
Optimal Control of Switched Systems Based on Parameterization of

the Switching Instants�

Xuping Xuy Panos J. Antsaklisz

Abstract

This paper presents an approach for solving optimal control problems for switched systems.

In general, in such problems one needs to �nd both optimal continuous inputs and optimal

switching sequences, since the system dynamics vary before and after every switching instant.

After formulating the optimal control problem, we propose a two stage optimization methodol-

ogy. Since many practical problems only involve optimization where the number of switchings

and the sequence of active subsystems are given, we focus on Stage 1 optimization problems

and propose a conceptual algorithm for solving them. In order to implement the algorithm,

the derivatives of the optimal cost with respect to the switching instants need to be known.

We propose a method which �rst transcribes a Stage 1 problem into an equivalent problem pa-

rameterized by the switching instants and then the values of the derivatives are obtained based

on the solution of a two point boundary value di�erential algebraic equation (DAE) formed

by the state, costate, stationarity equations, the boundary and continuity conditions and their

di�erentiations. This approach is applied to general switched linear quadratic (GSLQ) problems

and an eÆcient method based on the solution of an initial value ordinary di�erential equation

(ODE) is developed. Examples are shown to illustrate the results in the paper.

1 Introduction

A switched system is a particular kind of hybrid system that consists of several subsystems and a

switching law specifying the active subsystem at each time instant. Many real-world processes such

as chemical processes, automotive systems, and manufacturing processes, etc., can be modeled as

such systems.

Recently, optimal control problems of hybrid and switched systems have been attracting re-

searchers from various �elds in science and engineering, due to the problems' signi�cance in theory

and applications. The available results in the literature for such problems can be classi�ed into two

categories, i.e., theoretical and practical. [4, 8, 16, 19, 20, 22, 29] are some primarily theoretical

results. These results extended the classical maximum principle or the HJB equation to such prob-

lems. However, because there is no eÆcient constructive methodology suggested in these papers for
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�nding optimal solutions, there is a signi�cant gap between theoretical results and their applications

to real-world examples. As to the second category of practical results, researchers take advantage of

the availability of high speed computers and eÆcient nonlinear optimization techniques to develop

approaches for solving such problems (see e.g., [4, 5, 6, 9, 10, 12, 13, 18, 17, 21]). It is worth noting

that because there are many di�erent models and optimal control objectives for hybrid systems, the

above papers often di�er greatly in their problem formulations and approaches. Switched systems,

on the other hand, tend to be described by similar models, and similar optimal control problem

formulations have appeared in the literature (e.g., [9, 10, 13, 18, 21, 26]). For an optimal control

problem for a switched system, one needs to �nd both an optimal continuous input and an optimal

switching sequence since the system dynamics may vary after every switching instant. Due to the

involvement of switching sequences, such a problem is in general diÆcult to solve. Interested read-

ers may refer to [26] for an overview of the problem and its diÆculties. Most of the methods in the

literature that we are aware of are based on some discretization of continuous-time space and/or

discretization of state space into grids and use search methods for the resultant discrete model to

�nd optimal/suboptimal solutions. But the discretization approaches may lead to computational

combinatoric explosion and the solutions obtained may not be accurate enough (see [23]). In view

of this, in our research, we explore approaches that are not based on the discretization of the

continuous time space.

This paper presents an approach for solving optimal control problems of switched systems

which is not based on the discretization of the time space and emphasizes accurate optimization of

switching instants. Optimal control problems for switched systems are �rst carefully formulated.

