
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1

Optimal Control of DC–DC Buck Converter via Linear Systems With
Inaccessible Markovian Jumping Modes

Alessandro N. Vargas, Leonardo P. Sampaio, Leonardo Acho, Lixian Zhang, and João B. R. do Val

Abstract— The note presents an algorithm for the average
cost control problem of continuous-time Markov jump linear
systems. The controller assumes a linear state-feedback form
and the corresponding control gain does not depend on the
Markov chain. In this scenario, the control problem is that of
minimizing the long-run average cost. As an attempt to solve the
problem, we derive a global convergent algorithm that generates
a gain satisfying necessary optimality conditions. Our algorithm
has practical implications, as illustrated by the experiments that
were carried out to control an electronic dc–dc buck converter.
The buck converter supplied a load that suffered abrupt changes
driven by a homogeneous Markov chain. Besides, the source of
the buck converter also suffered abrupt Markov-driven changes.
The experimental results support the usefulness of our algorithm.

Index Terms— DC-DC power converters, Markov processes,
optimal control, optimization methods, stochastic processes.

I. INTRODUCTION

M
ARKOV jump linear systems (MJLSs) have attracted

widespread interest due to their appropriateness of

representing processes subject to abrupt changes (see, for

instance, the monograph [1]–[15] for a recent account).

Applications of MJLS can be found in robotics [5],

dc motors [16], [17], economy [18], and networks [19], [20],

among others. In fact, the literature emphasizes the potential

benefits of MJLS for real-time applications, and this brief

provides a contribution toward this direction, as detailed next.

To clarify our contribution, consider the continuous-time

MJLS defined on a filtered probability space (�,F ,Ft , P) as

follows [1]:

dx(t) = Aθ(t)x(t)dt + Bθ(t)u(t)dt + Hθ(t)dw(t)

∀t ≥ 0, θ(0) = θ0, x0 ∈ R
r (1)
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where {x(t)} on R
r , {u(t)} on R

s , and {w(t)} on R
m rep-

resent the continuous system state, control, and standard

Brownian motion, respectively. The continuous-time homo-

geneous Markov chain {θ(t)} takes values in a finite set

S := {1, . . . , σ } and has � = [λi j ], i, j = 1, . . . , σ , as the

stochastic rate matrix, which satisfies λi j ≥ 0, for i �= j , and

λii = −
∑σ

j=1, j �=i λi j . We use Ai , Bi , and Hi to denote the

matrices of (1) when θ(t) = i ∈ S .

Our aim in this brief is to design a control rule in the linear

state-feedback format with no mode observation

u(t) = Gx(t) ∀t ≥ 0. (2)

Note that G is a (s × r)-D matrix independent of the

Markov chain θ(t).

The control in (2) goes in the opposite direction of most of

the results in the literature, which assume that the controller

has full access to the Markovian mode [3]–[7].

As observed in [16], the assumption that the controller

measures θ(t) signifies that the controller knows exactly and

instantaneously what mode is active at t > 0, which is

unrealistic for many real-time processes. This brief confirms

this statement.

Here, we present a real-time application for which the

controller is blind with respect to θ(t)—the application is for

a dc–dc buck converter, a device largely used by the electronic

industry. To control the buck converter in practice, we used

the strategy in (2).

To design the gain matrix G as in (2), we consider the

long-run average cost

J (G) = lim sup
T →∞

1

T

∫ T

t=0

E[x(t)′Qθ(t)x(t) + u(t)′ Rθ(t)u(t)]

(3)

where E[·] denotes the mathematical expectation conditioned

to F0 = (x0, θ0), and Qi ≥ 0 and Ri > 0, i ∈ S , are the

given symmetric matrices.

The control problem we are interested in solving is

min
G

J (G) s.t. (1)–(3). (4)

The problem in (4) is of difficult solution. To the best

of the authors’ knowledge, there is no global optimization

method that yields the optimal solution for the problem

posed in (4). As an attempt to overcome such a difficulty,

we propose an algorithm for computing a candidate for the

optimal solution in (4). This candidate satisfies a necessary

optimality condition. Besides, this candidate is computed by

a globally convergent algorithm. These findings represent the

main theoretical contribution of this brief.

1063-6536 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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The usefulness of our algorithm was checked in practice.

A laboratory test bed was assembled with a power source that

supplied a dc–dc buck converter connected with a load. Both

the power source and load were programmed to suffer random

changes on their nominal values according to a continuous-

time homogeneous Markov chain.

