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Abstract

We prove a sufficient maximum principle for the optimal control of systems de-
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1 Introduction

Let T > 0 and let G be an open set in R
n with C1 boundary ∂G. Suppose that the state

Y (t, x) ∈ R of a system at time t ∈ [0, T ] and at the point x ∈ Ḡ = G ∪ ∂G is given by a
quasilinear stochastic heat equation of the form

dY (t, x) =

{
[LY (t, x) + b(t, x, Y (t, x), u(t, x))]dt

+σ
(
t, x, Y (t, x), u(t, x)

)
dB(t); (t, x) ∈ (0, T ) ×G

(1.1)

Y (0, x) = ξ(x) ; x ∈ Ḡ(1.2)

Y (t, x) = η(t, x); (t, x) ∈ (0, T ) × ∂G .(1.3)
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Here dY (t, x) denotes the Itô differential with respect to t, while L is a second order partial
differential operator acting on x given by

(1.4) Lφ(x) =
n∑

i,j=1

aij(x)
∂2φ

∂xi∂xj

+
n∑

i=1

bi(x)
∂φ

∂xi

; φ ∈ C2(Rn)

where a(x) = [aij(x)]1≤i,j≤n is a given symmetric nonnegative definite symmetric n×nmatrix
with entries aij(x) ∈ C2(G) ∩ C(Ḡ) for all i, j = 1, 2, . . . , n and bi(x) ∈ C2(G) ∩ C(Ḡ) for
i = 1, 2, . . . , n. The process B(t) = B(t, ω); t ≥ 0, ω ∈ Ω is a (1-dimensional, 1-parameter)
Brownian motion on a filtered probability space

(
Ω,F ,

{
Ft

}
t≥0
, P

)
, while u(t, x) = u(t, x, ω)

is our control process. We assume that u(t, x) has values in a given convex set U ⊂ R
k and

that u(t, x, ·) is Ft-measurable for all (t, x) ∈ (0, T ) × G i.e. that u(t, x) is adapted for all
x ∈ G. The functions b : [0, T ] × G × R × U → R and σ : [0, T ] × G × R × U → R are
given C1 functions. The boundary value functions ξ : Ḡ → R and η : [0, T ] × ∂G → R are
assumed to be deterministic and C1.

We call the control process u(t, x) admissible if the corresponding stochastic partial dif-
ferential equation (1.1)–(1.3) has a unique, strong solution Y (·) ∈ L2(λ × P ), where λ is
Lebesgue measure on [0, T ]× Ḡ, and with values in a given set S ⊂ R. The set of admissible
controls is denoted by A.

t

T

[0, T ] × Ḡ

Y (t, z) = η(t, z)

Y (t, z) = η(t, z)

Y (0, x) = ξ(x)

G

0

Figure 1: The boundary values of Y (t, x).

Suppose the performance J(u) obtained by applying the control u ∈ A has the form

(1.5) J(u) = E

[ ∫ T

0

( ∫

G

f
(
t, x, Y (t, x), u(t, x)

)
dx

)
dt+

∫

G

g
(
x, Y (T, x)

)
dx

]

where f and g are given lower bounded C1 functions and E denotes the expectation with
respect to P .

We consider the problem to find J∗ ∈ R and u∗ ∈ A such that

(1.6) J∗ = sup
u∈A

J(u) = J(u∗)

This is an optimal control problem for the quasilinear stochastic heat equation.
The main purpose of this paper is to prove a maximum principle type of verification

theorems for such optimal control problems (Theorems 2.1, 2.2 and 2.3). Then we use the
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connection between such optimal control problems (with complete information) and stochas-
tic control problems with partial observation to establish a sufficient maximum principle for
partial observation control (Theorem 3.1).