We then propose a two stage optimization methodology. Since the two stage optimization method-

ology is still diÆcult to implement, we then concentrate on Stage 1 optimization where the number

of switchings and the sequence of active subsystems are given. Focusing on Stage 1 problems is

appropriate because in many practical situations, we only need to study problems with a �xed

number of switchings and a �xed order of active subsystems (e.g., the speeding up of an automobile

power train only requires switchings from gear 1 to 2 to 3 to 4) and in such cases the solution to

Stage 1 is indeed optimal for the problem. On the other hand, Stage 1 optimization itself is already

challenging enough and solving it is a �rst step toward solving the general problem which does not

possess a good solution up to now. A Stage 1 problem can further be decomposed into Stage 1(a),

which is a conventional optimal control problem that �nds the optimal cost given the order of active

subsystems and the switching instants, and Stage 1(b), which is a nonlinear optimization problem

that �nds the optimal switching instants. Stage 1(b) poses diÆculties because in general it is hard

to obtain the values of the derivatives of the Stage 1(a) optimal cost with respect to the switching

instants. To address these diÆculties, in our previous papers [28, 24], we proposed an approach

which approximates such derivatives by direct di�erentiations of value functions. In this paper, a

method is proposed which can provide us with accurate numerical values of the derivatives instead

of approximations. The method is based on the solution of a two point boundary value di�erential

algebraic equation (DAE) formed by the state, costate, stationarity equations, the boundary and

continuity conditions and their di�erentiations. Our approach is also applied to general switched

linear quadratic (GSLQ) problems and an eÆcient method is derived.

The structure of the paper is as follows. In Section 2, we formulate the optimal control problem

studied in this paper. In Section 3, we show that such a problem can be posed as a two stage
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optimization problem under some additional assumptions. From Section 4 on, we concentrate

on Stage 1 optimization problems. In Section 4, we discuss Stage 1(a) and 1(b) and propose a

conceptual algorithm. In Section 5, we transcribe a Stage 1 problem into an equivalent problem

parameterized by the switching instants. In Section 6, we develop a method to obtain the derivative

information based on the solution of a two point boundary value DAE. Moreover, similar ideas are

applied to general switched linear quadratic (GSLQ) problems in Section 7 and a more eÆcient

method based on the solution of an initial value ordinary di�erential equation (ODE) is developed.

Examples are given in Section 8 to illustrate the e�ectiveness of the method. Section 9 concludes

the paper.

It should be pointed out that parts of Sections 2, 3 and 4, which introduce the problem for-

mulation and the two stage optimization approach, are similar to corresponding parts in [28, 24].

However, the major contributions of this paper, which are the methods for deriving accurate values

of the derivatives of optimal cost with respect to the switching instants reported in Sections 5, 6

and 7, are very di�erent from the methods in [28, 24]; they are more accurate and straightforward

than the approximation methods in [28, 24].

2 Problem Formulation

2.1 Switched Systems

Switched Systems

A switched system is a particular kind of hybrid system that consists of several subsystems and

a switching logic among them. The feature that distinguishes a switched system from a general

hybrid system is that its continuous state does not exhibit jumps at the switching instants. The

switched systems we shall consider in this paper are de�ned as follows.

De�nition 2.1 (Switched System) A switched system is a tuple S = (D;F ;L) where

� D = (I; E) is a directed graph indicating the discrete structure of the system. The node set

I = f1; 2; � � � ;Mg is the set of indices for subsystems. The directed edge set E is a subset of

I � I � f(i; i)ji 2 Ig which contains all valid events. If an event e = (i1; i2) takes place, the

system switches from subsystem i1 to i2.

� F = ffi : Xi � Ui � R ! R
n jXi � R

n ; Ui � R
m ; i 2 Ig with fi describing the vector �eld for

the i-th subsystem _x = fi(x; u; t).

� L = f�ej�e � R
n ; e 2 Eg provides us with a logic constraint that relates the continuous

state and mode switchings. Note for any e 2 E, �e 6= ;. Only when x 2 �e, e = (i1; i2), a

switching from i1 to i2 is possible. 2

In view of De�nition 2.1, a switched system is a collection of subsystems related by a switching

logic described by D and L. Note that one distinct feature of a switched system is that it has

no discontinuities of the state x at the switching instants. If a particular switching law has been
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speci�ed (the law may be speci�ed by state space partitions or by time involvements), then the

switched system can be described as

_x(t) = fi(t)(x(t); u(t); t) (2.1)

i(t) = '(x(t); i(t�); t); (2.2)

where ' : Rn � I � R ! I determines the active subsystem at instant t. Note that (2.1)-(2.2) are

used as the de�nition of switched systems in some of the literature (e.g., [9]). We adopt De�nition

2.1 rather than (2.1)-(2.2) because in design problems, in general, ' is not de�ned a priori and it

is a designer's task to �nd a switching law.

