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Abstract - A number of strategies for the power management of 

HEVs (Hybrid Electric Vehicles) are proposed in the literature. A 

key challenge is to achieve near-optimality while keeping the 

methodology simple. The Pontryagin’s minimum principle (PMP) 

is suggested as a viable real-time strategy. In this paper, the 

global optimality of the principle under reasonable assumptions 

is described from a mathematical viewpoint. Instantaneous 

optimal control with an appropriate equivalent parameter for 

battery usage is shown to be possibly a global optimal solution 

under the assumption that the internal resistance and open-

circuit voltage of a battery are independent of the state-of-charge 

(SOC). This paper also demonstrates that the optimality of the 

Equivalent Consumption Minimization Strategy (ECMS) results 

from the close relation of ECMS to the optimal-control-theoretic 

concept of PMP. In static simulation for a power-split hybrid 

vehicle, the fuel economy of the hybrid vehicle using the control 

algorithm proposed in this paper is found to be very close – 

typically within 1% – to the fuel economy through global optimal 

control that is based on DP (Dynamic Programming). 
 

Index Terms—road vehicle control, cost optimal control, fuel 

optimal control, dynamic programming, Pontryagin maximum 

principle. 

I. INTRODUCTION 

he optimal control of HEVs (Hybrid Electric Vehicles) is 

an important topic not only because it is useful for power-

management control but also indispensible for the optimal 

design of HEVs. Different vehicle systems can be compared to 

each other only when the controllers guarantee the optimality 

for each deployed system. Technically, we can obtain optimal 

control trajectories if the whole driving-cycle information is 

given prior, and if we have determinate performance indexes, 

such as fuel consumption, exhaust emission, or acceleration 

performance. Under those circumstances, the Dynamic 

Programming (DP) approach guarantees the global optimal 

results and had been investigated in several prior publications 

[1], [2], [3]. The results obtained through DP are unbeatable 

but, unfortunately, cannot be implemented directly. Instead, a 

post-processing step is required by using rule extraction, e.g., 

through Neural Networks, which approximates the results of 

the optimal control pattern. Even with this post-processing 

step, these strategies cannot cover all driving conditions. 

Hence, the real-time controller based on DP is effective only 

for the driving cycle that is used for rule extraction. To remedy 

this problem, stochastic dynamic programming and driving 

pattern detection with multiple driving cycles had been 

suggested as possible solutions [4], [5]. Another approach 

based on optimal control theory which, basically, realizes the 

minimization of the Hamiltonian has been applied to the 

optimal control problem for HEVs in [6], [7]. The Equivalent 

Consumption Minimization Strategy (ECMS), which really 

began from the heuristic concept that electric energy could be 

equivalent to fuel usage, was introduced [8]. Real-time 

applications of ECMS were suggested in [9], [10]. As a 

general case of the Euler-Lagrange equation, Pontryagin’s 

minimum principle (PMP) was also introduced as an optimal 

control solution [11], [12], [13], wherein the Hamiltonian is 

considered as a mathematical function. In this paper, we show 

that the Hamiltonian can be calculated from numerical models 

and further, prove that the control concept based on PMP can 

be a global optimal solution under reasonable assumptions. 

The optimal control based on PMP is simple enough to be 

implemented in real-time applications because it is based on 

instantaneous optimization. Assuming that the cost function to 

be optimized involves only fuel consumption, the control 

concept minimizes the Hamiltonian, which is defined as: 

 ( ) ( ),fc bat batH m P p SOC SOC P= + ⋅  (1)

where ṁfc is the rate of fuel consumption, p is an adjustment 

variable, which is called ‘costate’ in PMP, and SȮC is a time 

derivative of SOC (the state-of-charge). 

II. GENERAL APPROACHES FOR THE OPTIMAL CONTROL 

OF HEVS 

As stated above, assuming that minimum fuel consumption is 

the goal of optimal control, the problem of HEVs can be 

defined as (2), in which the engine speed, Se, and the engine 

torque, Te, can be used to determine the fuel consumption. 
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where L(Se, Te) is the rate of fuel consumption of the engine. 

SOC is determined by a battery model, which will be 

described in (8). Further, Te and Se are restricted by operating 

constraints such as the maximum possible engine speed or the 

maximum possible engine torque given the impact of 

constraints on components, such as the maximum motor speed, 

maximum torque, or maximum battery power. This optimal 

control problem can be solved from optimal control 

techniques, which are described in the next section.  