Stochastic control of the stochastic partial differential equations (SPDEs) arizing from
partial observation control has been studied by Mortensen [M], using a dynamic programming
approach, and subsequently by Bensoussan, using a maximum principle method. See [B3]
and the references therein. Our approach differs from the approach of Bensoussan in two
ways: First, we give sufficient maximum principle results, not necessary ones. Second, we
consider more general quasilinear semielliptic SPDEs.

Here is an outline of the paper: In Section 2 we give 3 versions of a sufficient maximum
principle (verification theorem) for optimal control of quasilinear SPDEs. In Section 3 the
results are illustrated by solving a problem of optimal harvesting from a system described
by a stochastic reaction-diffusion equation.

2 A Sufficient Maximum Principle

We now formulate a sufficient maximum principle for the optimal control of the problem
(1.1)–(1.6).

Define the Hamiltonian H : [0, T ] ×G× R × U × R × R → R associated to the problem
(1.1)–(1.6) by

(2.1) H(t, x, y, u, p, q) = f(t, x, y, u) + b(t, x, y, u)p+ σ(t, x, y, u)q .

Let

(2.2) L∗φ(x) =
n∑

i,j=1

∂2

∂xi∂xj

(aij(x)φ(x)) −
n∑

i=1

∂

∂xi

(bi(x)φ(x))

be the adjoint of the operator L given in (1.4). For each u ∈ A we consider the following
adjoint backward SPDE in the two unknown adapted processes p(t, x), q(t, x):

dp(t, x) = −

{(
∂H

∂y

)(
t, x, Y (t, x), u(t, x), p(t, x), q(t, x)

)

+L∗p(t, x)

}
dt+ q(t, x)dB(t) ; 0 ≤ t ≤ T, x ∈ G(2.3)

p(T, x) =
∂g

∂y

(
x, Y (T, x)

)
; x ∈ Ḡ(2.4)

p(t, x) = 0 ; (t, x) ∈ (0, T ) × ∂G(2.5)

Here Y (t, x) = Y u(t, x) is the solution of (1.1)–(1.3) corresponding to u.

Theorem 2.1 (Sufficient SPDE maximum principle I)

Let û ∈ A with corresponding solution Ŷ of (1.1)–(1.3) and let p̂(t, x), q̂(t, x) be a solution of
the associated adjoint backward SPDE (2.3)–(2.5). Suppose the following, (2.6)–(2.9), hold:
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(2.6) The functions
(y, u) → H(y, u) := H

(
t, x, y, u, p̂(t, x), q̂(t, x)

)
; y ∈ R, u ∈ U

and
y → g(x, y) ; y ∈ R are concave, for all (t, x) ∈ [0, T ] ×G

(2.7) H
(
t, x, Ŷ (t, x), û(t, x), p̂(t, x), q̂(t, x)

)
= sup

u∈U
H

(
t, x, Ŷ (t, x), u, p̂(t, x), q̂(t, x)

)

for all (t, x) ∈ [0, T ] ×G

For all u ∈ A, with Y (t, x) = Y (u)(t, x),

(2.8) E
[ ∫

G

∫ T

0

(Y (t, x) − Ŷ (t, x))2q̂2(t, x)dt dx
]
<∞

and

(2.9) E
[ ∫

G

∫ T

0

p̂(t)2σ2(t, x, Y (t, x), u(t, x))dt dx
]
<∞

Then û(t, x) is an optimal control for the stochastic control problem (1.6).

Proof. Let u be an arbitrary admissible control with corresponding solution Y (t, x) =
Y u(t, x) of (1.1)–(1.3). Consider

(2.10) J(û) − J(u) = E
[ ∫ T

0

∫

G

{
f̂ − f

}
dx dt+

∫

G

{
ĝ − g

}
dx

]

where

f̂ = f(t, x, Ŷ (t, x), û(t, x)) , f = f(t, x, Y (t, x), u(t, x))

ĝ = g(x, Ŷ (T, x)) and g = g(x, Y (T, x)) .

