
Optimal Control of Nonlinear Systems with
Temporal Logic Specifications

Eric M. Wolff and Richard M. Murray

Abstract We present a mathematical programming-based method for optimal con-
trol of nonlinear systems subject to temporal logic task specifications. We specify
tasks using a fragment of linear temporal logic (LTL) that allows both finite- and
infinite-horizon properties to be specified, including tasks such as surveillance, pe-
riodic motion, repeated assembly, and environmental monitoring. Our method di-
rectly encodes an LTL formula as mixed-integer linear constraints on the system
variables, avoiding the computationally expensive process of creating a finite ab-
straction. Our approach is efficient; for common tasks our formulation uses signifi-
cantly fewer binary variables than related approaches and gives the tightest possible
convex relaxation. We apply our method on piecewise affine systems and certain
classes of differentially flat systems. In numerical experiments, we solve temporal
logic motion planning tasks for high-dimensional (10+ continuous state) systems.

1 Introduction

In safety-critical robotics applications involving autonomous ground and air vehi-
cles, it is desirable to unambiguously specify the desired system behavior and au-
tomatically synthesize a controller that provably implements this behavior. Addi-
tionally, autonomous systems often have high-dimensional, nonlinear dynamics and
require high-performance (not just feasible) controllers.

Linear temporal logic (LTL) is an expressive task-specification language for
specifying a variety of tasks such as responding to the environment, visiting goals,
periodically monitoring areas, staying safe, and remaining stable. These properties
generalize classical point-to-point motion planning. Also, the widespread use of

Eric M. Wolff
California Institute of Technology, Pasadena, CA e-mail: ewolff@caltech.edu

Richard M. Murray
California Institute of Technology, Pasadena, CA e-mail: murray@cds.caltech.edu

1



2 Eric M. Wolff and Richard M. Murray

LTL in software verification [3] makes it appealing as a common language for rea-
soning about the software and dynamics of autonomous systems.

Standard methods for motion planning with LTL task specifications first create a
finite abstraction of the original dynamical system. This abstraction can informally
be viewed as a labeled graph that represents possible behaviors of the system. Ap-
proximate finite abstractions can be computed using either sampling-based methods
(e.g., RRTs) [7, 15, 18] or reachability-based approaches [2, 4, 11, 17, 28].

Given a finite abstraction of a dynamical system and an LTL specification, con-
trollers can be automatically constructed using an automata-based approach [3, 7,
10, 15, 17]. This approach first transforms the LTL formula into an equivalent Büchi
automaton whose size may be exponential in the length of the formula [3]. A prod-
uct automaton is created from the finite abstraction and the Büchi automaton, and
then a controller is found by graph search in the product automaton.

The main drawback of this approach is that it is expensive to compute a finite
abstraction. The product automaton might also be quite large due to the size of the
abstraction and the Büchi automaton. Finally, although optimal controllers can be
computed for the discrete abstraction [22, 27], optimality is only with respect to the
abstraction’s level of refinement or asymptotic [15].

Instead of the automata-based approach, we directly encode a large class of tem-
poral logic formulas as mixed-integer linear constraints on the original dynamical
system. These constraints enforce that an infinite sequence of system states satis-
fies a task specification. A key component of our formulation is enforcing that the
system is in a (non-convex) region at a given time. We introduce an alternative for-
mulation for this that gives a tighter convex relaxation than the commonly used
big-M approach. Our approach applies to any deterministic system model that is
amenable to finite-dimensional optimization, as the temporal logic constraints are
independent of any particular system dynamics or cost functions. We specifically
investigate Mixed Logical Dynamic (MLD) systems [5] and certain differentially
flat systems [20], whose dynamics can be encoded with mixed-integer linear con-
straints. MLD systems include constrained linear systems, linear hybrid automata,
and piecewise affine systems. Differentially flat systems include quadrotors and car-
like vehicles.

It is well-known that mixed-integer linear programming can be used for rea-
soning about propositional logic [8, 12], generating state-constrained trajectories
[9, 21, 24], and modeling vehicle routing problems [14, 23]. The work most similar
to ours is Karaman et al. [16], who consider controller synthesis for MLD systems
subject to finite-horizon LTL specifications. However, finite-horizon properties are
too restrictive to model a large class of interesting robotics problems, including per-
sistent surveillance, repeated assembly, periodic motion, and environmental moni-
toring. Our work specifically addresses these types of periodic tasks with a novel
mixed-integer formulation.

Our main contributions are 1) a novel method for encoding both finite- and
infinite-horizon temporal logic properties as mixed-integer linear constraints on a
system and 2) an improved encoding that has a tighter convex relaxation and uses
significantly fewer binary variables for common tasks than related work [16]. The



Optimal Control of Nonlinear Systems with Temporal Logic Specifications 3

fragment of temporal logic that we consider allows one to specify properties such
as safety, stability, liveness, guarantee, and response. We demonstrate how this
mixed-integer programming formulation can be used with off-the-shelf optimiza-
tion solvers (e.g. CPLEX [1]) to compute both feasible and optimal controllers for
high-dimensional systems with temporal logic specifications.

2 Preliminaries

An atomic proposition is a statement that is True or False. A propositional formula is
composed of only atomic propositions and propositional connectives, i.e., ∧ (and),
∨ (or), and ¬ (not). Let T = {0,1,2, . . . ,T} ⊂N denote a bounded set of discrete time
instances and T ∞ = {0,1,2, . . .} denote an unbounded set of discrete time instances.

