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OPTIMAL CONTROL OF STOCHASTIC INTEGRALS AND
HAMILTON-JACOBI-BELLMAN EQUATIONS. I*

PIERRE-LOUIS LIONSt AND JOSE-LUIS MENALDI

Abstract. We consider the solution of a stochastic integral control problem and we study its regularity. In
particular, we characterize the optimal cost as the maximum solution of

YoeV, A@wu=f(v) in2P'(0),
u=0 ona0, ue W),

where A(v) is a uniformly elliptic second order operator and V is the set of the values of the control.

1. Introduction
1.1 General introduction. In this paper we are interested in the following prob-
lem. We consider a stochastic system governed by the stochastic differential equation

dy(t)=o(y(t), v(t)) dW,+gly(2), v()) dt, t=0,
(1.1)
y(0)=xeR",

where W, is a Wiener process, g, o, are given functions and v(¢) is a ‘“‘continuous”
control taking values in some set V < R™. We want to minimize the cost function.

(1.2) T(x, () =] J‘OTf(y(t), vt exp( - Ltdy(s), o(s)) ds) di}

over all admissible controls v(z). In this formula f and ¢ are known, given functions
and 7 is the exit time of the process y(¢) from a given domain €. Let us denote
u(x)=inf,,J (x, v(-)).

At least formally, by the argument of dynamical programming, one can derive
the following equation satisfied by u:

sup{A(®)u(x)—f(x,v)}=0 in0,

veV
(1.3)
u=0 ond0=T,

where A(v) =300 (x, v) - D2~g(x, v) D+e(x, v)!

Thus the initial stochastic control problem is connected to some nonlinear second
order elliptic problem with Dirichlet boundary conditions; problem (1.3) is called the
Dirichlet problem for Hamilton—-Jacobi—Bellman equations.

In the following, we are going first to build a nonlinear semigroup whose generator
is essentially the nonlinear operator defined by (1.3). The optimal cost function u(x)
appears then to be the unique fixed point of this semigroup: this fixed-point formulation
can be viewed as a weak formulation of (1.3) or as the mathematical expression of
dynamical programming. These results are in the spirit of those of M. Nisio [24].

* Received by the editors June 13, 1980, and in revised form January 30, 1981.
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T

'oT, o is the adjoint of o.
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HAMILTON-TACOBI-BELLMAN EQUATIONS I 59

Next we prove under very general assumptions that u lies in W™ (0) and that
u is the maximum element of functions w € W¢™ (0) satisfying A(v)w = f(v) in @'(0)
for all v € V. Of course this is a characterization of u, and it seems very useful since
in some degenerate cases it is known that (1.3) does not hold (cf. Genis and N. V.
Krylov [10]).

Here in part I, after giving some general results in the construction of this nonlinear
semigroup, we essentially treat the case of nondegenerate stochastic integrals (A (v)
is uniformly elliptic) under mild regularity assumptions. In Part II [26] (this issue,
pp. 82-95) the general case is considered.

The main results of this study were announced in [21]; we also proved a result
on the verification of (1.3) (including [21]) which was also proved by different methods
at the same time by L. C. Evans and A. Friedman [6]. Concerning the verification of
(1.3) more general results were obtained by P.-L. Lions [15], L. C. Evans and P.-L.
Lions [7] (in the case of nondegenerate diffusions), P.-L. Lions [16], [17] (in the
general case). Below we will recall briefly their main results. We emphasize that we
give here a different characterization of the optimal cost, requiring less regularity of
O and of the coeflicients and fewer assumptions on the nondegeneracy of o(x, u);
this must be so for an approach to be valid while the verification of (1.3) is no longer
true.

Finally, we recall that this kind of problem is introduced in the book of W. H.
Fleming and R. Rishel [8], and that the first general results on this problem were
obtained by N. Krylov [11], [12], [14].

1.2, Summary. Our results are organized in the following way:
Section 2 Construction of a nonlinear semigroup.

Section 3. A stochastic characterization of u(x).

Section 4. An analytical characterization of u(x).

In § 2, following some techniques of M. Nisio [23], we build a nonlinear semigroup
whose generator is related to the operator appearing in (1.3). In § 3 we give a stochastic
characterization of u{x), the precise way to supply dynamical programming. Finally
in §4 we prove a characterization of u(x), in terms of a maximum solution of
inequalities. In § 4, we shall suppose that o(x, v) are nondegenerate matrices. The
generalization to the case of degeneracy will be developed in Part II, together with
results concerning other boundary conditions, the case of optimal stopping and the
case of nonhomogeneous diffusions and parabolic equations.

1.3. Assumptions and notation. We now give notation and assumptions which
will remain valid in §§ 2, 3 and 4.

Let 0 be a domain in R", and let V be a convex closed set in R™. We call an
admissible system aset of = (O, F, F,, P, W, v(t), y,(t)), where (), F, P) is a probability
space, F, is a nondecreasing right continuous family of sub ¢-algebras F, of F, W, is
a Wiener process with respect to F,, v(¢) is a measurable adapted process taking values
in some compact subset V, of V (V, of course may depend on v(-)) and y,(¢) is a
solution of

dy.(t) = o (y.(1), v(t)) AW, + g(y.(t), v(1)) dt,
(1.4)

y:(0)=x.
We suppose that o, g satisfy
(1.5) lo(x, v) =, VN =Clx—xl+p(o—0) Vx,x'eRY, Vv,v'eV,
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where ¢ =oj(1=i,j=n), g(1=i=n) and p is a given continuous function from R,
into R, with p(0) =0.
We assume also that we have

(1.6) lo(x, v)|+|gx, V)|=C VxeRY, VveV.

Now for an admissible system &/ we define a cost function

tAT

" F(ye(s), 0(s)) exp (—j (o), 5A)) d)t) ds

0

J(x, 4, 1, h)=E{L

(1.7)
+h(yu(t A1) - exp (—L “e(nuls), ols) ds) ],

where h is an arbitrary measurable bounded function, 7, is the first exit time from 0

of y,(#), and f(x, v), c(x, v) are given and are assumed to satisfy (1.5) with ¢ =¢, (1.6)
and

(1.8) lf(x, v)—fx', )| =p(x—x'|+lv—0')) Vx,x'eR", Vv, v'eV,
(1.9) c(x,0)Zco=0 VxeRY, VveV.
Finally we define for each A, an optimal cost function

(1.10) QMh(x)=inf J(x, o, t,h) VO=t<+o00,

Let us collect our assumptions:
(1.5) |p(x,v)—d &, v)|=Clx—x'|+p(v—v')Vx, x' €RY, Vv, 0’ € V,V¢ =0y, g, c.
(1.6) |p(x,v)|=CVP=0y8,¢f VxR, VoeV.
(1.8) |f(x,v)—f(x', v)=p(x ~x'|+|v —v')Vx, x' e RY, Vv, v' e V.
(1.9 c(x,v)=co=0VxeRY,Vve V.

