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Abstract

This paper presents a method for optimal control of

hybrid systems. An inequality of Bellman type is con-

sidered and every solution to this inequality gives a

lower bound on the optimal value function. A dis-

cretization of this “hybrid Bellman inequality” leads

to a convex optimization problem in terms of finite-

dimensional linear programming. From the solution

of the discretized problem, a value function that pre-

serves the lower bound property can be constructed.

An approximation of the optimal feedback control law

is given and tried on some examples.

Keywords: hybrid systems, optimal control, linear

programming, dynamic programming.

1. Introduction

Hybrid systems are systems that involve interaction

between discrete and continuous dynamics. Such

systems have been studied with growing interest

and activity in recent years. One reason for the

interest is that modeling and simulation of a complex

system often require a combination of mathematical

models from a variety of engineering disciplines. The

structure of such submodels can be very different,

some can be discrete and some continuous.

Very often, the same phenomenon can be described

either by a discrete model or a continuous one, de-

pending on the context and purpose of the model [1].
Consider for example an asynchronous discrete-event

driven thermostat, which discretizes temperature in-

formation as {too hot, too cold, normal}.

Practical control systems typically involve switching

between several different modes, depending on the

range of operation. Even if the dynamics in each

mode is simple and well understood, it is well known

that automatic mode switching can give rise to

unexpected phenomena.

Basic aspects of hybrid systems were treated in [6],
[7], and [11]. For stability analysis, see [3, 8] and

references therein. The reformulation of an optimal

control problem in terms of linear programming has

previously been used for continuous time systems in

[9] and [10] and is closely connected to ideas of [12].
Related methods were discussed for discrete systems

in [2] and on an abstract level for hybrid systems

in [4].

This paper presents a novel computational approach

to optimal control of hybrid systems, based on ideas

from dynamic programming and convex optimiza-

tion. Discretization of Bellman’s inequality gives a

lower bound on the optimal cost in terms of linear

programming. A control law which is used for simula-

tion is constructed from the lower bound. The results

are demonstrated in some examples.

2. Problem Formulation

Define a hybrid system as

{

ẋ(t) � fq(t)(x(t),u(t))

q(t) � ν (x(t), q(t−), µ(t))
(1)

where x(t) ∈ X ⊂ Rn is the state vector, u(t) ∈
Ωu ⊂ Rm is a continuous input signal of the system.

There is also a discrete input, µ(t) ∈ Ωµ , which

allows for the selection between N different system

modes, q(t) ∈ Q � {1,2, . . . ,N}. The notation q(t−)
is used for the left-hand limit of q at t. Sq,r is a set

(parameterized by q and r) such that switching from

mode q to r is possible when x ∈ Sq,r ⊆ X . The time

argument, t, will often be omitted in the sequel for

readability.

The optimal control problem is to minimize the cost

function

J(x0, q0) �

∫ t f

t0

lq(x,u)dt+
M
∑

k�1

s(x(tk), q(t−k ), q(t+k ))

(2)

subject to (1) while bringing the system from an

initial state (x0, q0) at time t0, to a final state (x f , q f )
at time t f , where the end time, t f , is free. Here, M is



an arbitrary finite number of switches occurring at

times t0 < t1 < t2 < . . .< tM < t f and s(x, q, r) > 0 is

an associated cost for switching from discrete state

q to r, the continuous part being x just before the

switch. Note that s(⋅) > 0 removes the problem of

infinitely many jumps in a finite interval.

The framework developed in this paper would also al-

low the number of continuous states to vary with the

discrete mode according to ẋq(t) � fq(t)(xq(t),uq(t)),

where xq(t) ∈ Xq ⊂ Rn(q), uq(t) ∈ Ωuq
⊂ Rm(q). The

usage of the system description (1), however, will

hopefully prevent the reader from getting stuck on

details.

