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Optimal Control of Power Split for a Hybrid
Electric Refuse Vehicle
Lorenzo Serrao and Giorgio Rizzoni, fellow, IEEE

Abstract—An optimal power split strategy in a hybrid
electric refuse truck is presented. Using Pontryagin’s Minimum
Principle, a set of solution candidates is found and evaluated
in order to find the optimal control strategy. Simulation results
are shown to demonstrate the effectiveness of the strategy.

Index Terms—optimal control, hybrid electric vehicles

I. INTRODUCTION

HYBRIDIZATION can offer significant advantages in
terms of fuel economy when applied to heavy-duty

trucks or buses [1], [2]. In fact, due to the high weight of
these vehicles, the ability to regenerate kinetic and potential
energy with electric braking is highly beneficial in certain
conditions (e.g., start-stop driving cycles); another advantage
is the mechanical decoupling of the engine from the road,
which allows operating the engine at the highest efficiency
conditions.

Among medium- and heavy-duty trucks, urban buses and
refuse hauling vehicles are natural candidates for hybridiza-
tion, because of their typical stop-and-go driving cycles.

The objective of this work is to present an analytical
formulation of the energy management problem for a series
hybrid electric refuse collection truck, with the goal of
reducing fuel consumption.

Control is essential to exploit the benefits of hybrid
electric powertrains; correct repartition of the load between
the two on-board energy sources (fuel and electrical buffer)
allows for substantial reduction of the overall fuel con-
sumption. By its nature, the problem of fuel consumption
reduction is global, and an optimal solution can be found
only if the entire driving cycle is known a priori, for
example using Dynamic Programming [3], [4]. Since this
is impossible in typical automotive applications, only sub-
optimal solutions can be found, using a variety of methods.
Using rule-based or fuzzy control [5], [6], the instantaneous
repartition of load is determined by pre-established rules,
derived using engineering judgment and a substantial amount
of testing; the technique can be made robust and suitable for
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production environment, but the results may not be optimal.
A more elegant alternative is the equivalent consumption
minimization strategy (ECMS) [7], [8], [9], which associates
the discharge (resp. recharge) of the electrical energy buffer
to a future increase (resp. decrease) of fuel consumption. In
this way, the global minimization problem is transformed in
a local minimization one. The method can give very good
results, but the equivalence factors that allow for the transfor-
mation of electrical energy into future fuel consumption must
be determined with optimization techniques, and are related
to the driving cycles that the vehicle follows (therefore, the
factors that minimize the fuel consumption over an urban
cycle are different that those that would be needed in a
highway cycle). Analytical optimal control techniques have
also been applied in the past, assuming known driving cycles
[10] or special cases, such as constant power request [11].

This work presents an analytical solution for a case of
variable load profile, based on Pontryagin’s minimum prin-
ciple. This solution is computationally more efficient than
dynamic programming, and is potentially implementable on-
line.

II. HYBRID ELECTRIC POWERTRAIN MODELING

A longitudinal vehicle dynamics and powertrain model has
been developed [12] for the prediction of performance and
fuel economy, and the optimization of energy management.
The simulator is implemented using Simulink and its spe-
cialized blockset SimDriveline, which introduces “physical”
modeling templates. These are used to build a simulator
composed of self-contained blocks representing physical
components, which can be connected together to form a
powertrain according to its physical layout. All powertrain
components in the simulator are modeled using steady-state
efficiency maps, coupled with a lumped-parameter dynamic
model that limits the speed variations according to inertia,
dissipative resistances and other factors, depending on the
specific components.