2.1 System model

We consider discrete-time nonlinear systems of the form

x(t +1) = f (x(t),u(t)), (1)

where t ∈ T ∞, x ∈ X ⊆ Rnc ×{0,1}nl are the continuous and binary states, u ∈ U ⊆
Rmc ×{0,1}ml are the inputs, and x(0) = x0 ∈ X is the initial state. We assume that
the system is deterministic, i.e., an initial state x0 and a control input sequence u =
u0u1u2 . . . produces a unique trajectory (or run) x = x(x0,u) = x0x1x2 . . ..

Let AP be a finite set of atomic propositions. The (time-dependent) labeling
function Lt ∶ X → 2AP maps the continuous part of each state to the set of atomic
propositions that are True at time t. Each atomic proposition ψ ∈ AP is repre-
sented by a union of polyhedrons. The finite index set Iψ

t lists the polyhedrons
where ψ holds at time t. The i-th polyhedron is {x ∈ X ∣ Hψi

t x ≤ Kψi
t }, where i ∈ Iψ

t .
Thus, the set of states where atomic proposition ψ holds at time t is given by
[[ψ]](t) ∶= {x ∈ X ∣ Hψi

t x ≤Kψi
t for some i ∈ Iψ

t }. This (potentially) time-varying set
is the finite union of polyhedrons (finite conjunctions of halfspaces).

2.2 A fragment of temporal logic

We do not attempt to reason about all possible temporal logic formulas (see [3]);
instead, we develop a useful library of temporal operators for robotic tasks. This
fragment of temporal logic can concisely and unambiguously specify a wide range
of tasks such as safe navigation, surveillance, persistent coverage, response to the
environment, and visiting goals. In the following definitions, ψ , φ , and ψ j (for a



4 Eric M. Wolff and Richard M. Murray

finite number of indices j) are propositional formulas. To simplify the presentation,
we split these into three groups: core Φcore, response Φresp, and fairness Φfair. We
first define the syntax of the temporal operators and then their semantics.

Syntax:

The core operators, Φcore ∶= {ϕsafe,ϕgoal,ϕper,ϕlive,ϕuntil}, specify fundamental prop-
erties such as safety, guarantee, persistence, liveness (recurrence), and until. These
operators are,

ϕsafe ∶= ◻ψ, ϕgoal ∶= ◇ψ, ϕper ∶= ◇◻ψ, ϕlive ∶= ◻◇ψ, ϕuntil ∶=ψ U φ ,

where ϕsafe specifies safety, i.e., a property should invariantly hold, ϕgoal specifies
goal visitation, i.e., a property should eventually hold, ϕper specifies persistence,
i.e., a property should eventually hold invariantly, and ϕlive specifies liveness (recur-
rence), i.e., a property should hold repeatedly, as in surveillance, and ϕuntil specifies
until, i.e., a property ψ should hold until another property φ holds.

The response operators, Φresp ∶= {ϕ
1
resp,ϕ

2
resp,ϕ

3
resp,ϕ

4
resp}, specify how the system

responds to the environment. These operators are,

ϕ
1
resp ∶= ◻(ψ Ô⇒ #φ), ϕ

2
resp ∶= ◻(ψ Ô⇒ ◇φ),

ϕ
3
resp ∶= ◇◻(ψ Ô⇒ #φ), ϕ

4
resp ∶= ◇◻(ψ Ô⇒ ◇φ),

where ϕ
1
resp specifies next-step response to the environment, ϕ

2
resp specifies eventual

response to the environment, ϕ
3
resp specifies steady-state next-step response to the

environment, and ϕ
4
resp specifies steady-state eventual response to the environment.

Finally, the fairness operators, Φfair ∶= {ϕ
1
fair,ϕ

2
fair,ϕ

3
fair}, allow one to specify con-

ditional tasks. These operators are,

ϕ
1
fair ∶= ◇ψ Ô⇒

m
⋀
j=1
◇φ j, ϕ

2
fair ∶= ◇ψ Ô⇒

m
⋀
j=1
◻◇φ j,

ϕ
3
fair ∶= ◻◇ψ Ô⇒

m
⋀
j=1
◻◇φ j,

where ϕ
1
fair specifies conditional goal visitation, and ϕ

2
fair and ϕ

3
fair specify condi-

tional repeated goal visitation.
The fragment of LTL that we consider is built from the temporal operators de-

fined above as follows,

ϕ ∶∶= ϕcore ∣ ϕresp ∣ ϕfair ∣ ϕ1 ∧ ϕ2, (2)

where ϕcore ∈Φcore, ϕresp ∈Φresp, and ϕfair ∈Φfair.



Optimal Control of Nonlinear Systems with Temporal Logic Specifications 5

This LTL fragment specifies many properties relevant to robotics, especially for
surveillance tasks for which no mathematical programming-based approaches cur-
rently exist. However, it does not include nested properties [3]. Determining all
temporal properties that can be expressed in this framework is future work.

Remark 1. To include disjunctions (e.g., ϕ1 ∨ ϕ2), one can rewrite a formula in
disjunctive normal form, where each clause is of the form (2). In what follows, each
clause can then be considered separately, as the system (1) is deterministic.