3. Lower Bounds on Optimal Cost

PROPOSITION 1

Let Vq : X @→ R, q � 1,2, . . . ,N be a set of

continuous, piecewise C 1 functions that satisfy

0 ≤
�Vq(x)

�x
fq(x,u) + lq(x,u)

∀ x ∈ X , u ∈ Ωu, q ∈ Q (3)

0 ≤ Vr(x) − Vq(x) + s(x, q, r)

∀ x ∈ Sq,r q, r ∈ Q : q 6� r (4)

0 � Vq f
(x f ) (5)

where fq(x,u) gives the dynamics of a hybrid system

according to (1), lq(x,u) and s(x, q, r) define a cost

function for the system according to (2). Then, for

every (x0, q0), Vq0
(x0) gives a lower bound on the

cost for optimally bringing the system from (x0, q0)
to (x f , q f ), x(t) ∈ X ∀ t ∈ [t0, t f ].

Remark 1. Rather than having one single value

function, V(x), as would be the case for a purely

continuous system, the proposition gives a set of

value functions, Vq(x), where q is the initial value

of the discrete mode. Note that these functions give

the cost for optimal trajectories that are allowed

to switch modes — the index q only implies that

trajectories starting in mode q are considered.

It is of course possible to think of Vq(x) as one single

function, parameterized by x and q. For consistent

notation, however, Vq(x) has been chosen instead of

V(x, q).

Proof. Let û(⋅) and µ̂(⋅) be control signals that drive

the system from (x0, q0) at time t0 to (x f , q f ) at

time t f � tM+1. Let q̂(t) denote the mode trajectory

resulting from µ̂(t) and define xk � x(tk), x−k � x(t−k ),

and q̂k � q̂(t), tk ≤ t < tk+1. Then

J(x0, q̂0) �

M
∑

k�0

∫ tk+1

tk

lq̂k
(x, û)dt+

M
∑

k�1

s(x−k , q̂k−1, q̂k) ≥

M
∑

k�0

∫ tk+1

tk

−
�Vq̂k

(x)

�x
f q̂k
(x, û)dt+

+
M
∑

k�1

{

Vq̂k−1
(x−k ) − Vq̂k

(x−k )
}

�

M
∑

k�0

{

Vq̂k
(xk) − Vq̂k

(xk+1)
}

+

+
M
∑

k�1

{

Vq̂k−1
(xk) − Vq̂k

(xk)
}

�

Vq̂0
(x0) − Vq̂M

(xM+1) � Vq̂0
(x0)

Also the optimal value function, V ⋆
q (x) will meet the

the constraints (3)-(5), under appropriate interpre-

tation of �Vq(x)/�x. Hence the inequalities do not

introduce any conservatism in the lower bound.

4. Discretization

Utilizing a computer to solve (3)-(5) for a specific

control problem, a straight forward approach is to

grid the state space to require the inequalities to

be met at a set of evenly distributed points in X .

This approximation will, however, not guarantee a

lower bound on the optimal cost, unless the nature

of fq and Vq between the grid points is taken into

consideration.

In the case of a two-dimensional continuous state

space, introduce the notation

xjk � x f + jhe1 + khe2

X jk � {xjk +θ1he1 +θ2he2 : 0 ≤ θ i ≤ 1}

X̂ jk � {xjk +θ1he1 +θ2he2 : −1 ≤ θ i ≤ 1}

( f jk

q
)i � min

x∈X̂ jk ,u∈Ωu

( fq(x,u))
i

( f
jk

q )i � max
x∈X̂ jk ,u∈Ωu

( fq(x,u))
i

(l jk
q )i � min

x∈X̂ jk ,u∈Ωu

(lq(x,u))i

V jk
q � Vq(xjk)

∆iV
jk
q � (Vq(xjk + hei) − Vq(xjk))/h

∆−iV
jk
q � (Vq(xjk) − Vq(xjk − hei))/h

where e1 and e2 are unit vectors along the coordinate

axes, and h is the grid size.
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Figure 1: Illustration of X jk and X̂ jk.

Introduce new vector variables, λ jk
q ∈ Rn for (j, k, q)

such that xjk ∈ X , q ∈ Q. The inequalities (3)-(5)
can then be replaced by

0 ≤(λ jk
q )1 + (λ jk

q )2 + l jk
q (6)

(λ jk
q )tit ≤( f

jk

q
)tit∆iV

jk
q i � −2,−1,1,2 (7)

(λ jk
q )tit ≤( f

jk

q )tit∆iV
jk
q i � −2,−1,1,2 (8)

0 ≤ V jk
r − V jk

q + s(xjk, q, r) ∀ xjk ∈ Sq,r (9)

0 � V00
q f

(10)

where (6)-(8) form a combination of backward and

forward difference approximations of (3).

