J Neurophysiol 94: 4244—-4255, 2005.
First published August 3, 2005; doi:10.1152/jn.00404.2005.

Optimal Control of Redundant Muscles in Step-Tracking Wrist Movements

Masahiko Haruno'? and Daniel M. Wolpert'

'Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, Queen Square,

London, United Kingdom; and *Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute, Kyoto, Japan

Submitted 20 April 2005; accepted in final form 2 August 2005

Haruno, Masahiko and Daniel M. Wolpert. Optimal control
of redundant muscles in step-tracking wrist movements. J Neuro-
physiol 94: 4244-4255, 2005. First published August 3, 2005;
doi:10.1152/jn.00404.2005. An important question in motor neuro-
science is how the nervous system controls the spatiotemporal acti-
vation patterns of redundant muscles in generating accurate move-
ments. The redundant muscles may not only underlie the flexibility of
our movements but also pose the challenging problem of how to select
a specific sequence of muscle activation from the huge number of
possible activations. Here, we propose that noise in the motor com-
mand that has an influence on task achievement should be considered
in determining the optimal motor commands over redundant muscles.
We propose an optimal control model for step-tracking wrist move-
ments with redundant muscles that minimizes the end-point variance
under signal-dependent noise. Step-tracking wrist movements of hu-
man and nonhuman primates provide a detailed data set to investigate
the control mechanisms in movements with redundant muscles. The
experimental EMG data can be summarized by two eminent features:
1) amplitude-graded EMG pattern, where the timing of the activity of
the agonist and antagonist bursts show slight variations with changes
in movement directions, and only the amplitude of activity is modu-
lated; and 2) cosine tuning for movement directions exhibited by the
agonist and antagonist bursts, and the discrepancy found between a
muscle’s agonist preferred direction and its pulling direction. In
addition, it is also an important observation that subjects often
overshoot the target. We demonstrate that the proposed model cap-
tures not only the spatiotemporal activation patterns of wrist muscles
but also trajectory overshooting. This suggests that when recruiting
redundant muscles, the nervous system may optimize the motor
commands across the muscles to reduce the negative effects of motor
noise.

INTRODUCTION

A remarkable feature in our daily lives is our ability to
effortlessly achieve precise movements, such as reaching and
grasping, by controlling a set of redundant muscles. It is a
fundamental question in motor neuroscience how the nervous
system controls the spatiotemporal activation pattern across
redundant muscles. Although this redundancy of muscles is the
source of flexibility and adaptability of our motor control
system, it also causes the so-called ill-posedness problem,
where there are infinite possible solutions that could achieve
the goal of a movement (Bernstein 1967). However, it is often
observed that spatiotemporal patterns of both muscle recruit-
ment and kinematics of movements are highly stereotyped
within and between individuals. Good examples of this stereo-
typy are the two peaks observed in agonist and antagonist

Address for reprint requests and other correspondence: M. Haruno, Depart-
ment of Cognitive Neuroscience, ATR Computational Neuroscience Labs,
2-2-2 Hikaridai Seikacho, Sorakugun, Kyoto 619-0288, Japan (E-mail:
mharuno @atl.2P).

4244

0022-3077/05 $8.00 Copyright © 2005 The American Physiological Society

EMG waveforms and bell-shaped velocity profile (Berardelli et
al. 1996; Hollerbach and Atkeson 1987).

In the field of reaching movements, many optimal control
models have been proposed to solve the problem of trajectory
redundancy. Flash and Hogan (1985) and Uno et al. (1989)
both noticed the smoothness of trajectory plays a crucial role in
trajectory planning, suggesting minimum jerk criterion and
minimum torque change criterion, respectively. In contrast, the
minimization of end-point variance under signal-dependent
noise (SDN) not only explained the key features of reaching,
but also provided a unified theoretical framework for both arm
reaching and saccadic eye movements (Harris and Wolpert
1998). SDN proposes that the motor command is corrupted by
noise at the muscle level and the amount of noise scales with
the magnitude of the original motor command. Although these
models of trajectory planning have so far focused on joint
torques, the SDN model is a promising candidate to explain the
spatiotemporal pattern of redundant muscle recruitment be-
cause SDN itself originates from muscle activity (Hamilton et
al. 2004; Jones et al. 2002). In this paper, we propose an
optimal control model for the step-tracking wrist movement
that minimizes the end-point variance under SDN and demon-
strate that the proposed model captures the key spatiotemporal
characteristics of both redundant muscles’ activity and trajec-
tory. This is consistent with the view that the nervous system
uses an optimal control principle, at least in an abstract level,
to recruit the redundant muscles to achieve accurate move-
ments.