Semantics:

We use set operations between a trajectory (run) x = x(x0,u) and subsets of X where
particular propositional formulas hold to define satisfaction of a temporal logic for-
mula [3]. We denote the set of states where propositional formula ψ holds by [[ψ]].
A run x satisfies the temporal logic formula ϕ , denoted by x⊧ϕ , if and only if certain
set operations hold. Given propositional formulas ψ and φ , we relate satisfaction of
(a partial list of) formulas of the form (2) with set operations as follows:

• x ⊧ ◻ψ iff xi ∈ [[ψ]] for all i,
• x ⊧◇◻ψ iff there exists an index j such that xi ∈ [[ψ]] for all i ≥ j,
• x ⊧◇ψ iff xi ∈ [[ψ]] for some i,
• x ⊧ ◻◇ψ iff xi ∈ [[ψ]] for infinitely many i,
• x⊧ψ U φ iff there exists an index j such that x j ∈ [[φ]] and xi ∈ [[ψ]] for all i < j,
• x ⊧ ◻(ψ Ô⇒ #φ) iff xi ∉ [[ψ]] or xi+1 ∈ [[φ]] for all i,
• x ⊧ ◻(ψ Ô⇒ ◇φ) iff xi ∉ [[ψ]] or xk ∈ [[φ]] for some k ≥ i for all i,
• x⊧◇◻(ψ Ô⇒ #φ) iff there exists an index j such that xi ∉ [[ψ]] or xi+1 ∈ [[φ]]

for all i ≥ j,
• x ⊧◇◻(ψ Ô⇒ ◇φ) iff there exists an index j such that xi ∉ [[ψ]] or xk ∈ [[φ]]

for some k ≥ i for all i ≥ j.

A run x satisfies a conjunction of temporal logic formulas ϕ =⋀m
i=1 ϕi if and only

if the set operations for each temporal logic formula ϕi holds. The LTL formula ϕ

is satisfiable by a system at state x0 ∈ X if and only if there exists a control input
sequence u such that x(x0,u) ⊧ ϕ .

3 Problem statement

In this section, we formally state both a feasibility and an optimization problem and
give an overview of our solution approach. Let ϕ be an LTL formula of the form (2)
defined over AP.

Problem 1. Given a system of the form (1), with initial condition x0, and an LTL
formula ϕ of the form (2), determine whether or not there exists a control input
sequence u such that x(x0,u) ⊧ ϕ .



6 Eric M. Wolff and Richard M. Murray

We now introduce a cost function to distinguish among all trajectories that satisfy
Problem 1. Since LTL formulas are defined over infinite state sequences, we define
a cost function over infinite state sequences. We use a maximum cost function to
simplify the presentation; it can easily be extended to discounted, limit-maximum,
and average cost functions (see [26]). Let the cost c ∶ X ×U →R be bounded.

Definition 1. Let x be a trajectory and u be the corresponding control input se-
quence. The maximum cost of trajectory x is

J(x,u) ∶= sup
t∈T∞

c(xt ,ut), (3)

where J maps trajectories and control inputs to R∪∞.

Problem 2. Given a system of the form (1), with initial condition x0, and an LTL
formula ϕ of the form (2), compute a control input sequence u such that x(x0,u) ⊧ϕ

and J(x(x0,u),u) is minimized.

We now give a brief overview of our solution approach. We parameterize the
system trajectory (control input) as a periodic prefix-suffix structure. Every LTL op-
erator of the form (2) is encoded as mixed-integer linear constraints on this finite
parameterization. These temporal logic constraints (see Section 5) are then com-
bined with dynamic constraints (see Section 6) as constraints on a combined mixed-
integer optimization problem with an appropriate cost function. For MLD systems
and certain differentially flat systems (see Section 6) with linear costs, Problems 1
and 2 can thus be solved using a mixed-integer linear program (MILP) solver. While
even checking feasibility of a MILP is NP-hard, modern solvers using branch and
bound methods routinely solve large problems [1]. We show promising results (see
Figure 1) on high-dimensional (10+ continuous state) systems in Section 7.

Fig. 1: Illustration of a problem instance. The task is to repeatedly visit regions P, D1, and D2,
where dark regions are obstacles that must be avoided. Representative trajectories for a quadrotor
(left) and nonlinear car (right) are shown with the prefix (blue) and suffix (black).

Remark 2. We only consider open-loop trajectory generation, which is already a
challenging problem due to the nonlinear dynamics and LTL specifications. Distur-



Optimal Control of Nonlinear Systems with Temporal Logic Specifications 7

bances can be dealt with by wrapping a feedback controller around the trajectory.
Incorporating disturbances during trajectory generation is the subject of future work.

4 A periodic trajectory parameterization

We parameterize the system trajectory by a periodic prefix-suffix form that is com-
monly used in model checking for finite systems. In this structure, the prefix is a
finite trajectory and the suffix is a finite trajectory that is repeated infinitely often.
This gives a sufficient condition that is amenable to computation, although it may
miss valid non-periodic trajectories.

A walk is a finite sequence of states x = x0x1x2 . . .xN that satisfy the constraints
in (1). A cycle is a walk x = x0x1x2 . . .xN where f (xN ,u) = x0 for some u ∈ U .
A trajectory x induces a corresponding word (i.e., sequence of labels) L(x) =
L0(x0)L1(x1)L2(x2) . . . through the labeling function. A word is similarly defined
for a walk or cycle. We now define a trajectory in prefix-suffix form.

