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Abstract. Low temperature is the most significant feature of the future district heating system- the 4th 

generation district heating (4GDH). However, a widely used control strategy for supply water temperature in 

substation is weather- compensated control. It is a feedforward control without any dynamic information 

about buildings, which can lead to higher or lower supply water temperature. This paper presents model 

predictive controller (MPC) applied to the supply water temperature control for substations in district heating 

systems. MPC is an advanced control technique, which can make full use of dynamic information of buildings 

to determine the optimal supply water temperature of substations. In this paper, a multiple inputs and single 

output dynamic model was identified by subspace methods. Two different MPC controllers were designed in 

Simulink. The MPC controller 1 focused on keeping indoor air temperature at reference values. The MPC 

controller 2 focused on both keeping indoor air temperature at reference values and tracking the minimum 

supply water temperature in order to find the temperature potential for the future DH systems. Both of the 

MPC controllers proved to have a better tracking effect for indoor air temperature and lower average supply 

temperatures compared to weather- compensated. The MPC controller 2 could further lower supply water 

temperature compared to the MPC controller 1 by tracking minimum supply water temperature in its objective 

function. The average supply water temperatures for the weather- compensated, the MPC controller1, and the 

MPC controller 2 were 52°C, 51°C and 50°C, respectively. The results showed that MPC has a great potential 

in the area of supply water temperature control of the district heating systems.

1 Introduction  

In many countries around the world, the ability to heat and 

supply hot water to buildings is essential. District heating 

(DH) uses local fuel or heat resources, which would 

otherwise be wasted, to satisfy local customer heat 

demands [1]. By utilizing DH, a great improvement in 

energy efficiency can be achieved in the heating market. 

One of the most important conditions for running a DH 

system with high efficiency is low distribution 

temperatures [2]. A decrease in distribution temperatures 

will be essential for DH systems to play a crucial role in 

future sustainable energy systems [3]. In addition, low 

temperature is the most significant feature of the future 

DH - the 4th generation district heating (4GDH). The 

revolutionary temperature level (50–55/25°C) will 

improve the efficiency of heat source, thermal storage, 

and distribution system, meanwhile, bring huge potential 

to renewable energies [4]. 

A consumer substation, which acts as an interface 

between heat sources and heat customers, is a very import 

part in a DH system. However, a widely used control 

strategy for supply water temperature of substation is the 

weather-compensated control (WCC). The WCC, as a 

feedforward control, does not contain any information 

about the building dynamics (such as indoor air 

temperature). Since it only utilizes current values of 

outdoor air temperature. Heat demand of a building, 

however, is a dynamic process. It is not only influenced 

by current outdoor weather conditions (outdoor air 

temperature, solar gains, and wind velocity), but also 

affected by its historical heat demands due to building 

thermal inertia [5, 6]. The supply water temperatures 

provided by WCC can lead to underheating or overheating 

of the building easily due to lacking of dynamics in the 

control [7]. Higher supply water temperature is a very 

common phenomenon in DH system due to WCC. 

Model (based) predictive control (MPC) is an 

advanced method of process control originated in late 

1970s and early 1980s in the process industries (oil 

refineries, chemical plants, etc.). The main advantage of 

MPC is the fact that it uses the current system 

measurements, the current dynamic state of the process, 

the MPC models, and the process output targets and limits 

to calculate future changes for the output variables. These 

changes are calculated to hold the output variables close 

to targets while satisfying constraints. The MPC typically 

sends out only the first change in each manipulated 

variable to be implemented, and repeats the calculation 

when the next change is required [8]. 

The aim of this study is to design two different MPC 

controllers in a substation instead of WCC to get the 
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optimal supply water temperature with satisfied indoor air 

temperature. The MPC controller 1 is to keep indoor air 

temperature at reference values. The MPC controller 2 is 

not only to keep indoor air temperature at reference 

values, but also to track the minimum supply water 

temperature in order to find the temperature potential for 

the future DH systems. The MPC controllers are designed 

in Simulink and will utilize the dynamic information of 

buildings to achieve two different objectives. The 

measured indoor air temperature is the feedback for the 

two closed control loops. The supply water temperature is 

the output of two MPC controllers.  