The step-tracking wrist movement that has been intensively
studied by Hoffman and Strick (1986, 1990, 1993, 1999)
provides an important data set for investigations of the spatio-
temporal activation pattern of redundant muscles. The task
requires subjects to make point-to-point wrist movements.
Radial/ulnar deviation and extension/flexion of the wrist are
mapped onto two orthogonal axes and determine the movement
of a cursor on a screen. Subjects start in a central neutral
position and make movement to one of 12 targets arranged on
a circle (Fig. 1A). EMG activity is recorded from five wrist
muscles: extensor carpi radialis longus (ECRL), extensor carpi
radialis brevis (ECRB), extensor carpi ulnaris (ECU), flexor
carpi radialis (FCR), and flexor carpi ulnaris (FCU). In mon-
keys the pulling direction of these five muscles is determined
as the direction of wrist movement elicited by electrical stim-
ulation of that muscle in isolation (Fig. 1B).

The data demonstrate three characteristic features in the
spatiotemporal patterns of muscle activity: /) amplitude-
graded EMG patterns, where the amplitude of EMG activity
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ECRB

FIG. 1. Step-tracking wrist movement. A: forelimb
was held in the neutral position, midway between full
pronation and full supination. To initiate a trial, the
subject placed the cursor at the center of the screen
corresponding to the wrist’s being in a neutral position.
After a variable hold period, the subject was required to
move the cursor to one of 12 different targets as rapidly
and accurately as possible. Zero degrees is in the up
direction and degrees increase is in the clockwise direc-
tion. B: muscle pulling directions for extensor carpi

ECU

radialis longus (ECRL), extensor carpi radialis brevis
(ECRB), extensor carpi ulnaris (ECU), flexor carpi ul-
naris (FCU), and flexor carpi radialis (FCR) muscles
were 1.6, 18.4, 159.5, 198.3, and 304.5°, respectively.
Data were the average of 2 monkeys (PL Strick, DS
Hoffman, and S. Kakei, personal communication). C:
simulated trajectories and velocity profiles obtained
when the target was varied from 1 to 12. Colors represent
the target directions depicted in A.
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varies over the movement direction but, in contrast, the timing
of the activity shows little variation with movement direction.
2) Cosine tuning of both agonist and antagonist bursts over the
movement directions. 3) Deviation of the preferred directions
(peak in the cosine tuning) of each muscle from their pulling
directions. It is also noteworthy that both human and monkey
subjects often overshoot the targets.

Previous computational studies have tried to determine the
average EMG activity over a movement controlled by set of
redundant muscles. Buchanan and Shreeve (1996) compared a
number of criteria of effort minimization such as squared force,
squared normalized force, and squared and cubed stress and
reported that only slight differences were found in the pre-
dicted EMG pattern. Similarly, Fagg et al. (2002) and Shah et
al. (2004) proposed a model of muscle recruitment in the
step-tracking wrist movement that minimized the sum of
squared muscle activation. The model succeeded in demon-
strating cosine-like recruitment pattern of agonist EMG and
also the discrepancy between the muscle’s pulling and pre-
ferred direction. Todorov (2002) also pointed out the relevance
of signal-dependent noise to cosine tuning in the isometric
case. However, these models focused only on the average
activity over agonist bursts, and can explain neither the spa-
tiotemporal characteristics of redundant muscle recruitment
nor the characteristics of trajectories.

Here we examine a model in which the motor commands in
each muscle are corrupted by signal-dependent noise and the
optimal strategy is to use the muscle activations that minimize
the variance of terminal error. This model allows a prediction
of the spatiotemporal EMG of the muscles and we show that it
captures all of the main features seen in the human and monkey

data, which include amplitude-graded EMG pattern in agonist
and antagonist EMG bursts, cosine tuning in agonist and
antagonist EMG bursts, asymmetry between preferred direc-
tions and pulling directions, and overshooting in the trajectory.

METHODS
Optimal control model

We set out to determine the optimal sequence of motor commands
to apply to the five muscles to achieve the task as accurately as
possible. More concretely, we propose that the movements start
stationary and that a feedforward motor command is selected for each
muscle so that the movement on average ends stationary on the target
and, in addition, the motor commands are chosen to minimize the final
variance of the movement, thereby generating the most accurate
movement possible. In the following, we first provide the model
description. Then, we describe the relationship between the motor
command sequence and the average kinematics and its variance under
SDN. Finally, we derive the optimization procedure for the final
variance to find the optimal motor commands.