Similarly we put

b̂ = b(t, x, Ŷ (t, x), û(t, x)) , b = b(t, x, Y (t, x), u(t, x))

σ̂ = σ(t, x, Ŷ (t, x), û(t, x)) , σ = σ(t, x, Y (t, x), u(t, x))

and we set

Ĥ = H(t, x, Ŷ (t, x), û(t, x), p̂(t, x), q̂(t, x)) ,

H = H(t, x, Y (t, x), u(t, x), p̂(t, x), q̂(t, x)) .

Then (2.10) can be written

J(û) − J(u) = I1 + I2 , where

(2.11) I1 = E
[ ∫ T

0

∫

G

{
Ĥ −H − (b̂− b)p̂− (σ̂ − σ)q̂

}
dx dt

]

and

(2.12) I2 = E
[ ∫

G

{ĝ − g}dx
]
.
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By concavity of the function y → g(x, y) we have

(2.13) g − ĝ ≤
∂g

∂y
(x, Ŷ (T, x)) · (Y (T, x) − Ŷ (T, x)) .

Therefore, writing

(2.14) Ỹ (t, x) := Y (t, x) − Ŷ (t, x) ,

we get

I2 ≥− E
[ ∫

G

∂g

∂y

(
x, Ŷ (T, x)

)
· Ỹ (T, x)dx

]

= − E
[ ∫

G

p̂(T, x) · Ỹ (T, x)dx
]

= − E
[ ∫

G

(
p̂(0, x) · Ỹ (0, x) +

∫ T

0

{
Ỹ (t, x)dp̂(t, x) + p̂(t, x)dỸ (t, x)

+ (σ − σ̂) · q̂(t, x)
}
dt

)
dx

]

= − E

[ ∫

G

( ∫ T

0

{
Ỹ (t, x)

[
−

(
∂H

∂y

)∧

− L∗p̂(t, x)
]

+ p̂(t, x)
[
LỸ (t, x) + (b− b̂)

]
+ (σ − σ̂)q̂(t, x)

}
dt

)
dx

]
,(2.15)

where (
∂H

∂y

)∧

=
∂H

∂y

(
t, x, Ŷ (t, x), û(t, x), p̂(t, x), q̂(t, x)

)
.

Combining (2.11) and (2.15) we get

J(û) − J(u) = I1 + I2 ≥ E
[ ∫ T

0

( ∫

G

{
Ỹ L∗p̂− p̂ · LỸ

}
dx

)
dt

]
(2.16)

+E
[ ∫

G

( ∫ T

0

{
Ĥ −H +

(
∂H

∂y

)∧

· Ỹ (t, x)
}
dt

)
dx

]
.

By the first Green formula (see e.g. [W, (20), page 258]) there exist first order boundary
differential operators A1, A2 such that

(2.17)

∫

G

{Ỹ L∗p̂− p̂LỸ }dx =

∫

∂G

{Ỹ A1p̂− p̂A2Ỹ }dS,

where the integral on the right is the surface integral over ∂G.
By (1.3) and (2.5) we have Ỹ (t, x) = p̂(t, x) = 0 for all (t, x) ∈ (0, T ) × ∂G. Hence

(2.18)

∫

G

{Ỹ L∗p̂− p̂ · LỸ }dx = 0 for all t ∈ (0, T ) .

Therefore (2.16) gives

(2.19) J(û) − J(u) ≥ E
[ ∫

G

( ∫ T

0

{Ĥ −H +
(∂H
∂y

)∧
· Ỹ (t, x)}dt

)
dx

]
.
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Since H(y, u) is concave (by (2.6)), we have

(2.20) H − Ĥ ≤
∂H

∂y
(Ŷ , û) · (Y − Ŷ ) +

∂H

∂u
(Ŷ , û)(u− û) .

Since v → H(Ŷ , v) is maximal at v = û by (2.7), we have

(2.21)
∂H

∂u
(Ŷ , û) · (u− û) ≤ 0 .