A. Optimal Control Theory 

To solve a deterministic optimal control problem, which is 

defined as (2), there are two representative approaches. One is 

the Hamilton-Jacobi-Bellman (HJB) approach, which is based 

on Bellman’s principle of optimality, and the other is 

trajectory optimization, which originates from the Calculus of 

Variation.  
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Fig. 1. A field of the optimal cost. The field is a family of optimal fuel 

consumptions. The starting point is SOC =0.6 and t=0. Contrary to this figure, 

in general, a field of cost-to-go is widely used in optimal control problems 

because it is more useful for dealing with state equations. 

As a kind of numerical method for the HJB equation, 

Dynamic Programming (DP) solves a field of optimal control 

that is based on the principle of optimality; the field is a 

family of optimal fuel consumptions, as shown in Fig. 1. On 

the other hand, Pontryagin’s minimum principle (PMP), which 

is a general case of the Euler-Lagrange equation in the 

Calculus of Variation, considers the optimality of a single 

trajectory. (See Fig. 2.) 
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Fig. 2. The trajectory derived from PMP. The trajectory is superior to only 

neighboring trajectories (i.e., it is only locally optimal), which means the 

trajectory from PMP could be inferior to Trajectory 3, which is not adjacent to 

the PMP-derived trajectory. 

In general, the DP approach guarantees the global optimal 

solution by obtaining all possible optimal trajectories from the 

field of optimal control. On the other hand, PMP, as one 

method of trajectory optimization, yields us necessary – but 

not sufficient – conditions that the absolute (i.e., global 

optimal) trajectory must satisfy. Hence, there could be a 

superior solution that is distant from the local optimal 

trajectory that is obtained from PMP. (See Fig. 2.)  

B. DP vs. PMP 

As has been stated above, the trajectory derived from PMP 

might not be a global optimal solution. Therefore, the control 

based on PMP can be considered as inferior to the (globally 

optimal) control based on DP. On the other hand, DP requires 

more computing time than PMP because DP solves all 

possible optimal controls to fill the optimal field [11]. Since 

DP is a numerical representation of the HJB equation, DP 

needs a similar computation load as the HJB equation, which 

solves a partial differential equation (PDE), whereas PMP 

solves just nonlinear second-order differential equations. The 

drawback of DP with regard to the computational load 

becomes compounded due to the ‘curse of dimensionality,’ i.e., 

when the state variables increase in number, the computational 

load of the PDE exponentially increases in accordance with 

the increase in the dimension of the optimal field. However, in 

PMP, the number of nonlinear second-order differential 

equations linearly increases with the dimension. In conclusion, 

we can say that the control based on PMP can reduce the 

computational time for getting an optimal trajectory but it 

could be a local optimal solution, not a global solution in 

general problems.  

C. Sufficient Conditions for Global Optimality of PMP 

In specific cases, the optimal control based on PMP can be a 

global optimal control. For example, it is well-known that the 

optimal control based on the Euler-Lagrange equation can be a 

global optimal control in a linear system [15]. In general, the 

following three approaches are effective to establish that the 

necessary conditions from PMP become sufficient for the 

global optimal control: 1) the optimal trajectory obtained from 

PMP is a unique trajectory that satisfies the necessary and 

boundary conditions; 2) some geometrical properties of the 

optimal field provide the possibility of optimality verification; 

and 3) as a general statement of the second approach, the 

absolute optimality is, mathematically, proved by clear 

propositions [21]. If one of these three approaches is 

applicable to the optimal control problem of HEVs, we can 

replace DP with PMP, which can save on time to yield optimal 

results and also guarantee global optimality. 



 

 

III. APPLICATION OF PONTRYAGIN’S MINIMUM 

PRINCIPLE 

In the optimal control problem of HEVs, Pontryagin’s 

minimum principle (PMP) produces a boundary value problem 

within second-order nonlinear differential equations. In this 

section, we introduce a static model of a target vehicle and 

describe the techniques for obtaining the Hamiltonian from the 

model and deciding on the optimal control from the 

Hamiltonian, which is a local process of getting the optimal 

trajectory through PMP. 

A. Vehicle Model 

In this paper, we assume that the hybrid vehicle uses a power-

split hybrid, viz., the Toyota Hybrid System (THS), which 

integrates two motors/generators and an engine through a 

planetary gear set (see Fig. 3). In the static model of the 

power-split system, we have two independent control variables, 

the torque of the engine and the speed of the engine, when the 

requested output speed and torque are given, which means all 

other variables can be fixed by these two control variables.  