We shall denote by B, the set of bounded functions from 0 into R which are
upper semicontinuous; B; is a closed convex cone of the Banach space B of bounded
measurable functions equipped with the supremum norm (|4l = sup |A (x))|).

2. A nonlinear semigroup
2.1. The semigroup property. In this section we prove that Q(¢) acting on B; is
a nonlinear semigroup. This result generalizes [23] (cf. also [1]), where 0 = R". We

need, in addition to (1.5-6-8-9), a technical assumption: the set of regular points is
closed, i.e.,

2.1) V¢, admissible I'o(f) ={x e '/ P(7, > 0) =0} is closed,
" Vxe®, Ply(r)elo()]=1.

We shall see below that in the nondegenerate case this assumption becomes
obvious, and that in many cases one can give conditions for (2.1) to be satisfied.
THEOREM 2.1. Assume (1.5-6-8-9) and (2.1). Then (Q(t), t Z0) satisfies:

(2.2) Q(t):Bs»B,, Q(0)=1I, Q(t+5)=Q(t)> Q(s)=Q(s)° Q(1),
(2.3) |Q(t)h — Q(s)h|lo—>0 ast->s if his uniformly continuous on O,
2.4) "Q(t)h1 - Q(t)hz"co = ”hl - hz"oo Yhy, haeB,, Vt=0,
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2.5) QWM=Qhyifhi=h,.

_Remark 2.1. We shall see below that, in the case of nondegenerate o, Q(t) leaves
C,(0) invariant.

Remark 2.2. Letus give a heuristic justification of Theorem 2.1. By the dynamical
programming argument A(¢) = Q(#)A is the “solution” of

‘;—?(s)+sup{A(v)h(s,x)~—f(x,v)}=() Vse[0,t], Vxe0,
veV
h(0)=h, h($)lr,=hlr, Vs,

where2 A(U) =—ai az/axiax,- +b,' 6/6x,~ +c¢ and a,-,-(x, U) = % Ok Tjk (x, U), bi(x, U) =
—gi(x, v).

Now (2.2) appears as a classical result for some Cauchy problem, and (2.4) and
(2.5) are easy consequences of the maximum principle.

The proof will be divided in several parts. First we prove some lemmas.

LeMMA 2.1, For all h € B,, we have

(2'6) Q(t)h(x) = E}f J(x’ dcla t’ h) (reSP- = igf J(X, ‘dc, ta h)),

where the infimum is taken over all admissible systems such that v(t) is right continuous
with left-hand limits (resp. is continuous).

Proof. Let o be an admissible system. We define

+

2.7) vr(t) = % J-( . v(A)dr + (1 —;t) Vo (with voe V)

and let &/, be the same system as o with v(t) replaced by v,(f). Assuming LLemma
2.2 below for the moment,

J(x, i, t, R)> T (x, 4, t,h) ask->0", VheC,(0).

Thus the equality (2.6) is proved if A is continuous. But if % € B;, there exists
b€ Co(0), ha(x) | h(x)Vx 0. As (2.6) is true for h, and Q(¢) h,(x) | Q(¢) h(x), inf
A J(x, Ao, t, hy) l infﬂc,J(x, A, t, h) and inf&gc J(x, s, t, h) l inf&gc, Jx, A, t, h), we
deduce (2.6) for h.

LEMMA 2.2. Let o be an admissible system and let o, be the system defined
above. We have

lim J(x, i, t, )=J(x, &, t, h) VheCy(0), Vxeb, Vt=0.

k-0
Proof. Letting y.(t) be the solution of (1.4) corresponding to v, (¢), we have
t t
7=y = [ 1o v -0, 0} aW,+ [ @l v -0, 0) ds.
0 0

Thus for all 0=t =T there exists a Cr such that

E{lye()—yOPY=CeE{ | |ye =y +0*(vi —v]) ds}.
0

2 We shall always use the usual convention for sums.
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By Gronwall’s lemma and by a classical martingale technique, we deduce

T
.8) Bl sup, ()= yOP}= CHE{ | 07—l ds}.

But there is a Vo<V, V, compact, such that v(f,w)e Vy; thus v, (f, w)e
conv (Vy, vg), which is also compact. Now v, - v a.e. (, w), and this implies
T

E” pz(luk—vbds}—)o as k>0,
0
from (2.8) we have

(2.8 lim E{ sup |y«(t)—y(®)f}=0.

k>0,

Finally, as in the proof of the Lemma 2.3 below, we have

(2.9) klirg P{TAm.—TnAr|Ze}=0 Ve>0,

where 7, is the exit time corresponding to the process y;(¢); because of (2.8') we can
extract a subsequence yy,, 7, such that

Ye.H=>y(®) inC(0, TLRY) as.,
Targ,»>TAT as.

Thus by the Lebesgue theorem we have proved the lemma. [0
LeMMA 2.3, We have all admissible systems

lim P{T A7, — T ATy|Ze}=0 Vxoe0, Ve>0, VT>0.

X—>Xo
xe0

Proof. We define 7'=7.=inf(t=0y, ()20 -Ty) and NI ={weQ/7<T,
y:(7:) € To}. By assumption (2.1), we have
(2.10) P(NDY=0 Vxeb, VT>0,
(2.11) T Arw)=T A7i(w) VYweQ~—NLi.

The lemma is proved if we show that, for all x,, - xo in o,

A ={w e Q/lim|T A 7, (w)|> 0}
(2.12)
B =( U N,’;) U fw e Q/lim sup._ [y, (t @)ys(t 0)] >0},
n=1 n ==

since from (2.10) and (2.8') (same proof) P(B)=0.

In order to show (2.12), let w € B. First we prove lim, T A7, (w) =T A 1(w). We
can suppose 7,,< T': For all § >0 there is a 55 < 7,,(w) + 8 such that y, (ss, @) € ; hence
Vi, (S5, @) £ O if n is large enough and 7, () = 55 = 7, (w) + 6.

Next we prove lim, T A7}, (0)Z T A 7}, (w). We may suppose 7,,(w) >0, and we
define, for 0< 8 <7}, (@), K, ={yx(t, )/t €[0, 75,(w)—8]}. K,, is a compact set such
that K, NTy= . Now, by the choice of w, we obtain for n large enough

Ko ={ys.(t, 0)/1e[0, 75 (@) -8}NTo= O,

and this implies 7 () =75, (w) = & for n large enough. O
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Proof of Theorem 2.1. We remark first that properties (2.4), (2.5) are immediate.
The steps of the proof are the following:

i) Q(t)he B, if he B,
ii) Proof of (2.3).
iii) Q(¢+5)=Q()° Q(s).

i) We begin by proving that if }_z € C,(0) then Q(¢t) h € B,. Indeed, Lemmas 2.2
and 2.3 imply that J(x, &, ¢, h) € C,(0); thus

Q(t)h=infJ(x, A, t, h) e B,.