The experimental setup has practical interest since random

fluctuations in the nominal value of loads and sources are quite

common in practice. The laboratory test bed was then con-

structed to reproduce such a random phenomenon, arranged

to cope with the Markovian setup. In the laboratory, our

algorithm generated the control strategy that was implemented

in practice in the dc–dc buck converter—the corresponding

experimental data support the benefits of our algorithm.

This brief is organized as follows. Section II quotes the

basic notation and presents the main result. Section III presents

the real-time application for the dc–dc buck converter. Finally,

Section IV presents some concluding remarks.

II. NOTATION, DEFINITIONS, AND BASIC RESULTS

The linear space made up by all r × s (r × r ) real matrices

is denoted by Mr,s (Mr ). Let S := {1, . . . , σ } be an

index set, and let M
r,s denote the linear space formed by σ

matrices belonging to Mr,s , i.e., M
r,s = {U = (U1, . . . , Uσ ) :

Ui ∈ Mr,s , i ∈ S }. Take, in particular, M
r ≡ M

r,r .

We employ the ordering U > V (U ≥ V ) for elements

of M
r , meaning that Ui − Vi is positive definite (semidefinite)

for all i ∈ S , and similarly for other mathematical relations.

If V ∈ Mr,s and U ∈ M
s,r , then the multiplication V U results

in (V U1, . . . , V Uσ ) ∈ M
r,r . The trace operator is denoted

by tr{·}. For elements from M
r,s , we define the inner product

〈U, V 〉 =

σ
∑

i=1

tr{U ′
i Vi } ∀U,V ∈ M

r,s.

Let us define the conditional second moment matrix of the

system state x(t), t ≥ 0, as

X i (t) = E[x(t)x(t)′11{θ(t)=i}] ∀i ∈ S ∀t ≥ 0 (5)

where 11{·} stands for the Dirac measure. It is known from the

literature that the second moment matrix in (5) can be evalu-

ated using the next set of differential equations [2, Prop. 5.3]

Ẋ i (t) = (Ai + Bi G)X i (t) + X i (t)(Ai + Bi G)′

+

σ
∑

j=1

λ j i X j (t) + pi(t)Hi H ′
i ∀i ∈ S ∀t ≥ 0 (6)

with X i (0) = pi(0)x0x ′
0 and pi (t) = Pr(θ(t) = i) for each

i ∈ S and every t ≥ 0. Interestingly, the boundedness of X (t)

as long as t increases can be assured by stabilizing gains G,

a concept introduced next.

Definition 1: We say the gain G is mean square stabilizing

if the corresponding autonomous system ż(t) = (Aθ(t) +

Bθ(t)G)z(t) satisfies limt→∞ E[‖z(t)‖2] = 0 for any initial

condition (z0, θ0).

Consider the next assumption.

Assumption 2: {θ(t)} is an irreducible positive Harris recur-

rent Markov process.

The result in [2, Prop 5.4], quoted next, requires the

condition in Assumption 2.

Proposition 3 ([2, Prop 5.4]): If G is a mean-square

stabilizing gain, then the limits

X i := lim
t→∞

X i (t), i = 1, . . . , σ

exist and do not depend on the initial condition (x0, θ0).

The result of Proposition 3, applied in (6), allows us to

obtain an equivalent form of representing the average cost (3)

(for a proof, see [21, Th. 1]).

Proposition 4: If G is a mean-square stabilizing gain, then

J (G) =

σ
∑

i=1

tr{X i (Qi + G′ Ri G)} (7)

where X ∈ M
r satisfies

(Ai +Bi G)X i + X i (Ai + Bi G)′ +

σ
∑

j=1

λ j i X j + pi Hi H ′
i = 0

∀i ∈ S . (8)

Note that the stochastic control problem in (3) is converted

into the next one

min
G

J (G) s.t. (7)–(8). (9)

A. Lagrangian Equation and Necessary

Optimality Conditions

To characterize a solution for the control problem (9), let

L ∈ M
r be the solution of the equation

Qi + G′ Ri G + L i (Ai + Bi G) + (Ai + Bi G)′L i

+

σ
∑

j=1

λi j L j = 0 ∀i ∈ S . (10)

Assumption 5: The pairs (Ai , Q
1/2
i ), i = 1, . . . , σ , are

observable in the deterministic sense (see [22, Ch. 6]).

The next result is an immediate consequence

of [23, Th. 29].

