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Optimal control of coupled spins in the presence of longitudinal and transverse relaxation
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In this paper, we develop methods for optimal manipulation of coupled spin dynamics in the presence of
relaxation. These methods are used to compute analytical bounds for the optimal efficiency of coherence
transfer between coupled nuclear spins in presence of longitudinal and transverse relaxation. We derive relax-
ation optimized pulse sequences which achieve these bounds and maximize the sensitivity of the experiments
in spectroscopic applications. This paper is a continuation of our previous work. Here, we take into account
both the longitudinal and the transverse relaxation mechanisms, thus generalizing our previous results, where
the former had been neglected.
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[. INTRODUCTION transverse relaxation mechanisms are important, and we can-
not neglect the former.

In applications involving control and manipulation of  The methods developed here are also useful for answering
quantum phenomena, the system of interest is not isolateinportant questions in quantum information theory. It is a
but interacts with its environment. This leads to the phenomfundamental problem to understand the extent to which an
enon of relaxation, which in practice results in signal lossOPen quantum system can be controlled, i.e., where all the
and ultimately limits the range of applications. Manipulating Staté of a quantum-mechanical system can be steered in the
quantum systems in a manner that minimizes relaxatioR'€S€nce of relaxation? How much entanglement can be pro-
losses poses an important practical problem. A premier exduced in presence of decoherence and dissipation and what is

ample is the transfer of coherence between coupled spins ﬁh‘e optimal way to syn_thgsme unitary gates in open quantum
NMR spectroscopy1]. Presence of relaxation limits the ef- systems so as to maximize their fidelity? All these problems

ficiency of coherence transfer between coupled spins and r re related to optimal control of quantum-mechanical sys-

sults in poor sensitivity of the experiments. The problem ems in presence of relaxation.

becomes pronounced in NMR spectroscopy of large biomol-

ecules. With increasing size of molecules or molecular com- Il. RELAXATION IN NMR IN LIQUIDS
plexes, the rotational tumbling of the molecules becomes A del . id timal trol of en-
slower and leads to increased relaxation losses. When these’*> @ MOC€! System, we consider optimal control of en

relaxation rates become comparable to the spin-spin c:ous—embles of nuclear spins in NMR spectroscopy. We ui@

. - . ! note th nsity matrix for th in ensemble. Th nsit
plings, the efficiency of coherence transfer is conS|derabIde ote the density ma or the spin ensemble. The density

¥natrix of a closed quantum systemh£1) evolves as
reduced, leading to poor sensitivity and significantly in- a y 1)

creased measurement times. q
) ) . - i p _
This negative effect of relaxation on the efficiency of co ——i[H(1),p], 1)

herence transfer automatically gives rise to some important d
practical(and theoreticalproblems.
(1) What is the theoretical upper limit for the coherencewhereH(t) is the Hamiltonian of the system.

transfer efficiency in the presence of relaxation? For an open quantum system, the evolution is no longer
(2) How can this theoretical upper limit be reached ex-unitary. In many applications of interest, the environment can
perimentally? be approximated as an infinite thermostat, whose own state

In our previous work, we answered the above questionsever changes. Under this assumption, also called the Mar-
for a coupled two-spin system under the presence of trangovian approximation, it is possible to write the evolution of
verse relaxation[2,3] (neglecting and including cross- the density matrix of the systefmaster equatignalone in
correlation effects, respectivglyin this manuscript, we ex- the (Lindblad) form [4]
tend these results to the case where both longitudinal and

d
— gr=—iH®,p]+L(p), @
Electronic address: stefanat@fas.harvard.edu
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URL: http://hrl.harvard.edihavin where the termL(p) is linear inp and models relaxation.
*URL: http://ociialf.org.chemie.tu-muenchen.de/glaser The general form of. is
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Hing=1-3-S, (8)
L(-)=2 JaplVa [ V.- 11, (3) "

“h whereld is a tensor. The only effective part of this interaction
dn liquids is its average over all relative orientations of the

whereV, ; are operators that represent various relaxation’ === . R
\ spins in space. In isotropic liquids it is of the form

mechanisms and,; are coefficients that depend on the
physical parameters of the problem.
Our focus in this paper is on the relaxation phenomena in

the liquid state NMR spectroscopy. In this case, the system ighereJ is the scalar coupling constant. In the weak-coupling

modeled as being composed of two weakly interacting part§mit (J<|w,—wg|), the indirect interaction Hamiltonian is
the spin system, consisting of all spin degrees of freedom °§implified to the form[6]

the nuclei, and the lattice, consisting of all other degrees of

freedom of the liquid sample, associated with the molecular Hipg=2mJ1,S,. (10)
rotations and translations. Molecules in solution are con-

stantly being bombarded with solvent molecules and undergpor heteronuclear spirisand S the weak-coupling condition
random “Brownian” motion as a result. This stochastic is always satisfied. Thus, the deterministic Hamiltonian for
Brownian motion is the principle mechanism of relaxation inour system is

NMR spectroscopy. The small intercollision time of the or-

der of 10 ¥>-10 *sec, ensures that the correlations be- Ho=wl,+ 0sS,+2mJ1,S,. (11)
tween the spin system and the heat bath decay much faster

than the evolution of the spin system and thus a Markovian We now go to an intermediate representation defined by

Hind:27TJI'S, (9)

approximation is a valid assumption. the operator
Note that, since we consider classical motion of the mol- . .
ecules(rotations and translationswe adopt the so-called U=expiiHzt) =exdi(wl,+ 0sS)t]. (12

semiclassical approximation, where the spin system is . )
treated quantum mechanically and the lattice is treated cla{PServe that this representation corresponds to a doubly ro-

sically [5,6]. Specifically, the Hamiltonian for the system is tating frame(a frame rotating with different frequency for
written as the sum of a deterministic Hamiltonidlg, which ~ ©ach Spin Let

acts only on the spin system, and a stochastic Hamiltonian ~ "

H,(t), which couples the spin system to the lattice: p=UpU". (13

H=Hgy+H4(t). (4) In this intermediate representation, the initial equation
—i[H,p] becomes

For our purposes, we considét, time independent. The
Hamiltonian H4(t) is a random function of time and we dp _ - -
assume that it has a vanishing average value. If it is not, we gi - ™28, p]=i[H(D),p]. (14)
can incorporate the average value Hg, so the resulting
H,(t) has a zero average. The stochastic Hamiltonian has to | gt 7. be the correlation time of the random functions
do with the relaxation phenomena and can be written in thg:(t) defined above, i.e., it is the time scalet’ = 7, over

form which a typical produck ,(t)F%(t") decays by a substantial
amount. Following the standard procedure described in Ref.
Hy(t) = V F (1), (5)  [7]and using thatl) the evolution through relaxation of the
@ physical variables under study is slow on the time seale
(this is the Markovian approximation and has been justified
where theV, are spin operatorgthe relaxation operators for our spin system in a previous paragraphd(2) the fact
defined aboveand theF ,(t) are random functions of time. thatJ~ !> 7, (the correlation timer, is of the order of nano-
To demonstrate the basic principles, we examine an isosecond$8], while the inverse coupling constaht? is of the

lated pair of heteronuclear spih@ndsS (spins that belong to  order of millisecond$2]), we end up with the master equa-
different nuclear specig¢svith indirect interactionmediated tion

by the surrounding electrong-or such a system, the deter-
ministic HamiltonianH is given in[6]

do )
m=—I7TJ[2|zSZ,0']+L(0'—a'eq). (15
Ho=Hz+Hing, (6)