The model has been validated by comparing the simu-
lation results with the experimental data obtained from a
prototype of the vehicle, built by Oshkosh Corporation. This
series hybrid electric vehicle is characterized by the archi-
tecture shown in Figure 1: an internal combustion engine
is coupled to an electrical generator to produce electrical
power, which can be used in the traction machines or stored
in the rechargeable energy storage system (RESS), which
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is a pack of supercapacitors. These are also used to store
the energy deriving from regenerative braking (obtained by
operating the traction machines as generators). Despite their
relatively low energy density, supercapacitors were chosen
instead of batteries for their much higher power density, and
longer operating life.
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Figure 1. Series hybrid electric architecture (filled arrowheads: positive
power flow; empty: negative power flow; no head: non-admissible power
flow direction)

Special driving cycles developed in a previous phase of
the same project [13], representative of typical operating
conditions, are used to test the vehicle both experimentally
and in simulation. The cycles include velocity profiles as
well as load profiles (i.e., hydraulic power needed to load,
pack, and dump refuses) and payload (amount of additional
weight due to refuse collection during the cycle). Three
standard cycles (Route 1, Route 2 and Route 3) are used to
represent different phases of the refuse collection in urban
and suburban areas. Together, the cycles cover a significant
range of typical vehicle operation. The model validation was
conducted by replacing all driver and control actions in the
simulator with the corresponding measurements obtained in
the experimental vehicle, and then comparing the outputs.
From the results shown in Tables I and II, we conclude that
the accuracy of the model is acceptable for the purposes of
the present paper.

III. OPTIMAL CONTROL: PROBLEM STATEMENT

As stated earlier, the objective of the supervisory energy
management strategy is to determine the values of the power
split between the engine and the reversible energy storage

Table I
VALIDATION OF THE SIMULATOR: FUEL CONSUMPTION

Driving cycles Error
Route 1 3.68%
Route 2 -3.11%
Route 3 2%

Table II
VALIDATION OF THE SIMULATOR: SELECT DYNAMIC VARIABLES

DURING CYCLE Route 2

Variable RMS error
Vehicle speed 0.8%
Engine torque 6%

Electric bus power 2.9%
Capacitors State of Energy 3.4%

system (RESS) that minimize the total fuel consumption dur-
ing a driving cycle. The series hybrid electric configuration
in Figure 1 is considered.

The internal combustion engine is the primary energy
converter and produces the mechanical power Pice using the
fuel power Pfuel = Qlhvṁf (Qlhv is the fuel lower heating
value, i.e. its energy content for unit of mass; ṁf is the
fuel mass flow rate). The electrical generator transforms the
mechanical power from the engine into the electrical power
Pgen. The rechargeable energy storage system (RESS) is
a pack of electrochemical supercapacitors that deliver the
power Pcap. The electrical power from the generator and
from the capacitors is summed electrically in the bus and is
used to drive the traction motors and the other vehicle loads.
The total power that these machines require is determined
from the accelerator pedal position and the vehicle velocity,
and can be considered a known quantity (i.e., a problem
parameter). The power from the generator and from the
capacitor is such that:

Pgen(t) + Pcap(t) = Pload(t) ∀t ∈ [t0, tf ] (1)

having indicated with [t0, tf ] the optimization interval.
Given the load power, there are (in principle) infinite
combinations of capacitor and generator power that satisfy
(1). Once a value is attributed to the capacitor power, the
generator power is automatically determined using (1). The
engine power is directly related to the generator power.

The state of the system is represented by the amount of
charge present in the capacitors, proportional to their voltage;
x(t) denotes the capacitor voltage at time t. The control input
u(t) is the current through the capacitors.

The optimal control problem of minimizing the total fuel
consumption can be stated as follows:

Problem 1: (optimal control problem): Find u(t) such
that the cost function

J = φ(tf ) +
∫ tf

t0

Pfuel (u(t), Pload(t), x(t)) dt (2)

is minimized, subject to the following constraints:
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Pcap,min(t) ≤ Pcap(t) ≤ Pcap,max(t) ∀t ∈ [t0, tf ] (3)

Pgen,min(t) ≤ Pgen(t) ≤ Pgen,max(t) ∀t ∈ [t0, tf ] (4)

xmin(t) ≤ x(t) ≤ xmax(t) ∀t ∈ [t0, tf ] (5)

The vehicle has to be charge-sustaining, which means that
the state of energy at the end of a driving cycle should be the
same as it was at the beginning. This condition is imposed
as a soft constraint, i.e. by adding the terminal cost

φ(tf ) = (x(t0)− x(tf ))2 (6)

to the global cost function.