Proposition 6 [23, Th. 29]: Suppose that L ≥ 0 represents

a solution of (10) for some given G. Then G is mean square

stabilizing.

For some given X, L ∈ M
r , consider the Lagrangian

equation

L (G, X, L)

= J (G) +

σ
∑

i=1

tr

⎧

⎨

⎩

L i

⎛

⎝(Ai + Bi G)X i + X i (Ai + Bi G)′

+

σ
∑

j=1

λ j i X j + pi Hi H ′
i

⎞

⎠

⎫

⎬

⎭

. (11)

The corresponding Lagrange equations are obtained by pass-

ing in (11) the partial derivative with respect to X and L

and setting both expressions to zero; this procedure

yields (8) and (10), respectively. In addition, passing in (11)

the partial derivative with respect to G produces

∂L (G, X, L)

∂G
=

σ
∑

i=1

2
(

B ′
i L i X i + Ri G X i

)

. (12)
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A necessary optimality condition for the problem (9) is now

presented.

Proposition 7: Let the gain G∗ be the optimal solution

for the problem in (9), i.e., G∗ = arg minG J (G). Then G∗

satisfies

∂L (G, X, L)

∂G

∣

∣

∣

∣

G=G∗

= 0 (13)

where X ∈ M
r and L ∈ M

r satisfy (8) and (10), respectively.

Remark 8: A stationary point G that satisfies simultane-

ously (8), (10), and (13) is difficult to compute because such

equations are nonlinearly coupled in an intricate manner. Our

algorithm aims to overcome such a drawback. That is to say,

our algorithm is globally convergent and assuredly computes

a gain G satisfying (8), (10), and (13), as detailed next.

B. Algorithm for the Control Problem

Let us now consider the following algorithm.

Step 1: Set the iterations counter k = 0. Pick an arbitrary

mean-square stabilizing gain G[0].

Step 2: Solve both X [k] and L[k] according to (8) and (10),

respectively. Compute the gradient

∇[k] :=
∂L (G, X [k], L[k])

∂G

∣

∣

∣

∣

G=G[k]

(14)

and verify whether ‖∇[k]‖ < ε holds true for some

sufficiently small ε > 0. In the positive case, stop

the algorithm. Otherwise, compute the matrix

S[k] := −
1

2
∇[k]

(

σ
∑

i=1

X
[k]
i

)−1

(15)

and go to Step 3).

Step 3: Find a[k] > 0 such that (Goldstein’s condition

[24, p. 118])

−ρa[k]〈∇[k], S[k]〉 < J (G[k]) − J (G[k] + a[k]S[k])

< −(1 − ρ)a[k]〈∇[k], S[k]〉 (16)

where 0 < ρ < 0.5 is a fixed parameter. Set

G[k+1] := G[k] +a[k]S[k] and k = k +1, and return

to the beginning of Step 2).

Remark 9: The variable a[k] > 0 in (16) can be computed

using a backtracking algorithm (see [24, Sec. 6.3.2]). Other

line-search strategies exist and can also be considered in such

an evaluation, such as the Nelder–Mead method, pattern search

method, and secant method [24], [25].

C. Comments About the Algorithm of Section II-B

The algorithm presented in Steps 1)–3) is inspired in quasi-

Newton methods, and as such, the algorithm generates a matrix

sequence {S[k]} acting as a descent direction [24, Ch. 6].

To see this, note from (15) that

〈∇[k], S[k]〉 = −
1

2
tr

⎧

⎨

⎩

∇[k]′∇[k]

(

σ
∑

i=1

X
[k]
i

)−1
⎫

⎬

⎭

< 0

when ∇[k] �= 0. (17)

Since {J (G[k])} is a monotonically nonincreasing sequence,

and L[k] and X [k] exist, we can use Proposition 6 to obtain

the next result.

Theorem 10: Each gain G[k], k ≥ 0, generated by

Steps 1)–3) is mean square stabilizing.

Other important conclusion follows by applying the result

of [24, Th. 6.3.3, p. 121] in (17).

Theorem 11 (Global Convergence): The algorithm in

Steps 1)–3) satisfies either ∇[k] = 0 for some k ≥ 0 or

limk→∞ ‖∇[k]‖ = 0.

Remark 12: Theorem 11 is inconclusive with respect to

the convergence of the gain sequence {G[k]}. In applications,

however, we can stop the algorithm of Steps 1)–3) at the

k0th iteration when ‖∇[k0]‖ ≤ ε, for some ε > 0 sufficiently

small.