2 Methodology 

Model predictive control makes full use of a dynamic 

model to obtain the control signal by minimizing an 

objective function while satisfying constraints.  

The MPC strategy comprises three basic steps- At 

each time step, compute control by optimizing an open- 

loop objective function for the prediction horizon; Apply 

only the first value of the computed control sequence in 

system; At the next time step, get the system state and re-

compute [8]. For this study, MPC controller is applied in 

the control of supply water temperature with satisfied 

indoor air temperature. The three basic steps are as 

following- At the current point in time, a sequence of 

optimal supply water temperatures are formulated for the 

next several hours, based on the weather conditions; 

Apply only the first optimal supply water temperature in 

system; At the next time step, get the system state by the 

feedback of indoor air temperature measurement and re-

compute the optimize problem. The MPC scheme for this 

study can be shown in Fig. 1.  

 

Fig. 1. MPC scheme. 

As Fig. 1 shows, there are three basic elements to 

design a MPC controller- a dynamic model, an objective 

function and constraints for input or output variables. The 

dynamic model will be obtained by system identification 

method according to collected data. The objective 

function and constraints are formulated according to 

different MPC strategies. The three basic elements in this 

study are discussed in detail in following sections. 

2.1 Collect data and dynamic model 
identification  

2.1.1 Collect data 

In this study, the heat customer was a space heating 

system in one room of an apartment and it was simulated 

in Modelica® language [9] as shown in Fig. 2. The 

components of the model were mainly from Modelica 

standard library [9], AixLib library [10]  and Buildings 

library [11]. The building model was a high order model, 

which included all individual elements of envelopes and 

their spatial context. It could be used for in-depth analyses 

of building thermal behaviours. The radiator model is 

presented in Fig. 3 (a). The calculation methods of 

convective and radiative heat transfer were described in 

[12, 13], The calculation of water pressure loss was 

illustrated in [14]. 

 

Fig. 2. Space heating system model developed in Modelica. 

The simulation result for the heat demand of this 

reference apartment was 121 kW·h/(m2·year), which was 

close to 156 kW·h/(m2·year) from a similar research [15]. 

The maximum heat load at the design outdoor air 

temperature of this reference apartment was 36 kW/m2. 

The heat demands of space heating mainly depend on 

indoor air temperature, outdoor air temperature, solar 

radiation, and wind velocity [1]. The supply water 

temperature of the substation as a control variable has a 

direct impact on heat supply for the heat customer. The 

goal of DH is to keep the indoor air temperature at a 

comfortable value. The outdoor air temperature, solar 

radiation, wind velocity, the supply water temperature, 

and the indoor air temperature were collected from the 

simulation results of the Modelica model. The WCC  was 

applied in the Modelica model to get the supply water 

temperature based on outdoor air temperature. The sample 

time was set as 1.0 hour and sample size was 1600 hours 

(about 66 days). 

2.1.2 Dynamic model identification 

The Modelica model in this study consisted of weather 

block, space heating system block and building envelope 

block. These blocks were further divided into several 
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more specialized blocks as shown in Fig. 3, such as 

radiator system, building walls, etc. This space heating 

model had a very complicated structure. Subspace 

identification was used to identify this dynamic model 

which should be able to capture the process dynamic. The 

inputs of the dynamic model were the outdoor air 

temperature, solar radiation, wind velocity, and the supply 

water temperature. The output of the dynamic model was 

the indoor air temperature. This dynamic model was a 

multiple inputs and single output model. It can be written 

as a discrete time state space model as following. 

x(t+1)=A x(t)+B u(t)+K e(t)        

y(t)=C x(t)+D u(t)+w(t)                      (1) 

Where u(t) ϵ R4
was a four- dimensional input vector 

at time instant t, y(t) ϵ R1
was a one- dimensional output 

vector. The vectors e(t) ϵ Rn
and w(t) ϵ Rl

were process 

and measurement noise signals respectively. They were 

assumed as zero in this study. The objective of subspace 

algorithm is to determine the system order n and find the 

matrices A, B, C, and D. 