Furthermore, if & € B,, there exists h, € C,(0), h,.(x) | h(x) for all x € @; therefore
Q(t) ha(x) Q1) h(x) and Q(1)h € B,.
(ii) To prove (2.3), it is enough to prove that for all uniformly continuous

sup E{|h(y,(t A 1) = h{(y.(s A7)} >0 (as £ > s) uniformly in x.
o

First, remark we have E{|y.(¢ A 7.)~ y«(s A 7,)|"} = C|t — 5| (C is independent of & and
x); thus

t_
Plly«(t A1) = yuls A Tx)l_?—_s]éC———] 251 Ve >0.
&

Let 4 >0. Then e, Vx,x'e 0, |x —x'|=<¢ =>|h(x)—h(x")| = u. We have
Clll =1,
€

2

Szp E{lh())x(t A Tx)) ‘h(}’x(s A “'x))l}g

and the conclusion follows easily

iii) We want to prove the semigroup property Q(t+s)=Q(t) > Q(s). Because
of Lemma 2.1, we can restrict ourselves to admissible systems with continuous v{(r).
We can also restrict our attention to admissible systems where ({2, F, F,) is the canonical
space Q= C([0, +oo[, R"™™) (just take image measures). But at this point the proof
of this property is exactly the same as the one given in [2, Thm. 5.1]. The proof
depends heavily on a theorem of regular conditional probabilities proved by D. W.
Stroock-S. R. S. Varadhan [25] and N. V. Krylov [11]. O

2.2. The generator of Q(f). We are going to prove that the “generator” of Q() is
an extension of the operator ¢ € C*(0)»>sup,ev {A(v) d(x)—F(x, v)} ~
THEOREM 2.2. Under the assumptions of Theorem 2.1, we have for all h € C3 (0)

(2.13) %{Q(t)h(x)—h(x)}»—sup{A(v)h(x)—f(x,v)} ast>0, VxeO.

Moreover the convergence in (2.13) is uniform on compact subsets of 0.
Proof. The proof is very similar to the proof of M. Nisio [23] (see also the
presentation in {2, Thm, 5.2]). We define

tAT,

K(x, st, 1, h) = j T F(3a(s), 0(5)) ~ A(o(s)) h(y<(s)) ds,
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and we prove easily (see for example [1]) that

ver0, Bo=ate =0, viss, [QUADTAE)

inf E{lK(x, 1, h)}l <e,
A t

. 1 . . tAT,
inf E{?K(x, o, 1, )~ inf [/(x, 0) = A@®) h(x)]} ;—0(1 ~in E{ t })
On the other hand, if s/, is an admissible system corresponding to v(f) =vee V,
. 1 .
inf B{ K (x, o4, 1, )= inf [£(x, 0)~ A@)h(0)]]
1
éE{;K(x, sdo, t, h)— inf [f(x, v)—A(v)h(x)]}
veV
c(1-5{~7))
t
R tAT,
C(l —inf E ( ))
£ t

Thus we have obtained

A

A

Vi=5s, inf [f(x, v)—=A(v) h(x)]

AT
éC{l-—infE( ”)}+g.
o t

To conclude, we just need to prove that if K is a compact subset of 0 then

|Q(t)h(x)~h(x)__
t

&EEEKP(T" <t) :O 0.
Letting ¥ be y =d(K, I') >0, we have

_ 1
Vxef, Pln<i]=P(sup ly.(s)=x|2v) S5 E{sup [y:(:)—x[}.

Since E{supos=s=/ |yx(s) —x|2} = CEly.(t)— xl2 = C 1t + C,ot?, where C, Cy, C; do not
depend on &, x and ¢, (2.13) is easily proved. O

Remark 2.3. If we introduce

F1={xel" lim sup E(e ”")=0}, I’2={xeFlin3ing(£ ”") =1},

e~»0. o € €
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for h € C%(0) we have, as t> 0.,

i Q) h(x)~hx)

; 0 ifxely,

i) w»_sup {A() h(x)~f(x, 0)} ifxel.

Remark that I'g< T,

Remark 2.4. 1In the particular case of nondegeneracy, i.e.,
(2.14) Fa>0, a;(x,v)ééz=alt]? VEeRY, Vxel, VveV,

we shall see that I'o(s#) =T for all admissible systems (if some regularity condition on
I' is assumed); hence, for all x€ 0, as t >0

Q(t) h(x)—h(x)

t > —1g(x) ggB{A(U) h(x)—f(x, v)}.

Remark 2.5. We shall see below a result more precise than Theorem 2.2.

2.3. The nondegenerate case. In this section in addition to (1.5-6-8-9), we assume
(2.14) and O has a uniform exterior sphere; i.e.,

(2.15) Ip>0, Vxel, FyeRY -0, {z/ly-z|=p}N0O={x}.

We are going to prove that under these assumptions Q(f) leaves X invariant,
where X = {h € C,(0), h is uniformly continuous on }. Before doing so or even stating
the precise result, we prove a lemma which will be useful.

LEMMA 2.4. Under assumptions (1.5-6-8-9) and (2.14-15), we have:

(2.16) If 0 is bounded, u >0, 3C >0, Vx € 0, VA admissible, E[e*™]= C;
(2.17) VA admissible, I’ =To(sA).

Remark 2.6. 1t is clear that even if (2.14) is satisfied, @ has to be ‘“smooth” in
order to make (2.17) true. Indeed, if N =1, V ={vo}, y.(t) =x + W(¢), a(vy) = «/5, 0=
10, 1{U11, 2[, we have E[r,]=3,s0 1€ ~T,.

Proof of Lemma 2.4. First we consider w(x) = 1—exp (—k|x|*) (we may always
assume that 0e0@). We have A(v)w(x)={4a;(x, v)kzx,-xi—2ka,~,~(x, v)—
2kxbi(x, v)} exp— klxlz. Thus we can choose k large enough to insure that A(v) w(x)=

a >0 for all x € § (because O is bounded), where A = A —c¢.
Now we take u = a/2, and we have

(2.18) ApWwW-uwzpu>0 Vxel.

Using Ito’s formula with w, it is easy to deduce (2.16) from (2.18).
Now we prove (2.17). We introduce

(2.15') w(x, £) =exp (—kp?) —exp (—k|x — &),

where p is given by (2.15), £eT and ¢, is associated to £ by (2.15), xe & and k>0.
By calculation similar to the above, one shows that for k large enough

(2.19) AWw(x, &) Za>0 VxeO.
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Applying Ito’s formula, we have
Te t

0=w(& &)= B{wiretr)+ [ "o exp (j (yels), ols)) ds) di]

0

Te
= aE[j e dt] ;
0

thus P[r,=0]=1and ¢éeo(A) for all £cT. O

The first result concerning the regularity of Q(¢) h when k is smooth will be the
following.

THEOREM 2.3. We assume (1.5-6-8), (2.14-15) and
(2.20) If(x, v)—f(x', v)|=Clx—x'| V¥x,x' €0,
(2.21) c(x, V) ZC>[uol,
where wo is given by
1. (o(x,0)—ok', 0))e’ (x,0)—a” (x',0))

0= Su {‘Tr P2
K x,x’go‘ 2 Ix —X,l
veV

(2.22)

+(x —x')- (g(x);g(x’))}.
|lx —x'|

Then, if h € W>*(0), we have
(2.23) 1Q() h(x)— Q) h(x)|=Clx —x| Vx,x'€0,

where C is independent of t.