First, the wrist position is denoted as {x(¢), y(t)}, where x(7)
represents flexion—extension and y() radial-ulnar deviation at time 7.
The position of the wrist is determined by the activation of five
muscles, ECRL, ECRB, ECU, FCU, and FCR, each of which is
controlled by its own motor command u,(t) (i = 1... 5, respectively).
Each muscle acts with a fixed pulling direction «;, representing the
angle between the ith muscle and the y-axis. The pulling angles «;, for
each muscle were set to [1.6, 18.4, 159.5, 198.3, 304.5] degrees
(positive angles are taken as clockwise; Fig. 1A) following the
averaged data of two monkeys (PL Strick, DS Hoffman, and S. Kakei,
personal communication). For a parsimonious and tractable model, we
use linear systems for muscles and dynamics. Each muscle is modeled
as an identical second-order linear system following Van der Helm
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and Rozendaal (2000) that converts motor commands into output
force with time constants of 30 and 40 ms, representing excitation and
activation, respectively. The wrist dynamics is also modeled as a
linear system, whose parameters were selected within a biologically
plausible range to reasonably reproduce experimental data. The mea-
sured moment of inertia of the wrist and manipulandum during
stabilization of a wrist targeted movement ranges from 0.00322 to
0.00541 kgm? with an average of 0.00469 kgm? (Grey 1997). A
similar value was also reported in Milner and Cloutier (1998). Al-
though the viscosity and stiffness of the wrist still remain to be fully
measured, the natural viscosity of the relaxed wrist was estimated to
be 0.02-0.03 Nms/rad (Gielen and Houk 1984), consistent with the
average viscosity of 0.03 Nms/rad estimated in the above stabilization
study (Grey 1997). The stiffness for the relaxed wrist was estimated
to be between 0.3 and 3 Nm/rad (de Serres and Milner 1991; Gielen
and Houk 1984). In contrast, the stiffness of the wrist during stabili-
zation of a target movement was reported to be 6.3 on average (Grey
1997), consistent with another study from the same group (Milner and
Cloutier 1998). Considering these experimental measurements, in our
main simulations, we used moment of inertia m = 0.005 kgmz,
viscosity b = 0.03 Nms/rad, and stiffness k = 0.1 Nm/rad. In the
overshooting simulation, the viscosity and stiffness were set to b =
0.15 Nms/rad and k£ = 4.0 Nm/rad, respectively. These two sets of the
parameters would be plausible because the stiffness and the viscosity
scale with muscle activation by comparable amounts. In addition to
these values used in our main simulations, we systematically inves-
tigated how the simulated EMG and trajectory changes when the
stiffness and viscosity are varied.

Second, we describe the relationship between the motor command
sequence and the average kinematics and positional variance under
SDN. We model the effect of each muscle acting alone on the wrist by
using an impulse response p(f), which represents the combined dy-
namic behavior of the muscle and wrist along the muscles, pulling
direction. The impulse response is the positional trace of the wrist
when an impulse is given as the motor command. To represent
signal-dependent noise on the motor commands, we assume that each
motor command is corrupted by Gaussian noise with zero mean
(unbiased) and the SD proportional to the absolute value of motor
command. That is, the SD is represented as o, (f) = k |u; (1)|, where
k is the coefficient of variation and is assumed to be the same for all
five muscles. Because the system is linear, the effect of all the muscles
can be modeled by simply summing their individual effects modified
by their pulling direction in the x and y-directions. Because the noise
on the motor command is unbiased and therefore has no effect on
average kinematics, we can calculate the average kinematics of the
movement at time ¢ as the following sums of convolutions

E[x"(1)] = E sin q; J[ u(np™(t — 1)dr 1)

i=1 0

E[y"(1)] = E cos a; f‘ u(Dp™(t — ndr

i=1 0

where the superscript n refers to the nth derivative of the position
variables (i.e., velocity, acceleration, and so forth). Substituting the
signal-dependent SD above, the variance of the wrist position at time
¢t amounts to the following

oi(t) = Var [x()] = E sin? f‘ Var [u,(71)]p*(t — ndr

i=1 0

5 t
= E sin? o J kK*ui(7)p(t — ndr
i1 0
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oy () = Var [y(n] = 2 cos® a; J( Var [u(7)p*(t — 7)dr

i=1 0

S t
= E cos® a; j K*ui(m)p(t — 7)dr
i=1

0

Finally, our task is now to find an optimal motor command that not
only moves the wrist to the target on average but also minimizes the
end-point variances. Corresponding to these two requirements, we
apply both a constraint and a cost on the movement. The constraint is
on the kinematic boundary conditions at the start (r = 0) and end (1 =
M) of the movement. Specifically, these constraints require that the
wrist starts stationary at the central start position and ends on average
stationary on the target. Therefore, E[x(M)] = x*, E[y® (M)] = y*
and xX™ (M) = yV(M) = 0 for n = 1---3, where x* and y*
correspond to targets 1 to 12 that are each 20° from the starting
location. The cost is the sum of end-point variance of the movements
over an F' ms postmovement period