Switching Sequences

For a switched system S, the control input of the system consists of both a continuous input

u(t); t 2 [t0; tf ] and a switching sequence. We de�ne a switching sequence as follows.

De�nition 2.2 (Switching Sequence) For a switched system S, a switching sequence � in

[t0; tf ] is de�ned to be

� = ((t0; i0); (t1; e1); (t2; e2); � � � ; (tK ; eK)); (2.3)

with 0 � K <1, t0 � t1 � t2 � � � � � tK � tf , and i0 2 I, ek = (ik�1; ik) 2 E for k = 1; 2; � � � ;K.

We de�ne �[t0;tf ]
4
= f�'s in [t0; tf ]g. 2

A switching sequence � as de�ned above indicates that, if tk < tk+1, then subsystem ik is

active in [tk; tk+1) ([tK ; tf ] if k = K); if tk = tk+1, then ik is switched through at instant tk
(`switched through' means that the system switches from subsystem ik�1 to ik and then to ik+1

all at instant tk). For a switched system to be well-behaved, we generally exclude the undesirable

Zeno phenomenon, i.e., in�nitely many switchings in �nite amount of time. Hence in De�nition 2.2,

we only allow nonZeno sequences which switch at most a �nite number of times in [t0; tf ], though

di�erent sequences may have di�erent numbers of switchings. We specify � 2 �[t0;tf ] as a discrete

input to a switched system. The overall control input to the system is therefore a pair (�; u).

Example 2.1 (An Automotive Control System) A manual transmission car with four gears

is a good example of a switched system. If we denote the lateral position as x1 and the velocity as

x2, the system dynamics at gear i can be described by

_x1 = x2

_x2 = �i(x2)u;

where the nonlinear gear eÆciency function �i(x2) is depicted in �gure 1.

For this system, I = f1; 2; 3; 4g, all Xi = R
n and all Ui = [0; umax], where umax is

given. If for each switching, the car can only be shifted one gear up or down, we have

E = f(1; 2); (2; 1); (2; 3); (3; 2); (3; 4); (4; 3)g; moreover, �(1;2) = �(2;1) = fxjx2 2 [10; 20]g,

�(2;3) = �(3;2) = fxjx2 2 [20; 40]g, �(3;4) = �(4;3) = fxjx2 2 [40; 60]g . The control input of

this system consists of the continuous input u (the throttle position) and the external switching

sequence (gear shifting). 2
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Figure 1: The nonlinear gear eÆciency functions �i.

2.2 An Optimal Control Problem

Note that in the sequel of this paper, we assume that Xi = R
n , Ui = R

m and �e = R
n for any

i 2 I, e 2 E and report results under these assumptions. We assume these because on one hand

optimal control problems under these assumptions are already challenging and interesting enough

and well deserve our attention; on the other hand problems under more general constraints are still

under extensive researches. We also de�ne U[t0;tf ]
4
= fuju 2 Cp[t0; tf ]; u(t) 2 R

mg; in other words,

U[t0;tf ] is the set of all piecewise continuous functions for t 2 [t0; tf ] that take values in R
m .