CoRroOLLARY 2.1. If we assume (1.5-6-8-9) and (2.14-15-21) then, for h e X,
Q(t)h € X. Furthermore, (Q(t)h, t Z0) is uniformly equicontinuous.

Proof of Corollary 2.1. By a simple approximation (uniform in v) of the function
f(v), one can always assume that (2.20) is satisfied and that & belongs to W*%(0);
then the result is obvious in view of Theorem 2.3. O

Remark 2.7. We shall see below (§ 3.1, Remark 3.5) that Corollary 2.1 is valid
without assuming (2.21), and (§ 4.3) that Theorem 2.3 remains true without assuming
2.21).

Remark 2.8. If assumptions (2.14-15) are dropped, one can nevertheless prove
Theorem 2.3 (and thus Corollary 2.1) with the same method if we assume

Ipoe W(0), polro=0, VveV, A(v)poc L*(0),
Jao>0, VveV, A@)po=—-ao in0O.

(2.24)

For example suppose that g =c =0, o(x, v) =o(v) and that there exists Bo>0 such
that det (o(v) o (v)) = Bo>0. Furthermore, assume that O ={p(x) <0} with 40 =
{p(x) =0} and that p e W>*(0) and

2

det( Ip (x))§a0>0 Vxef.
ax,-ax,-

Then the results above remain true. This example generalizes a result of B. Gaveau
9]

Other generalizations to the case of degenerate o are treated in Part II.
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Remark 2.9. One can generalize Corollary 2.1 to the case where sup,.v |f(x, v)| e
L™ (0). Indeed, this comes easily from a result of N. V. Krylov [13].

Proof of Theorem 2.3. The proof is divided into several steps:

1) Construction of a subsolution.

2) Two lemmas.

3) Conclusion.

1) We consider the function w(x, ¢) defined in Lemma 2.4, and we introduce
w(x) =inf;cr w(x, £). Obviously w(x) e Wh*(0), w=0in 0, w =0 onT. Now applying
Ito’s formula to w(x, &) for fixed ¢ in ', we have (in the proof of this theorem, we
shall take ¢(x, v)=co> wo for the sake of simplicity) that

EAT,

w(y(tATy), E) e "+ J- e ' ds
0

is a submartingale bounded and continuous.
Then, taking the infimum over all ¢ in T', we have that

t/\‘l’x

(2.25) Wyt am)) e " ta I e~ ds

0

is a submartingale bounded and continuous.
2) LEMMA 2.5. Under the assumptions of Theorem 2.3, we have

_ _ 2C,
(2.26) Efle ™ —e 0™ |]= =2 |V wllw |x —x|.

(24

Proof. Applying (2.25) between 7, A 7 and 7,, we have
EDw(y.(r) e —wine(re nrd) e o1z —aB| | e™'as];
thus

a T, AT, —coT, —CoT AT,
C—E[e 0T — 0T S VWl E {|yx (e A Tor) — V(7o ATy)| @7 0T
0

and we deduce (2.26) from the following lemma. 0

LEMMA 2.6. Under the assumptions of Theorem 2.3, we have for all stopping
times 8

(2.27) E{|y:(8) = y(0)) e} =|x —x'|*.

Proof. We apply Ito’s formula between 0 and # A T to the function (¢ » |§|2) for
the process y, () — y. (), and obtain

E{y«(8 AT)—y (6 A T)? e 2T}
onT

—fr=xP+E{ [ Tr{e 00 o @) (TG =T e e

0
F2pe0) = yel0) + (@yulD) = glyet))) e 'dt
2H0 I lya(0) =y (D) e 72" dt}.

Thus, by definition of uo, we have
Elly(0 A T)=y (@ nT)? e " M= |x —x'".
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3) Conclusion. Letting x, x' € 0, we have
Q@) h(x)— Q@) k(x| =T+,

where

T AL

1=sup |E[ [ (51, o) 7" as] —EUOT‘Nﬂyx'(s), o(s)) e~ as]|

and

T =sup |ETh(ya(re A1) €7 = h(ylre 1)) e 750""].
A
First, because of Lemma 2.5 and (2.20), we easily have I = C|x —x/|.
Next,
J =sup {lE{h (YX(t A Tx)) e—cot/\'rx - h()’x(t ATy A Tx’)) e_COtATXATx'}
o

FIEU (5t A 1)) €™ — h(yat A 1 A7) €077
+ lE{h (yx(t ATy A ’Tx:)) — h(yx,(t ATx A Tx')i e—COIA-rxA-rx,}'}

2c
=sup[A(0) Ak 7" VWl |x — x|+ VAl |x — x|

(here we have applied Ito’s formula and (2.26), (2.27)). O

3. A stochastic interpretation of the minimum cost function
3.1. A stochastic control problem. We consider the optimal cost function

61 wr=int B[ o, v exp (- [ ctu(6), o) ) ).

We have the following;
TueoreM 3.1. Under assumptions (1.5-6-8), (2.1) and

(3.2) c(x,0)Zco>0 Vxel, VveV,

or under assumptions (1.5-6-8-9), (2.14-15) if O is bounded (the nondegenerate case),
we have

(3.3) u(x)=t1i%Q(t)h(x) inBy, Vhe By, hluryse =0

(in the nondegenerate case Vhr=0),
u € By, Qtlu=u Vr=0.

Furthermore the equation of dynamical programming is satisfied

GAT,

wt) =inf E{ [ 700,00 exp (= [ c(32(5), o) ) a

0

(3.5)

OAT,

sulr@nr e (-] e, o) )},

0

where 6 is a stopping time with respect to F".
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Finally, if To() is independent of A, To(d) =Ty for all S admissible (in the
nondegenerate case I'y=T), then u(x) is the unique solution of

(3.6) ueB, ulr,=0,Q() u=u V=0,

Remark 3.1. Equality (3.5) shows that the optimal cost function u(x) satisfies in
some general integral sense the Bellman equation: sup,.v {A{(v)u —f(v)}=01in 0.

Remark 3.2. 1) If for all x and for all v, f(x, v)=0 and I'; = UT (), then it is
easy to prove, by the same methods as those which follow, that u(x) is the unique
solution of

(3.6 ueB, ulr,=0, Q)u=u Vt=0.

Such a case will be considered in Part II.

ii) If we assume that for each &, I'o(f) =Ty, where I’y is closed in I, then we can
prove that P[y,(r,)eTo]=1for all xe 0.

COROLLARY 3.1. Under assumptions (1.5-6), (2.14-15-20-21), the optimal cost
function belongs to W§* (0).

Proof. Since u(x)=lim;so Q(#)0(x) in B,, and by Theorem 2.3 we have
|Q()0(x)— Q(¢)0(x")|= Clx —x'|, where C is independent of ¢ the result is
immediate. 0O

Remark 3.3. If we define (cf. Dynkin [5]) the closed subset B, of B,

Bo={heB,Vxe0, Q(t) h(x)> Q(s) h(x) as t > s, hlr, =0},
we can consider instead of (3.6)

(3.6") u € By, Qlu=u Vt=0.