M+F 4 M+F [t
Cost = f a0 + oADde =12, f f EOpAt — Ddrdt  (2)
M i=1 0

M

It is obvious from Eg. 2 that the coefficient k (provided it is >0) will
not affect the selection of optimal control because it is simply a
scaling factor on the cost. Therefore, we set k to 1 for simplicity. In
addition, closely related to the minimum variance model under SDN,
the minimum energy consumption criterion minimizes the total en-
ergy during movement, which is the integral of squared motor com-
mands over the movement. This constraint can be easily represented
by replacing p(r — 7) with 1 in Eq. 2. We will later discuss the
similarity and difference arising from these two constraints.
Because Egq. 2 is a quadratic form in u,(f), the minimization can be
solved with quadratic programming (cf. MINQ, Neumaier 1998) with
an additional constraint that u/(f) must be positive, ensuring that the
muscles can only pull. We set the movement time M to 200 ms and the
postmovement time F to 500 ms. The movement time was chosen to
match the average movement duration seen in human and monkey
data (Hoffman and Strick 1999) and the selection of F had little effect
on results when it was >200 ms. A sampling interval of 4 ms was
used throughout simulations. The basic algorithm for the optimal
control model is presented as MATLAB code in the APPENDIX.

Calculation of directional tuning

The optimization process generates the five optimal motor com-
mands for each muscle as a function of time. Simulated EMGs were
generated by applying a fifth-order 20-Hz low-pass Butterworth filter
to each motor command u,(#). The agonist and antagonist directional
tuning was computed from the temporal waveform of EMG following
a data analysis similar to that in Hoffman and Strick (1999). To
perform this analysis, a time window is defined for the agonist and
antagonist burst of each muscle and for each direction. The integrated
EMG activity in the window is taken as a measure of muscle activity.
To set the interval, we first determined the movement direction with
the largest agonist burst (best agonist direction) and largest antagonist
burst (best antagonist direction) for each muscle. This allowed us to
define agonist and antagonist burst thresholds for each muscle, taken
as 25% of the peak amplitude of the muscle’s largest bursts (Hoffman
and Strick 1999). These thresholds were then used to specify the start
and end of the EMG burst for other directions. Thus the time window
used for integration was allowed to vary for different directions of
movement. To prevent agonist and antagonist burst intervals from
overlapping, their respective intervals were always limited to —20 to
+60 ms and +70 to +150 ms in reference to movement onset,
respectively. The integrated simulated EMG activity (E) was fit by a
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cosine-tuning function of direction. That is, in accordance with
Hoffman and Strick (1999) and Georgopoulos et al. (1982), the
regression equation was E = a + b sin (¢) + ¢ cos (¢), where ¢
represented movement direction in radians and a, b, and ¢ were
regression coefficients. The preferred direction (PD) is defined as the
peak of the cosine for each muscle’s agonist or antagonist activity.

RESULTS
Kinematics and spatiotemporal patterns of EMG

Figure 1C shows the trajectories and velocity profiles pre-
dicted by the model for optimal movements to the 12 different
target directions. In all directions, the movement trajectory was
found to be smooth and the velocity profile was symmetric and
bell-shaped The figure confirms that the optimal control on
average achieve the task perfectly in all target directions.

Figure 2 shows the spatiotemporal profiles of the five mus-
cles’” EMG (filtered version of the optimal motor commands
sequences) for the optimal movements. The EMG colors cor-
respond to the colors for the target direction in Fig. 1A. It can
be seen that each muscle shows agonist bursts for some
directions (e.g., target 1 light red for ECRL) and antagonist
bursts for other directions (e.g., target 7 blue for ECRL). When
the target was varied from 1 to 12, the predicted agonist and
antagonist EMG activity of all the muscles changed only in
amplitude but not in their timing. Therefore the model exhibits
the amplitude-graded EMG pattern in both agonist and antag-
onist burst intervals. In the following discussion, we will
mainly focus on ECRL, ECRB, ECU, and FCR because data
for FCU are inactive in monkeys and were unstable in the

0.4
ECRL 0.2

-60 -20 TZO 60 100 140 180 220 260

moverment onset Time (ms)

FIG. 2. Time course of predicted electromyogram (EMG). Predicted tem-
poral waveforms of EMG for ECRL, ECRB, ECU, FCU, and FCR. Colors in
the graph delineate the target directions, corresponding with Fig. 1A. Small
negative values of EMG originated from the application of a Butterworth
low-pass filter to the motor commands, which were all positive.
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human experiments and therefore do not allow us to compare
data from simulation and experiment.

Figure 3A shows a subset of the data for ECRL and ECU
from Fig. 2 together with the equivalent empirical EMG data of
human subjects in Fig. 3B. For the directions in which ECRL
and ECU act as agonists, we see two agonist bursts predicted
that are modulated in amplitude, as seen in the empirical data.
Examination of the antagonist activity showed a similar am-
plitude-graded pattern. The order of the amplitude modulation
over the direction shown in Fig. 2B is seen in both muscles and
directions. The only notable difference between the simulation
and experimental data was the antagonist activity for ECU for
direction 1 in which the activity was largest in the experimental
data but second in the simulation. This difference might arise
from the fact that we used pulling-direction data taken from
monkeys to simulate experimental data from human subjects.