Hereo is the reduced density matrix for the spin system, i.e.,

whereHy is the Zeeman Hamiltonian for the spihand S the average of the previoys over the lattice degrees of

Hy=wl,+ wsS,, (7)  freedom. Sar=p, where the bar denotes this average. The
thermal equilibrium value of is denoted byre,. The form
andH;,q is the Hamiltonian for the indirect interaction be- of the relaxation superoperatbrfor our system is given in
tween them. The general form bf;,,4 for two spins is the following paragraphs.

022319-2



OPTIMAL CONTROL OF COUPLED SPINS INTH. .. PHYSICAL REVIEW A 69, 022319 (2004

TABLE I. Relaxation operators for DD and CSA interactions. the relaxation superoperathrfor our system can be written
We have used the standard notatlon=1, =il . as the sum of two terms, each of which corresponds to one
relaxation mechanism. It is

2 1
VP Ss, ——i*st —3l,87 —3l's, 31fst
V6T 26 L(-)=3 JIVEP [VEPT, 1]+ JAIVSSATVESH, 1],
@ B
1
&S 21, 3Ts, 3lTs (16)
csa 2 L L where the coefficient3, ,J; depend on the physical param-
B \/—Iz -3l 2l” eters of the system, such as the gyromagnetic ratios of the
spins, the internuclear distance, the correlation time of the

molecular tumbling, and the anisotropy of the chemical shift
In NMR spectroscopy in liquid solutions, the most impor- tensor.

tant relaxation mechanisms are due to dipole-dig@®) Having found the relaxation superoperatofor our sys-

interaction and chemical shift anisotrop@SA), as well as tem, we can use the master equatidB) to derive evolution

their interference effectéDD-CSA cross-correlation terms —equations for the ensemble averages of the operators that we

[9,10]. We describe briefly these relaxation mechanisms. are interested in. Doing so, we find that the operdtor
Any magnetic nucleus in a molecule generates an instargvolves according to the equation

taneous magnetic dipolar field that is proportional to the a0l

magnetic moment of the nucleus. This field interacts with the I

magnetic moments of the nearby magnetic nuclei. As the dat — k(I =1o) = mker((S) = So), (A7)

molecule tumbles in solution, the field fluctuates and consti-

tutes a mechanism for relaxation of the nearby spins. Fofherek; is the longitudinal self-relaxation rate foy, k., is
isotropic distribution of the interaction orientation in space,the longitudinal cross-relaxation rate between the sparsd
which is the case for liquid solutions, the average value of5 andl,, S, are the equilibrium values fofl ,),(S,), re-
the dipolar interaction vanishes. That is why ttdirec)  spectively. The relaxation ratds andk., are functions of
dipole-dipole interaction does not give any contribution tothe coefficients),, ,J 4, thus depending on the same physical
the deterministidstatio HamiltonianH,, while the indirect  parameters. They are given explicitly in RE8]. For hetero-
interaction (mediated through the electrogngives. The nyclear sping andS, we ignore the(smal) cross relaxation
dipole-dipole interaction contributes only to the stochastichetween spinsands i.e., we sek., =0 (this approximation

HamiltonianH, (t). o . is very good for large molecules wherg'<|w, — wg|). The
We mentioned above that the indirect interactions bezpove equation becomes

tween spins are mediated through the electrons. The mag-

netic field, produced by the magnetic moment of one spin, d(1,)

modifies the electronic ground state in such a way that the T —aky({1,)—1g). (18
electronic system achieves a small magnetization propor-

te"))(n:lrirfe;r;:tisﬁefﬁ(gror;i;h:; ;ﬁilggfast ir:\]:]gfn;);o(r)r:s'\g\éllin In general, polarizatiofl ,) relaxes towards its thermal equi-
P P P Yibrium polarizationl . For example, this thermal correction

ing to diamagnetic molecules, in which the orbital and spin ) . )
R . must be taken into account in transfer steps that are applied
angular momenta of the individual electrons are coupled in ; . : )
. .In the preparation period of an experiméai. However, if
such a way that their bulk angular momentum and maglnetl((::oherences of some nonzero order are selected at a given
moment both vanigh This electronic magnetization pro- 9

duces a small extra magnetic field that changes the magne @'nt in the pulse sequence using phase cycles or magnetic-

field experienced by the other spin. By the same means, th'eld gradients, the thermal correction can be omitted from

: S . . all subsequent pulse sequence elemgtits Here, we focus
static external magnetic field, which gives the Zeeman terms . ) oy ;
. - . . on this case, which corresponds, e.g., tonaitking stepsin
in Hy, modifies the electronic environment and changes the_ . =~ . : .
multidimensional NMR experiments which are always ap-

ma_gnetic field experi_enc;ed by the spins. The resu_lting inter; lied after an evolution period in which a nonzero coherence
action has a nonvanishing average value, which is mcorpop : i

. . . order is selected. Hence, we can sgE0 and Eq.(18) is
rated inHy as a change in the Zeeman frequencigs wg

and is called the chemical shift. The remaining part is incor—reduced 0

porated inH(t). This part gives the chemical shift anisot- (1)

ropy relaxation mechanisrtthe term anisotropy is used to 2 _ —arky(1,). (19
emphasize that it corresponds to the anisotropic part of the dt

interaction, which is present because the electronic environ- ]

ment of a nucleus is not isotropic in general The operatol, evolves under thg coupling to 2,S, and

The relaxation operator¥,,, corresponding to DD and @ISO relaxes with rat (transverse relaxation
CSA relaxation mechanisms, can be found in R&fand are a(ly
given in Table I. If we ignore the interference effects be- X —m3(21,S,)— k(1. (20)

tween these two mechanisngsross-correlated relaxatinn dt
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14 1 to rotate thg operatorl2S, to 2l ZS'Z. Letr,(t) represent t.he
s o total magnitude of the expectation values of these bilinear
“ o operators, i.e.r,(t)=(21,S,)*+(21,S,)?. We can control
; the angleB, (Fig. 1) and we define co8, as a second con-
- trol parametew,. Using the equations for the ensemble av-
erages, given in the preceding section, we find
0 0
—u, r r
, <L u, <215, a4 1 _ A(cospy.cosp,) 1} 29
FIG. 1. Representation of the system variablgs ,, the angles r2 2
B1.,B2, and of the control parametens;=cosp;,u,=cosp, in where
terms of the expectation valugk,),(l,),(21,S,),(2l,S,).
A(cospB1,c08B5)
As the operator BS, is produced, it also relaxes with rate K—k K
This is a very good approximation for many systems. In _ 10052,81——1 — oS3, COSBs
general the transverse operatbgsand 2,S, may relax at _ J J
different rates. However the methods presented can be easily — 7 k—ky ks
extended to account for this case. The operatg82relaxes COSf31 COSf3; 3 coS B, — 3
with ratek, (longitudinal relaxatio
(26)
—d<20'|§52> =~ mky(21S,), () Let
k—k — k k—k — k
d(21,5) =3 f=3. &=—3 . &=3 @
T=wJ(IX)—wk<2lySZ>. (22

and rescale the time according tg.,,= 7Jtyq. Using u;