 
Fig. 3. A schematic diagram of a power-split hybrid system considering the 

final differential gear ratio.
 

 
Fig. 4. The lever diagram for the lever analogy of the THS system by which the 

force and momentum equilibria are simply obtained.  

The torque and speed relations among the power resources 

are well-known under static conditions [2]. We can obtain the 

operating torques and speeds of the MG1 and MG2, which are 

functions of the engine torque and the engine speed, when the 

requested output torque and speed are already calculated from 

the driving cycle.  

 ( )
1

2

1/0 11

11

mg req

mg eng

T T

T TR RR

ζ− ⋅⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥+− + ⎣ ⎦⎣ ⎦ ⎣ ⎦

(3)

 
1

2

1

1 0

mg req

mg eng

S SR R

S S

ζ ⋅⎡ ⎤ ⎡ ⎤− +⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 (4)

where Teng, Tmg1, Tmg2, and Treq are the torques of the engine, 

MG1, and MG2, and the requested torque of output, 

respectively. Further, R and ζ are the gear ratio of the planetary 

gear set and the final gear ratio, respectively. Seng, Smg1, Smg2, 

and Sreq are the speeds of the engine, MG1, and MG2, and the 

requested output speed, respectively. The required power of 

the battery can then be calculated as: 

1 1 1 2 2 2

k k

bat c mg mg c mg mgP T S T Sη η= ⋅ ⋅ + ⋅ ⋅ (5)

where the efficiencies of MG1 and MG2, ηc1 and ηc2, are 

obtained based on motor efficiency maps of each MG, which 

include the motor and inverter losses, and  

1,

1,

recuperating
k

motoring

⎧
= ⎨−⎩  

(6)

We can also use a fuel consumption rate map to obtain ṁfc. 

 ( ),fc eng engm L T S=
 

(7)

Finally, the derivative of SOC, SȮC can be calculated from 

the battery power and the current SOC. Considering that the 

equivalent open-circuit voltage and internal resistance are 

functions of SOC, SȮC is a function of SOC and Pbat, which 

can be expressed as [2]. 
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In conclusion, ṁfc in (7) and SȮC in (8) depend on Teng, Seng, 

and SOC, when the requested output condition is given.  

B. Confined Optimal Operating Line (C-OOL) 

Prior to solving the time horizon optimal problem of HEV, 

we introduce an inner-loop optimal process to get Confined-

Optimal Operating Line (C-OOL), which is the family of the 

best engine operating points confined to specific output torque 

and speed. This optimal process makes the Hamiltonian as a 

function of only one control variable, Pbat. To get the 

Hamiltonian, first, we calculate ṁfc and Pbat which are 

functions of the control variables, Teng 
and Seng 

described in (7) 

and (9) from the static model (3)-(5) in every second. 

 ,( )bat eng engP h T S=
 

(9)

The optimal problem to minimize the fuel consumption 

subject to a specific battery power, Pbat, is defined as: 
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Fig. 5. An example of C-OOL when Treq=100Nm and Sreq=100rad/s. Dotted-

lines are feasible operating lines for specific values of Pbat. The resolution of 

Pbat in the figure is 1.5kW whereas it is 0.05kW in our simulation.  



 

 

The optimized control variables, T
* 

eng
 
and S

* 

eng, in the problem 

can be decided by choosing a minimum point of fuel 

consumption on each feasible engine operating line as per Pbat 

(see the dotted-line in Fig. 5). Finally, the instantaneous 

optimal fuel consumption rate is a function of the optimized 

control variables, T
* 

eng 
 
and S

* 

eng, subject to the specified Pbat. 

 ( )* *,fc eng engm L T S=  (11)

 ( )* *,bat eng engP h T S=  (12)

In light of the time-horizon optimal control, this optimal 

process reduces the dimension of the control variable from 

Teng and Seng 
to only Pbat, whereby we do not consider the 

inferior engine operating points when solving the problem in 

the time-horizon plane. Now, from (11) and (12), we obtain 

the fuel consumption, ṁfc, which is a function of Pbat, as 

shown in Fig. 6. 
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Fig. 6. Instantaneous optimal fuel consumption rate line in the domain set, 

{h(Treq, Sreq), L(Treq, Sreq)|[Treq, Sreq]∈[T
* 

req , S
* 

req ]}, when Treq=100Nm and 

Sreq=100rad/s. 