 

(a) Radiator block developed in Modelica. 

 

(b) Building envelope block developed in Modelica.  

Fig. 3. Specialized blocks in Modelica model. 

2.2 Objective function and constraints  

The objective function describes a combination of 

performance targets. Different cost weights for the 

different targets can be used to specify a preference for 

one closed- loop behaviour over another [16]. In this 

study, two different MPC controllers were developed. The 

objective function of MPC controller 1 is to keep indoor 

air temperature at reference values. The objective function 

of MPC controller 2 is not only to keep indoor air 

temperature at reference values, but also to track the 

minimum supply water temperature. 

The standard objective function is the sum of four 

terms in the form of quadratic function, each focusing on 

a particular aspect of controller performance, as follows:  

J(zk)=Jy(zk)+Ju(zk)+JΔu(zk)+Jε(zk)                 (2) 

Where, zk  is the quadratic programming (QP) 

decision. Jy(zk)  is output reference tracking, the 

controller keeps selected plant outputs at or near specified 

reference values. Ju(zk)  is manipulated variable (MV) 

tracking, the controller keeps selected manipulated 

variables at or near specified target values. JΔu(zk)  is 

manipulated variable move suppression, the controller 

uses this performance for manipulated variable move 

suppression when the case prefers small MV adjustments 

(moves). Jε(zk) is constraint violation, the controller uses 

this performance when constraint violations is 

unavoidable in practice cases [17]. 

2.2.1 Output reference tracking 

For this dynamic model, there was only one output, indoor 

air temperature. The reference trajectory r(k+i) were the 

setting values of indoor air temperature. Jy(zk)  was 

written in the form of quadratic function as following. 

Jy(zk)= ∑ {wi
y

sy [r(k+i/k)-y(k+i/k)]}2
p-1
i=0              (3) 

Where, p was the predictive horizon. wi
y

 was the 

tuning cost weight for difference between system output 

y(k+i/k) and reference r(k+i/k) at ith prediction horizon 

step. sy was scale factor for indoor air temperature. 

2.2.2 Manipulated variable tracking 

The inputs for this dynamic system were supply water 

temperature, the outdoor air temperature, solar radiation 

and wind velocity, wherein supply water temperature was 

MV, the weather parameters were measured disturbance 

variables. The MV, supply water temperature was decided 

by different MPC strategies.  Ju(zk) can be used to track 

the minimum supply water temperature. It was written in 

the form of quadratic function as following. 

Ju(zk)=∑ {wiu
su

[u(k+i/k)-utarget(k+i/k)]}2p-1
i=0       (4) 

Where, p was the predictive horizon. wi
u  was the 

tuning cost weight for difference between MV u(k+i/k) 

and MV target utarget(k+i/k) at ith prediction horizon step. 

su was scale factor for supply water temperature. 

2.2.3 Manipulated variable move suppression 

The MV or control variable, supply water temperature can 

only be changed between umin and umax. The change rate 
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also had constraints, between Δumin and Δumax. MV move 

suppression JΔu(zk) was written in the form of quadratic 

function as following. 

JΔu(zk)= ∑ {wi
Δu

su [u(k+i/k)-u(k+i-1)/k]}2
p-1
i=0        (5) 

Where, p was the predictive horizon. wi
Δu  was the 

tuning weight for change rate of control variable u(k+i/k) 

at time instant i. su  was scale factor for supply water 

temperature.  

2.2.4 Constraint violation 

Hard constraints are constraints that the QP solution must 

satisfy. However, it is not always possible to satisfy all 

constraints for a system especially when a hard MV bonds 

with a hard MV increment constraint. In order to solve 

this problem, a standard relaxation procedure, the so-

called soft-constraints is required [18, 19]. This is 

achieved by adding a slack variable 𝜀𝑘 to the optimization 

problem which allows constraints to be violated. At the 

same time, slack variables are heavily penalized in the 

objective function, which can prevent constraints from 

being violated unless absolutely necessary. In this study, 

the MV had the hard bonds (umin and umax) with a hard 

MV increment constraint (Δumin and Δumax), which maybe 

lead to QP infeasibility. Therefore, both MV and MV 

increment constraints were softened by a slack variable 𝜀𝑘 . Constraint violation was measured as the following 

equation. 