Problem 2.1 Consider a switched system S = (D;F ;L). Given a �xed time interval [t0; tf ], �nd

a continuous input u 2 U[t0;tf ] and a switching sequence � 2 �[t0;tf ] such that the corresponding

continuous state trajectory x departs from a given initial state x(t0) = x0 and meets an (n � lf )-

dimensional smooth manifold Sf = fxj�f (x) = 0; �f : R
n ! R

lf g at tf and the cost functional

J =  (x(tf )) +

Z tf

t0

L(x(t); u(t); t) dt (2.4)

is minimized. 2

Problem 2.1 is a basic optimal control problem with a �xed end-time where the �nal state is on a

smooth manifold. As in the usual practice of formulating optimal control problems (see [1]), in the

sequel, we assume that f , L are continuous and have continuous partial derivatives with respect

to x and t; �f is assumed to be continuously di�erentiable;  has twice continuous derivatives.

Besides these assumptions, in the following, whenever necessary, we will further assume that they

possess enough smoothness properties we need in our derivations.

The way we formulate Problem 2.1 with a �xed �nal time is mainly for the convenience of

subsequent studies in this paper. Note that for a problem with free end-time tf , we can introduce

an additional state variable and transcribe it to a problem with �xed end-time (for more details,

see [23]).

Analytical tools such as the maximum principle and the Hamilton-Jacobi-Bellman (HJB) equa-

tion for hybrid and switched systems have been derived in the literature (see [16, 20, 22, 26, 29]).

However, it is diÆcult to directly use these tools to �nd optimal controls even for switched sys-

tems with linear subsystems. For details and comments on the diÆculties of using them to obtain

optimal solutions, see [23].
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3 Two Stage Optimization

In general, we need to �nd an optimal control solution (��; u�) for Problem 2.1 such that

J(��; u�) = min
�2�[t0;tf ]

; u2U[t0;tf ]
J(�; u): (3.1)

Notice that for any �xed switching sequence �, Problem 2.1 reduces to a conventional optimal

control problem for which we only need to �nd an optimal continuous input u that minimizes

J�(u) = J(�; u). This idea naturally leads us toward considering Problem 2.1 as a two stage

optimization problem. Under some additional assumptions, we can prove the following lemma that

provides a way to do so.

Lemma 3.1 For Problem 2.1, if

(a). an optimal solution (��; u�) exists and

(b). for any given switching sequence �, there exists a corresponding u� = u�� such that J�(u) =

J(�; u) is minimized,

then the following equation holds

min
�2�[t0;tf ]

; u2U[t0;tf ]
J(�; u) = min

�2�[t0;tf ]

min
u2U[t0;tf ]

J(�; u): (3.2)

Proof: First we claim that

min
�2�[t0;tf ]

; u2U[t0;tf ]
J(�; u) � inf

�2�[t0;tf ]

min
u2U[t0;tf ]

J(�; u): (3.3)

This is because for any �xed �, there exists a u�� such that J(�; u��) = minu2U[t0;tf ]
J(�; u). But for

every pair (�; u��), we must have J(�
�; u�) � J(�; u��), therefore from (3.3) we must have

J(��; u�) � inf
�2�[t0;tf ]

J(�; u��) = inf
�2�[t0;tf ]

min
u2U[t0;tf ]

J(�; u): (3.4)

While we also have the inequality

inf
�2�[t0;tf ]

min
u2U[t0;tf ]

J(�; u) � min
u2U[t0;tf ]

J(��; u) = J(��; u���): (3.5)

In (3.5) we can choose u��� = u�, since for any other u, we must have J(��; u�) � J(��; u) due to

the optimality of (��; u�). Hence combining (3.4) and (3.5) we have

J(��; u�) � inf
�2�[t0;tf ]

min
u2U[t0;tf ]

J(�; u) � J(��; u���) = J(��; u�): (3.6)

Hence all inequalities in (3.6) must be equalities and the inf�2�[t0;tf ]
can be replaced by min�2�[t0;tf ]

so we obtain

J(��; u�) = min
�2�[t0;tf ]

; u2U[t0;tf ]
J(�; u) = min

�2�[t0;tf ]

min
u2U[t0;tf ]

J(�; u): (3.7)

2

The right hand side of (3.2) needs twice the minimization process. This supports the validity

of the following two stage optimization methodology.
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A Two Stage Optimization Methodology

Stage 1. Fixing �, solve the inner minimization problem.