Directional tuning in agonist and antagonist EMG

To investigate how the simulated amplitude-graded EMG is
modulated in accordance with the change in target direction,
we calculated directional tuning for both agonist and antagonist
activity and fit them with a cosine-tuning function of move-
ment direction. Each black point in Fig. 4 illustrates the
integrated EMG activity for one target direction during the first
agonist (fop) and antagonist (bottom) burst intervals (see also
methods). The top and bottom lines show the fit of the cosine
function demonstrating the modulation in amplitude of the
agonist and antagonist EMG with direction, respectively. The
average r~ values for the fits to the agonist and antagonist
activity were 0.86 and 0.87, respectively. The preferred direc-
tions (PD, i.e., the peak direction of cosine-fitting curve) of
ECRL, ECRB, ECU, and FCR for agonist and antagonist
activity were (13.4, 72.6, 109.0, and 278.1) and (194.2, 249.7,
291.2, and 97.0) degrees, respectively.

The same data are also plotted in polar coordinates in Fig.
5A, in which the short arrow represents each muscle’s pulling
directions, and thick and thin longer arrows show the agonist
and antagonist PDs, respectively. Correspondingly, in the ex-
perimental data shown in Fig. 5B (human) and 5C (monkey),
the black circles illustrate the change of agonist EMG with
target direction, and long and short (in monkey data) arrows
show the agonist PD and each muscle’s pulling directions,
respectively. The simulated data demonstrate several key char-
acteristics of the experimental data. First, the agonist PD for
each muscle is not coaligned with the muscle’s pulling direc-
tion (short black arrows in Fig. 5A, and C; they are slightly
different because average data of two monkeys was used in
simulations). The difference in angular direction between the
preferred direction in the simulations and the muscles’ pulling
direction was especially large in ECRB and ECU compared to
that of ECRL and FCR. A similar discrepancy between the
muscles is also seen in human (Fig. 5B) and monkey experi-
mental data (Fig. 5C). The difference between the muscles’
pulling and preferred direction likely originates from the aniso-
tropic distribution of the muscles’ pulling directions as also
suggested in Fagg et al. (2002). ECRB and ECU need to be
active for rightward movements because there is no muscle that
pulls purely in this extension direction (in the direction of
target 3). Second, the tuning curves in human data are broader
than those in monkey data (Hoffman and Strick 1999). The
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ECRL

simulation exhibits a good agreement with human data, partic-
ularly for ECRL and ECRB. This may arise because these two
muscles are needed to compensate for FCU in the vertical and
horizontal direction, respectively. Third, even for directions in
which a single muscle could act alone, coactivation of wrist
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FIG. 3. Time course of predicted and
experimental EMGs. A: predicted EMG for
ECRL and ECU to illustrate the close cor-
respondence with B. Data shown are a
subset of Fig. 2. B: EMG data of ECRL and
ECU experimentally recorded during step-
tracking wrist movement (see Fig. 3 in
Hoffman and Strick 1999). These data were
taken from a human subject, but monkey
subjects also exhibited a similar EMG
pattern.

muscles is seen. In most target directions, at least two muscles
were activated during the agonist burst interval. For instance,
three wrist extensors ECRL, ECRB, and ECU, were coacti-
vated when human subjects moved the wrist to targets 1 and 2.
In contrast, a wrist extensor ECRL and a wrist flexor FCR were

FIG. 4. Cosine fitting of integrated EMG
during agonist or antagonist burst intervals.
Each point shows an integrated EMG of one
muscle for one of 12 target directions. Good-
ness of fit, measured by 72, is displayed in the
figure.
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FIG. 5. Directional tuning of agonist and antagonist EMG. A: activation in predicted EMG. Thick curve depicts the integrated agonist EMG that was obtained
from the simulation. Short arrow represents each muscle’s pulling directions, and thick and thin long arrows show the agonist and antagonist preferred directions
(PDs), respectively. B and C: activation patterns in experimentally measured EMG that were taken from a human (B) (Fig. 6 in Hoffman and Strick 1999) and
a monkey (C) (Fig. 12 in Hoffman and Strick 1999). Black circles depict the integrated agonist EMG with varied target directions, and short and long arrows
show each muscle’s pulling direction and the agonist PD, respectively. In monkey data (C), open circles show the decrease of agonist EMG that we did not
consider in simulation.
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coactivated when the wrist was moved to target 11. Thus, the
proposed optimal control model reproduces the experimental
coactivation pattern during agonist burst interval that included
not only the muscles that are normally considered as synergists
(ECRL, ECRB, and ECU) but also those that are normally
regarded as antagonists (ECRL and FCR).