IV. CONTROL-ORIENTED MODEL

A simplified control-oriented model is needed to formulate
in detail and solve the optimal control problem. For the
vehicle architecture taken into consideration, it is important
to model accurately the power flow in the supercapacitors
and the engine-generator set.

A. Supercapacitors

Figure 2. Circuit model of supercapacitor pack

The circuit model of the capacitors is shown in Figure
2; the resistance R and the capacitance C represent the
equivalent of a large number of cells connected in series and
in parallel. The total amount of energy stored in a capacitor
is Ecap = 1

2CV 2
C and the instantaneous state of energy can

be defined as

ξ(t) =
Ecap(t)

Ecap,max
=

1
2CV 2

C(t)
1
2CV 2

C,max

=
(

VC(t)
VC,max

)2

(7)

The capacitance voltage VC is selected as the system state
variable, and the current u flowing through the capacitors as
the control input. u is positive during discharge, and negative
during recharge. The state equation is therefore:

ẋ = V̇C = − 1
C

u (8)

The power that the capacitors exhange with the bus is
given by the voltage and current across the capacitance,
reduced by the losses due to the internal resistance:

Pcap = VLu = VCu−Ru2 = xu−Ru2 (9)

B. Engine and generator
The internal combustion engine is rigidly connected to

the electrical generator and therefore they can be regarded
as a single component, called genset, which transforms the
fuel power into electrical power. The fact that there is no
mechanical connection between the engine and the vehicle
wheels is advantageous because it makes the engine speed
a free variable. For this reason, it is possible to operate
the genset at the speed of maximum efficiency for each
power level (i.e., along the line shown in Figure 3); the
corresponding fuel conumption is a function of the electric
power and, as shown in Figure 4, can be expressed with
acceptable approximation in terms of fuel power as

Pfuel = Qlhvṁf = m0 + m1Pgen (10)
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Figure 3. Map of the overall efficiency of the engine-generator assembly,
with line of maximum efficiency. Both axes are normalized with respect to
their maximum value.

C. Load power
The load power represents the sum of generator and

capacitor power. It is used in the traction motors, for
moving the vehicle, and in the auxiliary load motors, for
operating the refuse collection accessories. The power flow
in these components is modeled in the vehicle simulator as
a function of the vehicle speed and of parameters such as
mass, aerodynamic resistance, rolling resistance, auxiliary
load power. However, it is not part of the control model:
the instantaneous value of load power Pload(t) is considered
a known parameter (calculated in the simulation model).
An example of speed and load power during urban driving
conditions is shown in Figure 5.
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Figure 4. Fuel consumption as a function of the net electrical power
delivered by the generator (values corresponding to the maximum efficiency
line of Figure 3). Both axes are normalized with respect to the maximum
electric power.
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Figure 5. One of the test driving cycles (Route 2)

V. APPLICATION OF PONTRYAGIN’S MINIMUM
PRINCIPLE

Pontryagin’s minimum principle [14] is used to solve the
optimal control problem. Given a dynamic system with state
equation

ẋ = f (x, u) (11)

and a cost function

J = φ(x(tf ), tf ) +
∫ tf

t0

L(x, u) dt (12)

subject to the terminal conditions on the state (if they
exist) Ψ(x(tf ), tf ) = 0, the minimum principle states that
the optimal control law u∗(t) must satisfy the following
necessary conditions:

1) u∗(t) minimizes at each instant of time the Hamilto-
nian of the system H(t, u(t), x(t), λ(t)) = λ′f + L,

where λ is a vector of adjoint state variables (with the
same dimension as the state vector x);

2) the co-state dynamic equation is λ̇ = − ∂H
∂x

∣∣
u∗,x∗

3) the terminal conditions on the co-state are given by
λ∗(tf ) = ∂(Φ(tf ))

∂tf

∣∣∣
∗,tf

, where Φ(tf ) = φ(tf ) +

ν′Ψ(tf ) is the sum of the state terminal conditions
Ψ (with the arbitrary multiplier ν) and the adjoint
terminal conditions φ.