Definition 2. Let xpre be a finite walk and xsuf be a finite cycle. A trajectory x is
in prefix-suffix form if it is of the form x = xpre(xsuf)ω , where ω denotes infinite
repetition.

We will require that the (time-varying) labeling function Lt is eventually periodic.

Assumption 1. There exists a finite t′ ∈ T ∞ and a Ω ∈N such that Lt = Lt+Ω for all
t ≥ t′ ∈ T ∞. We further assume that Ω is minimal among all possible values.

In the sequel, we will only consider trajectories x = xpre(xsuf)ω in prefix-suffix
form. While both xpre and xsuf are finite, the constraint that xsuf is a cycle allows
us to repeat that sequence of states forever. Repeating the same sequence of states
is a sufficient condition that the word L(xsuf) (i.e., the sequence of atomic propo-
sitions) is also repeated (using Assumption 1). However, only the word matters for
the feasibility of an LTL formula, not the exact sequence of states. In fact, there may
exist other trajectories that produce the same word L(x), but are not eventually peri-
odic. Our approach cannot find such trajectories, although we have not noticed this
limitation in our experiments. This differs from the case of finite discrete systems,
where a prefix-suffix form is sufficient to find a feasible solution if one exists [3].

In the next section, we will encode the temporal operators as mixed-integer con-
straints on xpre and xsuf. Let xcat ∶= xprexsuf denote the concatenation of xpre and xsuf,
and assign time indices to xcat as Tcat ∶= {0,1, . . . ,Ts, . . . ,T}. Let Tpre ∶= {0,1, . . . ,Ts−
1} and Tsuf ∶= {Ts, . . . ,T}, where Ts is the first time instance on the suffix. The
infinite repetition of xsuf is enforced by the constraint xcat(Ts) = f (xcat(T),u) for
some u ∈ U . By Assumption 1, it is sufficient that Ts is greater than t′ and that the
length of Tsuf is an integer multiple of Ω . We often identify xpre(0)⋯xpre(Tpre) with
xcat(0)⋯xcat(Ts − 1) and xsuf(0)⋯xsuf(Tsuf) with xcat(Ts)⋯xcat(T) in the obvious
manner.



8 Eric M. Wolff and Richard M. Murray

5 A mixed-integer linear formulation of LTL constraints

In this section, we develop a mixed-integer programming formulation for a given
prefix-suffix trajectory parameterization, xcat = xprexsuf. The corresponding system
trajectory is x = xpre(xsuf)ω . Since the system is deterministic, this defines a cor-
responding control input sequence. The split between xpre and xsuf can either be
specified a priori or left as a variable (see [26] for details). We mix notation in the
following and refer to x and T instead of xcat and Tcat when clear from context.

5.1 Relating the dynamics and propositions

We now relate the state of a system to the set of atomic propositions that are True
at each time instance. We assume that each propositional formula ψ is described
at time t by the union of a finite number of polytopes, indexed by the finite index
set Iψ

t . Let [[ψ]](t) ∶= {x ∈ X ∣ Hψi
t x ≤Kψi

t for some i ∈ Iψ

t } represent the set of states
that satisfy propositional formula ψ at time t. We assume that these have been con-
structed as necessary from the system’s original atomic propositions. We note that a
proposition preserving partition [2] is not necessary or even desired.

For each propositional formula ψ , introduce binary variables zψi
t ∈ {0,1} for all

i ∈ Iψ

t and for all t ∈ T . Let xt be the state of the system at time t and M be a vector
of sufficiently large constants. The big-M formulation

Hψi
t xt ≤Kψi

t +M(1− zψi
t ), ∀i ∈ Iψ

t

∑
i∈Iψ

t

zψi
t = 1 (4)

enforces the constraint that xt ∈ [[ψ]](t) at time t. Define Pψ

t ∶= ∑i∈Iψ

t
zψi

t . If Pψ

t = 1,

then xt ∈ [[ψ]](t). If Pψ

t = 0, then nothing can be inferred.
The big-M formulation may give poor continuous relaxations of the binary vari-

ables, i.e., zψi
t ∈ [0,1], which may lead to poor performance during optimization

[1]. Such relaxations are frequently used during the solution of mixed-integer lin-
ear programs [1]. Thus, we introduce an alternate representation whose continuous
relaxation is the convex hull of the original set [[ψ]](t). This formulation is well-
known in the optimization community [13], but does not appear in the trajectory
generation literature ([9, 21, 24] and references therein). As such, this formulation
may be of independent interest for trajectory planning with obstacles.