Stage 2. Regarding the optimal cost for each � as a function

J1 = J1(�) = min
u2U[t0;tf ]

J(�; u); (3.8)

minimize J1 with respect to � 2 �[t0;tf ]. 2

In more detail, we can implement the above methodology by the following algorithm.

Algorithm 3.1 (A Two Stage Algorithm)

Stage 1. (a). Fix the total number of switchings to be K and the sequence of active subsystems

and let the minimum value of J with respect to u be a function of the K switching

instants, i.e., J1 = J1(t1; t2; � � � ; tK) for K � 0 (t0 � t1 � t2 � � � tK � tf ). Find J1.

(b). Minimize J1 with respect to t1; t2; � � � ; tK .

Stage 2. (a). Vary the order of active subsystems to �nd an optimal solution under K switchings.

(b). Vary the number of switchings K to �nd an optimal solution for Problem 2.1. 2

Note that the Stage 1 in Algorithm 3.1 is slightly di�erent from the Stage 1 in the two stage

methodology. In fact, Stage 1(a) in Algorithm 3.1 corresponds to Stage 1 in the two stage method-

ology. Stage 1(b) and Stage 2 together correspond to Stage 2 in the two stage methodology. In

the following, when we mention Stage 1 optimization, we actually refer to Stage 1 in Algorithm

3.1. Algorithm 3.1 needs further implementations. In practice, many problems only require the

solutions of optimal continuous inputs and optimal switching instants for Stage 1 optimization

where a �xed number of switchings and a �xed sequence of active subsystems are given. In general,

explicit expressions of J1 are diÆcult to obtain or quite complicated even for very simple problems.

Therefore it is necessary to devise optimization methods that do not require the explicit expression

of J1 as a function of tk's. In the next section, we shall discuss Stage 1 optimization in detail.

4 More on Stage 1 Optimization

Now we concentrate on Stage 1 optimization. On one hand, Stage 1 optimization has already

presented enough challenge to us. On the other hand, since many real world problems are in fact

stage 1 optimization problems, Stage 1 does deserve our attention. For example, the speeding-up

of a power train only requires switchings from gear 1 to 2 to 3 to 4. As can be seen from Algorithm

3.1 in Section 3, Stage 1 can further be decomposed into two sub-steps (a) and (b). Stage 1(a)

is in essence a conventional optimal control problem which seeks the minimum value of J with

respect to u under a given switching sequence �= ((t0; i0); (t1; e1); � � � ; (tK ; eK)). We denote the

corresponding optimal cost as a function J1(t̂), where t̂
4
= (t1; t2; � � � ; tK)

T . Stage 1(b) is in essence

a constrained nonlinear optimization problem

mint̂ J1(t̂)

subject to t̂ 2 T
(4.1)
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where T
4
= ft̂ = (t1; t2; � � � ; tK)

T jt0 � t1 � t2 � � � � � tK � tfg.

In order to solve a Stage 1 problem, one needs to resort to not only optimal control methods,

but also nonlinear optimization techniques. Except for very few classes of problems (e.g. minimum

energy problems in [23]), analytical expressions of J1(t̂) are almost impossible to obtain. This

is evident from the fact that very few classes of conventional optimal control problems possess

analytical solutions. The unavailability of analytical expressions of J1(t̂) henceforth makes Stage

1(b) optimization diÆcult to carry out. However even without the expressions of J1(t̂), if we can

�nd the values of the derivatives @J1
@t̂

and @2J1
@t̂2

, we can still solve Stage 1(b) by employing some

nonlinear optimization algorithms. Let us elaborate more on Stage 1(a) and 1(b) in the followings.