Jε(zk) = ρεεk
2
                               (6) 

Where, 𝜀𝑘 was the slack variable at control interval k. 

ρε was the constraint violation penalty weight. 

2.3 MPC controller design 

For a given discrete time dynamic model as presented in 

section 2.1.2. 

x(t+1)=A x(t)+B u(t)        

y(t)=C x(t)+D u(t)                            (7)     

MPC controller is used to find the control sequence 

over the prediction horizon by minimizing an objective 

function with constraints. The objective function and 

constraints for two MPC controller is described in 

following sections.  

2.3.1 MPC strategy 1- keep indoor air temperature 
at reference values 

For this strategy, it focused on keeping indoor air 

temperature at reference values over entire prediction 

horizon. The supply water temperature should be 

optimized by this goal rather than tracking its minimum 

values. Thus, the cost weight wi
u for MV tracking 

performance was set as 0. The objective function for this 

strategy was written as flowing. 

𝐽(𝑧𝑘) = ∑ {[𝑤𝑖𝑦𝑠𝑦 [𝑟(𝑘 + 𝑖/𝑘) − 𝑦(𝑘 + 𝑖/𝑘)]]2 +𝑝−1𝑖=0
[𝑤𝑖𝛥𝑢𝑠𝑢 [𝑢(𝑘 + 𝑖/𝑘) − 𝑢(𝑘 + 𝑖 − 1/𝑘)]]2} + 𝜌𝜀𝜀𝑘2   (8) 

subject to 𝑢𝑚𝑖𝑛 ≤ u(k+i/k) ≤ 𝑢𝑚𝑎𝑥 𝛥𝑢𝑚𝑖𝑛 ≤ 𝛥𝑢 ≤ 𝛥𝑢𝑚𝑎𝑥                         (9) 

Where, constraints umin  and umax  were the minimum 

and maximum values of supply water temperature, they 

were 35 ℃ and 75 ℃ in this study. Δumin and Δumax were 

the minimum and maximum values for  change rate of 

supply water temperature. They were assumed as -10 ℃/h 

and 10 ℃/h, respectively. Slack variable 𝜀𝑘 was assumed 

as 0.2, meaning small constraints violation allowed. The 

reference trajectory r(k+i/k) was assumed as a constant 

value at each prediction horizon step. It was 20 ℃ which 
was the recommended value of category Ⅱ in Norwegian 
standard NS-EN 15251 [20].  

Scale factors are used to avoid poor performance when 

certain variables have much larger or smaller magnitudes 

than others. Since the small range variables are very small 

compared to other variables. If same cost weights both 

used for small range and large range variables, MPC 

controller does not pay much attention to regulate the 

small range variables because the associated penalty is so 

small compared to other variables in the objective 

function [17]. In this study, the span for the supply water 

temperature was 40 K (from 35℃ to 75℃). However, the 
variation of the indoor air temperature was only about 1.0 

K (from 19.8 ℃ to 20.8 ℃) according to the collected 

data. In order to avoid poor performance, scale factor su 

for supply water temperature was set as 40, Scale factor 

sy for indoor air temperature was set as 1.0.  𝑤𝑖𝑦, 𝑤𝑖𝛥𝑢, and ρε were set as constant values over the 

entire prediction horizon. For this strategy, it focused on 

keeping indoor air temperature at its setpoint (20 ℃) 
without large constraint violations. Thus, 𝑤𝑖𝑦 was set as 

1.0, 𝑤𝑖𝛥𝑢 was set as 0.5, and ρε was set as 10.  