Now, the fuel consumption rate, ṁfc, can be determined by 

Pbat, which could be decided by a supervisory algorithm. Then, 

the engine operating point and all other operating points of 

power resources are calculated based on C-OOL. The optimal 

fuel consumption rate line in Fig. 6 can be interpreted as a 

kind of Pareto frontier for all the engine operating points [22]. 

The physical interpretation of the line in Fig. 6 is clear: given 

that the engine always operates at the best point, less fuel 

consumption is needed when more battery power is used, and 

vice versa. In general, the requested output torque and speed 

vary over time; hence, we can assert that in the time-horizon 

plane, the fuel consumption rate, ṁfc, is a function of just Pbat 

and t, as in (13). 
 

 ( ),fc batm g P t=  (13)

Additionally, the pure electric driving point shown in Fig. 6 

is the operating point at which the battery supplies all the 

energy needed to drive the vehicle while the engine does not 

operate or, if appropriate, operates at an optimal speed with no 

fuel consumption but with engine drag.  

C. Necessary Conditions from PMP 

From the assistance of the inner-loop optimal process, only 

Pbat is the control variable that decides all the operating points 

in the time-horizon plane of the optimal control problem. The 

control variable, Pbat, decides the fuel consumption rate and 

the engine operating point in the C-OOL. All the other system 

variables, such as the motor speed, torque, and transmission 

status, are fixed from the engine operating point. To obtain the 

optimal Pbat, the performance index can be defined as: 

 ( )( )
0

min ,
ft

bat
t

J g P t t dt⎡ ⎤=⎢ ⎥⎣ ⎦∫  (14)

In (14), g is the best fuel consumption rate function in (13), 

which is a function of Pbat and t. From PMP, the Hamiltonian 

is defined as (15), where p is the costate.  

( ) ( ),bat batH g P p f SOC P= + ⋅  (15)

The state equation and the costate equation can be 

expressed as (16) and (17), respectively. 

( ), bat
HSOC f SOC P

p
∂= =∂

 
(16)

( ) ( )
fHp p

SOC SOC
∂∂= − = − ⋅

∂ ∂ (17)

For optimality, another condition in (18) should be 

considered to determine the optimal control variable, Pbat, at 

every time step. 
* * * * *( , , , ) ( , , , )

bat bat
H P SOC p t H P SOC p t≤ (18)

Finally, when both the final time and the final state are fixed, 

as in the optimal control problem of HEVs, the boundary 

condition of the final state is added for the sake of optimality. 

( ) ( )0 fSOC t SOC t=  (19)

These conditions, (16)~(19), are necessary and boundary 

conditions that the optimal trajectory must satisfy [19]. 

D. Optimal Control using the Hamiltonian 

The Hamiltonian is obtained from Eq. (13), Eq. (8), and the 

costates. The optimal control is determined by the necessary 

condition in (18). Fig. 7 shows three examples of the 

Hamiltonian and the associated optimal controls. We can 

choose the optimal control, Pbat, which minimizes the 

Hamiltonian if the costate is given beforehand, though the 

optimal costate is obtained over the entire time-horizon time to 

satisfy the boundary condition in (19).  
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Fig. 7. Three examples of the Hamiltonian and the associated optimal controls 

for varying costates when Treq = 100Nm, Treq=100Nm, Sreq=100rad/s, and SOC 



 

 

is 0.6. 

If we have an appropriate costate, this instantaneous 

optimal control could be an optimal solution in the time-

horizon control problem and the Hamiltonian function would 

not need to be an explicit function. In Fig. 7, the higher costate 

makes the controller choose the higher P
* 

bat  as an optimal 

control, which lowers SOC. Additionally, the Hamiltonian in 

Fig. 7 is an almost-convex function and the constraint on the 

state is presented by a linear summation of SOC. In that case, 

mathematically, the optimization problem possibly possesses 

an appropriate costate, which implies that we can find the 

appropriate costate to satisfy the boundary condition; this is a 

situation of strong duality in optimization [23]. As shown in 

Fig. 7, the control concept is based on instantaneous 

minimization but the control can be optimal only when an 

appropriate costate is given. 

IV. CHARACTERISTICS OF THE HEV PROBLEM 

In view of optimal control, the HEV problem has special 

characteristics. The fuel consumption rate in Fig. 6 is not a 

function of the state variable, SOC, and SȮC in (16) is not 

only independent of time but also highly depends on Pbat 

rather than SOC. These characteristics influence the properties 

of the solution from PMP. In this section, we describe the 

specialties of the optimal control problem of HEVs with 

regard to the above characteristics. We also introduce several 

techniques to apply PMP in general problems of HEVs. 