Hence by (2.20)

(2.22) H − Ĥ −
∂H

∂y
(Ŷ , û) · (Y − Ŷ ) ≤ 0

which by (2.19) gives that
J(û) − J(u) ≥ 0 .

Since u ∈ A was arbitrary the proof is complete. �

In some applications the Hamiltonian function

(2.23) h(t, x, y, u) := H(t, x, y, u, p̂(t, x), q̂(t, x))

is not concave in both variables (y, u). In such cases it is useful to replace the concavity in
(y, u) by a weaker condition, sometimes called the Arrow condition:

(2.24) The function ĥ(t, x, y) := max
v∈U

h(t, x, y, v) exists and is concave in y, for all t, x.

Then we get the following result:

Theorem 2.2 (Sufficient SPDE maximum principle II)

Let û, Ŷ , p̂, q̂ be as in Theorem 2.1. Suppose that g(x, y) is concave in y and that the maximum
condition (2.7) and the Arrow condition (2.24) hold. Then û(t, x) is an optimal control for
the stochastic control problem (1.6).

Proof. We proceed as in the proof of Theorem 2.1 up to and including (2.19). Then, to
obtain (2.22) note that

H − Ĥ −
∂H

∂y
(Ŷ , û) · (Y − Ŷ )

= h(t, x, Y (t, x), u(t, x)) − h(t, x, Ŷ (t, x), û(t, x))

−
∂h

∂y
(t, x, Ŷ (t, x), û(t, x)) · (Y (t, x) − Ŷ (t, x))

This is ≤ 0 by the same argument as in the proof of the Arrow sufficiency theorem for the
deterministic case. See [SS, Theorem 5, p. 107–108]. For completeness we give the details:

Note that by (2.7) we have

(2.25) h(t, x, Ŷ (t, x), û(t, x)) = ĥ(t, x, Ŷ (t, x)) .
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Moreover, by definition of ĥ in (2.24) we have

(2.26) h(t, x, y, u) ≤ ĥ(t, x, y) for all t, x, y, u .

Therefore, subtracting (2.25) from (2.26) we get

h(t, x,y, u) − h(t, x, Ŷ (t, x), û(t, x))

≤ ĥ(t, x, y) − ĥ(t, x, Ŷ (t, x)) for all t, x, y, u .(2.27)

Hence, to prove (2.22) it suffices to prove that

ĥ(t,x, Y (t, x)) − ĥ(t, x, Ŷ (t, x))

−
∂h

∂y
(t, x, Ŷ (t, x), û(t, x)) · (Y (t, x) − Ŷ (t, x)) ≤ 0 for all t, x .(2.28)

Fix (t, x) ∈ [0, T ] × Ḡ.
By concavity of the function y → ĥ(t, x, y) it follows by a standard separating hyperplane

argument (see e.g. [R, Chapter 5, Section 23]) that there exists a supergradient a ∈ R for

ĥ(t, x, y) at y = Ŷ (t, x), i.e.

(2.29) ĥ(t, x, y) − ĥ(t, x, Ŷ (t, x)) − a · (y − Ŷ (t, x)) ≤ 0 for all y .

Define

φ(y) = h(t, x, y, û(t, x)) − h(t, x, Ŷ (t, x), û(t, x)) − a · (y − Ŷ (t, x)) ; y ∈ R .

Then by (2.27) and (2.29) we have

φ(y) ≤ 0 for all y ∈ R .

Moreover, we clearly have
φ(Ŷ (t, x)) = 0 .

Therefore

φ′(Ŷ (t)) =
∂h

∂y
(t, x, Ŷ (t, x), û(t, x)) = a .