Minimum energy consumption constraint

It is interesting to compare the minimum-variance model we
have so far focused on with the minimum energy consumption
model. We conducted the simulations with the same con-
straints but for a cost that minimizes the energy of the move-
ment (see METHODS). The spatiotemporal patterns of simulated
EMG turned out to be almost the same as those with the
minimum variance (c.f. Fig. 2), demonstrating the amplitude-
graded pattern, as well as two agonist and antagonist peaks.
Furthermore, the tuning patterns of agonist and antagonist
EMG generated by these two models exhibited no significant
difference. More specifically, the preferred directions of
ECRL, ECRB, ECU, and FCR for agonist and antagonist
activity were (13.4, 72.9, 108.8, and 278.0) and (194.0, 249.1,
292.0, and 97.0) degrees, respectively.

Overshooting as an optimal control strategy

In fast wrist movements, it is often observed that subject’s
trajectory overshoots the target (Berardelli 1996; Hoffman and
Strick 1999; Milner 2002; Mustard 1987). An interesting
computational question here is whether such overshooting
could be an optimal control strategy to minimize end-point
error, or a sub-optimal strategy induced by the rapidity of the
movement. To address this question, we investigated whether
the current optimal model can predict target overshooting.
Figure 6A shows the trajectories and velocity profiles predicted
by the minimum-variance model under SDN for optimal move-
ments when the stiffness and viscosity of the wrist are in-
creased in an appropriate level for overshooting (see METHODS).
The stiffness and viscosity of the wrist are likely to increase
with cocontraction. In this case, the optimal strategy in the
current model was to overshoot the target before returning to it.
The comparison of Figs. 1C and 6A shows that the velocity in
the latter case reaches its maximum earlier in the movement,
then sharply decreases to show a reversal of velocity that peaks
and slowly shifts back to 0. Figure 6B displays the correspond-
ing EMG activity obtained in the simulation. Importantly,
amplitude-graded agonist and antagonist EMG as well as two
peaks of agonist EMG are evident. The pattern of trajectory
and EMG indicates that the model first uses the agonist force
to accelerate the wrist; Then, it decelerates the wrist by the
antagonist force; and finally used the agonist force again to
compensate for the springlike property of the muscle and
minimize the end-point error under SDN. The only noticeable
difference in EMG between Fig. 6B and Fig. 2 is that the onsets
of the second agonist burst occur earlier in the overshooting
case. We also confirmed that the original motor commands of
these agonist and antagonist EMG did not overlap.

Keeping other conditions equal, we tested the minimum-
energy model, resulting in the kinematics and EMG pattern
shown in Fig. 7A and B, respectively. In sharp contrast with
results from the minimum-variance model, the velocity profile
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was almost symmetric and bell-shaped and no trajectory over-
shooting was observed. Importantly, the associated EMG pat-
tern of all five muscles showed a homogeneous sustained
activity over the movement, which clearly mismatches exper-
imental observations.

Finally, Fig. 8 provides an overview of how the simulated
pattern of EMG and trajectory are altered when the viscosity b
and stiffness k are varied within the biologically plausible
range. The amplitude-graded pattern of EMG was observed
uniformly over the full parameter range. On the other hand, the
antagonist burst and the trajectory overshooting were more
parameter dependent. Antagonist bursts were seen when either
the stiffness or viscosity had a comparatively small value.
Overshooting occurred only when the stiffness had a large
value and viscosity was small.

DISCUSSION

In this paper, we have examined an optimal control model of
step-tracking wrist movement to probe the computational
mechanism that controls the spatiotemporal patterns of redun-
dant muscles’ activity. The model that minimizes the end-point
variance under SDN successfully captured the most prominent
feature of human and monkey EMG data during the step-
tracking wrist movement (i.e., amplitude-graded EMG pat-
tern). In addition, the model not only reproduced the cosine-
tuning pattern of EMG modulation during both agonist and
antagonist burst intervals and the shift of PD from each
muscle’s pulling direction, but also exhibited overshooting of
trajectories, a frequently observed phenomenon in fast wrist
movements. These observations are consistent with the view
that to recruit redundant muscles accurately, the nervous sys-
tem optimizes a cost function related to the noise inherent to
biological motor system.

Several cost functions can be considered for modeling the
step-tracking wrist movements, such as some form of effort
minimization. A previous computational model of step-track-
ing wrist movement minimized squared muscle activation and
explained spatial characteristics of cosine tuning of agonist
EMG (Fagg et al. 2002). Interestingly, the PDs reported for
ECRL, ECRB, ECU, and FCR (e.g., Figs. 4 and 5 in Fagg et al.
2002) were almost the same as those found in the current
optimal control study with the minimum-variance and mini-
mum-energy models (Figs. 3 and 4). This similarity of agonist
PDs among three different cost functions suggests that the
spatial-tuning pattern observed in the step-tracking wrist move-
ment originates from each muscle’s pulling direction, rather
than a specific cost function and optimization procedure. It was
reported in Todorov (2002) that for cosine tuning in the
isometric case, minimizing variance under signal-dependent
noise is quite similar to minimizing squared controls (the same
as our definition of minimum energy model). In comparison
with these previous models, the main advantage of the current
optimal control approach is the ability to predict a spatiotem-
poral pattern of EMG and trajectory. The spatiotemporal in-
formation is the key not only to study the amplitude-graded
pattern of EMG, but also to investigate both agonist and
antagonist PDs and the trajectory overshooting.