A. Constant Costate 

The costate in (15) originates from Lagrange multipliers for 

the incorporation of dynamic constraints, which, occasionally, 

possess physical meanings. In the HEV problem, the costate 

can be interpreted as a ‘weight’ coefficient of the time 

derivative of SOC, by which the second term in (15) can be 

interpreted as an equivalent fuel consumption. On the other 

hand, the costate in our problem can be considered as a 

constant under some assumptions about the battery. In general, 

the SOC range of the battery usage is limited between 0.2 and 

0.9 but in charge-sustaining problems, the battery mainly 

operates in a narrower range, e.g., from 0.5 to 0.7; hence, the 

voltage and the resistance may not vary so much in the range. 
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Fig. 8. Plot of the battery’s open-circuit voltage and resistance (used in Prius04). 

In that case, the costate stays near the initial value because, 

mathematically, the absolute value of ∂f/∂(SOC) in (17) is very 

small when compared to the absolute value of the costate for 

the entire driving cycle. If the resistance and the voltage are 

constants or depend on only Pbat, we can assume that SȮC 

depends on only Pbat and not on SOC. Then, the costate 

expression, i.e., (17), vanishes in our optimal control problem, 

which is reasonable in the primary range of usage of SOC. 

 ( ) ( ), bat batSOC f SOC P f P=
 

(20)

Now, the costate can be considered as a constant. 

 ( ) 0, constant
f

p p p
SOC

∂= − ⋅ = → =
∂  (21)

Owing to the constant costate, we do not only reduce the 

complexity of the optimal control based on PMP but also 

discover an interesting feature of the optimal control problem 

of HEVs. 

B. Condition of Global Optimality 

The idea of assuming the costate as constant is suggested in 

several prior studies to simplify the computations in 

simulation; the assumption has been described as an 

intuitively reasonable assumption [6], [10], [14]. However, the 

essential point of the assumption is that the optimal control 

based on PMP can become a global optimal control under the 

assumption. To prove this proposition, we have to return to the 

first approach of section II.C. As stated in that section, if an 

optimal trajectory that satisfies the necessary conditions of 

PMP and the boundary conditions is unique, the optimal 

trajectory should be considered as a global optimal trajectory. 

In our problem, we can consider two distinct trajectories that 

have different costates but satisfy all the necessary conditions 

and the boundary condition in (16)~(19) shown in Fig. 9. 

Under the assumptions of the battery, the Hamiltonian can be 

presented as: 

 ( ) ( )bat batH g P p f P= + ⋅  (22)

 
Fig. 9. The two optimal SOC trajectories that satisfy the necessary conditions 

and the boundary condition. 

From the necessary condition in Eq. (18), the optimal 

control variable for SOC
* 

1 , P
* 

bat,1, satisfies the condition in Eq. 

(23). 

 ( ) ( )* * *

,1 1 1, , , ,bat batH P p t H P p t≤  (23)

This condition should be satisfied for all admissible values 

of  Pbat shown in Fig. 7, including P
* 

bat,2, i.e., either 

 ( ) ( )* * * *

,1 1 ,2 1, , , ,bat batH P p t H P p t≤ , (24)

or 



 

 

( ) ( ) ( ) ( )* * * * * *

,1 1 ,1 ,2 1 ,2, ,bat bat bat batg P t p f P g P t p f P+ ⋅ ≤ + ⋅ , (25)

We can apply the same argument for SOC
* 

2 , which can be 

expressed as: 

( ) ( ) ( ) ( )* * * * * *

,2 2 ,2 ,1 2 ,1, ,bat bat bat batg P t p f P g P t p f P+ ⋅ ≤ + ⋅ . (26)

Another inequality is obtained by summing the above two 

inequalities; this can be expressed as: 

 ( ) ( ) ( ){ }* * * *

1 2 ,1 ,2 0bat batp p f P f P− ⋅ − ≤ . (27)

Now, we can replace the state equation, f(Pbat), with SȮC.  

