Dieter Grass • Jonathan P. Caulkins Gustav Feichtinger • Gernot Tragler Doris A. Behrens

Optimal Control of Nonlinear Processes

With Applications in Drugs, Corruption, and Terror

Contents

Preface	 		 ••••	 	 •••	•••	 •••	• • • •	VII
Acknowledgments	 	•••	 	 	 •••		 	• • • •	XI

Part I Background

1	Inti	roduction	3				
	1.1	Taking Rocket Science Beyond the Frontiers of Space	3				
	1.2	Why Drugs, Corruption, and Terror?	5				
	1.3	Questions Optimal Control Can Answer	7				
2	Continuous-Time Dynamical Systems						
	2.1	Nonlinear Dynamical Modeling	9				
	2.2	One-Dimensional Systems	10				
	2.3	A One-Dimensional Corruption Model	14				
	2.4	Dynamical Systems as ODEs	17				
			19				
			21				
		2.4.3 Structural Stability	25				
		2.4.4 Linearization and the Variational Equation	26				
	2.5	Stability Analysis of a One-Dimensional Terror Model	27				
	2.6	ODEs in Higher Dimensions	30				
		2.6.1 Autonomous Linear ODEs	31				
		2.6.2 Autonomous Nonlinear ODEs	42				
	2.7	Stability Behavior in a Descriptive Model of Drug Demand	51				
	2.8	Introduction to Bifurcation Theory	55				
		2.8.1 Terminology and Key Ideas of Bifurcation Theory	56				
		2.8.2 Normal Forms and the Center Manifold:					
		The Tools of Bifurcation Theory	57				
		2.8.3 Local Bifurcations in One Dimension					

÷,

2.9 Bifurcation Analysis of a One-Dimensional Drug Model	68
2.10 The Poincaré–Andronov–Hopf Bifurcation	71
2.11 Higher-Dimensional Bifurcation Analysis of a Drug Model	74
2.12 Advanced Topics	78
2.12.1 Stability of Limit Cycles	78
2.12.2 Boundary Value Problems	85
Exercises	89
Notes and Further Reading	96

Part II Applied Optimal Control

3	Του	ır d'H	orizon: Optimal Control101
	3.1	Histor	rical Remarks
	3.2	A Sta	ndard Optimal Control Problem
	3.3	The M	Maximum Principle of Optimal Control Theory
		3.3.1	Pontryagin's Maximum Principle
		3.3.2	Some General Results
		3.3.3	The Maximum Principle for Variable Terminal Time 115
		3.3.4	Economic Interpretation of the Maximum Principle 117
		3.3.5	Sufficiency Conditions119
		3.3.6	Existence of an Optimal Solution
		3.3.7	How to Solve an Optimal Control Problem: A Simple
			Consumption vs. Investment Model
	3.4	The I	Principle of Optimality127
		3.4.1	The Hamilton–Jacobi–Bellman Equation
		3.4.2	A Proof of the Maximum Principle
	3.5	Singu	lar Optimal Control131
		3.5.1	The Most Rapid Approach Path (MRAP)134
		3.5.2	An Example From Drug Control that Excludes
			Singular Arcs
		3.5.3	An Example From Terror Control with an MRAP
			Solution
	3.6	The M	Maximum Principle With Inequality Constraints
		3.6.1	Mixed Path Constraints
		3.6.2	
		3.6.3	Sufficiency Conditions154
	3.7	Infinit	te Time Horizon
		3.7.1	Definitions of Optimality for Infinite Horizon
			Problems
		3.7.2	Maximum Principle for Infinite Time Horizon
			Problems
		3.7.3	Sufficiency Conditions159
	3.8	Disco	unted Autonomous Infinite Horizon Models
		3.8.1	The Michel Theorem
		3.8.2	The Ramsey Model for an Infinite Time Horizon165

