OPTIMAL CONTROL OF DIFFERENTIAL AND FUNCTIONAL EQUATIONS

J. Warga

DEPARTMENT OF MATHEMATICS NORTHEASTERN UNIVERSITY BOSTON, MASSACHUSETTS

ACADEMIC PRESS New York and London

1972

Contents

PREFACE

Part One FOUNDATIONS

xi

Chapter I. Analytical Foundations

I.1	Sets, Functions	, Sequences	5
I.2	Topology		10
I.3	Topological Ve	ctor Spaces	26
I.4	Measures, Mea	surable Functions, and Integrals	49
	I.4.A Measure	es	49
	I.4.B Measura	able Functions	65
	I.4.C Integral	s of Simple and Nonnegative Functions	72
	I.4.D Bochner	r Integrals	78
	I.4.E The Lel	besgue and Radon–Nikodym Theorems	85
	I.4.F Absolut	ely Continuous Functions on an Interval	91
	I.4.G Product	Measures	99
I.5	The Banach Sp	aces $C(S, \mathscr{X})$ and $L^{p}(S, \Sigma, \mu, \mathscr{X})$	107
	I.5.A The Me	tric Space $C(S, X)$ and the Banach Space $C(S, \mathscr{X})$	107
	1.5.B The Spa	ace $L^p(S, \Sigma, \mu, \mathscr{X})$	122
	I.5.C Special	Spaces	131
I.6	Convex Sets		137
I.7	Measurable Set-Valued Mappings		146
	Notes		154

Chapter II. Functional Equations

II.1	Definit	ions and Background	156
II.2	Brouw	er's, Schauder's, and Tychonoff's Fixed Point Theorems	161
II.3	Deriva	tives and the Implicit Function Theorem	167
II.4	Ordina	ry Differential Equations	183
	II.4.A	Existence of Local Solutions	184
	II.4.B	Extension of Local Solutions and Uniqueness	186
	II.4.C	Linear Ordinary Differential Equations	191
	II.4.D	Dependence on Parameters of Solutions of Ordinary Differential	
		Equations	195
II.5	Function	onal-Integral Equations in $C(T, \mathbb{R}^n)$	200
	II.5.A	Existence of Solutions of Functional-Integral Equations in	
		$C(T, \mathbb{R}^n)$	200
	II.5.B	Local Solutions and Unique Solutions of Hereditary Functional-	
		Integral Equations	203
	II.5.C	Linear Functional-Integral Equations in $C(T, \mathbb{R}^n)$	207
	II.5.D	Dependence on Parameters of Solutions of Functional-Integral	
		Equations in $C(T, \mathbb{R}^n)$	210
	II.5.E	Integral Equations with Pseudodelays in $C(T, \mathbb{R}^n)$	216
II.6	Function	onal-Integral Equations in $L^p(T, \mathbb{R}^n)$	217
	II.6.A	Existence of Solutions	217
	II.6.B	Linear Functional-Integral Equations in $L^p(T, \mathbb{R}^n)$	222
	II.6.C	Dependence on Parameters of Solutions of Functional-Integral	
		Equations in $L^p(T, \mathbb{R}^n)$	226
	II.6.D	Integral Equations with Pseudodelays in $L^{p}(T, \mathbb{R}^{n})$	233
	Notes		235

Part Two OPTIMAL CONTROL

Chapter III. Basic Problems and Concepts, and Heuristic Considerations

III.1	The Subject of the Optimal Control Theory	239
III.2	Original, Approximate, and Relaxed Solutions	244
III.3	Measure-Valued Control Functions	249
	III.3.A "Limits" of Rapidly Oscillating Functions	249
	III.3.B Relaxed Controls as Linear Functionals	253
III.4	Necessary Conditions for a Minimum	255
III.5	Minimizing Original Solutions	258

Chapter IV. Original and Relaxed Control Functions

IV.0	Summary	263
IV.1	The Spaces $C(R)$ and $L^1(T, C(R))$ and Their Conjugate Spaces	264
IV.2	The Sets \mathscr{R} and \mathscr{S}	272
IV.3	The Sets $\mathscr{R}^{\#}$ and $\mathscr{S}^{\#}$ and Abundant Sets	279
	Notes	293

CONTENTS

Chapter V. Control Problems Defined by Equations in Banach Spaces

V.0	Formulation of the Optimal Control Problem	294
V.1	Existence of Minimizing Relaxed and Approximate Solutions	296
V.2	Necessary Conditions for a Relaxed Minimum	298
V.3	Necessary Conditions for an Original Minimum	308
V.4	Convex Cost Functionals	316
V.5	Weak Necessary Conditions for an Original Minimum	321
V.6	An Illustration—A Class of Ordinary Differential Problems and Examples	323
V. 7	State-Dependent Controls	339
	Notes	343

Chapter VI. Optimal Control of Ordinary Differential Equations

VI.0	Formulation of the "Standard" Problem	346
VI.1	Existence of Minimizing Relaxed and Approximate Solutions	348
VI.2	Necessary Conditions for a Minimum	352
VI.3	Contingent Equations and Equivalent Control Functions	369
VI.4	Unbounded Contingent Sets and Compactified Parametric Problems	372
VI.5	Variable Initial Conditions, Free Time, Infinite Time, Staging,	
	Advance-Delay Differential Problems	396
	Notes	406

Chapter VII. Optimal Control of Functional-Integral Equations in $C(T, \mathbb{R}^n)$

VII.0	Formulation of the Problem	407
VII.1	Existence of Minimizing Solutions	408
VII.2	Necessary Conditions for a Relaxed Minimum	413
VII.3	Necessary Conditions for a Relaxed Minimum in	
	Unilateral and Related Problems	419
VII.4	Necessary Conditions for an Original Minimum	425
VII.5	Problems with Pseudodelays	426
	Notes	427

Chapter VIII. Optimal Control of Functional-Integral Equations in $L^{p}(T, \mathbb{R}^{n})$

VIII.0	Formulation of the Problem	428
VIII.1	Existence of Minimizing Solutions	429
VIII.2	Necessary Conditions for a Relaxed Minimum	433
VIII.3	Necessary Conditions for an Original Minimum	439
VIII.4	Problems with Pseudodelays	441
	Notes	441

ix

p

CONTENTS

Chapter IX. Conflicting Control Problems with Relaxed Adverse Controls

IX.0	Formulation of the Problem	443
IX.1	Existence and Necessary Conditions for Optimal Controls	445
IX.2	Conflicting Control Problems Defined by Functional Equations.	
	Additively Coupled Conflicting Controls. A Counterexample	451
IX.3	An Evasion Problem	459
IX.4	Zero-Sum Games with Control Strategies	472
	Notes	477

Chapter X. Conflicting Control Problems with Hyperrelaxed Adverse Controls

X.0	Formulation of the Problem	478
X.1	Existence of Minimizing Relaxed and Approximate Controls	482
X.2	Necessary Conditions for a Relaxed Minimum	495
X.3	Hyperrelaxed and Relaxed Adverse Controls in Ordinary	
	Differential Equations	500
	Notes	516
Refer	ences	517

NOTATION INDEX	523
SUBJECT INDEX	525