 ( ) ( )* * * *

1 2 1 2 0p p SOC SOC− ⋅ − ≤ . (28)

The condition in Eq. (28) indicates that the two existing 

optimal trajectories, which have the same initial and final SOC 

values, are impossible because the sign of (SȮC
* 

1−SȮC
* 

2 ) does 

not change for all t under different constant costates. Finally, 

the supposition that there are two different optimal trajectories 

that satisfy both the necessary and the boundary conditions is 

refuted. Additionally, from Eq. (28), we can derive the 

proposition that the SOC trajectory that has a higher costate 

always either increases at a slower rate or decreases at a faster 

rate than the trajectory with a lower costate under the 

assumptions of the battery, which makes sense in light of the 

observations on the optimal control of the Hamiltonian in 

section III.D. 

C. State Variable Constraints 

The constraints on the control variable, Pbat, can be applied to 

the optimal problem when calculating the Hamiltonian from 

the static model. The constraints on the state variable, such as 

maximum or minimum limits on SOC, however, are not 

introduced above. If needed, we can apply a state variable 

inequality constraint by adding a new imaginary state variable, 

SOCC, and augmenting the Hamiltonian with the adjusted 

terms. To apply the constraint, we have to define the state 

equation of SOCC as in [19]. 

( ) ( )
( ) ( )

2

min min

2

max max

- U -

- U -

CSOC SOC SOC SOC SOC

SOC SOC SOC SOC

= ×

+ ×
(29)

In (29), U is a unit Heaviside step function and SOCmin and 

SOCmax are minimum and maximum limits on SOC, i.e., 0.2 

and 0.9. If we set both SOCC(t0) and SOCC(tf) to zero, the 

imaginary state variable, SOCC, becomes zero for the entire 

driving cycle because SȮCC can never be nonzero when the 

state does not violate the constraint on SOC for the entire 

driving cycle. The Hamiltonian, including the augmented term 

about SOCC, is defined as: 

 fc C CH m p SOC p SOC= + ⋅ + ⋅
 

(30)

From PMP, the costate equation corresponding to the new 

state can be expressed as: 

 ( ) 0C
C

Hp
SOC

∂= − =
∂

 (31)

The state equation and the costate equation, (29) and (31), 

should be added to the original necessary conditions of PMP. 

This additional state is trivial in the optimal control problem 

for a charge-sustaining HEV because there is little likelihood 

that its optimal SOC trajectory violates the SOC limitation. 

This consideration, however, is effective in the optimal control 

problem for plug-in hybrid vehicles.  

D. Cost Function 

In the PMP algorithm, the Hamiltonian can be modified if we 

have to consider new components of cost, such as emissions or 

the estimation of drivability, or new states, such as the 

temperature. The performance index of the problem with these 

new costs and states can be defined as: 

 ( )( ) ( )
0

,
ft

f f fc new
t

J h t t m g dt= + +∫x  (32)

In (32), gnew is a new cost function, x is a new state, and h is 

a cost function for the final states. The modified Hamiltonian 

can be expressed as: 

 ( ) ( )fc new new newH m g p SOC t t= + + ⋅ + ⋅Tp x (33)

In (33), pnew is a new costate vector. The necessary 

conditions of PMP, (16)~(18), can be also applied for the new 

Hamiltonian. In general, if the final state of the new states, 

x(tf), is not fixed, the new boundary condition, (34), should be 

added instead of the state boundary condition for the fixed 

boundary [19]. 

 0
f

new
new t

h⎡ ⎤∂ − =⎢ ⎥∂⎣ ⎦
p

x
 (34)

If the following two conditions are satisfied, this addition of 

new costs does not affect the global optimality of PMP, which 

means that the uniqueness that we established in section IV.B 

is still applicable. 1) The new cost is not a function of the state 

variables, SOC or xnew; therefore, the cost can be directly 

calculated from the control variable, Pbat, i.e., the new cost is 

determined by engine operating points, as is the case with the 

fuel consumption. 2) There is no state except SOC, or, if there 

is such a state, the state equations are not functions of the state 

variables at all. In this case, we can apply the same argument 

to the new Hamiltonian, for which we can consider two 

distinct trajectory vectors, x1 and x2, which satisfy the 

necessary condition in Eq. (18). Now, we have a similar result 

as with Eqs. (23) ~ (28). The result is expressed as: 

 ( ) ( )* * * *

1 2 1 2 0− ⋅ − ≤p p x x  (35)

In (35), p* is a constant costate vector that includes p and pnew 

and x*
 is a state vector that includes SOC and the new state, 

xnew. When x
* 

1 (t0) = x
* 

2 (t0), there is no possibility that x
* 

1 (tf) = x
* 

2

(tf) except that 

 ( ) ( )* * * *

1 2 1 2 0, t− ⋅ − = ∀p p x x  (36)