In the system described, the state equation is (8). The control
input is the capacitor current u. The instantaneous cost is the
fuel power: L = Qlhvṁf .

The terminal cost φ(tf ) expresses the fact that the voltage
(i.e. state of charge) of the capacitors at the end of the
simulation should be close to the one at the beginning:

φ(tf ) = (x(t0)− x(tf ))2 (13)

The weighting factor w is a free parameter. Since the
constraint on the state of charge is imposed using φ, there
is no explicit terminal constraint on the state variable, i.e.
Ψ = 0.

Taking into account (8) and (10), the Hamiltonian H =
λẋ + L can be written as

H = − λ

C
u + m0 + m1Pgen (14)

The generator net (electrical) power Pgen is expressed as
a function of control and state variables using (1) and (9):

H = − λ

C
u + m0 + m1Pload −m1xu + m1Ru2 (15)

The minimization of the Hamiltonian (15) can be done
either analytically or numerically, since it is an instantaneous
minimization; the local constraints: (3), (4), and (5) must be
taken into account in defining the range of acceptable values
of u to consider as solution candidates.

In particular, given the expression of the capacitor power
(9), the limits on the value of current can be expressed as a
function of the power limits as follows:

umax =
x

2R
− 1

2R

√
x2 − 4RP1 (16)

umin =
x

2R
− 1

2R

√
x2 − 4RP2 (17)

where

P1 = min (Pcap,max, Pload − Pgen,min) (18)

and

P2 = max (Pcap,min, Pload − Pgen,max) (19)

P1 and P2 take into account the conditions (3), (4); the
state of energy constraints (5) are taken into account by
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setting Pcap,min or Pcap,max to zero when the capacitor
voltage x reaches its maximum or minimum value.

The value of H(t) depends - at each instant of time - on
λ(t), which derives from the simultaneous solution of the
state and co-state dynamic equations:

ẋ(t) = − 1
C

u (20)

λ̇(t) = −∂H

∂x
= −m1u (21)

u(t) = arg minH(u(t), x(t), Proad(t)), u ∈ U (22)

where U = [umin, ..., umax] is the set of admissible
solutions. The state and co-state equations must also satisfy
the split terminal conditions

x(t0) = x0 (23)

and

λ(tf ) =
∂φ

∂x

∣∣∣∣
tf

= 2(x(tf )− x(t0)) (24)

The implementation of the optimal control strategy is done
in simulation by defining a vector of N admissible values
of the control variable u, equally spaced in the interval
[umin, umax]. The Hamiltonian function H is calculated,
according to (15), for each of these values. The instantanous
values of the state x(t) and the co-state λ(t) are obtained by
integrating the dynamic equations, starting from the initial
values x0 and λ0 (λ0 is chosen arbitrarily). At each instant
t, the value of the control that minimizes the Hamiltonian
H(u(t), Pload(t)) is then chosen as the optimal control
action u∗(t). The fact that H(u) is a continous quadratic
function of u for u ∈ [umin, umax] ensures that is has a
unique minimum. Therefore, this value of u satisfies the
first two necessary conditions, by construction. Whether the
third condition (terminal condition on λ) is satisfied or not
can only be determined after applying the strategy for the
entire optimization interval [t0, tf ], by verifying that (24)
holds. If this is not true, then the initial value λ0 should be
modified and the optimization procedure repeated until (24)
is satisfied.

The off-line implementation of this control strategy is
therefore relatively straightforward and, using an iterative
procedure to find the correct value of λ0, can give the optimal
control sequence for a known driving cycle. In practice, λ0

represents the only parameter that needs to be tuned. For
charge sustaining operation (xf = x0), the value of λ0

should be selected in order to obtain λf = 2(xf − x0) % 0.
The solution obtained in this way satisfies all necessary

conditions set by Pontryagin’s minimum principle. The fact
that the entire set of solution candidates is considered implies
that the only one among them that satisfies the necessary
conditions is indeed the optimal solution, in the limits given

by the discretization of the set of solution candidates and by
the modeling assumptions.