Remark 3.4. Let ¢ be given, where ¢ is the trace on I' of some ® € B,; then we
have u,(x)=Q(0) ®(x) = Q() h(x), he B, such that A|r,=¢ (under the same
hypotheses as in Theorem 3.1). Moreover, u, is the unique solution of the non-
homogeneous problem u, € By, ug|r, = ¢, Q(f) uy = u, for all t=0 and we also have
the corresponding equation of dynamical programming.

Proof of Theorem 3.1. We prove (3.4) only for the case of nondegeneracy
(hypothesis (2.14-15)) and (3.5); the other statements are obvious.

1) We know by Lemma 2.4 that there exists some u >0 such that (€ is assumed
to be bounded)

AC, Vx, Vo, E[e"=]=C;
thus

|Q(t)h(x)—u(x)| ésgﬂp E U ) sup [If(x, v)|| ds] +sup E[||Allol <)

ATy VEV A

But supy P, >t]=Ce ™ and supy E[7x — 7 At]Ssupy E[7 1 >n]=C' e,
2) In order to prove (3.5) we need only consider admissible systems such that
v(t) is a continuous process (cf. Lemma 2.1). Now we define, for fixed x in O,

&)= J-OWX flyx(s), v(s)) exp (—Ls c(yx(A), v(1)) dA) dt

sl nr)exp (=] clrulo), 0(s)ds).
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We want to prove that £(¢) is a F'-submartingale satisfying to the property
3.7 £0)=E{£(0+1)/F°}, where 0 is a stopping time and ¢ = 0.

But the proof of that fact is exactly the same as in R" (cf. [1, Thms. 5.1, 5.3]), from
ulro(&g) =0 and thus P[u(yx(*rx)) =0]=1.
Therefore taking ¢t » + 00 in (3.7) we prove that

E[jomxﬂyx(r), o(0) exp —L' (yu(s), 0(s)) ds) dr
+u(y.(8 A7) exp ( - j c(ye(0), (1)) dr)]

=E fo fyx(2), v()) exp ( - J‘Ot c(yx(s), v(s)) dS> dt.

To conclude, we have to prove that

u(x)éE[L

GAT,

F20, o) exp = [ clru(s), 006 )

(8 n ) exp (- j ), 0(e) d) .

But £(¢) is a submartingale and this inequality is satisfied if 8 is replaced by 6, a
discrete approximation of € such that 8, -» 6 (a.s.) as k >0,

Since u is upper semicontinuous, the inequality remains true for 4. [J

COROLLARY 3.2. Under the assumptions of Theorem 3.1, we have for all A 20

u(w) = inf E| [ 100, 00+ dulra )
(3.8)

- exp ( —Lt (c(y:(s), v(s))+A) ds) dt].

Proof. The proof is immediate in view of the following lemma, due to N. V.
Krylov [14].

LEMMA 3.1. Let z(s), £(s) be two bounded measurable adapted processes and
assume that z(s)+{o&(r) dr is a submartingale. Then for all A=0 z(s)e ™+
fo (£(r)+Az(r)) e dr is a submartingale.

COROLLARY 3.3. Under assumptions (1.5-6-8-9) and (2.14-15), u(x) belongs
to X:{h € C,(D), h is uniformly continuous}.

Proof. If we add the assumption (2.21), then by Corollary 3.1 u(x)e X. Now
let A >0 be such that ¢(x, v)+ A =co> o is given by (2.22), and let us consider the
following application T defined on B;: if v € B, w = Tv is given by

wi)=inf E| | 60,0, 00) + 2000}

- exp ( —J‘ot (c(ye(s), v(s)+A) ds) dt].

Then, by Corollary 3.2, u is a fixed point of T. To conclude, we just need to prove
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that T is a strict contraction on B,. But
| Tv1 — Tooleo = sup E[1 - e "™llv1~valle
and by Jensen’s inequality
1701 = Toallo = (1 =€ ™) [lo1 = 02},

where C =supy E[7,]< +00, by Lemma 2.4. [

Remark 3.5. With the techniques developed above, it is easy to extend Corollary
2.1 to the case where (2.21) is replaced by (1.9) (i.e., c(x, v) =0 instead of c(x, v) = ¢o >
Mo)-

3.2. Application to the generator of Q(f). We now prove a local version of
Theorem 2.2, concerning the generator of the nonlinear semigroup Q(¢).

THEOREM 3.2., Under assumptions (1.5-6-8-9) and (2.1), if 0’ is a bounded open
set included in © and if h € C*(0"), then

M e igg (Aw)h(x)-f(x,v)) Vxel'
and the convergence is uniform on compact subsets of 0.

Proof. Let B be an open ball strictly included in @'. We consider two open balls
B, B, such that B, B,< B;< B, B< B <0’ and we show the convergence in Bs.
We denote by 7. the exit times of B;, Q;(¢) the corresponding semigroups, u,(s, x) =
Q(t—5) h(x) for 0=s =1. First, we remark that

r

Ui(s, x) = il:{f E{ J‘:” Fx(r), v(r)) exp ( - _[

4]

(1), 5(1)) dA) dr
(3.9)

(e

+h(yitos) exp (-

0]

SC(Yx(r)’ o(r)) dr)},

where o, is the exit time of the set @ x ]0, #[ for the (N + 1)-dimensional process

_ yx(r)) -
zx,s(r) <r+s (r=0)
Remark that I'g(sf) for this process is T'o(&f) and that (2.1) is satisfied. Now by the
equation of dynamical programming (3.5) we have

T ABAE

u, (0, x)= iE,f E{J

0

Fyuls), v(s) exp ( - j (W), o(1)) dA) ds
(3.9)

T AGAL

Fu(Te NOAL Y (T AOAL)) exp(—J c(y.(s), v(s)) ds)}.

0
Now we take 8 = T,lc, and find

Q1) hix)= inf E{ J’Ofimf(yx (s), v(s)) exp ( —LS c(yx(d), v(1)) dA) ds

t

(3.9 + 1(7,1<<t)ut(7')1c, Yx(T:lc )) exp (_J.

0

c(y(5), 0(s)) ds)

t

+ 1120 h(y.(8)) exp ( _J

0

c(yx(s), v(s)) dS>}.
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Thus for all x € B,, as h € C*(B) we have (cf. proof of Theorem 2.2)
Q) h(x)~h(X)|=|Q(t) h(x)— Q'(t) h(x)|+|Q(t) h(x)— h(x)|

= sup Eflu (", ye(r")) = h(yx(r )L ¢rlecn} + Cit

éosup lQ(s)h —hlw.B, * sg{p P(r'<t)+Cit.
=s=t

Now, as in the proof of Theorem 2.2, we can show that there exists C, >0 such
that for all x € B, SUpy P(‘rx <= sz/t
Thus we have finally

sup [Q(t)h —hlw,5,= CoV't sup [Q(s)h = hllw,5,+ Cit.