The inequality in (35) is an equality, i.e., (p
* 

1 −p
* 

1 ) is an 

orthogonal vector of (ẋ * 

1 − ẋ * 

2 ), only when the minimum 

Hamiltonian for x1 is coincident with the minimum 

Hamiltonian for x2 for all time-points, which is an unusual 

situation. Therefore, we can conclude that x
* 

1 (t) = x
* 

2 (t) for all t 

is the only solution if the final trajectory vector, x
* 

1 (tf), equals  

x
* 

2 (tf) when x
* 

1 (t0) = x
* 

2 (t0). This proposition states that the 



 

 

optimal trajectory x
* is still unique even though new cost 

functions may be added. In general, if there are additional 

costs or states, such as emission costs or the temperature, 

either the cost can be a function of the new states or the states 

might be coupled to each other. Then, the optimal control 

based on PMP cannot guarantee global optimal control though 

it remains the case the control based on PMP is locally optimal. 

E. ECMS and PMP 

The equivalent consumption minimization strategy (ECMS) 

was introduced as an optimal control idea. Several control 

strategies based on ECMS, such as Adaptive-ECMS and 

Telemetric-ECMS, were suggested as real-time optimal 

control concepts in [8], [9], [10]. 

 
, 0

min
, 0

fc cha bat bat

fc dis bat bat

m s P P
EFC

m s P P

⎡ ⎤+ >⎧⎪=⎢ ⎥⎨ + <⎪⎢ ⎥⎩⎣ ⎦  

(37)

The performance index of ECMS in (37) is generally called 

the equivalent fuel consumption (EFC) though the forms of 

application of the idea vary slightly. ECMS was really 

developed from a heuristic concept that current battery usage 

would be compensated for in the future; so, there are two 

different coefficients, scha and sdis, for the charging and 

discharging statuses, which influence the electric-energy 

balance. From the similarity between the Hamiltonian and 

EFC, ECMS was described as being fundamentally linked to 

the Euler-Lagrange equation [14]. It is natural to view ECMS 

from the concept of PMP because PMP states that the 

Hamiltonian does not have to be an analytic or explicit 

function. From the comparison between the Hamiltonian and 

EFC, 

 , 0

, 0

cha bat bat

dis bat bat

s P P
p SOC

s P P

>⎧
⋅ ≈ ⎨ <⎩  

(38)

When the equivalent factors in ECMS are optimized for the 

HEV problem, these factors, scha and sdis, can be linked to the 

optimal costate of PMP, as in Eq. (38). 
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Fig. 10. The correlation between SȮC and Pbat from the battery model. The 

equivalent factors in ECMS come from the mean slopes of the charging and 

discharging statuses. 

Fig. 10 shows the correlation between Pbat and SȮC as per 

the SOC from the battery model in (8). When the two 

equivalent coefficients of ECMS, scha and sdis, are optimized 

for the entire driving cycle to satisfy the energy balance, the 

boundary condition, SOC(t0) = SOC(tf), is satisfied. These two 

coefficients are linked to the charging and discharging slopes 

in Fig. 10. By the use of two parameters rather than one,  the 

EFC can be brought closer to the Hamiltonian. If more distinct 

and equivalent parameters are used, such as s1, s2, s3, s4, and s5, 

as in Fig. 10, the closer is the fuel consumption of ECMS to 

the optimal value. On the other hand, in the optimal control 

based on ECMS, if the correlation between Pbat and SȮC is 

too complicated to be represented by these two slopes, ECMS 

might not show good results, as in [9], [24]. On the other hand, 

the optimal control based on PMP is not affected by the 

complexity of the correlation between Pbat and SȮC. In 

conclusion, ECMS is closely connected to optimal control 

theory because EFC can be considered as a Hamiltonian-like 

function but the optimal control based on exact Hamiltonians 

could be better in the sense that it guarantees optimality, 

regardless of the complexity of the correlation between Pbat 

and SȮC. 

V. OPTIMAL SIMULATION 

For simulation, all vehicle data come from the model of Prius 

04 in the Powertrain System Analysis Toolkit (PSAT). As a 

numerical method of PMP, the variation of extremals with 

multiple shooting methods, as in [20], is used to get the 

optimal trajectory that satisfies the necessary conditions. 

Based on the simulation results, we can consider that the 

assumptions of the battery are reasonable in charge-sustaining 

problems. 