Combining this with (2.29) we obtain (2.28) and the proof is complete. �

Controls which do not depend on x

In some cases, for example in the application to partial observation control (see e.g. [B1],
[B2], [B3], [P1],[P2]), it is of interest to consider only controls u(t) = u(t, ω) which do not
depend on the space variable x. Let us denote the set of such controls u ∈ A by A1. Then
the problem corresponding to (1.6) is to find J∗

1 ∈ R and u∗ ∈ A1 such that

(2.30) J∗
1 = sup

u∈A1

J(u) = J(u∗)

where

(2.31) J(u) = E
[ ∫ T

0

( ∫

G

f(t, x, Y (t, x), u(t))dx
)
dt+

∫

G

g(x, Y (T, x))dx
]

and Y (t, x) is as before given by (1.1)–(1.3) (but with u(t, x) replaced by u(t)).
To handle this situation, we modify Theorem 2.1 as follows:
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Theorem 2.3 (Sufficient SPDE maximum principle III)

Let û = û(t) ∈ A1 with corresponding solution Ŷ (t, x) of (1.1)–(1.3) and let p̂(t, x), q̂(t, x)
be a solution of the associated adjoint backward SPDE (2.3)–(2.5). Assume that (2.6) and
(2.30) hold, where

(Average maximum condition)(2.32) ∫

G

H(t, x, Ŷ (t, x), û(t), p̂(t, x), q̂(t, x))dx

= sup
u∈U

{∫

G

H(t, x, Ŷ (t, x), u, p̂(t, x), q̂(t, x))dx
}

Then û(t) is an optimal control for the problem (2.28)–(2.29).

Proof of Theorem 2.3. We proceed as in the proof of Theorem 2.1: Let u ∈ A1 with
corresponding solution Y (t, x) of (1.1)–(1.3). Consider

(2.33) J(û) − J(u) = E
[ ∫ T

0

∫

G

{f̂ − f}dx dt+

∫

G

{ĝ − g}dx
]

where

f̂ = f(t, x, Ŷ (t, x), û(t)), f = f(t, x, Y (t, x), u(t)),

ĝ = g(x, Ŷ (T, x)), and g = g(x, Y (T, x)) .

Using a similar shorthand notation for b = b(t, x, Y (t, x), u(t)), b̂, σ and σ̂ and setting

Ĥ = H(t, x, Ŷ (t, x), û(t, ), p̂(t, x), q̂(t, x)) ,(2.34)

H = H(t, x, Y (t, x), u(t), p(t, x), q(t, x))(2.35)

we see that (2.31) can be written

(2.36) J(û) − J(u) = I1 + I2

where

(2.37) I1 = E
[ ∫ T

0

∫

G

{Ĥ −H − (b̂− b)p̂− (σ̂ − σ)q̂}dx dt
]

and

(2.38) I2 = E
[ ∫

G

{ĝ − g}dx
]
.

By concavity of the function y → g(x, y) we have

∫

G

{g(x, Y (T, x)) − g(x, Ŷ (T, x))}dx ≤

∫

G

∂g

∂y
(x, Ŷ (T, x)) · Ỹ (T, x)dx

where

(2.39) Ỹ (t, x) = Y (t, x) − Ŷ (t, x) .



9

Therefore we get, as in the proof of Theorem 2.1,

I2 ≥ −E
[ ∫ T

0

( ∫

G

{Ỹ (t, x)
[
−

(∂H
∂y

)∧
− L∗p̂(t, x)

]

+ p̂(t, x)[LỸ (t, x) + (b− b̂)] + (σ − σ̂)q̂(t, x)}dx)dt](2.40)

where (∂H
∂y

)∧
=
∂H

∂y
(t, x, Ŷ (t, x), û(t), p̂(t, x), q̂(t, x)) .

Summing (2.35) and (2.38) we get, as in (2.17),

(2.41) J(û) − J(u) = I1 + I2 ≥ E
[ ∫ T

0

( ∫

G

{
Ĥ −H + Ỹ ·

(∂H
∂y

)∧}
dx

)
dt

]
.

where Ĥ and H are given (3.32) and (2.33). Since (y, u) → H(y, u) is concave (by (2.6)), we
have

(2.42) H − Ĥ ≤
∂H

∂y
(Ŷ , û) · (Y − Ŷ ) +

∂H

∂u
(Ŷ , û) · (u− û) .