III. CONTROL APPLICATION FOR

A DC–DC BUCK CONVERTER

A dc–dc buck converter is an electronic converter that

supplies energy to a load, in a manner that the voltage across

the load is less than or equal to the voltage from the source—

this converter is indispensable in many industrial applications

due to its high efficiency as well as its simplicity of control

(see [26]–[30] for a brief account).

The voltage supplied to the dc–dc buck converter can

suffer oscillations that many of them produced randomly

(e.g., photovoltaic applications [31]). Such oscillations can

generate undesired voltage oscillations in the load. Besides,

when the nominal value of the load changes abruptly, a voltage

overshoot appears over the load terminals.

That oscillations and overshoots on the load represent a risk

of damage to the underlying device. To control the voltage

applied in the load, thus mitigating the influence of voltage

overshoots, we designed and implemented a continuous-time

state feedback strategy in the dc–dc buck converter, as detailed

next.

The aim of our experimental control project was to design a

controller that mitigates the influence of voltage overshoots in

the load, as well as keeping the voltage close to a certain

reference. The control actuated to keep the load voltage

regulated, even though Markov-driven disturbances affected

the practical setup: the Markov chain sets the values of:

1) power source voltage and 2) nominal value of the load.

Experiments were performed in a laboratory to check the

usefulness of our control strategy. The dc–dc buck converter

was supplied by a power source that was programmed to

change its voltage according to the state of a continuous-time

Markov chain; this state also set the nominal value of the

load. The algorithm in Steps 1)–3) was then used to compute

a gain G, which was implemented in practice in the controller

of the dc–dc buck converter.

The experimental data suggested that our control approach

were appropriate to achieve the aim of mitigating voltage

overshoots, as illustrated in the sequence. This finding sets

the practical contribution of this brief.

A. Modeling of the DC–DC Buck Converter

The dc–dc buck converter is constructed with common

electronic components, such as MOSFET M , diode D,
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Fig. 1. Electronic circuit of the dc–dc buck converter. The main components are the inductor L , MOSFET M, diode D, capacitor C , and load Ro .

Fig. 2. Laboratory test bed. The picture shows the circuits and devices used
in the experiments described in Section III.

inductor L, capacitor C , resistance Ro, and power supply vg ;

these components are assembled as in the scheme shown

in Fig. 1. In Fig. 1, the elements RM , RD , RL , and RC

stand for internal resistances of the corresponding components.

The parasitic current is accounted in the variable i p(t). Both

vo(t) and iL(t) are measured by sensors—they characterize

the system state, as discussed next.

The MOSFET M works under a pulsewidth modula-

tion (PWM) signal, which keeps the MOSFET ON or OFF. The

part of the time in which the MOSFET remains ON sets the

duty cycle; the duty cycle is denoted here in its normalized

value, i.e., 0 ≤ d(t) ≤ 1, defining the input variable of the

circuit (Fig. 1).

For simplicity, we neglect the resistances RC , RM , and RD

in the circuit; the model of the dc–dc buck converter reads as

(with x(t) ≡ [vo(t) iL(t)]′; see Appendix A)

ẋ(t)=

⎡

⎢

⎣

−
1

RoC

1

C

−
1

L
−

RL

L

⎤

⎥

⎦
x(t) +

⎡

⎣

0

vg

L

⎤

⎦ d(t) +

⎡

⎣

−
i p(t)

C

0

⎤

⎦.

(18)

Note that the duty cycle d(t) acts as the variable input of the

system (18).

B. Laboratory and Experiments

The circuit of Fig. 1 was assembled in a laboratory test bed

(see Fig. 2). The laboratory was built up to check in practice

TABLE I

MARKOVIAN MODES OF OPERATION OF THE DC–DC BUCK CONVERTER

the behavior of a dc–dc buck converter when both load and

power supply are driven by a Markov chain. For this purpose,

the laboratory was configured so as to change the value of the

load Ro, according to a Markov chain, for next three values:

30, 20, and 10 �. Besides, the Markovian chain triggered the

power supply to provide either 24.1 or 22 V. Thus, the changes

among the resistances and voltages followed the jumps of a

six-mode Markov chain (Table I).

The Markov chain was implemented in an Arduino Uno,

a microcontroller board; this board triggered relays that set

values for the load and power supply. A digital oscilloscope,

the model PicoScope-3404A, was used to measure and record

the experimental data.