The cost function we adopted in this study is the end-point
variance, where SDN was assumed in each redundant muscle.
In comparison with other smoothness-based optimization cri-
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FIG. 6. Prediction by the minimum-variance model under signal-dependent noise (SDN). A: trajectories and velocity profiles obtained from the simulation,

demonstrating overshooting. B: predicted temporal waveform of EMG for ECRL, ECRB, ECU, FCU, and FCR.
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FIG. 7. Prediction by the minimum-energy model. A: trajectories and velocity profiles obtained from the simulation. B: predicted temporal waveform of EMG
for ECRL, ECRB, ECU, FCU, and FCR.

J Neurophysiol « VOL 94 « DECEMBER 2005 « WWW.jn.org

9002 ‘0z Arenuer uo hio'ABojoisAyd-ul woiy papeojumoq



http://jn.physiology.org

OPTIMAL CONTROL IN REDUNDANT MUSCLES

5 o amplitude-graded & antagonist
% x amplitude-graded, no antagonist
= no-overshooting
= .
= —— overshooting
=]
21 o
2
0.5 «
o ® = " o =
7 o 0 o o 0 o ;
o8B 8id § & 8§ § § ¢
0 2 3 4 5 6 7 8 9 10
Stiffness k (Nm/rad)
FIG. 8.  Effects of stiffness and viscosity on simulated pattern of EMG and

trajectory. Stiffness k and viscosity b were varied within the biologically
plausible range (inertia was 0.005). Each point in the plot consists of a pair of
b and k. Points associated with O generated an amplitude-graded burst in
agonist and antagonist muscles. Points associated with X yielded an ampli-
tude-graded agonist burst without an antagonist burst. Thick line indicates b
and k values that gave overshot; thin line indicates b and k values without
overshoot. An antagonist burst and trajectory overshooting were considered
only when they were clearly visible.

teria to find joint torques for path planning (Flash and Hogan
1985; Uno et al. 1989), SDN proposes that there is noise in
muscle force generation whose SD increases linearly with the
mean. The origin of SDN was shown to arise within the muscle
from the orderly recruitment and firing rate variability of motor
neuron pool that innervates each muscle (Jones et al. 2002).
Thus when each of redundant muscle is considered in compu-
tational modeling, rather than focusing on the aggregates
values such as joint torque, SDN-based optimization allows a
prediction of muscle activation patterns. It is also demonstrated
that a given torque or force can be more accurately produced
by a stronger muscle than a weaker muscle, suggesting differ-
ent strengths and different numbers of motor units cause
different amplitudes of motor noise (Hamilton et al. 2004). In
the current study, we assumed an identical magnitude of the
coefficient of variation (k) for five muscles (ECRL, ECRB,
ECU, FCU, and FCR), but it is an interesting future direction
to investigate how the number of motor units influences the
EMG pattern of redundant muscles whose sizes are fairly
different as in whole arm reaching movements, i.e., k is
different among muscles. It is also important to note that the
predictions of the model is independent of the size of k
(provided that k is >0) and the size of k simply scales the
overall variability of the movement as the system we model is
a linear system.

An interesting consequence arising naturally from the SDN-
based cost function is that the target overshooting can be an
optimal feedforward control strategy in fast wrist movements.
Although at first sight this may appear an unlikely optimal
solution, it reflects the model using the passive properties of
the wrist to minimize error. In our model, the muscles of the
wrist can have a strong passive elastic component. The model
uses this feature to reduce variance. By passing the target, the
passive elastic properties are used to bring the wrist onto target
in the latter half of the movement. Therefore, the motor
command, and its associate noise, can be reduced during the
latter portion of the movement. Critically, if as a result of the
noise the wrist has passed the target by a long way, the wrist
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muscles will be substantially stretched and the elastic force will
bring the wrist back quickly. However, if because of the noise
the wrist has only just passed the target, the muscle is less
stretched and the elastic force will bring the wrist back more
slowly. Therefore, the spread in possible wrist positions re-
duces over the latter part of movement arising from these
passive properties, make overshooting an optimal strategy.

The minimum-energy model did not produce overshooting
nor a biologically realistic EMG pattern in the simulation of
overshooting. Generally, models based on a sort of minimizing
the energy used, such as minimizing the integrated squared
motor command, can never predict overshoot. This can be
understood as follows. Assume a minimum-energy model
overshoots the target. This means it has zero velocity at a
position further than the target. Therefore by scaling down the
entire sequence of motor commands appropriately we can
arrive stationary at the target location earlier. Moreover, by
delaying (moving horizontally) the start of the motor command
we can arrive on target at the correct time but clearly now using
less energy than the overshooting trajectory. This contradicts
the original overshooting trajectory as being minimum energy.
The same argument also rules out any cost that penalizes a
monotonically increasing function of the motor command
equally over the entire movement from producing overshoot-
ing. Therefore, a time-varying penalty on the motor command
is necessary for overshooting and return to be optimal. This
contrast between the SDN-based cost function, which penal-
izes motor commands differentially over the movement, from
minimum energy consumption constraints may indicate an
important role of the noise in the biological motor system.