Combining (2.39) and (2.40) we get

J(û) − J(u) ≥ E
[ ∫ T

0

( ∫

G

−
∂H

∂u
(Ŷ , û) · (u− û)dx

)
dt

]

= −E
[ ∫ T

0

(u− û) ·
∂

∂u

( ∫

G

H(t, x, Ŷ , u, p̂, q̂)dx
)

u=û(t)
dt

]
≥ 0 ,

since u = û(t) maximizes u→

∫

G

H(t, x, Ŷ , u, p̂, q̂)dx ,

by assumption (2.30). �

3 Applications

We now illustrate the results of Section 2 by looking at some examples.

Example 3.1 (Optimal harvesting I)
Suppose the density Y (t, x) of a population (e.g. fish) at time t ∈ (0, T ) and at the point
x ∈ G ⊂ R

n is given by the stochastic reaction-diffusion equation

dY (t, x) =
[

1
2
∆Y (t, x) + αY (t, x) − u(t, x)

]
dt+ βY (t, x)dB(t)(3.1)

(where ∆ =
n∑

i=1

∂2

∂x2
i

is the Laplacian)

with boundary conditions

Y (0, x) = ξ(x) ; x ∈ Ḡ(3.2)

Y (t, x) = η(t, x) ; (t, x) ∈ (0, T ) × ∂G .(3.3)
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Here u(t, x) ≥ 0 is our harvesting rate at (t, x).
See e.g. [S] for more information on reaction-diffusion equations. A special class of

stochastic reaction-diffusion equations is studied in [ØVZ1] and [ØVZ2].
Suppose we want to maximize a combination of the total expected utility of the con-

sumption and the terminal size of the population, expressed by the performance criterion

(3.4) J(u) = E
[ ∫ T

0

( ∫

G

uγ(t, x)

γ
dx

)
dt+ θ

∫

G

Y (T, x)dx
]

where γ ∈ (0, 1) and θ > 0 are given constants. In this case the Hamiltonian (2.1) gets the
form

(3.5) H(t, x, y, u, p, q) =
uγ

γ
+ (αy − u)p+ βyq .

Therefore the adjoint equations (2.3)–(2.5) become

dp(t, x) = −
[
αp(t, x) + βq(t, x) + 1

2
∆p(t, x)

]
dt(3.6)

+ q(t, x)dB(t) ; (t, x) ∈ (0, T ) ×G

p(T, x) = θ ; x ∈ G(3.7)

p(t, x) = 0 ; (t, x) ∈ (0, T ) × ∂G .(3.8)

Because the boundary conditions and all the coefficients are deterministic, we see that we
can choose q(t, x) = 0 and solve (3.6)–(3.8) for deterministic p(t, x). The equation (3.6) then
gets the form

(3.9)
∂p

∂t
(t, x) + 1

2
∆p(t, x) + αp(t, x) = 0 ; (t, x) ∈ (0, T ) ×G .

It is well-known that the boundary value problem (3.7)–(3.9) has the unique solution

(3.10) p(t, x) = θeαTP
[
W x(s) ∈ G for all s ∈ [t, T ]

]
,

where W x(·) denotes n-dimensional Brownian motion starting at x ∈ R
n with probability

law P . (See e.g. [KS, Chapter 4] or [Ø, Chapter 9].)
The function

u→ H(t, x, y, u, p, q) =
uγ

γ
+ (αy − v)p+ βyq ; u ≥ 0

is maximal when

(3.11) u = û(t, x) =
(
p(t, x)

) 1
γ−1 ,

where p(t, x) is given by (3.10).
With this choice of û(t, x) we see that all the conditions of Theorem 2.1 are satisfied and

we conclude that û(t, x) is an optimal harvesting rate.