The convex hull formulation

Hψi
t xi

t ≤Kψi
t zψi

t , ∀i ∈ Iψ

t

∑
i∈Iψ

t

zψi
t = 1,

∑
i∈Iψ

t

xi
t = xt (5)



Optimal Control of Nonlinear Systems with Temporal Logic Specifications 9

represents the same set as the big-M formulation (4). While the convex hull formu-
lation introduces more continuous variables, it gives the tightest linear relaxation
of the disjunction of the polytopes and reduces the need to select the M parame-
ters [13]. Note that we will only use the convex hull formulation (5) for safety and
persistence formulas (i.e., ϕsafe and ϕper) in Section 5.2, as Pψ

t = 0 enforces x = 0.
Regardless if one uses the big-M or convex hull formulation, only one binary

variable is needed for each polyhedron (i.e., finite conjunction of halfspaces). This
compares favorably with the approach in [16], where a binary variable is introduced
for each halfspace. Additionally, the auxiliary continuous variables and mixed-
integer constraints previously used are not needed because we use implication. For
simple tasks such as ϕ = ◇ψ , our method can use significantly fewer binary vari-
ables than previously needed, depending on the number of halfspaces and polytopes
needed to describe [[ψ]].

For every temporal operator described in the following section, the constraints
in (4) or (5) should be understood to be implicitly applied to the corresponding
propositional formulas so that Pψ

t = 1 implies that the system satisfies ψ at time
t. Also, note that we use different binary variables for each formula—even when
representing the same set.

5.2 The mixed-integer linear constraints

In this section, the trajectory parameterization x has been a priori split into a prefix
xpre and a suffix xsuf. This assumption can be relaxed, so that the size of xpre and xsuf
are optimization variables (see [26] for details). We further assume that xpre and xsuf
satisfy Assumption 1.

In the following, the correctness of the constraints applied to xpre and xsuf comes
directly from the temporal logic semantics given in Section 2.2 and the form of the
trajectory x = xpre(xsuf)ω . The most important factors are whether a property can
be verified over finite- or infinite-horizons. All infinite-horizon (liveness) properties
must be satisfied on the suffix xsuf.

We begin with the fundamental temporal operators Φcore. Safety and persistence
require a mixed-integer linear constraint for each time step, while guarantee and
liveness only require a single mixed-integer linear constraint.

Safety, ϕsafe = ◻ψ , is satisfied by the constraints

Pψ

t = 1, ∀t ∈ Tpre,

Pψ

t = 1, ∀t ∈ Tsuf,

which ensure that the system is always in a [[ψ]] region. Similarly, persistence,
ϕper =◇◻ψ , is enforced by

Pψ

t = 1, ∀t ∈ Tsuf,



10 Eric M. Wolff and Richard M. Murray

which ensures the system eventually remains in a [[ψ]] region.
Guarantee, ϕgoal =◇ψ , is satisfied by the constraints

∑
t∈Tpre

Pψ

t + ∑
t∈Tsuf

Pψ

t = 1,

which ensures the system eventually visits a [[ψ]] region. Similarly, liveness ϕlive =
◻◇ψ is enforced by

∑
t∈Tsuf

Pψ

t = 1,

which ensures the system repeatedly visits a [[ψ]] region.
Until, ϕuntil =ψ U φ , is enforced by

Pφ

0 = s0,

Pφ

t = st − st−1, t = 1, . . . ,T
Pψ

t = 1− st , ∀t ∈ T ,

where we use auxiliary binary variables st ∈ {0,1} for all t ∈ T such that st ≤ st+1 for
t = 0, . . . ,T −1 and sT = 1.

Now consider the response temporal operators Φresp. For these formulas, the defi-
nition of implication is used to convert each inner formula into a disjunction between
a property that holds at a state and a property that holds at some point in the future.
The response formulas require a mixed-integer linear constraint for each time step.

For next-step response, ϕ
1
resp = ◻(ψ Ô⇒ #φ) = ◻(¬ψ ∨ #φ), the additional

constraints are

P¬ψ

t +Pφ

t+1 = 1, t = 0, . . . ,Ts, . . . ,T −1,

P¬ψ

T +Pφ

Ts
= 1,

Similarly, steady-state next-step response, ϕ
3
resp = ◇◻(ψ Ô⇒ #φ) = ◇◻(¬ψ ∨

#φ), is satisfied by

P¬ψ

t +Pφ

t+1 = 1, t = Ts, . . . ,T −1,

P¬ψ

T +Pφ

Ts
= 1,

Eventual response, ϕ
2
resp = ◻(ψ Ô⇒ ◇φ) = ◻(¬ψ ∨ ◇φ), requires the follow-

ing constraints

P¬ψ

t +
T

∑
τ=t

Pφ

τ = 1, ∀t ∈ Tpre,

P¬ψ

t + ∑
t∈Tsuf

Pφ

t = 1, ∀t ∈ Tsuf.



Optimal Control of Nonlinear Systems with Temporal Logic Specifications 11

Similarly, for steady-state eventual response, ϕ
4
resp =◇◻(ψ Ô⇒ ◇φ) =◇◻(¬ψ ∨

◇φ), the additional constraints are

P¬ψ

t + ∑
t∈Tsuf

Pφ

t = 1, ∀t ∈ Tsuf.

Now consider the fairness temporal operators Φfair. In the following, the defi-
nition of implication is used to rewrite the inner formula as disjunction between a
single safety (persistence) property and a conjunction of guarantee (liveness) prop-
erties. These formulas require a mixed-integer linear constraint for each conjunction
in the response and each time step.

Conditional goal visitation, ϕ
1
fair = ◇ψ Ô⇒ ⋀m

j=1◇φ j = ◻¬ψ ∨ ⋀m
j=1◇φ j, is

specified by

P¬ψ

t +∑
t∈T

P
φ j
t = 1, ∀ j = 1, . . . ,m,∀t ∈ T .