The objective function can be rewritten into a matrix 

form, as flows: 𝐽(𝑧𝑘) = ∑ {[𝑒𝑦𝑇(𝑘 + 𝑖)𝑄𝑒𝑦(𝑘 + 𝑖)] + [∆𝑢𝑇(𝑘 +𝑝−1𝑖=0𝑖)𝑅∆𝑢∆𝑢(𝑘 + 𝑖)]} + 𝜌𝜀𝜀𝑘2                                     (10) 

Here, 𝑄 and 𝑅∆𝑢 are weight matrices for output error 

and change rate of MV, respectively. 𝑧𝑘 is QP decision, 

given by 𝑧𝑘𝑇 = [𝑢(𝑘/𝑘)𝑇 u(k+1/k)T  ⋯ 𝑢(𝑘 + 𝑝 −1)𝑇 𝜀𝑘 ]𝑇
. 

2.3.2 MPC strategy 2- Keep indoor air temperature 
at reference values and track the minimum supply 
water temperature  

For this strategy, it not only focused on keeping indoor air 

temperature at reference values, but also to track the 
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minimum supply water temperature. The objective 

function was written as flowing. 𝐽(𝑧𝑘) = ∑ {[𝑤𝑖𝑦𝑠𝑦 [𝑟(𝑘 + 𝑖/𝑘) − 𝑦(𝑘 + 𝑖/𝑘)]]2 +𝑝−1𝑖=0
[𝑤𝑖𝑢𝑠𝑢 [u(k + i / k)-utarget(k + i / k)]]2 + [𝑤𝑖𝛥𝑢𝑠𝑢 [𝑢(𝑘 +
𝑖/𝑘) − 𝑢(𝑘 + 𝑖 − 1/𝑘)]]2} + 𝜌𝜀𝜀𝑘2                      (11) 

subject to 𝑢𝑚𝑖𝑛 ≤ u(k+i/k) ≤ 𝑢𝑚𝑎𝑥 𝛥𝑢𝑚𝑖𝑛 ≤ 𝛥𝑢 ≤ 𝛥𝑢𝑚𝑎𝑥                          (12) 

Where, constraints umin  and umax  were 35 ℃ and 75 
℃. Δumin  and Δumax  were -10 ℃/h and 10 ℃/h. Slack 

variable 𝜀𝑘 was 0.2. The reference trajectory r(k+i/k) was 

20 ℃. Scale factor su was 40, and scale factor sy was 1.0. 

Target values for supply water temperature were 

considered as a constant value 35 ℃, which was the 

minimum supply temperature according to the collected 

data.  

For this strategy, it focused on keeping indoor air 

temperature at reference values and tracking the minimum 

supply water temperature. 𝑤𝑖𝑦 was set as 1.0, 𝑤𝑖𝑢 was set 

as 1.0, 𝑤𝑖𝛥𝑢 was set as 0.5, and ρε was set as 10.  

The objective function can be rewritten into a matrix 

form, as flows: 𝐽(𝑧𝑘) = ∑ {[𝑒𝑦𝑇(𝑘 + 𝑖)𝑄𝑒𝑦(𝑘 + 𝑖)] + [𝑒𝑢𝑇(𝑘 +𝑝−1𝑖=0𝑖)𝑅𝑢𝑒𝑢(𝑘 + 𝑖)] + [∆𝑢𝑇(𝑘 + 𝑖)𝑅∆𝑢∆𝑢(𝑘 + 𝑖)]} + 𝜌𝜀𝜀𝑘2                                                                      (13)                           

Here, 𝑄 , 𝑅𝑢  and 𝑅∆𝑢  are weight matrices for output 

error, difference between MV and MV targets, and change 

rate of MV, respectively. 𝑧𝑘  is QP decision, given by 𝑧𝑘𝑇 = [𝑢(𝑘/𝑘)𝑇 u(k+1/k)T  ⋯ 𝑢(𝑘 + 𝑝 − 1)𝑇 𝜀𝑘 ]𝑇
. 

3 Results 

3.1 Identified dynamic model 

The dynamic system order n was identified as 2 by 

subspace algorithm. Thus, x(t) ϵ R2
was a two- 

dimensional state vector. The state x(t) had no physical 

interpretation, when identified by means of the subspace 

identification. The initial state x(0) was obtained by 

‘findstates’ command in Matlab. Matrixes A, B, C and D 

were identified as following.  