Example 3.2 (Optimal harvesting II)
Supppose we modify the performance criterion J(u) of Example 3.1 to

(3.12) J0(u) = E
[ T∫

0

( ∫

R

uγ(t, x)

γ
dx

)
dt+

∫

R

g(x, Y (T, x))dx
]
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where g : R → R is a given C1-function. The Hamiltonian H(t, x, y, p, q) remains the same
and so the candidate û(t, x) for the optimal control has the same form as in (3.11), i.e.

(3.13) û(t, x) =
(
p(t, x)

) 1
γ−1 .

The difference is that now we have to work harder to find p(t, x). The backward stochastic
partial differential equation for p(t, x) is now

dp(t, x) = −[αp(t, x) + βq(t, x) + 1
2
∆p(t, x)]dt+ q(t, x)dB(t); (t, x) ∈ (0, T ) × R(3.14)

p(T, x) = F (x, ω); x ∈ R(3.15)

lim
|x|→∞

p(t, x) = 0; t ∈ (0, T )(3.16)

where we have put

(3.17) F (x, ω) =
∂g

∂y
(x, Y (T, x)); x ∈ Ḡ.

To solve this equation we proceed as follows:
First note that if we put

(3.18) p̃(t, x) := eαtp(t, x)

then (3.14)–(3.16) get the form

dp̃(t, x) = −βeαtq(t, x)dt− 1
2
∆p̃(t, x)dt+ eαtq(t, x)dB(t); (t, x) ∈ (0, T ) × R(3.19)

p̃(T, x) = eαTF (x, ω); x ∈ R(3.20)

lim
|x|→∞

p̃(t, x) = 0; t ∈ (0, T ).(3.21)

Next, define the measure P0 by

dP0(ω) = exp(βB(t) − 1
2
β2t)dP (ω) on FT .

Then by the Girsanov theorem the process

(3.22) B0(t) := −βt+B(t); 0 ≤ t ≤ T

is a Brownian motion w.r.t. P0.
Suppose F (x, ·) ∈ L2(P0) for each x. Then by the Itô representation theorem there exists

a unique adapted process ψ(t, x, ω) such that E0

[ T∫
0

ψ2(t, x, ω)dt
]
<∞ and

(3.23) eαTF (x, ω) = h(x) +

T∫

0

ψ(t, x, ω)dB0(t),

where h(x) = E0[e
αTF (t, ·)] and E0 denotes expectation w.r.t. P0.
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Define the heat operator Qt by

(3.24) (Qtf)(x) = (2πt)−1/2

∫

R

f(y) exp
(
−

|x− y|2

2t

)
dy; f ∈ D,

where D is the set of real functions on R for which the integral converges. Now define

p̃(t, x) : = QT−t

( t∫

0

ψ(s, ·, ω)dB0(s) + h(·)
)
(x)

=

T∫

0

(QT−tψ(s, ·, ω))(x)dB0(s) + (QT−th)(x).(3.25)

Then, by well-known properties of the Qt operator,

dp̃(t, x) =
[ T∫

0

+1
2
∆(QT−tψ(s, ·, ω))(x)dB0(s) −

1
2
∆(QT−th)(x)

]
dt

+ (QT−tψ(t, ·, ω))(x)dB0(t)

= −1
2
∆p̃(t, x)dt+ q(t, x)dB0(t),(3.26)

where

(3.27) q(t, x) = (QT−tψ(t, ·, ω))(x).

By (3.22) we see that (3.26) is identical to (3.19). We have proved

Theorem 3.3 Suppose

(3.28)

∫

R

(E0[F
2(y, ·)])1/2 exp

(
−
y2

2

)
dy <∞.

Then the solution (p(t, x), q(t, x)) of the backward SPDE (3.14)–(3.16) is given by

p(t, x) = e−αtp̃(t, x) with p̃(t, x) as in (3.25)

and
q(t, x) = (QT−tψ(t, ·, ω))(x),

with ψ given implicitly by (3.23).

For general existence and uniqueness results for backward stochastic partial differential
equations see [ØZ].
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