		3.8.3	Structural Results on One-State Discounted,
			Autonomous Systems
	3.9	An O	ptimal Control Model of a Drug Epidemic168
		3.9.1	Model Formulation168
		3.9.2	Stability Analysis
		3.9.3	Phase Portrait Analysis176
	Note	es and	Further Reading183
4	The	Path	to Deeper Insight: From Lagrange
			agin
	4.1		luctory Remarks on Optimization
		4.1.1	Notational Remarks
		4.1.2	Motivation and Insights
		4.1.3	A Simple Maximization Problem
		4.1.4	Finite-Dimensional Approximation
		G	of an Infinite-Dimensional Problem
	4.2		Maximization
		4.2.1	Basic Theorems and Definitions
		4.2.2	Theory and Geometric Interpretation of Lagrange
		409	and Karush–Kuhn–Tucker
		4.2.3	The Envelope Theorem and the Lagrange Multiplier 208
		4.2.4	The Discrete-Time Maximum Principle
	4 9	m (as a Static Maximization Problem
	4.3		Calculus of Variations
		4.3.1	A Simple Variational Example
		4.3.2	The First Variation
		4.3.3	Deriving the Euler Equation and
	4 4	Ducari	Weierstrass-Erdmann Conditions
	4.4	4.4.1	ng the Continuous-Time Maximum Principle
		4.4.1 4.4.2	
	Ene		
	INOU	es and	Further Reading
5			Equilibria, Points of Indifference,
			sholds
	5.1		rrence of Multiple Equilibria
	5.2		Deptimal Vector Field
		5.2.1	
		5.2.2	
	E O	۸ m.	Horizon
	5.3		pical Example
		0.3.1	Existence and Stability of the Equilibria

	5.3.2	Determining the Optimal Vector Field					
		and the Optimal Costate Rule	247				
5.4	Defini	ng Indifference and DNSS Points	252				
	5.4.1	Multiplicity and Separability	253				
	5.4.2	Definitions	254				
	5.4.3	Conclusions from the Definitions	256				
5.5	Revisi	ting the Typical Example	260				
5.6	Eradio	adication vs. Accommodation in an Optimal Control					
	Model	l of a Drug Epidemic	266				
Exe	cises .	· · · · · · · · · · · · · · · · · · ·	269				
Note	es and l	Further Reading	272				

Part III Advanced Topics

6	Hig	her-D	imensional Models
	6.1	Contr	olling Drug Consumption
		6.1.1	Model of Controlled Drug Demand
		6.1.2	Deriving the Canonical System
		6.1.3	The Endemic Level of Drug Demand
		6.1.4	-
			the Endemic State
		6.1.5	Optimal Policies for Different Phases of a Drug
			Epidemic
	6.2	Corru	ption in Governments Subject to Popularity
		Const	raints
		6.2.1	The Modeled Incentive for Being Corrupt
		6.2.2	Optimality Conditions
		6.2.3	Insights About the Incentive to Be Corrupt
		6.2.4	Is Periodic Behavior Caused by Rational
			Optimization?
	6.3	Is It I	important to Manage Public Opinion While Fighting
		Terro	rism?
		6.3.1	What One Should Know when Fighting Terrorism 309
		6.3.2	Derivation of the Canonical System
		6.3.3	Numerical Calculations
		6.3.4	Optimal Strategy for a Small Terror Organization 314
	\mathbf{Exe}	rcises	
	Not	es and	Further Reading
7	Nu	merica	l Methods for Discounted Systems of Infinite
	Ho	rizon.	
	7.1	Gener	cal Remarks
		7.1.1	Problem Formulation and Assumptions