Stage 1(a)

For Stage 1(a) where a switching sequence � = ((t0; i0); (t1; e1); � � � ; (tK ; eK)) is given, �nding

J1(t̂) for the corresponding t̂ = (t1; � � � ; tK)
T is a conventional optimal control problem. Note that

although di�erent subsystems are active in di�erent time intervals, the problem is conventional

since these intervals are �xed. In Stage 1(a), we need to �nd an optimal continuous input u and

the corresponding minimum J . The only di�erence between Stage 1(a) and most of the problems

in many optimal control texts is that in Stage 1(a), the system dynamics changes with respect to

di�erent time intervals. However, it is not diÆcult to use the calculus of variations techniques (see

e.g. [11]) to prove the following necessary conditions. For simplicity of notations, in the following

theorem, we assume that subsystem k is active in the time interval [tk�1; tk) for k = 1; � � � ;K and

subsystem K + 1 is active in [tK ; tK+1] where tK+1 = tf .

Theorem 4.1 (Necessary Conditions for Stage 1(a)) Consider the Stage 1(a) problem for

Problem 2.1. Assume that subsystem k is active in [tk�1; tk) for 1 � k � K and subsystem

K + 1 in [tK ; tK+1] where tK+1 = tf . Let u 2 U[t0;tf ] be a continuous input such that the cor-

responding continuous state trajectory x departs from a given initial state x(t0) = x0 and meets

Sf = fxj�f (x) = 0; �f : Rn ! R
lf g at tf . In order that u be optimal, it is necessary that there

exists a vector function p(t) = [p1(t); � � � ; pn(t)]
T , t 2 [t0; tf ], such that the following conditions

hold

(a). For almost any t 2 [t0; tf ] the following state and costate equations hold

State equation:
dx(t)

dt
= [

@H

@p
(x(t); p(t); u(t); t)]T (4.2)

Costate equation:
dp(t)

dt
= �[

@H

@x
(x(t); p(t); u(t); t)]T ; (4.3)

H(x; p; u; t)
4
= L(x; u; t) + pT fk(x; u; t), if t 2 [tk�1; tk) (k = K + 1 if t 2 [tK ; tf ]).

(b). For almost any t 2 [t0; tf ], the stationarity condition holds

0 = [
@H

@u
(x(t); p(t); u(t); t)]T : (4.4)

(c). At tf , the function p satis�es

p(tf ) = [
@ 

@x
(x(tf ))]

T + [
@�f

@x
(x(tf ))]

T� (4.5)
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where � is an lf -dimensional vector.

(d). At any tk, k = 1; 2; � � � ;K, we have

p(tk�) = p(tk+): (4.6)

Proof: We use Lagrange multipliers to adjoin the constraints _x = fk(x; u; t); k = 1; � � � ;K +1 and

�f (x(tf )) = 0 to J . The augmented performance index is thus

J 0 =  (x(tf )) + �T�f (x(tf )) +

K+1X
k=1

Z tk

tk�1

[L(x; u; t) + pT (t)(fk(x; u; t) � _x)] dt: (4.7)

By de�ning H(x; p; u; t)
4
= L(x; u; t) + pT fk(x; u; t), for t 2 [tk�1; tk), 1 � k � K and t 2

[tK ; tK+1] with tK+1 = tf if k = K + 1, we have

J 0 =  (x(tf )) + �T�f (x(tf )) +

K+1X
k=1

Z tk

tk�1

[H(x; p; u; t) � pT _x] dt: (4.8)

From the calculus of variations, we can obtain the �rst variation of J 0 as

ÆJ 0 = [
@ 

@x
(x(tf )) + �T

@�f

@x
(x(tf ))� pT (tf )]Æx(tf ) +

KX
k=1

[pT (tk+)� pT (tk�)]Æx(tk)

+
K+1X
k=1

Z tk

tk�1

[(
@H

@x
+ _pT )Æx+

@H

@u
Æu+ (

@H

@p
� _xT )Æp] dt: (4.9)

According to the Lagrange theory, a necessary condition for a solution to be optimal is ÆJ 0 = 0.

