ = 10−10

ũ2 : Λ = 106, Λ̄ = 0 , λ = 10−10

ũ3 : Λ = 104, Λ̄ = 105, λ = 10−10

ũ4 : Λ = 105, Λ̄ = 104, λ = 10−10

ũ5 : Λ = 105, Λ̄ = 0 , λ = 10−4

Figure 10: Interface distance dall over the whole time interval for different
parameter sets.

make the control constraints dispensable. For the control ũ5 with λ = 10−4,
the control cost p can be reduced slightly (see Table 2), but this also leads to
higher distances d and dall. By further increasing λ, the control cost p can also
be reduced further, but again at the expense of higher distances d and dall [5].

Additional combinations of weight factors and experiments where the de-
sired interface moves upwards can be found in [5].

Table 2: Distance and control cost terms for the controls ũ1 – ũ5.
ũ1 ũ2 ũ3 ũ4 ũ5

d 3.9422 · 10−10 2.1424 · 10−10 9.1034 · 10−8 5.0140 · 10−9 1.7234 · 10−9

dall 4.5865 · 10−8 3.4164 · 10−8 3.7233 · 10−8 1.1374 · 10−8 4.6233 · 10−8

p 15.6606 15.7936 13.8367 15.3050 15.2697
#it 37 57 3 11 16

6 Conclusions and Perspectives

We introduced an approach for the optimal control of the interface position
in a Stefan problem fully coupled to the Navier–Stokes equations. Compared
to existing research, the new problem setting has increased in complexity.
The mesh movement method used in this work is able to track the moving
boundary and is fully included into the PDE systems.
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To our extent of knowledge, this is the first attempt to combine mesh move-
ment methods and finite elements for the optimal control of a two-dimensional
two-phase Stefan problem. The control of the inflow pressure acts relatively
indirect on the interface position, which makes the control of this non-linear
problem a challenging task.

We developed the formulation of an adjoint system and, as a result of
this, the first-order necessary optimality conditions using a formal Lagrange
approach. Revealed by this, the gradient of the quadratic tracking-type cost
functional can be used for a projected gradient algorithm. As illustrated with
two numerical experiments, this algorithm can approach the desired state ac-
curately. A powerful quadratic line minimization algorithm is integrated into
the gradient method. Moreover, the experiments have demonstrated that such
a method of steepest descent is limited to approximate stationary points and
is heavily dependent on the choice of the cost functional. Weight factors that
lead to good results in one setting can be an inappropriate selection for an-
other setting and vice versa. Thus, a general purpose selection strategy is not
close at hand. Further, we provide the numerical implementation of the PDE
systems, mesh movement techniques, and algorithms in Python with the usage
of FEniCS and SciPy.

The approach we propose showed its potential in several numerical exper-
iments. Testing the algorithms for other settings would be interesting. Some
more simple possibilities are to change the initial interface position to some-
thing else than a straight line or to change the shape of the domain. Extending
the model to three spatial dimensions or to an m-phase Stefan problem should
be realizable. Certainly, this would cause additional work, not only on the the-
oretical, but especially on the implementation side.

From the mathematical point of view, higher-order optimality conditions
and consequently higher-order methods [9], are desirable. They might lead to
faster convergence saving some of the computationally intensive approxima-
tions. Neither the existence nor the uniqueness of solutions of the two-phase
Stefan problem, as formulated here, are known. A first step would be the
derivation of a rigorous functional analytical framework for the problem [12].
Besides the quadratic cost functional used in our work, others, for example
of L1 or L∞ type, might be of interest. Additionally, the curvature of the
interface graph could be used as a measure of the flatness of the interface in
the cost functional.

If the optimal control approach in this work is investigated satisfactorily,
the next major step is to develop a closed loop optimal control system for the
two-phase Stefan problem. For this boundary feedback stabilization approach,
recent developments in the LQR/LQG controller design for incompressible
flows [2, 6] might be applicable.
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7 Code Availability

The source code of the implementations used to compute the presented results
can be obtained from:

https:

//gitlab.mpi-magdeburg.mpg.de/baran/Stefan_Problem_in_FEniCS.git

with the tag publication 2017 and is authored by: Björn Baran

Please contact Björn Baran for licensing information.
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[2] E. Bänsch, P. Benner, J. Saak, and H. K. Weichelt. Riccati-based
boundary feedback stabilization of incompressible Navier–Stokes flows.
SIAM J. Sci. Comput., 37(2):A832–A858, 2015.
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