Table 1. Vehicle parameters applied in the simulation. All parameters are based 

on PSAT, except for the total vehicle mass and the transmission gear efficiency. 

Vehicle total mass 1405 kg (1 persons) 

Engine Si_1497_57_US_04Prius 

Motor1 pm_25_50_prius 

Motor2 pm_15_30_prius 

Battery Nimh_6_168_panasonic_MY04_Prius 

Planetary gear ratio 2.6 (78/30) 

Final gear ratio 4.113  

Transmission gear efficiency 90 % 

Rolling resistance coefficient 0.007+(0.00012·vehicl velocity)  

Frontal area 1.746 m2 

Drag coefficient 0.29 

Wheel radius 0.305 m  

Air density 1.23 kg/m3 

SOC resolution 0.00001 

Engine torque resolution 1 Nm 

Engine speed resolution 1 rad/s 

A. Results from PMP and DP 

There are three optimal SOC trajectories in Fig. 11, which are 

the optimal SOC trajectory from DP, the optimal trajectory 

from PMP, and the optimal trajectory from PMP when a 

constant costate is used under the Federal Urban Driving 

Schedule (FUDS). First of all, the simulation results in Table 2 

show that the fuel consumptions under PMP are very close to 



 

 

the results of DP. 

Table 2. Results on fuel economy through DP and PMP. 

cycle name DP (km/l) 
PMP (km/l) 

Exact solution Constant p 

FUDS 34.6597 34.6364 34.6361 

The total fuel consumption through PMP is 0.07% less than 

through DP. If the truncation error is considered, it is hard to 

conclude that there is a significant difference. The optimal 

trajectories of SOC from DP, PMP, and PMP with a constant 

costate in Fig. 11, show that the trends in SOC usage from 

these control algorithms are nearly coincident.  
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Fig. 11. Optimal results from DP, PMP, and PMP with a constant costate under 

FUDS. 

Mathematically, we would have thought that DP would be 

superior to PMP and that the exact solution of PMP would be 

better than the solution of PMP with a constant costate. Based 

on several other results of our numerical simulations, we can 

conclude that the fuel economies are not significantly different 

across the three techniques (see Table 3). 

Table 3. Optimal fuel-economy results from the three techniques under various 

driving schedules. Some results from DP are less than those from PMP because 

of truncation and numerical errors. 

cycle name DP (km/l) 
PMP (km/l) 

Exact solution Constant p 

ece_eudc 30.6576 30.6668 30.6663 

nedc 32.7784 32.7861 32.7790 

Japan1015 37.7861 37.7726 37.7725 

us06 21.2126 21.0845 21.0839 

udds truch 32.3003 32.3328 32.3317 

Manhattan 29.6651 29.6604 29.6602 

Newyork bus 24.1240 24.1190 24.1189 

As mentioned above, the results from PMP with constant 

costates show that the assumptions of the battery are effective 

in the optimal-control problem of a charge-sustaining HEV. In 

conclusion, an instantaneous optimal control algorithm using a 

single constant equivalent parameter can be close to the 

globally optimal solution when 1) the value of the parameter is 

properly selected and 2) the battery SOC operates within a 

proper range, as a result of which the voltage and the 

resistance do not vary very much. 

VI. CONCLUSION 

The main purpose of this paper is to propose a PMP 

(Pontryagin’s minimum principle) algorithm to control hybrid 

vehicles in optimality. The PMP algorithm can be used for 

real-time optimal control because it is based on the 

instantaneous minimization of the Hamiltonian. We proved 

that the optimal control based on PMP can be a global optimal 

control under the assumptions of the battery, which are 

reasonable in a charge-sustaining optimal control problem of 

HEVs. Based on the assumption, the costate of PMP can be 

considered as a constant parameter; it simplifies the 

optimalcontrol problem. In simulation results, the optimal 

control results from PMP are almost the same as the globally 

optimal control results. Though we use a constant costate for 

PMP, the results are still excellent when compared to the 

global optimal results. In this paper, we just show that PMP is 

useful as an optimal solution for HEV problems. However, our 

study is ongoing to find out the correlation between the 

driving cycle and the costate from a number of optimal results. 

The essential preconditions to enable the correlation are that 1) 
the optimal costate can be a simple parameter, not a complex 

time-varying function and 2) optimal control based on PMP 

with a constant costate guarantees optimality and especially, 

global optimality. We demonstrated these two facts, which is 

the most important contribution of this paper.  
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