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Abstract

The paper studies the optimal control of shape memory wires. These wires can

be used as actuators in smart structures in order to alter the structural shape

according to changing environmental conditions. As a first step, a very simple

smart structure is analyzed, viz. the combination of an elastic beam with a

shape memory wire. An extension of the dynamic Muller-Achenbach model,

accounting for the possibility of electric heating, is used for the description of the

shape memory behavior. This - together with the beam bending equation - leads

to a coupled system of nonlinear ODEs. The resulting optimal control problem

is solved by a direct method, thus determining the heating function for the wire

that is necessary to produce a desired beam shape. Finally, an accelerated version

is presented, which might be the basis for future real-time control applications.

1 Introduction

Shape memory alloys have long since been recognized as smart materials.

Their range of technical applications, however, has mostly remained re-

stricted to cases where the material simply reacts to temperature changes

by switching between two configurations. The full potential of "intelli-

gence" , viz. an application as an active control device or actuator in smart

structures, is only at the beginning of being exploited.

SMA wires perform a strong contraction upon heating. If the heating
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is done electrically in a controlled manner, one can realize a continuous spec-

trum of deformation states. This can be used to control the structural shape

in such a way as to optimally adapt to changing environmental conditions,

e.g. an airfoil that adapts to changing flow conditions [1].

The basis for such a control application is a model that gives a good

reproduction of the observed shape memory behavior. In the next section,

we will give a short review of the Miiller-Achenbach model [2, 3], which

is capable of describing the time dependency of the wire deformation on

physically motivated grounds. We added the possibility of electric heating

in order to use it for a control application in the sense above.

In a previous work [4], we have used this model to describe the coupling

of SMA wires to an elastic beam, which will serve as a prototype of a smart

structure. The resulting equations are briefly presented in section 3.

In section 4, we give the results of an optimal control problem, where

we calculate the electric heating function for the wire necessary to adjust

the beam to a desired shape. The optimal control problem is solved by a

direct approach using NUDOCCCS, a code developed by Btiskens [5, 6, 7}.

We implemented an additional integration algorithm, which considerably

accelerated the computations. The method thus shows promise to be useful

in future real-time control applications.

2 A Model for Shape Memory Wires

In this section, we shall give a short review of a shape memory model which

is well suited for control applications. It has been originally developed by

Mtiller and Achenbach and describes the time-dependent thermomechanical

behavior of an SMA wire. It is motivated by experimental evidence of

the underlying micromechanics, and the resulting mathematical structure

is given by a set of differential-algebraic equations, making it fit nicely into

modern mathematical theories of optimal control problems.

The main feature of shape memory alloys used for actoric applications

is the capability of strong contraction upon heating. This on first glance

surprising behavior is explained by inspection of the micromechanics during

such a process.

The basic mechanism is a phase transition in the crystal lattice struc-

ture. In the onedimensional case, a lattice particle does either exist as the

highly symmetric austenite phase A, or as a sheared version hereof. This,

we call a martens it ic twin phase and denote it by M+ or M_, depending on

the direction of shear. In the absence of external loads, maxtensite is stable

at low temperature and austenite at a higher one.

Observation of a specimen during the phase transition reveals a struc-

ture of alternating layers of austenite and martensite.
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heating

Figure 1 Layer structure of an SMA specimen and shape memory effect -

The sequence of pictures in Figure 1 illustrates the behavior of these

layers in a tensile experiment. Initially, at low temperature, the body is in

a martensitic state, half of the layers M+, the other half M_. Application

of a tensile external load first causes the layers to straighten, and, at a

critical load level, the M_-layers flip into the M+-phase, thus contributing

to a considerable length change. Upon removal of the load, the M_-layers

do not flip back into their original phase, but when the specimen is heated,

all the layers transform into the unsheared austenitic phase. This causes

the body to shorten again and thus gives rise to the well-known shape

memory effect. Subsequent cooling finally completes the cycle by having

the martensitic twins occur again.