Conditional repeated goal visitation, ϕ
2
fair = ◇ψ Ô⇒ ⋀m

j=1◻◇ φ j = ◻¬ψ ∨
⋀m

j=1◻◇φ j, is enforced as

P¬ψ

t + ∑
t∈Tsuf

P
φ j
t = 1, ∀ j = 1, . . . ,m,∀t ∈ T .

Similarly, ϕ
3
fair = ◻◇ψ Ô⇒ ⋀m

j=1◻◇φ j = ◇◻¬ψ ∨ ⋀m
j=1◻◇φ j, is represented

by

P¬ψ

t + ∑
t∈Tsuf

P
φ j
t = 1, ∀ j = 1, . . . ,m, ∀t ∈ Tsuf.

We have encoded the temporal logic specifications on the system variables us-
ing mixed-integer linear constraints. Note that the equality constraints on the binary
variables dramatically reduce search space. In Section 6 we discuss adding dynam-
ics to further constrain the possible behaviors of the system.

6 System dynamics

The mixed-integer constraints in Section 5 are over a sequence of states, and thus are
independent of the specific system dynamics. Dynamic constraints on the sequence
of states can also be enforced by standard transcription methods [6]. However, the
resulting optimization problem may then be a mixed-integer nonlinear program due
to the dynamics. We highlight two useful classes of nonlinear systems where the
dynamics can be encoded using mixed-integer linear constraints.



12 Eric M. Wolff and Richard M. Murray

6.1 Mixed Logical Dynamical systems

Mixed Logical Dynamical (MLD) systems have both continuous and discrete-
valued states and allow one to model nonlinearities, logic, and constraints [5]. These
systems include constrained linear systems, linear hybrid automata, and piecewise
affine systems. An MLD system is of the form

x(t +1) = Ax(t)+B1u(t)+B2δ(t)+B3z(t)
subject to E2δ(t)+E3z(t) ≤ E1u(t)+E4x(t)+E5,

where t ∈ T ∞, x ∈ X ⊆ Rnc ×{0,1}nl are the continuous and binary states, u ∈ U ⊆
Rmc ×{0,1}ml are the inputs, and δ ∈ {0,1}rl and z ∈ Rrl are auxiliary binary and
continuous variables, respectively. The terms A, B1, B2, B3, E1, E2, E3, E4, and
E5 are system matrices of appropriate dimension. We assume that the system is
deterministic and well-posed (see Definition 1 in [5]).

6.2 Differentially flat systems

A system is differentially flat if there exists a set of outputs such that all states
and control inputs can be determined from these outputs without integration. If a
system has states x ∈ Rn and control inputs u ∈ Rm, then it is flat if we can find
outputs y ∈ Rm of the form y = y(x,u, u̇, . . . ,u(p)) such that x = x(y, ẏ, . . . ,y(q)) and
u = u(y, ẏ, . . . ,y(q)). Thus, we can plan trajectories in output space and then map
these to control inputs [18].

Differentially flat systems may be encoded using mixed integer linear constraints
in certain cases, e.g., the flat output is constrained by mixed integer linear con-
straints. This holds for relevant classes of robotic systems, including quadrotors and
car-like robots. However, control input constraints are typically non-convex in the
flat output. Common approaches to satisfy control constraints are to plan a suffi-
ciently smooth trajectory or slow down along a trajectory [20].

7 Examples

We demonstrate our techniques on a variety of motion planning problems. The first
example is a chain of integrators parameterized by dimension. Our second example
is a quadrotor model from [25]. Our final example is a nonlinear car-like vehicle with
drift. All computations were done on a laptop with a 2.4 GHz dual-core processor
and 4 GB of memory using CPLEX [1] through Yalmip [19].

The environment and task is motivated by a pickup and delivery scenario. All
properties should be understood to be with respect to regions in the plane (see Fig-
ure 1). Let P be a region where supplies can be picked up and D1 and D2 be regions



Optimal Control of Nonlinear Systems with Temporal Logic Specifications 13

where supplies must be delivered. The robot must remain in the safe region S (in
white). Formally, the task specification is ϕ = ◻S ∧ ◻◇P ∧ ◻◇D1 ∧ ◻◇D2.
Additionally, we minimize the maximum cost function (3) where c(xt ,ut) = ∣ut ∣ pe-
nalizes the control input.

In the remainder of this section, we consider this temporal logic motion plan-
ning problem for different system models. We use the simultaneous (sim.) approach
described in Section 5.2, and also a sequential (seq.) approach from [26] that first
computes the suffix and then the prefix. A trajectory of length 60 (split evenly be-
tween the prefix and suffix) is used in all cases, and all results are averaged over 20
randomly generated environments. The simultaneous approach uses between 300
and 469 binary variables with a mean of 394. Finally, all continuous-time models
are discretized using a first-order hold and time-step of 0.5 seconds.

7.1 Chain of integrators

The first system is a chain of orthogonal integrators in the x and y directions. The k-th
derivative of the x and y positions are controlled, i.e., x(k) = ux and y(k) = uy, subject
to the constraints ∣ux∣ ≤ 0.5 and ∣uy∣ ≤ 0.5. The general state constraints are ∣x(i)∣ ≤ 1
and ∣y(i)∣ ≤ 1 for i = 1, . . . ,k−1. Results are given in Tables 1 and 2 under “chain-2,”
“chain-6,” and “chain-10,” where “chain-k” indicates that the k-th derivative in both
the x and y positions is controlled.