Setting to zero the coeÆcients of the independent increments Æx(tf ), Æx(tk)'s, Æx, Æu and Æp yields

the necessary conditions (a)-(d). 2

The above necessary conditions will be used in Section 6 in the development of a method for

�nding @J1
@t̂

and @2J1
@t̂2

. In general, it is diÆcult or even impossible to �nd an analytical expression of

J1(t̂) using the above conditions. The reason is that conditions (a)-(d) present a two point boundary

value di�erential algebraic equation (DAE) which, in most cases, cannot be solved analytically.

However, the above DAE can be solved eÆciently using many numerical methods (e.g., shooting

methods).

Stage 1(b)

In Stage 1(b), we need to solve the constrained nonlinear optimization problem (4.1) with

simple constraints. Computational methods for the solution of such problems are abundant in the

nonlinear optimization literature. For example, feasible direction methods and penalty function

methods are two commonly used classes of methods. These methods use �rst-order derivative @J1
@t̂

and second-order derivative @2J1
@t̂2

. In the computation of the examples in this paper, we use the

gradient projection method (using @J1
@t̂

) and the constrained Newton's method (using @J1
@t̂

and @2J1
@t̂2

)
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and their variations (see Section 2.3 in Bertsekas [3] for details). For more discussions on various

methods for solving constrained nonlinear optimization problems, please also see [2, 15].

A Conceptual Algorithm

The following conceptual algorithm provides a framework for the optimization methodologies

in the subsequent sections.

Algorithm 4.1 (A Conceptual Algorithm for Stage 1 Optimization)

(1). Set the iteration index j = 0. Choose an initial t̂j.

(2). By solving an optimal control problem (Stage 1(a)), �nd J1(t̂
j).

(3). Find @J1
@t̂
(t̂j) and @2J1

@t̂2
(t̂j).

(4). Use the gradient projection method or the constrained Newton's method (if @
2J1
@t̂2

(t̂j) is known)

to update t̂j to be t̂j+1 = t̂j+�jdt̂j (here the stepsize �j is chosen using the Armijo's rule [3]).

Set the iteration index j = j + 1.

(5). Repeat Steps (2), (3), (4) and (5), until a prespeci�ed termination condition is satis�ed. 2

It should be pointed out that the key elements of the above algorithm are

(a). An optimal control algorithm for Step (2).

(b). The derivations of @J1
@t̂

and @2J1
@t̂2

for Step (3).

(c). A nonlinear optimization algorithm for Step (4).

In the above discussions, we have already addressed elements (a) and (c). (b) poses an obstacle

for the use of Algorithm 4.1 because @J1
@t̂

and @2J1
@t̂2

are not readily available. It is the task of the

subsequent sections to address (b) and devise a method for deriving the values of @J1
@t̂

and @2J1
@t̂2

.

Lastly, it should be pointed out that in Step (4), when we are searching for �j , the optimal control

algorithm for Stage 1(a) will also be used in order to obtain the value of J1 at the intermediate

trial t̂'s.

5 An Equivalent Problem Formulation Based on Parameteriza-

tion of the Switching Instants

In the following three sections, an approach to Stage 1 optimization based on equivalent transcrip-

tion is presented. The �rst step is to transcribe a Stage 1 problem into an equivalent conventional

optimal control problem parameterized by the switching instants. Based on the equivalent prob-

lem formulation, a method is then developed for searching for accurate values of @J1
@t̂

and @2J1
@t̂2

.

The method is based on the solution of a two point boundary value di�erential algebraic equation

(DAE). Furthermore, an eÆcient method for deriving the derivatives based on the solution of an

initial value ordinary di�erential equation (ODE) is proposed for GSLQ problems.
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Now let us describe the transcription of a Stage 1 problem into an equivalent optimal con-

trol problem parameterized by the unknown switching instants. The equivalent problem has the

property that the switching instants are �xed with respect to the new independent time variable.