A=[0.07512 -0.07368
-0.3075 0.9691 ] 

B=[ 0.02724 0.02949 -0.0004582 0.0006815
0.008986 0.009728 -0.0001767 0.0002225] 

C = [7.741 -14.54] 

D = [0 0] 

The relationship between collected data and simulated 

data from the identified dynamic model is shown in Fig. 

4. As Fig. 4 shows, the simulated data had a good fit to 

the collected data. 

 

Fig. 4. The relationship between collected and simulated data. 

The error between collected and simulated data is 

shown in Fig. 5. The largest error between collected and 

simulated data was about 0.3 K, but most errors located 

from -0.1 K to 0.1 K. The mean- square error (MSE) was 

0.003512. 

 

Fig. 5. Collected data minus simulated data. 

3.2 MPC controller 

The MPC controller designed in Simulink is shown in Fig. 

6. The output from MPC controller was the supply water 

temperature, which was also an input for system model. 

Weather parameters were measured disturbance inputs for 

MPC controller and system model. The measured indoor 

air temperature was the feedback for MPC controller, and 

used to calculate the difference with the setting indoor air 

temperature (20℃). Prediction horizon was set as 6.0 

hour, and control horizon was set as 2.0 hour. 

 

Fig. 6. MPC controller. 
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3.2.1 MPC strategy 1- keep indoor air temperature 
at reference values 

The simulated indoor air temperature controlled by the 

MPC controller 1 and the WCC is shown in Fig. 7. 

Wherein, the simulation results of the WCC were 

obtained from the Modelica model.  

 

Fig. 7. Indoor air temperature controlled by MPC 1 and WCC. 

As Fig. 7 shows, the indoor air temperature controlled 

by the WCC changed drastically compared to the MPC 

controller 1, from 19.8℃ to 20.8℃. The difference 

between indoor air temperature and the reference value 

(20 ℃) could be up to almost 1.0 ℃. However, the indoor 

air temperature controlled by the MPC 1 almost kept at its 

reference value (20 ℃) for the entire simulation time 

except the initial indoor air temperature 20.3 ℃. 
Compared to the WCC, the MPC controller 1 had a much 

better tracking effect for indoor air temperature.  

 

Fig. 8. Supply water temperature provided by MPC 1 and 

WCC. 

The supply water temperature provided by the MPC 

controller 1 and the WCC is shown in Fig. 8. The supply 

water temperature optimized by the MPC controller 1 

changed smoothly compared to the WCC, which was 

beneficial for heat supply units. Because the objective 

function of MPC controller 1 contained constraints for 

change rate of supply water temperature. The average 

supply water temperature provided by the WCC was 

about 52 ℃. The minimum and maximum supply water 
temperature were 38 ℃ and 70 ℃, respectively. 
However, the average supply water temperature 

optimized by the MPC controller 1 was about 51℃. The 
minimum and maximum supply water temperature were 

41℃ and 70℃. As results show, the MPC controller 1 

could lower supply water temperature to some extent with 

keeping indoor air temperature at 20℃.   

3.2.2 MPC strategy 2- Keep indoor air temperature 
at reference values and track the minimum supply 
water temperature 

For this strategy, it not only focused on keeping indoor air 

temperature at reference values, but also to track the 

minimum supply water temperature. The simulated 

indoor air temperature controlled by the MPC controller 2 

and the WCC is shown in Fig. 9.  

 

Fig. 9. Indoor air temperature controlled by MPC 2 and WCC. 

As Fig. 9 shows, the indoor air temperatures 

controlled by the WCC had larger fluctuations compared 

to the MPC controller 2. Most indoor air temperatures 

controlled by the WCC were higher than 20 ℃, and the 

average indoor temperature was 20.3 ℃, which caused 

higher supply water temperature and energy waste. 