Feasible soln. (sec) Num. solved
Model Dim. Sim. Seq. Sim. Seq.
chain-2 4 1.10 ±.09 0.64 ±.06 20 20
chain-6 12 4.70 ±.48 2.23 ±.15 20 20
chain-10 20 9.38 ±1.6 3.74 ±.29 20 19
quadrotor 10 4.20 ±.66 1.80 ±.15 20 20
quadrotor-flat 10 2.26 ±.36 1.99 ±1.0 20 20
car-3 3 43.9 ±.77 10.7 ±2.0 4 20
car-4 3 42.4 ±1.7 18.7 ±3.1 2 18
car-flat 3 15.8 ±3.8 14.0 ±4.4 12 14

Table 1: Time until a feasible solution was found (mean ± standard error) and number of problems
(out of 20) solved in 45 seconds using the big-M formulation (4) with M = 10.

7.2 Quadrotor

We now consider the quadrotor model used in [25] for point-to-point motion plan-
ning, to which we refer the reader for a complete description of the model. The
state x = (p,v,r,w) is 10-dimensional, consisting of position p ∈R3, velocity v ∈R3,
orientation r ∈R2, and angular velocity w ∈R2. This model is the linearization of a
nonlinear model about hover with the yaw constrained to be zero. The control input



14 Eric M. Wolff and Richard M. Murray

Feasible soln. (sec) Num. solved
Model Dim. Sim. Seq. Sim. Seq.
chain-2 4 1.94 ±.23 0.94 ±.11 20 20
chain-6 12 12.4 ±2.7 2.89 ±.32 20 20
chain-10 20 16.9 ±3.0 7.28 ±1.2 17 15
quadrotor 10 18.9 ±3.8 2.80 ±.35 16 20
car-3 3 37.3 ±3.1 13.3 ±1.6 8 20

Table 2: Time until a feasible solution was found (mean ± standard error) and number of problems
(out of 20) solved in 45 seconds using the convex hull formulation (5).

u ∈ R3 is the total, roll, and pitch thrust. Results are given in Tables 1 and 2 under
“quadrotor,” and a sample trajectory is shown in Figure 1.

Also, we use the fact that the quadrotor is differentially flat [20] to generate
trajectories for the nonlinear model (with fixed yaw). We parameterize the flat output
p ∈ R3 with eight piecewise polynomials of degree three, and then optimize over
their coefficients to compute a smooth trajectory. Afterwards, we check that the
trajectory does not violate the control input constraints. Results are given in Table 1
under “quadrotor-flat.”

7.3 Nonlinear car

Consider a nonlinear car-like vehicle with state x = (px, py,θ) and dynamics ẋ =
(vcos(θ),vsin(θ),u). The variables px, py are position (m) and θ is orientation
(rad). The vehicle’s speed v is fixed at 0.8 (m/s) and its control input is constrained
as ∣u∣ ≤ 2.5. We form a hybrid MLD model by linearizing the system about different
orientations θ̂i for i= 1, . . . ,k. The dynamics are governed by the closest linearization
to the current θ . Results with k = 3 and k = 4 are are given in Table 1 under “car-3”
and “car-4,” respectively. A sample trajectory of “car-4” is show in Figure 1.

Additionally, we use the flat output (x,y) ∈ R2 to generate trajectories for the
nonlinear car-like model in a similar manner as for the quadrotor model. Results are
given in Table 1 under “car-flat.”

7.4 Discussion and comparison

We first compare our approach to reachability-based algorithms that compute a finite
abstraction [17, 29]. We used the method in [29] to compute a discrete abstraction
for a two dimensional system in 22 seconds, and [17] reports abstracting a four
dimensional system in just over a minute. This contrasts with our mixed-integer
approach that can routinely find solutions to such problems in seconds, although we
do not compute a feedback controller. Our results appear particularly promising for



Optimal Control of Nonlinear Systems with Temporal Logic Specifications 15

situations where the environment is dynamically changing and a finite abstraction
must be repeatedly computed.

We also compare to the finite-horizon mixed-integer formulation given in [16].
Consider the task ϕ =◇ψ , where [[ψ]] is a convex polytope defined by m halfspaces.
Our method uses one binary variable at each time step, while their approach uses
m. Additionally, while we encode eventually (◇) using a single constraint, their
approach uses a number of constraints quadratic in the the trajectory length.

In most of our examples, we are able to quickly compute a feasible trajectory that
satisfies a temporal logic formula by solving a mixed-integer linear program. This
is aided by the sequential approach, which separates the problem into computing a
suffix and then a prefix [26]. It typically takes a long time to compute a trajectory
that is provably globally optimal, although this does happen in finite time.

Finally, the convex hull formulation performed poorly in our examples. There is
an empirical tradeoff between having tighter continuous relaxations and the number
of continuous variables in the formulation. We hypothesize that the convex hull
formulation will be most useful in cases when 1) the number of binary variables is
large, or 2) the cost function is minimized near the boundary of the region.