VI. RESULTS OF THE IMPLEMENTATION

The procedure just described is applied in simulation
to the same driving cycles that were used to validate the
simulator (see Section 2). The value of λ0 is selected
iteratively so that the capacitor voltage x at the end of
the simulation is equal to the initial value: x(tf ) = x(t0),
and that the co-state terminal condition (24) is satisfied:
λ(tf ) = 2(x(tf ) − x(t0)) = 0. The value of λ0 that
satisfies these conditions is different for the different cycles,
as it depends on the cycle characteristics; it represents
the only parameter needed for tuning the strategy for a
specific cycle. In order to select the correct value of λ0

for each of the cycles considered, simulations were repeated
varying its value. The effect of the parameter λ0 on the
net variation of capacitor voltage (i.e., state of charge) is
shown in Figure 6. As it can be observed, it changes the
behavior of the vehicle from charge-increasing to charge-
depleting: there exists one value for each cycle for which
the vehicle is charge sustaining. This effect can be justified
by looking at the Hamiltonian (14) as the sum of the terms:
one represents the fuel power (i.e. the fuel consumption); the
other is proportional (via λ(t)) to the current u, and can be
interpreted as the fuel consumption equivalent to the use of
the capacitors. Varying the value of λ(t) changes the value
of u for which H(λ, u) is minimum, or, in other words,
the cost of using the electrical power source, in terms of
equivalent fuel consumption.
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Figure 6. Effect of the parameter λ0 on the variation of capacitor voltage
between the beginning and the end of the simulation. A value of zero
correspond to charge-sustaining operation and to the satisfaction of all
necessary conditions for optimal control.

The results of the optimal controller defined in this way
can be compared to those of the rule-based strategy im-
plemented in the prototype vehicle, whose parameters were
tuned using the test cycles. The rule-based controller gives
good results, with a sensible reduction in fuel consumption
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with respect to the conventional (non-hybrid) vehicle. Table
III shows a comparison between the optimal control strategy
described in this paper and the rule-based strategy, both
tested on the same simulation model: as expected, the
optimal control strategy is advantageous in terms of fuel
consumption (even though the rule-based strategy is close).

Table III
DIFFERENCES IN FUEL CONSUMPTION BETWEEN THE OPTIMAL

CONTROL STRATEGY AND THE RULE-BASED CONTROL.

Driving cycle Optimal value of λ0 Difference in fuel consumption
Route 1 -12430 -10.7%
Route 2 -12565 -5.4 %
Route 3 -12180 -7.5 %

To better understand the differences between the two
strategies, the variation of the capacitor state of energy
during one of the cycles is shown in Figure 7: the optimal
control generates a higher variability of state of energy, i.e.,
it uses the capacitors in a wider range, thus maximizing the
benefits of their presence.
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Figure 7. Comparison of capacitor state of energy (as defined in (7))
between the optimal control and the rule-based control. The driving cycle
is Route 2, shown in Figure 5.

VII. CONCLUSION

An application of optimal control theory to hybrid electric
vehicles has been presented, using Pontryagin’s minimum
principle to find the optimal solution to the energy man-
agement problem of hybrid electric vehicles. The solution
reduces the global optimization problem to an instantaneous
one, which can be solved iteratively. The results are optimal
in the limits of the control model, and improve on the
previously implemented rule-based controller.

Besides the lower fuel consumption, an advantage of the
solution based on the Pontryagin’s minimum principle is
the fact that only one parameter (namely λ0) is needed to
tune the strategy for optimal results over a specific cycle.
However, as seen in Figure 6, this parameter must be
correcly determined to ensure charge-sustainability, which

is possible only using an iterative procedure. This limits the
applicability of this control to simulation environment, for
the solution of off-line optimization problems. However, an
approximation of the optimal results can be implemented
on-line if driving pattern recognition algorithms are used to
select the optimal value of the tuning parameter λ0 as a
function of the current driving conditions. This will be the
object of future investigation.
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