For x � xjk + θ1he1 + θ2he2 ∈ X jk, define the

interpolating function

Vq(x) � (1−θ1)(1−θ2)V
jk
q +θ1(1−θ2)V

(j+1)k
q

+ (1−θ1)θ2V
j(k+1)
q +θ1θ2V

(j+1)(k+1)
q (11)

The following result applies.

THEOREM 1—DISCRETIZATION IN R2

If V
jk
q satisfy (6)-(10) for all q ∈ Q and for all grid

points xjk ∈ X ⊂ R2 such that X jk intersects X ,

then the interpolating function Vq defined by (11)
satisfies (3)-(5) and, for every (x0, q0), Vq0

(x0) is a

lower bound of J(x0, q0).

Remark 1. Any function that meet the constraints,

even the trivial choice Vq(x) � 0, is a lower bound

on the true cost. Thus, to yield useful bounds, Vq(x)
need to be maximized subject to (6)-(10). The max-

imization could be carried out in either one point,

(x0, q0), or several points, (x, q) ∈ X � Q, simultane-

ously.

For the original, non-discretized problem, the result

of a maximization of Vq(x) is always identical to the

optimal cost, regardless if the maximization is done

at a particular initial state, or by summing the values

at several initial states.

However, for the discretized problem, different

choices of maximization criteria may lead to differ-

ent results. Fortunately, experience from examples

shows that the difference between the results of a

single-point and a multi-point maximization is of-

ten small, making it possible to compute the value

function in a large subset of X � Q solving one LP.

Remark 2. The restriction x(t) ∈ X in the optimal

control problem is essential. It may happen that

for some initial states x0 there exist no admissible

solutions inside X . Then the maximization of Vq0
(x0)

can lead to arbitrarily large values.

Remark 3. The theorem is easily extended to Rn.

Define j � (j1, j2 , . . . ,jn) and exchange jk for the new

multi-index j in the above inequalities. The limits

of all summations and enumerations should also be

adjusted.

Proof. Assume that x ∈ X jk. Noting that ∆1V
jk
q �

∆−1V
(j+1)k
q , ∆2V

jk
q � ∆−2V

j(k+1)
q , the inequalities (6)-

(8) taken at grid points jk, j(k + 1), (j + 1)k, and

(j + 1)(k+ 1) give

0 ≤ fq1(x,u)∆1V jk
q + fq2(x,u)∆2V jk

q + lq(x,u) (12)

0 ≤ fq1(x,u)∆1V
j(k+1)
q + fq2(x,u)∆2V jk

q + lq(x,u)
(13)

0 ≤ fq1(x,u)∆1V jk
q + fq2(x,u)∆2V

(j+1)k
q + lq(x,u)

(14)

0 ≤ fq1(x,u)∆1V
j(k+1)
q + fq2(x,u)∆2V

(j+1)k
q +

+ lq(x,u) (15)

The gradient of Vq is given by

�Vq

�x
�

[

(1−θ2)∆1V
jk
q + θ2∆1V

j(k+1)
q

(1−θ1)∆2V
jk
q + θ1∆2V

(j+1)k
q

]T

and thus, adding (12)-(15)weighted with (1−θ1)(1−
θ2), (1−θ1)θ2, θ1(1−θ2), and θ1θ2 respectively proves

that (3) is met for x. The inequality (4) is met since

Vq is a convex combination of grid points that all

meet (9), and (5) is the same condition as (10).

Note a special case in which the computational load

of the local optimizations in Theorem 1 is lightened:

if fq(x,u) � hq(x) + gq(x)u and lq(x,u) � oq(x) +
mq(x)u while Ωu � [−1,1], then u can be entirely

eliminated from (6)-(8) by replacing f jk

q
, f

jk

q , and l jk
q

with h
jk
q ± g jk

q
, h

jk

q ± g jk
q , and o

jk
q ±m

jk
q respectively.