O=s=t O=s=t

By a similar argument we have

sup |Q(s)h —hlws,=C, Ji sup |Q)Yh — hllo.5+ Cst;

O=s=¢ O=s=t

hence for ¢ = t; we deduce

sup ”Q(S)h h”oo B, = C5t

O=s=t
Finaily taking 6 = 72 in (3.9), we have

Q(h(x)—h(x) Qa(t) h(x)—h(x)
t t

Vx e Ez,

1

é? sup ”Q(S)h hloostupP(Tx<t)
O=s=t

and we can conclude easily with the help of Theorem 2.2 and remarking that for all

x € B; a closed set < B, there exists Cg such that sup P[r2<t]= C(,\/ t. O

4. Analytical interpretation of the optimal cost function and Hamilton-Jacobi-
Bellman equations, In this section we shall always assume (1.5-6-8-9) and (2.14-15-
20), i.e., the nondegenerate case, and that O is a regular domain. In every statement
in the following, we shall call this group of hypotheses assumption A.

The main result of this section is the following. Under assumption A, u € We™(0)
and u is the maximum element of the set {ii € W5 (0), A(v)i = f(v) in @'(0), Vv € V}.

We will also recall the main result concerning the solution of

4.1) sup{A(®)u—f(v)}=0 a.e.in0, u=0onT.
veV

This result is obtained in L. C. Evans and P.-L. Lions [7] (see also [15]) under
more smoothness assumptions on @, b, ¢, f and @ than A.

The results which we prove are organized in the following way.

§ 4.1. A first result of maximum solution.

§ 4.2. Approximation by systems of QVI.

§ 4.3. Final result for the maximum solution.

§ 4.4. Verification of H-J-B equation.
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4.1. A first result of maximum solution.
THEOREM 4.1. Under assumption A and if we assume in addition (see (2.21))

c(x, v)=c=mo, where wo is given by (2.22),

then the optimal cost function u(x) belongs to W (0) and is the maximum element
of the set s,

s={de W§*(0),Yve V, A(v)i =f(v) in D'(O)}.

Remark 4.1. The optimal cost function u(x) given by (see (3.1))

i) =ing B[ [0, o) exp (= [ etrn(6) o6 a5) ]

appears to be the solution of (3.1) in some weak sense: u(x) is the upper envelope
of all subsolutions of (4.1). Of course u(x) itself is a subsolution.
Proof. The proof will be divided into several steps:

1) u(x) belongs to s.
2) A general lemma. _
3) If fes then @(x)=u(x) for all x € 0.

1) In view of Corollary 3.1, we know that u e W™ (0). We have to prove that
forallve V, A(v)u =f(v) in @'(0). To do this, we use a technique due to N. V. Krylov
[11] (see a simplified version in [1]). Let v € V and let us consider an admissible
system corresponding to v(t, w)=uv; because of Corollary 3.2 we have

T,

), o)+ MGt exp -

0

s

u(x)éEU

0

c(ye(6), v) dt—As) ds].

Now if we introduce u,, the solution of

A@ury+Auy=u in0, Urlr=0,

we know that

s

) =E[ [ utra(6),0) exp - |

0

c(yo(8), ) dt—-AS) ds].

Thus
A@u,=E Uouf(yx(s), v) exp ( —Ls c(y<(1), v) dt—As) ds] =filx)

or A(v)(Auy) = A fi(x).

To conclude, we note that Au, is bounded in L°(0) and that Auy —u = A(v)u, =
(1/1) A(v) (Aup) >0, as A > +00, in D'(0); Afy - f(v), as A > + 0, (in fact for all x € &
because f is continuous) and we have in conclusion that

VoeV A@u=f(v) in2P'(0).

Remark 4.2. Let us remark that even in the degenerate case (if we assume only
(1.5-6-8) and (3.2)) the preceding proof remains valid, and thus we have

(4.2) A@u=sf(v) inP0) VYveV.
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2) Let us make precise the notation of the following lemma. Let y(f) be a
continuous process on the canonical Wiener space (Q}, F, F,, P, W,) such that

t t

(4.3) 1[91(w),92(w)[(t))’(1)=” U(y(t))sz+L g(y(1) dt}l[el(m,ez(w)[(t),

61
where 0, = 6, are two stopping times.
Let B be the differential operator

a2

9
———gi—+c.

1
B =—5040;
ik i
ax,-ax,- Bxi

LEMMA 4.1, Assumethato, g, c € Wh2(0), thatc is nonnegative and o is uniformly

nondegenerate. Let y(t) be a process satisfying (4.3), let f € C(0) and let ie W5™ (0)
such that

Bi=f in92'(0).

Then if M belongs to F,, and if 6 is a stopping time such that 61 = 6 = 6>, we have
forallxeO

E{(a(@inm)exn —Lg‘”cw(r)) d)

4.4) ~aty@nm)exp —j ey (1) dt) ) 1ar(w)}

AT t

£y () exp( - j c(y(s)) ds) ),

where 7 is the exit time from O for the process y(t).

Proof of Lemma 4.1. We extend &, which is zero on RY —0: then Biie W " (RY)
for all p < + 0. We introduce a regularizing positive convolution kernel p.( - ) € P.(RY)
and we consider 1,, a solution of

Bu, =(p.«Bii)l¢ in0,

u.=0 onT.

éE{lM(w)I

@iAT

Then u, € C*(@) and u. = dforall p<+c0;in particular, u, > u.
Wo(0) c(0)

Now if 0 is an open set such that 0' = & < 0, the existence of an ¢ = ¢, implies
that Au, =p, *f in 0’ (indeed, if 0'—supp p. = 0, the inequality is true). Let 7' be the
exit time of @'; then by Ito’s formula we have (4.4) with & replaced by i., 7 by 7'
and f by p. *=f. Thus when & - 0, we have (4.4) with 7 replaced by +'. But 0" is arbitrary
(with the condition 0' = 0); hence we deduce (4.4). O

3) Let 2 €S. By Lemma 1.1 it is sufficient to prove that #(x)=J(x, &, o0, 0) for
all admissible systems such that v(¢) is continuous. By taking image measure we can
also assume that (Q, F, F,, P, W,) is the canonical Wiener space. Let & be such an
admissible system. We introduce

. k
Tn(t, w) =§. U(;ﬁ, w) Liksan, (e+1y7271(8),

AN, P(N)=0, VwéN, Vi uv,(t,w)>v(t,w) asn->x.
Now for k, n fixed v((k/2"), ) =a.s. lim v}" 14 (w), where v} € R™, A; € Fi/2". Thus
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there exists N such that P(N') =0 and
v(t, w)=1lim 5,(, ) VweN', Vi,
and

Dy (t, w) = 2}( Ujk 1Aik ((,0) 1[6,-, 9f+1[(t)’
I

where 6, =j/2", 6;.1=(j +1)/2", vy € R™, Ajx € Fy, and, for fixed j, Aj are disjoint sets.