However, the indoor air temperatures controlled by the 

MPC controller 2 had smaller fluctuations and most of 

them kept at or near 20 ℃, except those initial indoor air 

temperatures. The lowest indoor air temperature was 18.9 

℃, due to the initial supply water temperature was only 

35 ℃. The average indoor air temperature controlled by 

the MPC controller 2 was 19.9 ℃, which was very close 

to the setting value 20.0 ℃.  

The supply water temperature provided by the MPC 

controller 2 and the WCC is shown in Fig. 10. The supply 

water temperatures provided by the WCC changed 

drastically, and the overall supply water temperatures 

were higher compared to the MPC controller 2. The 

average supply temperature was 52 ℃. However, the 
supply water temperatures optimized by the MPC 

controller 2 changed smoothly, due to the constraints for 

change rate of supply water temperature. The average 

supply water temperature was only 50 ℃. The minimum 
and maximum supply water temperature was 36 ℃ and 
69℃. As results show, the MPC controller 2 could 

minimize supply water temperature with keeping indoor 

air temperature at or near 20 ℃.  
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Fig. 10. Supply water temperature provided by MPC 2 and 

WCC. 

4 Discussion 

In this study, two MPC controllers were designed. One 

focused on keeping indoor air temperature at the reference 

value 20℃. The other one not only focused on keeping 

indoor air temperature at reference values, but also to 

track the minimum supply water temperature in order to 

find the temperature potential for the future DH systems. 

The indoor air temperatures controlled by the MPC 

controller 1 and 2 are shown in Fig. 11. 

 

Fig. 11. Indoor air temperature controlled by MPC controller 1 

and MPC controller 2. 

The MPC controller 1 had a much better control effect 

to keep indoor temperature at 20℃ compared to the MPC 

controller 2. The indoor air temperature controlled by the 

MPC controller 2, however, also could keep indoor air 

temperature at or near 20℃, the average value was 19.9 

℃.  
The supply water temperatures optimized by the MPC 

controller 1 and 2 are shown in Fig. 12. The overall 

changing trend of supply water temperature was almost 

the same comparing the MPC controller 1 and 2. 

However, the supply water temperatures provided by the 

MPC controller 2 were lower than that of the MPC 

controller 1, which could be observed from Fig. 12. For 

the MPC controller 2, the average supply water 

temperature was about 50℃. The minimum and 

maximum supply water temperature was 36℃ and 69℃, 
respectively. For the MPC controller 1, the average supply 

water temperature was 51℃. The minimum and 

maximum supply water temperature were 41℃ and 70℃, 
respectively. The MPC controller 2 could further lower 

the supply water temperature with keeping indoor air 

temperature at or near 20 ℃, because the objective 

function of the MPC controller 2 contained tracking the 

minimum supply water temperature.   

 

Fig. 12. Supply water temperature optimized by MPC 

controller 1 and MPC controller 2. 

From the above results, it could be noticed that the 

MPC could be designed by adjusting objective function 

according to different combination of performance 

targets. Both of the analysed MPC controllers had good 

tracking effect for the indoor air temperature and lower 

average supply water temperatures compared to the WCC. 

5 Conclusion 

This study compared two different MPC controllers in a 

consumer substation with the widely used WCC. The 

system dynamic model was developed by subspace 

algorithm based on the collected data. Two different MPC 

controllers were designed in Simulink. The MPC 

controller 1 focused on keeping indoor air temperature at 

reference values. The MPC controller 2 focused on both 

to keep the indoor air temperature at reference values and 

to track the minimum supply water temperature in order 

to find the temperature potential for the future DH 

systems. 

The results showed that the MPC had a great potential 

in the area of supply water temperature control in district 

heating system. The simulation results proved both of the 

MPC controllers had a better tracking effect for indoor air 

temperature and lower average supply temperatures 

compared to WCC. The MPC controller 2 can further 

lower supply water temperature compared to the MPC 

controller 1 by tracking minimum supply water 

temperature in its objective function. 

The MPC controller can make full use of dynamic 

information of buildings to optimize supply water 

temperature, and thereby minimize energy use.  
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