The ratesk andk, depend on the same parameterkas =C0Sfy, U= Cosp,, We find the following equation for
In this paper, we address the problem of finding the maxi{ 2 (by abuse of notation we use the sanfier the new time:
mum efficiency for the transfers

dira _flui_gl —UuiUz r 28
l—214S, (23 dtiro] | uu, —&U— &, |l T2 29

and The initial conditions are
l,—Sg, (24) r{(0)=1, ry(0)=0. (29

wherea, B8, andy can bex, y, or z. These transfers are of Note that starting from thel enS(_ambIe average equatio_ns,
central importance for two-dimensional NMR spectroscopyVe brought the system equations in a form where the prin-
and are conventionally accomplished by the INRZ] and  ciples of optimal control can be applied. The problem that
refocused INEPT13] pulse sequence elements, respectivelyWe face is as follows: given the dynamical system above,
We describe INEPTinsensitive nuclei enhanced by polariza- how shoulduy(t),u,(t), with O<u,,u,<1, be chosen so
tion transfey in the following section and formulate our that starting fromr;(0)=1 we achieve the largest value

problem in terms of optimal control theory. r(T) for a specified finite timd. In spectroscopic applica-
tions this would correspond to the maximum efficiency for
Ill. FORMULATION OF THE PROBLEM IN TERMS the transfer ofl, to 215S,. This transfer is conventionally
OF OPTIMAL CONTROL accomplished by the INEPT pulse sequence: At tim® we

apply a hard pulse which rotatég to 1. Then, we let this
The two heteronuclear spins have well separated frequerperator evolve under thécoupling towards &S, for the
cies, allowing for fast selective manipulation of each spin onwhole time interval[0,T], i.e., we keepB;=8,=0 [u4(t)
a time scale determined by the couplihi@nd the relaxation =u,(t)=1] during this interval. Finally, by applying the ap-
ratesk, andk; or k. Thus, the Cartesian spin operatgrcan  propriate hard pulses & T, we rotate the operator 2S, to
be transformed to an operator of the forig cospB; 215S,. Schematically, the INEPT pulse sequence is
+1,8inB; by the use of strong, spin selective radio-
frequency(rf) pulses without relaxation lossésee Fig. 1 1,—1,--21,8,—21S8,,
Let ro(t) represent the magnitude of polarization and in
phase coherence on spinat any given timet, i.e.,, r1(t)  where the solid arrow represents hard pulses, while the
= (1,0%2+(1,)?. Using rf fields, we can exactly control the dashed arrow represents the evolution underJtaeupling.
angleB;. So, we can think of co8; as a control parameter In this manuscript we prove that in the presence of relax-
and denote it by, (see Fig. 1 ation, this is not in general the optimal procedure. Having
In the same manner, by the use of rf pulses, it is possibléound the optimal controls,(t),u,(t), we can calculate the
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I il il i I __m Il I
1 1 < 1 : 1 ;
u, u ug, ug, U, u u, u,
0.8 1 0.8 Up™s 0.8 0.8
Uy u, .
0.6 0.6 0.6 0.6
u U
0.4 0.4 o.4/ 1 0.4 2
0.2 0.2 0.2 0.2
0 0 0 0
0 0.05 0.1 0 005 01 015 T 0 01 02 03 04 T 0 01 02 03 04 T
(a) t (1) (b) t (1) (a) t(14) (b) t(14)

FIG. 3. Optimal pulse sequence whér Ty for (a) k;<k, and
(b) k;>k,. Again, for casgb) we just interchanged the values of
k;,k,. The symmetry in the controls appears again. Note that the
durationT has been set equal to the optimal durafigy;, which
maximizes the optimal transfer efficiency;. For the valuesk
=J,k;=0.05),k,=0.25) that we used in (@), it is Ty
=0.468"'. For caseb), T, is the same.

FIG. 2. Optimal pulse sequence wha@pn<T=<Tg for (a) k;
<k, and(b) k;>k,. For casdb) we just interchanged the values of
kq,k, from case(a), keeping the samk. Observe the symmetry in
the optimal controls.

corresponding magnetic-field component,(t),B,(t),
which achieve the maximum efficiency.

small available timeT, the gain that we get by maximizing

IV. THEORETICAL RESULTS the desired transfer at each momerg more important than

The optimal control problem is solved in Appendix A. the (smal) relaxation losses. As time increases, the relax-
Here, we describe the characteristics of the optimal puls@tion degrades more the performance and the choice
sequence for the cage> &, i.e., fork;<k,. The results for =U,=1 ceases to be optimal. With <1 oru,<1 we may

k,>k, are analogous. Presence of finite longitudinal relax+educe the transfer rate of(t) —r,(t), but at the same time
ation rates results in an optimal transfer duratibg),; in  we decrease also the instantaneous relaxation s
which the maximum transfer efficiency is achieved. We COM-1 ¢ i=1,2. Since for large enough the relaxation domi-

pute thisT,,; by finding the optimal pulse sequence for ev- hates we conclude that by an appropriate choiae,sf1 or
ery choice of transfer duratioh and then locating the& that L#2$1 we can get a better efficiency for the transfef0)
gives the best transfer efficiency. Depending on the values oﬂrz(T). This appropriate choice corresponds to the cases

the problem parameters, we find three important cases in ﬂEl and B2. Note that fok,<k,, the system in case B2
. 1 21

optimal solution. o .

(1) T=T, (case A [Ta=cot X2&)/mJ, for &>&]: In spends more time in phaseu1(<.1,u2=1) than in phase llI
this caseu,(t) =u,(t)=1 throughout, i.e.3; and B, in Fig. (uy=1u,<1), see Fig. @&). This happens bece;usgfk?[
1 are always kept zero and this solution corresponds to the'k; and u;=u,=u<1, the relaxation rate;ui+¢; is
INEPT pulse sequence. lower than the rateé,us+é&, [note £Us+ & — E,U5— &,

(2) TA<T=<Tjg (case B} (we describe how we calculate _ . _ A o b bt E—E=0. since & +£.