On the other hand there is a V,, compact =V, such that v(z, w) e Vy. Let Wy be
the convex envelope of V,; W, is convex compact included in V. Let Pw,be the
Euclidean projection onto Wy, and let us finally consider

v"(t, w)= Zk Py (vji) 14, (@) 11,6, () = Pw, (0, (8, ®)).

Then
weN', Vi v"(t,w)>v(t, w) asn-—>o, v"(t, w) € Wy compact of V.

If we denote by y%(2) the process corresponding to v"(¢t), we have thus defined
a sequence &, of admissible systems on the canonical Wiener space, and by Lemma
2.2 it is sufficient to prove that

u(x) éEU: Fly2(), o™ (1)) exp (—j (Y2 (s), 0" (5)) ds) di]

or

8;aT,

Vi, VK, E[lA,.k«u)a(y:w,-mx))exp(—jo e(y2(0), 0" 1) )]

.5) = B[ 1,(@) @201 1) exp - j e, om0 ai)

9].+1 AT, t
[ r0rw, my e (- [ 2o, vis) ds) di].
6; ATy 0
But Lemma 4.1 implies this inequality and we conclude. 0

Remark 4.3. The preceding proof shows that if we do not assume (1.21), and if
we know that u(x)e Wo™ (0), then u is the maximum element of S.

4.2. Approximating systems of QVI. We are going to investigate in this section
the approximation of (4.1) by different systems. Following an idea of L. Tartar,
introduced independently in [6], we introduce the following penalized problem P, :
Find 4, - - -, u" solutions of

Au'+B. (u'—u)=f" in0, u'=0 onT,

A u®+B8, u—uP=f in0, u*=0 onT,
(P.)

Au"+B. u"—u)=f" in0, u"=0 onT,

where A;=A(v;), f;=f(v;) and (v',---,v") is a fixed subset of V, and B.(f)=
B(t/&). Here B is a continuous convex nondecreasing function on R, such that 8(¢#) =0
ift=0,B@)>0ifr>0.
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We also introduce the following system of quasivariational inequalities (in short
QVI; see [2], [3], for example)

Avu'=f, u'se+u®, Aiu'~flu'~e—u?)=0 in0,
u'=0 onT,

(Q.)
A u"=f,, u'=e+u', A u"—f)u"—e—u")=0 in0,
u"=0 onT.

In this section we solve problems (P.), (Q,) (actually we shall prove just some
obvious, nearly classical results which are sufficient for our goals) and we shall also
give the stochastic interpretation of (Q,). In the next section we are going to prove
that (u', -+, u")>u, as ¢ >0, in C(0) which is the optimal cost function.

THEOREM 4.2. Under assumption A and if we assume in addition (see (3.2))

if Ois unbounded, c(x, V) =ce>0 Vx, Vo,

and that T is regular, then there exists a unique solution (u',- -+, u") of (P.) in C**(0)
(Va <1) (resp. Cx(O)N Cy () if O is unbounded).

Proof. We prove just a priori estimates in the case of a bounded domain 0. First,
we remark that W>?(0) (and hence C>*) estimates follow easily from L™(0) estimates.
But A, u’ =f°, for all i, and this implies that u' = const.

Now we consider w(x) = w(x, &) =exp (—kp”)—exp (k|x — &|°), where ¢ is fixed
in T, &, is associated to £ by (1.15) and k> 0. We have seen that for k = ko>0 (see
2.19))

A@)wx)Zza>0 VxeO VveV.
Thus, for A large enough, we have
(4.6) AAwE)<f VxeO, Vi, (—Aw)|r=0.
Let xobein O, ip be in {1, - - -, n} such that

Uig(X0) + Aw(xo) = n:lln ui(x)+Aw(x).

If xoeT, u:(x)+Aw(x) = Aw(xp), and we conclude that u;(x)=0.
If xo € 0, by the maximum principle we have

A (Uig(x0) + Aw(x0)) = ci(uip(x0) + Aw (x0));

since one may assume u;,(xo)+Aw(xo) <0 and A, u;(xo) = fi(xo), by (4.6) we have a
contradiction and this contradiction gives the L™ estimate. Uniqueness is proved by
similar arguments. [

Remark 4.4. Actually uniqueness may be proved in the class Wit (0) N Cy(0).

Remark 4.5. If B, is smooth then u; are smooth.

THEOREM 4.3. Under assumption A and if O is bounded, there exists a maximum
weak solution of (Q.) in the following sense:

ai(ui,v—ui)g(f,v—ui), veHO), v=e+u'"",
Q) u' e Hy(0), u=e+u't,
where u™* ' = u", and a;(u, v) = (A, VY g-1xHl,.
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Furthermore u' € C(0) and u’ = lim, 0| ui,, where (u",,) is the solution of
(Rs,n) Aiuir"'ﬁn(ufq—s'"ui:—l):fi in@, ui,=0 onT.

Remark 4.6. The existence of (u’;,) is obtained in the same way as the existence
of the solution (i;) of (P.).
THEOREM 4.4. Under the assumptions of Theorem 4.3, we have

u'(x) = inf E| fof<yx(r), (e exp Jotcm(s), 0(s)) ds) dr

te ¥ exp(—jj”c(yx(s),v(s» as)}

nzl
where 6 = (0,)nen is a sequence of stopping times such that 8p=0< 0, <6, <nv(t, w)=
Uy 1 (oo (w)st<brrs) ] =i+ k —1(mod - n), and y,(¢) is the solution of
dyx(t) = o (y«(1), v()) AW, + g (y: (1), v(1)) dt,
y:(0)=x
(in the canonical Wiener space).
Proofs of Theorems 4.2 and 4.3. As these results are just variations of results

given in [2], [3], we just give hints on the proofs.
Let 4™ be the solution of

Ai ui,m éfi, ul',m =g +ui+l,m-1, (Aiui,m _fi)(ui,m — — ui+1,m—l) =0 in 0’
ui""|r=0
(see [19] for the solution of this VI), and u"°® are given by Au B0 flin@ u’=0
onT.

One easily proves as in [2] that u"™ | ,,..
An argument similar to the one given in the proof of Theorem 4.2 gives

utmz-awx) Vi, Vm.

Thus [Ju""||L~0), = const.
Now, since there exists A such that a;(u, u)+Alul?20, = vllullfrse), we deduce
easily from

a;(u™", —Aw —u"™z=(f, —Aw—u"")

that ||u""™||rye) = const.
The proof of the first part of Theorem 4.3 follows the one given in [3], for example.
Next the proof of the continuity of u’ and of Theorem 4.4 is easily obtained by
methods similar to those in [3] and in [22].

Finally, by a method similar to the one given in the proof of Theorem 4.2, we
prove that

ut,l whenu |0, [ullli=@ =const., and
ui,(x)g—)tw(x) Vi, Vu, VxeO.