8 Conclusion

We presented a novel mixed-integer programming-based method for control of non-
linear systems with a useful fragment of LTL that allows both finite- and infinite-
horizon properties to be specified. Our method is efficient in the number of binary
variables used to model the an LTL formula. Additionally, we showed the computa-
tional effectiveness of our approach on temporal logic motion planning examples.

Future work will consider reactive environments by including both continuous
and discrete disturbances using a receding horizon control approach. Additionally,
we will expand the space of tasks that can be specified by including additional tem-
poral operators and timing constraints.

Acknowledgements The authors thank Matanya Horowitz, Scott Livingston, and Ufuk Topcu for
helpful feedback. This work was supported by a NDSEG Fellowship and the Boeing Corporation.

References

1. User’s Manual for CPLEX V12.2. IBM, 2010
2. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid sys-

tems. Proc. IEEE 88(7), 971–984 (2000)
3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
4. Belta, C., Habets, L.C.G.J.M.: Controlling of a class of nonlinear systems on rectangles. IEEE

Trans. on Automatic Control 51, 1749–1759 (2006)
5. Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints.

Automatica 35, 407–427 (1999)



16 Eric M. Wolff and Richard M. Murray

6. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Program-
ming, 2nd edition. SIAM (2000)

7. Bhatia, A., Maly, M.R., Kavraki, L.E., Vardi, M.Y.: Motion planning with complex goals.
IEEE Robotics and Automation Magazine 18, 55–64 (2011)

8. Blair, C.E., Jeroslow, R.G., Lowe, J.K.: Some results and experiments in programming tech-
niques for propositional logic. Computers and operations research 13, 633–645 (1986)

9. Earl, M.G., D’Andrea, R.: Iterative MILP methods for vehicle-control problems. IEEE Trans-
actions on Robotics 21, 1158–1167 (2005)

10. Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for
dynamic robots. Automatica 45, 343–352 (2009)

11. Habets, L., Collins, P.J., van Schuppen, J.H.: Reachability and control synthesis for piecewise-
affine hybrid systems on simplices. IEEE Trans. on Automatic Control 51, 938–948 (2006)

12. Hooker, J.N., Fedjki, C.: Branch-and-cut solution of inference problems in propositional logic.
Annals of Mathematics and Artificial Intelligence 1, 123–139 (1990)

13. Jeroslow, R.G.: Representability in mixed integer programming, I: Characterization results.
Discrete Applied Mathematics 17, 223–243 (1987)

14. Karaman, S., Frazzoli, E.: Linear temporal logic vehicle routing with applications to multi-
UAV mission planning. Int. J. of Robust and Nonlinear Control 21, 1372–1395 (2011)

15. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning with de-
terministic µ-calculus specifications. In: Proc. of American Control Conf. (2012)

16. Karaman, S., Sanfelice, R.G., Frazzoli, E.: Optimal control of mixed logical dynamical sys-
tems with linear temporal logic specifications. In: Proc. of IEEE Conf. on Decision and Con-
trol, pp. 2117–2122 (2008)

17. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems from tem-
poral logic specifications. IEEE Trans. on Automatic Control 53(1), 287–297 (2008)

18. LaValle, S.M.: Planning Algorithms. Cambridge Univ. Press (2006)
19. Löfberg, J.: YALMIP : A toolbox for modeling and optimization in MATLAB. In:

Proc. of the CACSD Conference. Taipei, Taiwan (2004). Software available at
http://control.ee.ethz.ch/∼joloef/yalmip.php

20. Mellinger, D., Kushleyev, A., Kumar, V.: Mixed-integer quadratic program trajectory genera-
tion for heterogeneous quadrotor teams. In: Proc. of Int. Conf. on Robotics and Automation
(2012)

21. Richards, A., How, J.P.: Aircraft trajectory planning with collision avoidance using mixed
integer linear programming. In: American Control Conference (2002)

22. Smith, S.L., Tumova, J., Belta, C., Rus, D.: Optimal path planning for surveillance with
temporal-logic constraints. Int. J. of Robotics Research 30, 1695–1708 (2011)

23. Toth, P., Vigo, D. (eds.): The Vehicle Routing Problem. Philadelphia, PA: SIAM (2001)
24. Vitus, M.P., Pradeep, V., Hoffmann, J., Waslander, S.L., Tomlin, C.J.: Tunnel-MILP: path

planning with sequential convex polytopes. In: Proc. of AIAA Guidance, Navigation, and
Control Conference (2008)

25. Webb, D.J., van den Berg, J.: Kinodynamic RRT*: Asymptotically optimal motion planning
for robots with linear dynamics. In: Proc. of IEEE Int. Conf. on Robotics and Automation
(2013)

26. Wolff, E.M., Murray, R.M.: Optimal control of mixed logical dynamical systems with long-
term temporal logic specifications. Tech. rep., California Institute of Technology (2013). URL
http://resolver.caltech.edu/CaltechCDSTR:2013.001

27. Wolff, E.M., Topcu, U., Murray, R.M.: Optimal control with weighted average costs and tem-
poral logic specifications. In: Proc. of Robotics: Science and Systems (2012)

28. Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon temporal logic planning.
IEEE Trans. on Automatic Control (2012)

29. Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: TuLiP: A software toolbox
for receding horizon temporal logic planning. In: Proc. of Int. Conf. on Hybrid Systems:
Computation and Control (2011). Http://tulip-control.sf.net