Tg below): In this case the optimal pulse sequence has two_(gl —52_) K/ & fzd & iz gé &2 b ’ . §1b & h
distinct phasegsee Fig. 2a)]. There is a switching time =&+ £;=klJ]. Based on the above observation about the

such that for Bt<r; (phase J, u,(t)=1 anduy(t) is in- duration of phases | and Ill, we expect that as we incrdase
creased gradually from a va,luel(0)<1 to uy(ry)=1. from values where case A holds to values where case B2 is

Then, for timer;<t<T (phase I}, the optimal controls are the optimal, there must be an intermediate range of values of
uy(t)=uy(t)=1. T where the optimal pulse sequence has no phase Il at all.

(3) T>Tg (case B2 Here the optimal pulse sequence has This is the case B1.
three distinct phasdsee Fig. 83)]. There are two switching The durationT , above which the optimal pulse sequence
times 7, andT—7,. Phases | and Il are the same as aboveis different than INEPT isT = cot }(2&)/J, for £&>¢, .
For O<t<r; (phase ), u,(t)=1 and u,(t) is increased We can explain the dependence of this quantity on the pa-
gradually from a valueu,(0)<1 to u,;(7;)=1. For time rametersk,k;. Note thaté;=(k—k;)/J, soT, is a decreas-
71 <t<T-r7, (phase I}, the optimal controls arai(t) ing function ofk and an increasing function &f. For larger
=u,(t)=1. Finally, for T— 7,<t<T (phase ll), we have k (larger transverse relaxatipit is more costly to have the
u(t)=1 and uy(t) is decreased fronu,(T—7,)=1 to  vectorsrq,r, parallel to thexy plane, i.e., it is more costly to
u,(T)<1. haveu;=u,=1 (see Fig. 1 This explains whyT 5, which

We now give physical explanation for the existence ofdetermines the range of values Biwhere the INEPT pulse
these three cases. For small enodgtthe major limitation  sequence is optimal, is decreased. Now for lafgeflarger
for the transferr,(0)—r,(T) is not the relaxation, but the longitudinal relaxationit is more costly to have the vector
limited available time. The optimal choieg =u,=1 maxi- parallel to thez axis, i.e., to havei;<1. This explains why
mizes (absolute value the off-diagonal elementstuju,, Ta, and with it the range of optimality of INEPT, is in-
which accomplish the transfer(t) —r,(t), as can be seen creased.
from the system equatiof28). It also maximizes the diago- The switching timer; for case B1 is calculated using the
nal elements, i.e., the relaxation rates ¢ft),r,(t). But for  following equation:
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1/ ] | I n
T-n=—l5 -1, (30 u, u,
0.8
where . -
1 2
251 0.6f \\ f
=tan 1 ———— .
1 1_K1(Tl) 0.4t
and oal
ki) =1+28-2& 1+ & . _ | |
0 0.1 0.2 03 T
X coth( wty/1+ &5+ 2 sinh 1£,). t(A)

FIG. 4. Optimal pulse sequence fky=k,. Observe the sym-
try in the controls. Specifically, the relatian (t)=u,(T—t)
holds here. For the valuds=J,k;=k,=0.20] that we use, the

The switching times for case B2 are calculated by solvingme
the following system of equations:

9,9, optimal duration isT,,=0.353 .
T— T1— T= J y (31)
™ 1 _, 1—«(7) . 2¢k(7)
T—27=—|tan —tan , (39
©r— @1 wJ 2L 1—«(7)
T-n=—m=——5", (32
m where k() is given by the formula fo(t), with &, re-
where e, as above and placed by¢. _
For each of the cases presented above, the maximum
_,2&1k1(Ty) 1 ka(7p) transfer efficiencyn;=r,(T) is calculated in Appendix B.
¥ =tan T—ry(1)’ Y=tan T2, The results are
(1) Case A(INEPT),
1-ky(72) — kT o
=tan 1o ——=. pr=e " sin(wJT). (35
2 2&7k2(73)
. L _ . 2) Case B1(one switch,
Functionk,(t) is given by a similar formula ag,(t), with @ ( itch
&, replaced by,. The relation of these angles to the optimal pr=e" Tk tk(T= )] M= & sin 20, &, 5in 265, (36)

control problem is explained in Appendix A. The tinTg
mentioned above can be found by solving E@4) and(32)  for k1<k2 and
for 7,=0, i.e., with unknowng§ g andr;. In other words, we

find the timeTg for which the optimal pulse sequence devel- pr=e ket k(T=m)l /1 — £ sin 29,, (37)
ops the additional phase Il by setting the duration of that
phase equal to zero. for k1>k2

The results forg; < &, (k,>k,) are analogous. The basic ~ (3) Case B2(two switches,
difference is for the case B(that with only one switching

time). Here, we start in phase lug=u,=1) and at timet nr=exp{— w[kim +k(T— 71— 175)
=T— 7, we switch to case lll, as it is shown in Fig(®. — —
The time, is calculated by +Ky7p]} VI~ £15in 2031, sin 2192_ (39)
cog g1~ )
132 1 _ll_Kz(Tz) . . )
T—7=—5=_—5tan 28, (33 In general, we can easily prove that the efficiency remains

the same if the values &f andk, are swapped. In Fig. 5 we

For case B2(that with the two switching timgswe have plot the efficiencynr as a function off for various values of
three phases, as before, but now we spend more time iifie parameterkk; k.
phase lll than in phase[see Fig. 8)]. The timesr,, 7, are We observe that fok,k;,k,#0 there is an optimal time
still calculated using Eq€31) and (32). T=T,p: for each choice of the parameters, while kgr=0

We describe also what happens for the symmetric caser k,=0 the maximum efficiencymaximum forT specified
&=§&,=(. In this case, the optimal pulse sequence spendicreases with increasing and approaches a limiting value
equal timer in phases | and ll(see Fig. 4. asT—x, The existence of this optimal duratidnis a con-

Note that wherg; =&, there is no intermediate cag@l, sequence of the fact that fég ,k,# 0 none of the operators
with only one switching time Here, the optimal pulse se- 1,,21,S, is protected against relaxation, while foy=0 or
quence is either the INEPT or that with the three phé&ard  k,=0 at least one of them is. We can explain the existence of
the two switching times The timer can be calculated by this optimalT intuitively. For smallT the available time for
solving the equation the application of the controls is not enougive cannot
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k,=k,=0

0.4;
0.35¢

k,=0.05, k,=0

k1=k2=0.05

o
w

0.25¢ k1=0.05, k2=0.25

o
(M)

efficiency n,

o
Y
9]

k,=0.2, k,=0.25

o
pry

0.05

FIG. 5. Optimal transfer efficiencyy as a function of the total
transfer timeT for k=J and various values d,;,k, (normalized
with respect taJ). Observe that fok,,k,#0 there is an optimal
transfer timeT ;.