~ Then we prove easily that ul, | W', which is a weak solution of (Q.), and thus
u' =u'. To conclude, we introduce u%™, the solution of

Autm B, —e—ui " ) =f in0, u;"=0 onT;
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we have

T A N L A VLA T PO L R 7
nl{0 ntoo nlo m7oo
thusu'=4'. 0O . ‘
Remark 4.8. We have also that if u. is the solution of (Q.), u"" is the solution
of (P,), and u;" is the solution of (R, ,),

4.7) ul=ut" vYn>0, ui=1i?(}¢ui;",
n
(4.8) U =ut" Ve>0, u""=1i?01¢u2". a

4.3. Final result for the maximum solution.
THEOREM 4.5. Under assumption A, and if we assume (see (3.2))

if 0is unbounded, c(x,v)=Zc>0 Vxe0O, VveV,

then the optimal cost function u(x) belongs to Wo™(0) and is the maximum element
of the set S.

Proof. The proof will be divided into several parts.

1) Lipschitz estimates on um,

2) u"™ L nio Uns Un L npreo  if €(x, 0) Z o> po.

3) Conclusion.

1) We prove that [|u""|| w1~ = const. (independent of i, n).

« First, we remark that, if © is bounded, we already know that ||u*"||;=), = const.
In the case of an unbounded domain, one proves by a simple limiting process (0, - O,
0, bounded) that

(7 PR SUp = —L=0)-

o

e Next we prove that |u’, (x)|=A|w(x, £)| for all £eT and for all xe B(¢,p'),
where A, p’ do not depend on i, n, & and w(x, £) is-given by (2.15'). The proof is
immediate if we recall that, if k is large enough,

Aw(x, &)= a exp—k|x—£)°=ZB>0 onsomeB(£p')=B.
Now on (6B)N 0 w = y > 0; thus there exists A >0 such that

Aidw(x, £)>sup |fill.>@) onB,

Aw|emne™> H}f},x " z=0), AW|BR26Z 0.

From an application of the maximum principle similar to the one given in the proof
of Theorem 4.2 we deduce

lu""(x)|=Alw(x, &) VxeB(p), VeéeT,

and this implies |Vu*"(£)| = const. for all £€T.

e Finally we consider (as in [18]) the auxiliary function w;(x)=
|Vu" ()P +A(C —u""(x))* (we shall forget about the n subscript in the following
proof), where A >0 and C =Zmax; ., u "(x). We shall assume in the proof to the
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theorem that 8 € C*(R); thus u‘e C*(0). Differentiating (P.) with respect to x; we
obtain (i, will denote du/dxy)
— @1 () Uiy () + bl ui(x) + ¢ uj+B'(w —u Y uj—uit)
=f,"-(x)+a§(1,,-(x) llkl —‘bk,,' uk —C; ui,

and a simple calculation shows that for all
Aiwi()+B'(u — w2 ub—utt ub)
=20 (uig)*(Fi + @1 (x) wier — bl ui—ciu) 2 uj
F20(C—u ) —f +BW —u""]+C—2av (uh)
Thus we have, choosing A large enough, for all i,
A wi(x)+B' (' — ") 2ujuj—ui" u))
-BW —u"2A(C-u) =Cr—awi(x);
as (C—u')=0, B(0)=0 and B is convex we have
=B —u"2A(C~u)Z2A(C-u) B —u"THW(C -u)—(C—u'"Y}.

Finally suppose O is bounded, and let ip—x, be such that w; (xo) = max;, w(x) if xo
belongs to I'; we concluded that because of the above estimate if xo belongs to 0, at
this point we have A;, w; (x0) =0 and

B'(u' —u™) 2(uu)) 2(uju;—ui " u)— B’ —u) 22 (C —u)
=B'(u —u™) (wi—wi) 20.

Hence we deduce w;(x) = Cy/a.

The case of an unbounded domain is obtained by a limiting process, taking 0, a
sequence of domains converging to 0(0, 1 0).

2) Next, we suppose that c(x, v)=co>uoforallxe® and all ve V.

We know (by the preceding estimate) that u"" | u, € W¢™ (0), as >0

Furthermore for all i=n A;u,=f; in 2'(0). Now if we let n go to +00 such
that (v, i € N) is dense in V, we see easily that u*" | as n 1 0 we have u, | ue W"(0),
as n » o (by the preceding estimate, which is independent of n) and for all ie N

Au=sf; in9'0).
Thus
VveV, A@)u=f(v) in2'(0).

Now if we suppose that ¢(x, v) Zco> uo then by Theorem 4.1, u(x) =u(x). But
by remark 4.8 u, | u, as e | 0, and from the stochastic interpretation of u., we see that

YveV, A@)u=f(v), in D'(0).

Hence, if we suppose c(x, v)=co>uo ulx)=u(x), and in the general case u(x)e
W™ (0), belongs to S and u(x) = u(x) for all x € 0.

3) In the general case, we consider A >0 such that c(x, v)+A = ¢p> uo, and we
introduce a mapping T, defined by: if we C,(0), T..w = (Ti,,,w)i is the solution of
(Q.) where A, is replaced by A; +A, ' by f +Aw.
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From the stochastic interpretation, we have easily

| T en wi—Ten wollLoey = lwi—wallL=@, if @ is unbounded,

A+Co

1
= L sup E[1—e™"™] if O is bounded,

1-e7*¢

A

where C >0

by Jensen’s inequality (cf. Lemma 2.4).
Now for any w € C,(0), T.,.w | Tw € C,(0), and by step 2)

T =igt B [ 0x0, o)+ Awra b exp (- [ ctruts), o650 ) ]

From these two facts, we deduce that the fixed point of T, in G, (0) converges
to the fixed point of T, i.e., ul - u(x), in Cy(&). Thus ue W5 (0) and u=i. To
conclude, we remark that the proof of Theorem 4.1 now applies, and thus « is the
maximum element of S. O

COROLLARY 4.1. Under the assumptions of Theorem 4.5, we have

ey =int B [ 10, o) exp (- [ etrut5), 0060 ) ]

where the infimum is taken over all admissible systems such that (), F, F,, P, W,) is
the canonical Wiener space, and there exists 8 = (6,)n=0, @ Sequence of stopping times
such that ,=0<6,<6,<-:-<6, 1+ and v(t, x)=v; if t€[0;(w), G;+1(w)[, where
(Un)n=zo is a sequence of elements of V.

Proof of Corollary 4.1. Immediate in view of Theorem 4.4 and the proof of
Theorem 4.5. 0O

4.4. Verification of H-J-B equations. We now recall a result due to L. C. Evans
and P.-L. Lions [7] concerning the solution of (4.1). We will assume in this section
that O is smooth and we have

4.9)  #(,v)e W*°(0) and sugll¢(',v)||w2’°°m)<00 Yé=a,b,cf

THEOREM 4.6. Under assumptions A and (4.9), we have that u € W>*(0) is the
unique solution in W**(0) of (4.1):

sup{A(w)u—f(v)}=0 a.e. in0, u=0onT.
veV

Remark 4.9. This result extends previous results due to H. Brezis and L. C.
Evans [4], P-L. Lions [20], L. C. Evans and A. Friedman [6], P-L. Lions and J-L.
Menaldi {21], P-L. Lions [15].
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