This will double the set of equations (6)-(8), but the

functions hq, gq, oq, and mq are optimized over X̂ jk

solely.

5. Computing the Control Law

Provided that the lower bound, Vq, is a good enough

approximation of the optimal cost, the optimal feed-



back control law can be calculated as















û(x, q) � argmin
u∈Ωu

{

�Vq

�x
fq(x,u) + lq(x,u)

}

µ̂(x, q) � argmin
µ∈Ωµ tx∈Sq,ν

{Vν (x) + s(x, q,ν )}

(16)

where ν � ν (x, q, µ). Thus, the continuous input, û,

is computed in a standard way. The discrete input, µ̂ ,

is chosen such that switching occur whenever there

exist a discrete mode for which the value function has

a lower value than the cost of the value function for

the current mode minus the cost for switching there.

Consider the true optimal value function, V ⋆
q . For

those (x, q, r) where the optimal trajectory requires

mode switching, the inequality (3) will turn to equal-

ity i.e. V ⋆
q � V ⋆

r + s(x, q, r) (this will be shown in

Ex. 1). A consequence of this is that for (16) to de-

scribe correct switching between the modes, s(x, q, q)
has to be defined as s(x, q, q) � ε > 0 (rather than

the real cost s(x, q, q) � 0). For V ⋆
q , the proper control

law is achieved as ε approaches 0+. A small value of

ε suffices, however, for numerical computations.

Integration of (2) along a simulated trajectory based

on (16) will provide an upper bound on the optimal

cost. The better the control law, the better the

estimate.

6. Examples

EXAMPLE 1—A CAR WITH TWO GEARS

Consider the system

{

ẋ1 � x2

ẋ2 � gq(x2)u, q � 1,2 tut ≤ 1
(17)

where gq(x) is plotted in Fig. 2. This could be seen

as a crude model of a car, u being the throttle, gq(x)
the efficiency for gear number q.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

g1(x) g2(x)

x

Figure 2: Gear efficiency at various speeds.

The problem is to bring (17) from xi � (−5,0), qi � 1

to x f � (0,0), q f � 1 in minimum time. Torque

losses when using the clutch calls for an additional

penalty for gear changes. Thus, the components of

(2) have been chosen as l1(x,u) � l2(x,u) � 1,

s(x,1,2) � s(x,2,1) � 0.5.

The problem is plugged into the machinery of Sec-

tion 4 and Vq(x) is maximized over a region −5.5 ≤
x1 ≤ 1.0, −0.5 ≤ x2 ≤ 3.0.

The result is shown in Figure 3 and 4 where xi and

x f also have been marked. The functions look rather

similar, since the cost for changing gears is only 0.5.

One can see that V1 has a threshold along the line

x2 � 1. Figure 2 reveals that the first gear is almost

useless for high speeds, leading to V1 � V2 + 0.5 for

x2 > 1. This is the cost for using the second gear

optimally after a gear switch.
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Figure 3: Plot of V1. The initial point, xi, is marked with

a vertical dashed line, the final point, x f , with

a solid line.
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Figure 4: Plot of V2.

Studying Fig. 5, where V1−V2 is plotted, the strategy

for changing gears is even more obvious: there is

only one discrete mode allowed under optimal control

when the difference hits its maximum distance. In

conformity with previous reasoning, V1 − V2 � 0.5
for x2 > 1, indicating the need for a change of gears

when using the first gear at high speed. Analogously,

the second gear should be avoided, starting with zero

speed.

A simulation of the controlled system is shown in

Fig. 6, where the initial point is marked with a

square. The state trajectory coincides with the one

of a professional rally-driver with lousy brakes. In
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Figure 5: The difference between V1 and V2.

the beginning, maximum throttle is used on the first

gear (solid line). When the speed roughly reaches

the point of equal efficiency between the gears (x2 �
0.5), they are switched in favor of the second gear

(dashed line). At half the distance, the gas pedal is

lightened to use the braking force of the engine. In

the end, the first gear is used again before the origin

is hit. As seen in the figure, the granularity of the

discretization grid (h � 0.18) prevents the solution

from hitting the exact origin.