An analog-to-PWM driver was implemented in the lab-

oratory to generate the input signal d(t) in practice. The

analog-to-PWM driver, based on the chip SG3524, had an

analog input signal u(t) ranging from 0 to 4 V and it had

output with proportional duty cycle from 0 to 95%. This

proportional relationship allowed us to substitute d(t) by u(t)

in (18).

Since both the load Ro and the power supply vg were

driven by a Markov chain, and taking into account that RL

may change due to the switching action of the MOSFET

(its internal ON and OFF resistances in series with the

inductor), we obtain from (18) the next continuous-time MJLS

dx(t) =

[

a
(i)
11 a12

a21 a
(i)
22

]

x(t)dt +

[

0

b(i)

]

u(t)dt

+

[

h1 0

0 h2

]

dw(t), θ(t) = i ∈ {1, . . . , 6} ∀t ≥ 0

(19)

with θ0 = 1 and x0 = [0 0]′, where the parameter

values of (19) were identified through the next procedure

(Table II).

In the laboratory, step inputs of distinct amplitudes were

applied in u(t) for every i = 1, . . . , 6, and the corresponding

data for vo(t) and iL(t) were carefully recorded and compared
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TABLE II

PARAMETER VALUES OF THE CONTINUOUS-TIME MARKOV JUMP LINEAR SYSTEM THAT MODELS THE DC–DC BUCK CONVERTER

Fig. 3. State-feedback scheme used in practice to control a dc–dc buck converter driven by a continuous-time Markov chain.

Fig. 4. Experimental data for some realization of the dc–dc buck converter. Open-loop response (left). Closed-loop response (right).

with the simulated counterpart from (19) with w(t) ≡ 0.

The difference between the square of practical data and sim-

ulated data produced an error, and by minimizing the integral

of such an error, we obtained the values shown in Table II.

The values of h1 and h2 were obtained via an analysis of the

statistical dispersion of the practical data.

C. Experimental Results: Controlled DC–DC Buck

Converter With Markov Jumps

This section illustrates the usefulness of Theorem 11.

The proportional–integrative (PI) control strategy has been

used in the control of processes subject to Markovian

jumps [16], [17], showing promising results therein. For this

reason, we decided to apply the PI strategy here to control

the dc–dc buck converter, as shown in the scheme of Fig. 3.

As can be seen, the proposed control action is

u(t) = g1e(t) + g2iL(t) + g3

∫ t

0

e(τ )dτ

e(t) = r − vo(t) ∀t ≥ 0 (20)

where r denotes a fixed set-point signal.

The control objective of the practical experiment was to

assure that the statistical mean value of e(t) tends to zero as

t tends to infinity.

Let q(t) be the integral of the error, i.e., q(t) :=
∫ t

τ=0 e(τ )dτ , so that q̇(t) ≡ e(t). Now, take the system state as

x(t) ≡ [vo(t) iL(t) q(t)]′. With G = [−g1 g2 g3], it follows

from (20) that the control equals u(t) = Gx(t) + g1r ,
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Fig. 5. Voltage in the load of a dc–dc buck converter. The shading area (in red) represents the statistical dispersion around the mean (in black) of the voltage
measured for four thousand distinct realizations. The curves indicate that the result of Theorem 11 generated an improved response, i.e., lower overshoots and
lower dispersion of voltage on the load. (a) Open loop. (b) Closed loop.

Fig. 6. Electric current flowing through the inductor of a dc–dc buck converter. The shading area (in red) represents the statistical dispersion around the
mean (in black) of the electric current measured for four thousand distinct realizations. (a) Open loop. (b) Closed loop.

so that (19) implies in:

dx(t) =

⎛

⎝

⎡

⎣

a
(i)
11 a12 0

a21 a
(i)
22 0

−1 0 0

⎤

⎦ +

⎡

⎣

0

b(i)

0

⎤

⎦ G

⎞

⎠ x(t)dt

+

⎡

⎣

0

b(i)g1r

r

⎤

⎦ dt + diag(1, 5, 0.1)dw(t)

θ(t) = i ∈ {1, . . . , 6}. (21)

Steps 1)–3) now play a key role for setting the gain

G = [−g1 g2 g3] in (21). Indeed, we computed G from the

algorithm of Steps 1)–3) with Ri ≡ 1, Qi ≡ diag(1, 0.1, 1).

The converge criteria was ε = 10−4. The transition rate

matrix � is presented in Appendix B—the chosen value for �

reflects our desire to produce in the experiments many jumps

in a short period of time, although respecting the relays’

TABLE III

CONTROL DESIGN FOR A DC–DC BUCK CONVERTER: AS ASSURED

IN THEOREM 11, THE ITERATIVE VALUES CONVERGE

physical restrictions. In particular for Step 3), we used the

backtracking algorithm (see Remark 9 in connection).