In order to describe the above behavior, the model takes the metallic

layers as basic elements. The total length change of the wire is calculated

as the sum of the length changes of the individual layers

4- z_ (1)

N is the total number of lattice layers, x^x^ and x_ denote the volume

fractions of the corresponding phases, and the bracketed quantities are the

expectation values of the length changes in the phases. They are calculated

from statistical thermodynamics, e.g.

(2)

In equation (2), T is the wire temperature, k is Boltzmann's constant

and $ (A, P) is the potential energy seen by a layer. It depends on the

layer shear length A and is given by a triple-well function with each well
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corresponding to one of the three phases, see Figure 2. In the presence of

an external load, this function has to be superposed by the work done by

the load, which in the onedimensional case simply is —PA.

-J

M-

Figure 2 Three phases of a lattice particle and corresponding potential

energy.

For the determination of the phase fractions, the model assumes the

shear lengths of the layers to fluctuate about their equilibrium values in the

potential wells. Occasionally, the layers are able to overcome the barriers

between the wells, and this gives rise to time rates of change for the phase

fractions x+ and x_ according to

(3)

The quantities p"P are the transition probabilities from phase a to phase /?,

which also can be calculated from statistical thermodynamics, e.g.

P -exp
A (1 -

kT
(4)

In equation (4), A is an interfacial energy coefficient responsible for

the alloy's hysteretical behavior and m is the mass of a layer.

In [8], a variant of the model is introduced, which is based on an

approximative evaluation of the integrals giving the possibility of high speed

computations. The paper also gives a good overview of some features of

the model like the strong temperature dependence of its load-deformation

behavior. In two further papers [9, 4], an extension of the model has been

given incorporating the possibility of electric heating, which is crucial for

an application as actuator.

This extension enters the balance of energy, which reads

(5)
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It is readily interpreted as follows: the temperature in the wire changes due

to

• heat exchange with the environment at temperature TE (t),

• the Joule heating j (t) produced by the electric current and

• the latent heats of the phase transitions. The third and fourth term

on the R.H.S. of (5) H± (P) represent the reversible parts hereof, and

the last term is the irreversible part due to creation and annihilation

of interfaces between austenitic and martensitic layers.

c is the specific heat and a the thermal conductivity coefficient.

The equations (3) and (5) together with (1) constitute a system of

nonlinearly coupled ODEs and an algebraic relation. Together with ap-

propriate initial conditions and prescribed heating function j (f), it can be

solved for the resulting length change D (t) or, by inversion of (1), the load

P (t). One of the two has to be known, however, and it follows from the

coupling to the remaining structure. To specify this point, we shall proceed

with the formulation of the bending problem of an elastic beam coupled to

an SMA wire. This is a very simple smart structure, but it will serve as an

illustration for the applied optimal control method.

3 A Simple Smart Structure - Elastic Beam

and SMA Wire

For simplicity, we will confine attention to linear elementary beam theory,

adopting the Euler-Bernoulli hypothesis and the assumption of small de-

flections. As our main objective is to study the optimal control problem,

we shall only treat the case of a single wire coupled to a beam, see Figure

3.

1WT

Figure 3 Prototype of a smart structure - SMA wire coupled to an elastic

beam.

For a detailed description of the extension to two or more wires and

the resulting solution algorithm, see the previous work in [4]. The resulting

system reads
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," (z, t) = a P (t)

Here, El is the bending rigidity, v (x, t) is the transversal displacement, and

the R.H.S. of (6)1 is the moment exerted by the SMA wire. It consists of a

couple force given by the wire force P (t) and the lever a. H (x - XL) is the

Heaviside step function, which, avoiding the introduction of a large number

of integration intervals, is particularly useful in the case of several wires. XL

and XR are the coordinates at the left and right support of the wire.