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

0

0.5

1

1.5

2

x1

x2

Figure 6: Phase portrait of a simulation. The solid line

shows where gear number one has been used,

the dashed line shows the second gear. The

initial point is marked with a square.

EXAMPLE 2—ALTERNATE HEATING OF TWO FURNACES

Since the industrial power fee is determined by the

highest peak of the season [5], it is desirable to

spread the power consumption evenly over time. This

is handled by load control, which means that the

available electrical power is altered between different

loads of the mill.

In this example, the temperature of two furnaces

should be controlled by alternate heating. The system

has two continuous states that correspond to the

temperature of the furnaces and is given by ẋ �
fq(x), where

f1(x) �

[

−x1 + u0

−2x2

]

f2(x) �

[

−x1

−2x2 + u0

]

f3(x) �

[

−x1

−2x2

]

Thus, there are three discrete modes: q � 1 means

that the first furnace is heated, q � 2 means that

the second furnace is heated, q � 3 corresponds to

no heating. The cost function to be minimized is

J(x0, q0) �

∫ ∞

t0

2
∑

i�1

(xi − ci)
2e−tdt+

M
∑

k�1

be−tk

where the desired stationary temperature values are

c1 � 1/4, c2 � 1/8 and the cost for switching the

power is b � 1/1000. Since the furnaces can only be

fed by a fixed amount of energy, u0, it is impossible

to keep them stationary at the desired temperature.

Hence, the time weighting, e−t, is necessary to get a

bounded cost function.

If Vq(x, t) is defined as the cost for starting in (x, q) at

time t, then the continuous part of the general time

dependent Bellman inequality can be written

�Vq(x, t)

�t
+

�Vq(x, t)

�x
fq(x,u, t) + lq(x,u, t) ≥ 0 (18)

Rewriting the functions like Vq(x, t) � e−tṼq(x) and

lq(x,u, t) � e−tl̃q(x,u) for the furnace example,

(18) becomes

−Ṽq(x) +
�Ṽq(x)

�x
fq(x,u) + l̃q(x,u) ≥ 0 (19)

Thus, the time dependence introduced in Bellman’s

inequality cancels and techniques similar to those

presented above apply.

The optimal control results in a limit cycle as seen in

Figure 7. The figure, that contains the phase portrait

of the continuous states, shows how the temperature

of one furnace always decreases as the other one is

heated. By alternate heating, the temperatures first

climb up to, and above the set-point and then both

furnaces are turned off and the state drifts towards

the origin. This procedure is then repeated over and

over again, making the trajectory enclose the desired

steady state (marked with a circle in the figure). The

trajectory has been dashed for t ∈ [0,2.8] to make the

limit cycle clear.

Figure 8 shows what happens when the power supply

is insufficient for driving both furnaces. Mode 3 is not

entered since the temperature set-points are never

reached.
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Figure 7: Phase portrait of the continuous states under

optimal control when u0 � 0.8. The mode

number, q, has been marked for the limit cycle
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Figure 8: Phase portrait of the continuous states under

optimal control when u0 � 0.4.

7. Summary

An extended version of Bellman’s inequality was

discretized in this paper to compute a lower bound on

the optimal cost function, using linear programming.

Based on these computations, an approximation of

the optimal control feedback law was derived.

Hybrid systems combine discrete and continuous

dynamics. The analysis should therefore contain

techniques that are well suited for computer science

as well as control theory. The emphasis in this paper

is on the continuous part, the discrete part consisting

of a few system modes. At the other end of the hybrid

spectrum, where purely discrete systems are found,

X will reduce to a single point. The first inequality

of proposition 1 will then be superfluous. The set of

inequalities given by (4), possibly large depending on

Q, should be met for Sq,r � {x f }. The resulting LP

formulation solves the shortest-paths problem on a

non-negatively weighted, directed graph — a problem

that is usually attacked using Dijkstra’s algorithm.

A set of MATLAB commands has been compiled by the

authors to make it easy to test the above methods

and implement the examples. The LP solver that

is used is “PCx”, developed by the Optimization

Technology Center, Illinois. The MATLAB commands

and a manual of usage are available free of charge

upon request from the authors.
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