	7.1.3		
		Problems	
70	7.1.4	Boundary Value Problems from Optimal Control	
7.2		rical Continuation	
	7.2.1	0	
7.0	7.2.2	0	
7.3 7.4		Canonical System Without Active Constraints	
1.4	7.4.1	lating Long-Run Optimal Solutions	
	7.4.1 7.4.2	1	
7.5		nuing the Optimal Solution: Calculating the Stable	
1.0		fold	340
	7.5.1	Stable Manifold of an Equilibrium	
	7.5.2	Stable Manifold of Limit Cycles	
7.6		al Control Problems with Active Constraints	
1.0	7.6.1	The Form of the Canonical System for Mixed Path	000
		Constraints	360
	7.6.2	The Form of the Canonical System for Pure State	
		Constraints	360
	7.6.3	Solutions Exhibiting Junction Points	
7.7	Retrie	eving DNSS Sets	
	7.7.1	Locating a DNSS Point	
	7.7.2	Continuing a DNSS Point	
7.8	Retrie	eving Heteroclinic Connections	
	7.8.1	Locating a Heteroclinic Connection	368
	7.8.2	Continuing a Heteroclinic Connection in Parameter	
		Space	369
7.9	Nume	rical Example from Drug Control	370
	7.9.1	Stating the Necessary Conditions	370
	7.9.2	Equilibria of the Canonical System	
	7.9.3	Numerical Analysis	
	7.9.4	Optimal Vector Field for $\nu = 4,000$	
	7.9.5	Optimal Vector Field for $\nu = 12,000$	
Not	es and	Further Reading	382
\mathbf{Ext}	ensior	as of the Maximum Principle	385
8.1	Multi	-Stage Optimal Control Problems	386
	8.1.1	Necessary Optimality Conditions for Two-Stage	
		Control Problems	
	8.1.2	Two-Stage Models of Drug Control	
	8.1.3	Counter-Terror Measures in a Multi-Stage Scenario .	
8.2		ential Games	
	8.2.1	Terminology	
	8.2.2	Nash Equilibria	394

8

	8.2.3	Tractable Game Structures
	8.2.4	A Corrupt Politician vs. the Tabloid Press
	8.2.5	Leader–Follower Games
	8.2.6	A Post September 11th Game on Terrorism407
8.3	Age-S	tructured Models
	8.3.1	A Maximum Principle for Distributed Parameter
		Systems
`	8.3.2	Age-Structured Drug Initiation
8.4	Furth	er Optimal Control Issues
	8.4.1	Delayed Systems
	8.4.2	Stochastic Optimal Control
	8.4.3	Impulse Control and Jumps in the State Variables 425
	8.4.4	Nonsmooth Systems
Exe	rcises .	
Not	es and	Further Reading

Part IV Appendices

A	Mat	thema	tical Background
	A.1	Gener	al Notation and Functions
	A.2	Finite	-Dimensional Vector Spaces
		A.2.1	Vector Spaces, Linear Dependence, and Basis
		A.2.2	Linear Transformations and Matrices
		A.2.3	Inverse Matrices and Linear Equations
		A.2.4	Determinants
		A.2.5	Linear Form and Dual Space
		A.2.6	Eigenvalues and Eigenvectors
		A.2.7	Euclidean Vector Space \mathbb{R}^n
	A.3	Topole	bgy and Calculus
		A.3.1	Open Set, Neighborhood, and Convergence
		A.3.2	Continuity and Differentiability
		A.3.3	Maximization of Real-Valued Functions in $\mathbb{R}^n \dots \dots 471$
		A.3.4	Convex Analysis
		A.3.5	Taylor Theorem and Implicit Function Theorem
		A.3.6	Integration Theory
		A.3.7	Distributions
в	Der	ivatio	ns and Proofs of Technical Results
	B .1	Separa	ation Theorems, Farkas Lemma and Supergradient 483
	B.2	Proof	of the Michel Theorem
		B.2.1	Augmented and Truncated Problem
		B.2.2	Optimal Solution of Problem (B.8)
		B.2.3	Necessary Conditions for Problem (B.8)
		B.2.4	Limit of Solutions for Increasing Time Sequence 489

B.3	Proof of the Transversality Condition in Proposition 3.74491
B.4	The Infinite Horizon Transversality Condition Revisited 492
B.5	Monotonicity of the Solution Path
B.6	Admissible and Quasi-Admissible Directions
B.7	Proof of the Envelope Theorem
B.8	The Dimension of the Stable Manifold
B.9	Asymptotic Boundary Condition
	B.9.1 Equilibrium
	B.9.2 Limit Cycle
Referen	ces
Glossar	y
Index	
Author	Index