The shape of the beam can be calculated by a straightforward integra-

tion to give

v (%, t) = \(x - XL}* H (x- XL) - (x - XR? H (x - a

(7)

with Ci and Ci to be determined by the boundary conditions

v (0) = 0 and v (L) = 0 . (8)

In the case of a simply supported, statically determinate beam, the coupling

of beam and SMA wire provides another relation between P (t) and D (t),

viz.

D(4 = -̂ %p. (9)

Thus, we can completely eliminate P (t) and D (t) from (6), and this case

leaves us with a system of only three ODEs, viz. (6)2-4-

4 Optimal Control

For the optimal control problem, we now prescribe a beam shape that corre-

sponds to a wire contraction of D* = 0.7. The initial condition for the wire

is D (0) = 0.8, and we ask for the electric heating function that is necessary

to minimize

/ \D(t) — D*]*dt . (10)
Jo

We thus seek a solution that makes the beam approach its target shape in

a fast, asymptotic way.

To this purpose, we have implemented the model into NUDOCCCS.

The code is based on a direct approach, discretizing the original control

problem and transforming it into a nonlinear optimization problem.
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The control, which can be subject to box constraints, is either as-

sumed piecewise constant or can be interpolated by higher order splines.

The differential equations for the state variables, for which the same type

of constraints as for the control applies, are integrated by a simple Euler

method or a variety of higher order single step methods like the Runge-Kutta

scheme. Several reliable optimization codes have been developed to solve

the resulting NLP problem. NUDOCCCS uses the sequential quadratic

programming code E04UCF from the NAG fortran library.

We started with a very fine discretization for the control (NDISKRET •

201). T has been chosen as 45. The upper four diagrams in Figure 4 show

the solutions of the three differential equations x+ (i), z_ (t) and T (t) as

well as the wire contraction D (t). The lower diagram gives the calculated

optimal control j (t).
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Figure 4 Optimal control of beam shape adjustment using fine

discretization for the control variables (NDISKRET = 201).

Computation time 32.5s.
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It has been restricted to the domain 0 < j (t) < 0.3, and it starts with

a typical bang-bang behavior before it reaches a stationary value of ̂ 0.11.

The resolution of the bangs depends on the degree of discretization, and

it is still to be studied whether the stationary value belongs to a singular

branch of the solution or whether it corresponds to the mean value of an

infinite series of bangs.

The shape memory equations exhibit a very stiff behavior, in particular

in the regions where a sudden phase transition takes place. For an illustra-

tion of this behavior, we refer the reader to the previously mentioned works

again.
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Figure 5 Optimal control with low degree of discretization

(N DISK RET = 11). Computation time 1.6s.

As the original version of NUDOCCCS coupled the grid on which the

ODEs are integrated to the discretization of the control, the large number of

grid points had also been necessary for a precise integration. This, however
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implied computation times of 32.5s on a DEC Alpha 500/333 for the control

period of T = 4s. As the long range goal is to use the developed code for

real-time control applications, we implemented a time step control scheme

(Runge-Kutta-Fehlberg) for the integration of the DDEs. This enabled

us to do the computation on a considerably rougher grid for the control

(N DISK RET = 11), and the results can be seen in Figure 5. Of course,

the solution is not able to reproduce the fine details of the former one, but,

approximately, it gives the same behavior as before, and the computation

time was reduced to 1.6s, which is now clearly below the control period.

5 Conclusions

The paper has presented a dynamic model for shape memory behavior,

which has been applied to an SMA wire coupled to an elastic beam. This

combination represents a simple smart structure with the SMA wire being*

used as an actuator for beam bending. The coupled problem yields a set of

nonlinear ODEs, which have been implemented into NUDOCCCS, a direct

optimal control code. Subsequently, a solution for the optimal control of

beam shape adjustment by electric heating of the SMA wire has been given.

By modification of NUDOCCCS's integration algorithm, very fast compu-

tation times could be achieved, which promises to be the basis for future

real-time control applications.
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