It is certainly a remarkable finding that even with the simple
second-order linear muscle and dynamics model used, that we
can explain almost all key features of the spatiotemporal
patterns of EMG and trajectory overshooting. However, there
are some limitations that may require a more realistic nonlinear
muscle model (Cheng et al. 2000) and dynamics model. First,
the appearance of trajectory overshooting was associated with
a comparatively high stiffness. We hypothesize that overshoot-
ing can happen even with a lower stiffness in the real nonlinear
and activation-dependent dynamics that cannot be captured by
linearization (Cheng et al. 2000). A realistic muscle model can
also provide a more efficient measure to keep the wrist at the
target rather than generating substantial muscle activation after
movement. Second, although the amplitude-graded pattern was
dominant in EMG modulation (majority of human data and all
monkey data), for some muscles and for some selected targets
in human subjects, the temporally shifted pattern of EMG was
also observed, which is characterized by a gradual change in
the timing of a single burst of muscle activity (Hoffman and
Strick 1999). This pattern of EMG may contribute to produce
a smooth and accurate movement trajectory when subjects
need to control redundant nonlinear muscles efficiently. Third,
it is difficult for the current model to precisely simulate EMG
pattern before the movement onset. This may arise because the
simple muscle model does not capture the time delays inherent
in realistic excitation—contraction coupling mechanisms.

Finally, although we used a standard quadratic programming
technique to optimize our SDN-based cost function, how can it
be performed in a biological system? Among many possible
implementations, the contrast between feedforward and feed-
back controllers is critically important (Wolpert et al. 1998). In
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general, such an optimization problem as our model can be
conducted by either a feedforward controller or an optimal
feedback controller that is combined with a predictive forward
model (Todorov and Jordan 2002). Todorov and Jordan (2002)
proposed that among many possible redundancies, their opti-
mal feedback controller reduces the variance of the dimension
that was critical for task performance, whereas the variance of
other redundant dimension could increase to compensate for
this. Simple wrist movements can provide an ideal place for the
interaction between experimental and computational studies on
redundancy. For example, it might be possible to examine
whether feedforward or feedback controllers are dominant by
conducting step-tracking movement experiments, where the
target suddenly changes after the presentation of the go signal
in some trials. In this setting, the importance of each muscle
would vary depending on target and therefore some redun-
dancy criteria should change correspondingly, which can be
defined through EMG activity.

APPENDIX: MATLAB CODE OF THE OPTIMAL
CONTROL MODEL

M=0.200; %movement duration

F=0.500; % holding duration

T=M + F; % Total movement duration
A=20%pi/180; % movement amplitude in radians
dt=M/50; % sampling interval

ts=0:dt:M;

N=length(ts);

musc=35; % number of muscles (ECRL ECRB ECU FCU FCR)
ang=([1.6 18.4 159.5 198.3 304.5])*pi/180; % muscle pulling direc-
tions

m=0.005; b=0.03; k=0.1; % wrist dynamics
T1=0.030; T2=0.040; % muscle model time constants
order=4; % order of total system

syms

w=1/((T1#*s+1)*(T2*s+1)*(m*s"2+b*s+k));

p(1)=simple(ilaplace(w)); % impulse response
for i=2:order

p()=diff(p(i-1)); % derivatives of impulse response
end

for dir=1:12
tang=dir*30*pi/180; % target angle
% constraints required for final position, velocity and etc.
for i=1:order
for j= I:musc

w=(-1)*N+1;

G(2*1—1,w:w+N—1)=subs(sin(ang(j))*p(), t ,(M—ts))*dt;
% x-axis

G(2*1,w:w+N-1)=subs(cos(ang(j))*p(),’t ,(M—ts))*dt; % y-
axis

end
end

b(1)=A%*sin(tang); %final x
b(2)=A%*cos(tang); %final y
b(2*order)=0; % all other states 0
eq=true(2*order,1); %equality constraints
z=size(G,2);

G=[G; eye(@)];
b(size(G,1))=0;
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eq=[eq;false(z,1)];

for j=1:musc % COST

w=({—1)*N + 1;
p2(w:w+N-1)=subs(p(1)*2,’t’ (T-ts));

end

H=diag(p2);

% optimization by quadratic programming
u0=1000*rand(length(p2),1); % initial values
[u,y,ier]=minqdef(u0*0,H,G,b’,eq,[],u0)

end
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