“put” much control to the systemand thus the maximum
efficiency that we get is small. For largethe phenomenon
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06
3 ROPE
504
3] INEPT
3

0.2

% 0.5 1

o) parameter s

FIG. 6. (b) Maximum transfer efficiencyy; evaluated afl,,
for each point of the line ink; ,k,,k) space shown iff@). The line
is parametrized by the parametes8<1 and has been chosen such
that the increase of from 0 to 1 simulates the transition from slow
molecular motion, wheré&>k;=Kk,, to rapid molecular motion,
wherek=k;~k,. Note the superiority of the relaxation optimized
pulse elemenfROPB compared to the INEPT pulse sequence for
the casek>k;,=Kk,.

the maximum efficiency, calculated &, for each choice of
the parameters, along a specific line kj (k,,k) space. This
line is shown in Fig. 6) and has been chosen to simulate the

of relaxation dominates, since there is no operator protectettansition from the slow molecular motidslowly tumbling
against it, and the maximum efficiency that we achieve igegime, wherek>k;=k,, to the rapid molecular motion,

poor. So, there must be an intermediate timsuch thatzn
becomes maximum. This time ;. In Fig. 6b) we plot

wherek=k;~K,.
For O<t<; (phase ), the optimal control is given by

AZ[1+coshg,(1)]
uy ()= S — , (39)
2A2sink? ¢y El A2 coshg (1) — A2 coshgy(t)
where ¢ (t) = 2mJt\1+ £+ 2 sinh ¢, and
— Ui — Ui
- - e . . (40
Vi+Ky(r)tarf ¢ 1
Kki(7)+
v ta.r]2 @1
For T— m,<t<T (phase Il), the optimal control is
=
RI[1+coshg,(T—1)]
uy(t) = —— , (41)
2§§sinhz¢2(§ +R2 coshg,(7,) — R2 coshgs,(T—t)
|
where ¢,(t) = 27Jt\1+ £2+ 2 sinh ¢, and U )‘((ﬁl
=vyB,=2m)—=tanh | V1+& (43
wy= 7By /—Zl_ul 2 &1 (43)
— nr — T
R,= , Ry=—7——— (42
1 PREREEI =N 2 \/m (42) and for phase Ill by
tanz 192 3
u T—t
wy=vBy=2mJ 2 Z*an?‘( e )) V1+ g§,
The corresponding rf amplitude for phase | is given by (44)
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50 , - ; —S, is achieved by first doing the transfe/— 21,S, opti-
| ] n mally, followed by optimal transfer of I2S,—S,. The opti-
40} ] mal pulse sequence for the later transfer is analogous to the

pulse sequence as discussed in the paper, withSplaying

the role of spinl andk,, k, now representing the relaxation
rates of longitudinal operators|,/ S, and S,, respectively.
Now k represents the transverse relaxation rates for operators

21,S,,S,, etc.

f amplitudes (J)

V. CONCLUSION

0 0.1 0.2 0.3 0.4 T In this manuscript, we examined the application of opti-
t1M) mal control theory to a quantum-mechanical system in the
oPresence of relaxation. The focus was on the stgdy of an
uq,u, of Fig. 3@). The pulse sequence starts with a hard 13.30°|S‘.O|ated. pair of scalar .Couple.d he.terOHUdear Sp'f‘s under
pulse aroundy axis, which establishes,(0)=0.229, followed by dlpole—dlpole and chemical shift anisotropy relaxat_lon. _For
phase | as shown above. During phase I, no rf pulses are applie&.1Is example, ‘f" new transfer scheme was found, which yields
Approaching phase Il the rf amplitude becomes large for a Verysgbstantlal gains in transfer efficiency, compared to the tra-

short time period. This can experimentally be very well approxi-ditionally used INEPT pulse sequence. The methods pre-
mated by a hard pulse of small flip angle. Following phase Ill ass€nted here are by no means limited to the case of coupled

shown above, we apply a final hard 35.20° pulse arounctés, ~ tWo spins. They can be generalized for finding relaxation
which completes the transfer. optimized pulse sequences for larger spin systems, as com-
monly encountered in backbone and side chain assignments

where y, is the gyromagnetic ratio of spih The details of in protein NMR spectroscopy. Furthermore, these methods

these calculations are described in Appendix C. Note th&'€ expected to find applications in the cpherent control of
asymmetry in the expressions fof,, , while the expres- other quantum-mechanical phenomena in the presence of

sions foruy,u, are symmetric. This asymmetry is a direct diSsipation and decoherence.
consequence of the phenomenon of relaxation. We refer to
Fig. 1. Observe that the magnetic fiedg rotates the vector
r, clockwise, while the phenomenon of relaxatitfissipa-

tion of (I, with ratek and of(1 ;) with ratek,) rotatesr; N.K. acknowledges Darpa Grant No. 496020-01-1-0556,
counterclockwise, sinck>k;. On the other hand, both the NSF Grant No. 0218411, and NSF Grant No. 0133673 for
magnetic fieldB, and the phenomenon of relaxation rotate  the support. S.J.G. acknowledges funding from Fonds der
counterclockwise, i.e., in the same sense. This difference b@hemischen Industrie, and by the Deutsche Forschungsge-

tween the two cases is the origin of the asymmetry in theneinschaftGrant Nos. Gl 203/4-2 and Lu 835/1
expressions fow, , w, .

The optimal rf amplitudes for a specific choice of the
parameters are shown in Fig. 7. The optimal transfer strategy APPENDIX A: SOLUTION OF THE OPTIMAL

FIG. 7. The rf pulse sequence corresponding to the contr

ACKNOWLEDGMENTS

from 1,—21,S, is then as follows. We start with an initial CONTROL PROBLEM
hard pulse that precedes phase | and rotates the vector ] )
(Fig. 1), from the angles;(0~)=90° (parallel toz axis) to The solution of the optimal control problem depends on

the initial angle8,(0*)=cos u,(0). During phase | (0 the.relative magnitude of the paramet&rsé,. In the _fol-
<t<r,), we rotater, slowly towards thex axis using the lowing, we solve the problem for the nonsymmetric case
field B,(t). During phase Il ¢;<t<T—r,), norfpulses are £1~¢2, 1.6, Ki<kp. The results for the cas¢,<¢&; (ki
applied. We just let, evolve towards, on thexy plane. In >k,) are analogous. At the end of _th|s section we describe
phase Ill T—7,<t<T"), we rotater, slowly from they  @lS0O what happens for the symmetric ca@ge- £,.
axis towards the axis using the field,(t), up to the angle To find the optimal controlgu? (t),u (t)) in Eq.(28), we
Bo(T~)=cos Luy(T). Following phase Ill, we apply a final Use the principle of dynamic programmifitd] and solve for
hard pulse that rotatas from B,(T) to B,(T*)=90°, in  the maximum achievable value of for all initial points
order to complete the transfer td,8,. This optimal pulse (F1.r2). Starting from (4,r;), we denote the maximum
sequence takes the place of INEPT. For the transfer achievable value af; by V(ry,r,,t), also called the optimal
—21,4S,, we just need to include the appropriate initial and"€turn function for the pointr(;,r,) at timet. Note here that
final hard 90° pulses. for the finite time problem T finite), the optimal return func-