The results from Steps 1)–3) are presented in Table III.

As can be seen, the convergence in Table III confirms the

result of Theorem 11. Besides, as a byproduct of Theorem 11,
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Fig. 7. Circuit of the dc–dc buck converter when the MOSFET is either ON or OFF. (a) MOSFET is ON. (b) MOSFET is OFF.

the gain G = [−0.2466 − 0.3653 1.2017] is not only mean

square stabilizing but also candidate for the optimal solution

of the control problem in (4).

The experiments were carried out to check the behavior of

the dc–dc buck converter subject to Markov-driven operation

modes (see Table I). The laboratory accounted for experiments

with open loop (no control) and closed loop (control).

Regarding the closed-loop case, the control gain G =

[−0.2466 − 0.3653 1.2017] was introduced in the PI control

(Fig. 3), which was evaluated in the laboratory test bed with

reference fixed at r = 13.85 V. An Arduino Due with sampling

time of around 90 ms performed the PI control in practice.

Four thousand realizations were conducted for the two

cases, i.e., open loop and closed loop.

Fig. 4 shows the data for some realization. Despite the

dc–dc buck converter had been changing abruptly its operation

mode, as demonstrated in the inductor current, the closed-loop

response of the converter tended to follow the reference.

Fig. 5 summarizes the experimental data. The experimental

data indicated that the PI control with G given by Steps 1)–3)

improved the overall dc–dc buck converter’s response. Actu-

ally, when working under our control strategy, the converter

presented lower overshoots as well as lower voltage dispersion

on the load (see Fig. 5). Consequently, the proposed closed

loop diminished voltage variations over the load, showing the

potential of our approach for applications.

Finally, lower voltage overshoots in the load guarantee lower

current overshoots in the inductance, as shown in Fig. 6. These

findings are a positive indication toward the practical benefits

of our control strategy.

IV. CONCLUSION

Our findings reveal two points.

First, we present an algorithm that computes a candidate for

solving a difficult control problem—the long-run average cost

control problem of MJLSs with inaccessible modes.

Second, we show that our algorithm has potential for

applications—the algorithm was used in practice to design a

controller for a dc–dc buck converter subject to Markov-driven

modes.

A laboratory test bed was assembled to check the behavior

of the dc–dc buck converter under distinct modes of operation.

As long as this converter had been working, a Markov chain

set the activated mode; every mode represented distinct values

for load and power supply (Table I). In this scenario, the exper-

iments were carried out for two cases: open loop (no control)

and closed loop (control). The experimental data suggested

that our approach have potential for real-time applications.

APPENDIX A

In this Appendix, we derive the model of the dc–dc buck

converter presented in (18) (see [27], [29], [30] for further

details). Recall the circuit of Fig. 1. When the MOSFET is

either ON or OFF, we retrieve the circuits shown in Fig. 7.

Consider the system state as x(t) ≡ [vo(t) iL(t)]′. When

the MOSFET is ON, we can derive from Fig. 7(a) that

ẋ(t) =

⎡

⎢

⎣

−
1

RoC

1

C

−
1

L
−

RL

L

⎤

⎥

⎦
x(t) +

⎡

⎣

0

vg

L

⎤

⎦ +

⎡

⎣

−
i p(t)

C

0

⎤

⎦ (22)

but when the MOSFET is OFF, we have from Fig. 7(b) that

ẋ(t) =

⎡

⎢

⎣

−
1

RoC

1

C

−
1

L
−

RL

L

⎤

⎥

⎦
x(t) +

⎡

⎣

−
i p(t)

C

0

⎤

⎦. (23)

Multiplying (22) by d(t) and (23) by (1 − d(t)), and sum-

ming up both, we obtain the model of the dc–dc buck

converter in (18).

APPENDIX B

The rate transition matrix is presented as the equation shown

at the bottom of this page.

� =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−96.3100 96.3100 0 0 0 0

23.2472 −99.6310 46.4945 0 16.6052 13.2841

9.9631 66.4207 −109.5941 16.6052 16.6052 0

3.3210 9.9631 13.2841 −66.4207 33.2103 6.6421

0 16.6052 26.5683 249.0776 −312.1772 19.9262

0 0 19.9262 19.9262 19.9262 −59.7786

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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