Note that approaching phase Il the rf amplitude become&on has explicit dependence on tinjg4]. If we start at
large for a very short time period. This can experimentally be(r 1.T2), then by making a choice of controls in E@8) and
very well approximated by a hard pulse of small flip angle. letting the dynamical system evolve, after small tigtewe

Up to this point we have considered in detail the optimalcan make a transition to all points,(,r,) which are related
way for the transferl,—21,S,. The optimal transfed, to (rq,r,) by
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ry I I
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—&ui—
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which is the part ofF(uq,u,) that contains explicitly the
controlsuq,u,. Note thata,b,&;,&,,u;,u,=0. If (a—Db)
<0 then the solution to the minimization §f(u,,u,) is the
trivial one u;=u,=0. Therefore §—b)>0. Now suppose
that (@—b)2<4¢,éab, ie., (@—b)%/4éé,=ab—e for e

From all points ;,r,) that can be reached by appropriate =0. Then

choice of (y,u,) in small timeét, we should choose to go

to that (f,,r,) for which V(r,,r,,t+ t) is the largest. But
now note by definition of V that V(rq,rs,t)

=max, 7,V(r.I2,t+ ). This can be rewritten as

V(rq,rp,t)=maxV{r,+ &t[(

Uq, Up

, —
—&UT—€)ri—ugUar,],

Mot Ot (— EU5— €)M o+ UgUar 4], t+ Bt} (A2)

for infinitesimal 6t. The right-hand side of the above expres-

sion can be expandegdaylor series expansigin powers of
St and retaining only the terms linear &t (for 5t approach-
ing zerg, we obtain the well-known Hamilton Jacobi Bell-
man equation

— + maxH(uq,u,)=0, (A3)
at Uy, U
where
H( )= [ﬁV ﬂV} _glui_gl —ugup F1}
ug,u _
b arp UyUp —EU5— &)L T2
(A4)

is the Hamiltonian for the optimal control problem. Let

Alzﬂ, N (A5)
ary ar,
If, additionally, we set
A r
a= A_i b rj, (A6)
then the Hamiltonian can be expressed as
H(uy,up)=—Nyry[ &ui—(a—b)uyu,
+abé,uz+ & +abg,]. (A7)

The optimal return function is a nondecreasing function oiba

ri,r, [starting from a larger,(0) orr,(0) you can achieve
a largerr,(T)] sohq,N,,a=0. Since\,,r;=0, in order to
maximizeH in the square &u;,u,<1 it is equivalent to
minimizing the function

(a—b)u u,+abé,ud+ &, +abé,
(A8)

F(up,Up) =& ui—

or the quadratic form

Q(up,up)=&ui—(a—b)uu,+abgus,  (A9)

2

_|&- b) +eéoU5

2J—
and the solution to the minimization € is again the trivial

one u;=u,=0. Therefore the acceptable case & (b)?
>4¢,&,ab. Using the conditions

—§&1U; (A10)

a—b>0, (a—b)2>4¢ &,ab, (A11)

that we just derived, we minimiz&) in the square 0
<u;,u,<1. We find three separate cadestually, there is

one more case but, since it is not important for the rest of the

problem, we do not present.it

(1) Case I: Ifa—b<2¢; and @—b)/ab=2¢,, then the
minimum of Q (maximum ofH) is obtained foru,=1 and
u;=(a—hb)/2¢,.

(2) Case ll: Ifa—b=2¢, and @—h)/ab=2¢&,, then the
minimum of Q is obtained foru;=1 andu,=1

(3) Case lll: Ifa—b=2¢&; and @—hb)/ab<2¢,, then the
minimum of Q is obtained for u;=1 and u,=(a
—b)/2¢&5ab.

It is a standard resultl4] that, along the optimal trajec-
tory (r (t),r5(t)), the adjoint variables

1 91, 9,
( l(t)v 2 (t))

satisfy the equations,= —dH/ar, and\,=—aH/dr,, i.e.,

d[N] [&U2+E  —uup (A
Tl | , =\ A1)
dtA, Uy &uUs+ &)L N2
with the terminal conditions
AN(T)=0, Ny(T)=1. (A13)

For the optimal trajectory starting at4,r,)=(1,0) it is
(0)=0, so depending ora(0) we have the following
ses.

Case A.If a(0)=2¢, (first condition) then we start in

case |l discussed above. We stay there for the whole interval

T if (note thata—b is increasing[a(T)—b(T)]/a(T)b(T)
=2¢&, (second condition In case Il,u;=u,=1 and using
Egs.(28) and(A12) we can finda(T),b(T) in terms ofa(0)

and b(0)=0. It is a(T)=[a(0)+tanT]/[1—a(0)tanT],
b(T)=tanT so

a(T)—b(T)  a(0)(1+tarfT)

a(Mb(T) tanT[a(0)+tanT]’ (A14)
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Now note thata(T)=N\,(T)/\1(T)=c sincer,(T)=0, so from case Il to case lll. If we work as before we find that in
must bea(0)= 1/tanT if we spend the whole interval in case case lll, p/a)(t) = x,(T—1t) wherex,(t) satisfies the differ-
II. For tanT<1/2¢, it is a(0)=2&,, so we are consistent ential equation

with the first condition, and[a(T)—b(T)]/[a(T)b(T)]

_ ; ; _ dx K —ZI.)2
1/tanT>__2§1> 2¢&,, SO we are a_Iso consistent with the sec Hk2 (K2 —2&,K,,  Kky(0)=0. (A22)
ond condition. The conclusion is that for tars1/2¢; we dt 2&,
start in case Il and stay there for the whole time intefval o
This corresponds to the INEPT pulse sequence. For t=T—m, it is b(T—7)/a(T— 1) =ky(7;) and [a(T

Case B If a(0)<2¢; we start in case I. In this case it is — 72) ~b(T—72) [/[a(T— m)b(T—7)]=2£,. Using these
u,=1, u;=(a—b)/2¢, and the equation for the state vari- We find

ables becomes
No(T—72)  1—ko(72)

= =tan s
MN(T—12)  2&mky(1y) 72

a(T—m)= (A23)

dirg
dt

:{_flui_a —U

us —&— &

[rl}. (A15)

) ra rz(T_Tz)_l_Kz(Tz)

_ o n(T-m) 24
But &+ &,=¢&,+ &,=k/J so the above equation is the same
as In order to find the switching times;,T— 7, we have to
connect Eqs(A20) and (A21) with Egs. (A23) and (A24).

b(T—1)= =tand,. (A24)

d [Fl} _glui_gl —uy [rl} Wq can dp so by gxam_ining t.he e_volution of the system
— = _ ) (A16)  whileitisin case Il, i.e., in the time interv@l,,T—7,]. In
dtfr, Ug —&— & L2 case Il it isu;=u,=1 so the system equatid@8) becomes
If we make the transformation = ef1'r; we get dirg —& —1lin A2
. - dtir,| | 1 —¢€]lr,) (A25)
dj|ry —&ud —ugllry _ _
at T o ol (A17)  where ¢= & + &= &+ &. This is the same as the system

equation for a damped harmonic oscillator with angular fre-
quencyw=1. Fromt=7; to t=T— 7, the vector (,,r,) is

Analogously, for the adjoint variables we find the equation rotated through the angle

d| Ny &UE U N 1— k(1) 2§1Kk1(71)
—| __ |= — |, Al8 Fo— I =T—7,— :tanil—_ anﬁl—.
dt )J up &I, (A18) 2 ot T 2, 1—xq(7)

(A26)

where \j=e”I'\;. Now observe thatb/a=r,\1/r1\;  The evolution equation for the adjoint variables in case Il is
=b/a. If we setb/a=b/a= k,(t) thenk;(0)=0 andx(t)

satisfies the differential equation d{A| [§ —1||M
—| = . (A27)
, dt|n,] (1 & [N,
dKl (Kl_ 1)
dr 24, — 281K (A19)  The vector &1.\,) is rotated through the angle
Thi_s can be proved using Eq&A17) _and (A18). Sob/a(t) 0= @=T— 71—72=tan*11_K2(72) —tan ! 261 _
satisfies Eq(A19) for case |. After timery,(a—b)/2¢; be- 287k2(T2) 1-k4(7y)
comes equal to 1 and the system switches to case Il. Using (A28)

[a(r1) =b(r1)]/26,=1 and that b/a)(r1) = x1(r1) we find Equations(A26) and (A28) constitute a system of two equa-

No(71) 2¢, tions for the two unknowns, 7, which can be solved nu-
a(r)= = =tane,, (A20) merically. For the case B1 there is only one switching time
M(r) 1= ky(7y) () and working analogously we can easily find that it sat-
isfies the equation

rz(Tl): 2&1Kk4(T1)
ri(7m) 1—xy(7p)

b( Tl) = =tan 191 . (A21) g

— 1

w
T—7‘1=<p2—(p1=§—tan (A29)

1
. . . 1—kq(1)"
As time goes by & —b)/ab decreases. If this fraction does
not reach the value& in the remaining time intervalr; , T]  As we showed above, case B happens when the duration of
then the system remains in case Il and we call this case Blhe experiment satisfieb>T,=tan 1(1/2¢,). The question
Else, the system switches to case Il and we call this case B2 when we are in case B1 and when in case B2. Intuitively,
We examine first the full scenari@ase B2. Suppose that we expect that up to some duratidg we have to apply the
(a—b)/ab=2¢&, at time T— 7,. This is the switching time controls of case B1 and foF>Tg, where the phenomenon
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FIG. 8. Figure depicts the angléds , ¥, and¢, , ¢, the optimal

trajectory (r(t),r,(t)) and the trajectory for the adjoint variables

(A 1(1), A o(1)).

PHYSICAL REVIEW A 69, 022319 (2004

_ 1-k(72) 2
— 1- T2 1
f(1p,7)=tan k() tan T=r(r))’ (A34)

thus we end up with the system

T—711—71=f(71,70), (A35)
T—ri—1=1(1,71). (A36)
These equations imply
f(r1,72)=F(72,71). (A37)
This gives
T=T=1, (A38)

of relaxation degrades more the performance, we need to
apply the more fancy controls of case Bz, can be obtained  so for the symmetric casg = &, the optimal pulse sequence

from Egs.(A26) and (A28) by substitutingr,=0. So, we

spends equal timein phases | and ll(see Fig. 4. Note that

have a System of two equations with unknowns the duratiomor fl: §2 there is no intermediate CasBl, with 0n|y one

Tg and the switching timer; and thus we can findg. For
T<Tg the system of Eqs(A26) and (A28) gives 7,<0,

while for T>Tg gives 7,>0. Note that all the times that

appear in this section are normalized accordingttg,
:WJtmd.

The results forg; <&, (k;>k,) are analogous. The basic

difference is for the case B(that with only one switching
time). Here, we start in phase lug=u,=1) and at timet
=T- 7, we switch to case lll, as it is shown in Fig(k.
The timer, is calculated by

1—ky(1p)

T—1=19,— %, =tan *
2 2 1 252

(A30)

For case B2(that with the two switching timgswe have

switching timg. Here, the optimal pulse sequence is either
the INEPT or that with the three phas@sd the two switch-
ing times. The timer can be calculated by using either of
Egs.(A31) and (A32) with 71=1,=T1.

APPENDIX B: CALCULATION OF THE MAXIMUM
TRANSFER EFFICIENCY

Here we derive the value ofr=r,(T) for each of the
cases presented in Appendix A.

Case A (INEPT)For u;=u,=1 the system equation is
Eqg. (A25). With initial conditionsr,(0)=1,r,(0)=0 we
find

pr=ro(T)=e ¢TsinT. (B1)

three phases, as before, but now we spend more time in ~55e0 B2 Using Eqs.(28) and (A12) we can show that

phase Il than in phase[tee Fig. 8)]. The timesr,, 7, are
still calculated using EqgA26) and (A28).
Figure 8 depicts the anglek, , 9, ande, , ¢, the optimal

trajectory(r(t),r,(t)) and the trajectory for the adjoint vari-

ables(\1(t),\5(t)).

Finally, we examine what happens 7= &,=¢. In this
case it isk(t)=ky(t)=«(t), and Eqgs.(A26) and (A28)
take the form

1-k(7) _, 2¢k(1)
T— 7 —r=tan 1—;;2 —tan 1—1_';(7711),
(A31)
1-k(7p) 2{
_ _ — =1 _ —1
T T1— T2 tan —ZgK(TZ) ta —1—K(7-1)'
(A32)
If we set
1-k(7) 4 20k(1)
f(7,,7,)=tan 1%— an 1%, (A33)

it is not hard to see that

V() =N(D)r(t) +Na(D)ry(t), O<t<T (B2)

is a constant along the system trajectories and equals the
optimal return functionV(t)=x,(0)=r,(T). Analogously

we can show that

Vi(D=e a'N2(0) + ko (ONX(D), O<t<r (B3

and

V() =e T 020+ i(T-0r (1), (B4
T—7,<t<T, are constants along the system trajectories
with V1(t)=X1(0),V,(t)=r,(T). So they are also equal to
the optimal return function. Define

R(t)=rZ(t)+r3(t), A()=VA\3(1)+\3(t). (B5)

Since r,/ry=tand and A,/A;=tane¢ it is also r,
=Rsind,r;=Rcosd and N,=A sing,A\;=A cose. Using
these relations and E¢B3) we find

Vl( ’7'1) = e_ElTlAl\ 1- gl Sin 2(,01,

(B6)
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whereA;=A (7). Using Eq.(B2) we find

V(11)=A1R; cog @1 —9,),

whereR;=R(7;). SinceV(7;)=V4(71) from Eqgs.(B6) and
(B7) we easily deduce that

(B7)

2. 1=&sin2¢;
R=e f1m—— >~ "- B8
! cos @1~ 1) =9
From Eq.(B4) we find
VZ(T_TZ):e_EZTZRZ 1—62 sin 2’(92 (Bg)

But R,=R,e {71177 (case I, damped harmonic oscilla-
tor). Using the above relations we find finally

nr=exp{ —[ €1+ E(T— 71—

V1—¢;sin2¢1\1—&,5sin 29,
cog ¢1— 1)

72)

+ &1} . (B10)

Case B1 Following a procedure analogous to the above

PHYSICAL REVIEW A69, 022319 (2004

The functionk4(t) is the solution of Eq(A19) with initial
condition «;(0)=0. We can easily find that(t)=1
+2828-2£,\1+E cothdy(t), where ¢y (t)=t\1+¢&7
+2sinhig for t normalized or ¢(t)=mdt\1+ &2

+ 2 sinh &, for t not normalized. We still need to calculate
N1(1),N5(t). Using Eqg.(A12) for the adjoint variables, we
can see thak,(t) satisfies the equation

No(D)=[& + 1+ &L cothey (1IN, (C1)
or
No(t)= 1+ & cothdy (), (C2)

where as usua)Lz e §1t)\2 We can solve Eq(CZ) in the
interval O<t=<; with final condition\ ,(7;)=A, [we cal-
culateA2 andAl—)\l(rl) later]. The solution is

No(t) = eatfz(t)zeat&m_ (C3)

Sinh¢1( Tl)

we can find that the maximum transfer efficiency in this caséNow using the expressionr=e §1t\/)\1(t)+ Kl(t))\z(t) for

is given by

pr=e En &€= 1= ¢ sin 2¢,.

This is the result fok,<k,. For k;>k, the result is analo-
gous,

(B11)

1= e [keratk(T=m)] /1 — &, SiN 295.

APPENDIX C: CALCULATION OF THE OPTIMAL
CONTROLS AND OF THE CORRESPONDING rf FIELD

(B12)

the optimal return function we have
Ma(0)= Vet — e (DN,
Using again the expression far but with t=7; we find

ﬂT:eingl\/Ai‘f‘ Kl(Tl)A%: \Xi"‘ Kl(Tl)Kgy (05)

whereA1=Nq1(71), Ary=N\o(7) and/Tl,Kz as above. Com-
bining Egs.(C3)—(C5) we get

(C9

— _ — sink? (1)
Case I(0<t<r,). In this casau,=1 and Nt =eft! \/EJFKl(Tl)A%_Kl(t)A%m'
Ca-b 1 () (C6)
U= = 28 ot <l Using Egs.(C3) and (C6) we find
(0= A3[1+coshg,(1)] -
(D)=

where ¢¢(t)=27Jt\1+ 521+2 sinhi 1(&). In order to find
Al,Az we use Eq(C5) and thatA. /Al—A /A{=tang;.

We get
\/ k1(71)+
! tanz(Pl

vV 1+ Kl( ’Tl)tanZQDl

(C8)

2A smhzqsl( )+A§cosh¢l(rl) Azcosh¢>l(t)

where tamp, is given by Eq.(A20).
Case ll(m;<t=<7,). In this casep;(t)=u,(t)=1.
Case lll (7o=<t<T). In this casey;=1 and

a—b 1 rqt)
"= 2gab " 26, Tyt A TTY)

Following a procedure analogous to that for case | we finally
find
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RZ[1+coshg,(T—1)]

up(t) = - , (C9)
2R3 sintt ¢, 52 +R2 coshe,( 7,) — R? coshe,(T—t)
[
where — d(({l,) d((l,)
=co¢ —(—): 2—( ) C16
bo(t)=2mIt1+ E+ 2 sinhi 1 &5, (C10 Pr=cos g (Ly) ="t () (C18

- 7 We can find the time derivative above using the equations for
R — T Ro—_ ' the time derivatives of the ensemble averages presented in

= . R,=
Vo 7,) +tarf &, ? Ko(T5) Sec. Il. Doing so, we end up with the formula
\/1+——
tar? 9,

. r
_ [1_..2 2
(Cll) Bl_ 7TJU1 1 Ul §1+ rlul) . (Cl?)

and tand, is given by Eq.(A24). We finally calculate the rf
field that produces the optimal contralg,u,. The infinitesi-

mal change in angl@, (see Fig. 1is given by ry by 2&1k4(1)

— PR T

8B1= 61— wydt, (C12 f1 1= k(1)

where 851 is the infinitesimal change when the magnetic}/ivr']t(;] «1(t) given above. After some calculations we finally

field is zero, i.e., when the system evolves only under Egs.

(28), andw, = y,B,. We see that L
! g . . B1:7TJU1 1_ultan|‘(% \ 1+§1 (C18)
wy=pB1—B1. (C13
But U, = cosp,, SO Combining Eqs(C13), (C15), and(C18) we find that
: Uy _ _ Ug b1 2
- = C14) wy=1vB —27TJ—tan|‘(— v1+¢é3. (C19
B1 - (C14 y y Jiu2 >
Using Eq.(C7) for u;, we find, after some lengthy calcula- Working analogously we find
tion, that 3
u; AT\ ——
=—7)———-tanh = + &7, —Uuz
Bl \/mf 2 gl

o o The asymmetry in the expressions tey,w, is a direct con-
When the magnetic field is zero it i8;,=8; so tan3;  sequence of the phenomenon of relaxation and it is explained

=(1)/{ly) and in Sec. IV.

[1] R.R. Ernst, G. Bodenhausen, and A. Woka®minciples of ton, Protein NMR SpectroscopifAcademic Press, New York,
Nuclear Magnetic Resonance in One and Two Dimensions  1996.
(Clarendon Press, Oxford, 1987 [9] M. Goldman, J. Magn. Resof1969-1992 60, 437 (1984.

[2] N. Khaneja, T. Reiss, B. Luy, and S.J. Glaser, J. Magn. Resor{.10] A. Kumar, R.C.R. Grace, and P.K. Madhu, Prog. Nucl. Magn.
162 311(2003. Reson. Spectros87, 191 (2000.

[3] N. Khaneja, B. Luy, and S.J. Glaser, Proc. Natl. Acad. Sci.[11] M.H. Levitt and L. Di Bari, Bull. Magn. Resonl6, 94-114
U.S.A. 100 13162(2003. (1994).

[4] G. Lindblad, Commun. Math. Phy48, 199 (1976. [12] G.A. Morris and R. Freeman, J. Am. Chem. Sd€1, 760

[5] A.G. Redfield, Adv. Magn. Resori, 1 (1965. (1979.

[6] M. Goldman,Quantum Description of High-Resolution NMR [13] D.P. Burum and R.R. Ernst, J. Magn. Res(969-1992 39,
in Liquids (Clarendon Press, Oxford, 1988 163(1980.

[7] M. Goldman, J. Magn. Resofi49, 160(2001). [14] A.E. Bryson, and Y.C. HoApplied Optimal Control(Wiley,

[8] J. Cavanagh, W.J. Fairbrother, A.G. Palmer, Ill, and N.J. Skel- New York, 1975.

022319-13