For simplicity of notation and clarity of presentation, in the followings, we concentrate on the

case of two subsystems where subsystem 1 is active in the interval t 2 [0; t1) and subsystem 2 is

active in the interval t 2 [t1; tf ] (t1 is the switching instant to be determined). We also assume that

Sf = R
n (for general Sf , we can introduce Lagrange multipliers and develop similar methods). It is

straightforward to apply the methods developed in this paper to problems with several subsystems

and more than one switchings; we will remark on this in the subsequent sections.

We consider the following Stage 1 problem.

Problem 5.1 For a switched system

_x = f1(x; u; t); 0 � t < t1; (5.1)

_x = f2(x; u; t); t1 � t � tf ; (5.2)

�nd an optimal switching instant t1 and an optimal continuous input u(t), t 2 [t0; tf ] such that the

cost functional

J =  (x(tf )) +

Z tf

t0

L(x; u; t) dt (5.3)

is minimized. Here t0, tf and x(t0) = x0 are given. 2

We transcribe Problem 5.1 into an equivalent problem as follows.

We introduce a state variable xn+1 corresponding to the switching instant t1. Let xn+1 satisfy

dxn+1

dt
= 0 (5.4)

xn+1(0) = t1 (5.5)

Next a new independent time variable � is introduced. A piecewise linear correspondence relation-

ship between t and � is established as follows.

t =

(
t0 + (xn+1 � t0)�; 0 � � � 1

xn+1 + (tf � xn+1)(� � 1); 1 � � � 2:
(5.6)

Clearly, � = 0 corresponds to t = t0, � = 1 to t = t1, and � = 2 to t = tf .

By introducing xn+1 and � , Problem 5.1 can be transcribed into the following equivalent prob-

lem.

Problem 5.2 (An Equivalent Problem) For a system with dynamics

dx(�)

d�
= (xn+1 � t0)f1(x; u; t0 + (xn+1 � t0)�) (5.7)

dxn+1

d�
= 0 (5.8)

in the interval � 2 [0; 1) and

dx(�)

d�
= (tf � xn+1)f2(x; u; xn+1 + (tf � xn+1)(� � 1)) (5.9)

dxn+1

d�
= 0 (5.10)
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in the interval � 2 [1; 2], �nd an optimal xn+1 and an optimal u(�), � 2 [0; 2] such that the cost

functional

J =  (x(2)) +

Z 1

0
(xn+1 � t0)L(x; u; t0 + (xn+1 � t0)�) d�

+

Z 2

1
(tf � xn+1)L(x; u; xn+1 + (tf � xn+1)(� � 1)) d� (5.11)

is minimized. Here tf , x(0) = x0 are given. 2

Remark 5.1 Problem 5.2 and Problem 5.1 are equivalent in the sense that an optimal solution

for Problem 5.2 is an optimal solution for Problem 5.1 by a proper change of independent variables

as in (5.6) and by regarding xn+1 = t1, and vice versa. 2

Remark 5.2 The equivalent Problem 5.2 provides us with the advantage, namely that it no longer

has a varying switching instant. In fact, because xn+1 is actually an unknown constant throughout

� 2 [0; 2], Problem 5.2 can be regarded as a conventional optimal control problem with an unknown

parameter xn+1. The problem is conventional because it has �xed time instant when the system

dynamics change. In the subsequent discussion, we adopt the viewpoint of regarding xn+1 as an

unknown parameter for optimal control problem with cost (5.11) and subsystems (5.7) and (5.9),

i.e., we can regard Problem 5.2 as an optimal control problem parameterized by the switching

instant xn+1. 2

6 A Method Based on Solving a Boundary Value Di�erential Al-

gebraic Equation

In this section, based on the equivalent Problem 5.2, we develop a method which can give us

accurate numerical value of dJ1
dt1

. The method is based on the solution of a two point boundary

value di�erential algebraic equation (DAE) which is formed by the state, costate, stationarity

equations, the boundary and continuity conditions for Problem 5.2 and their di�erentiations with

respect to the parameter xn+1. In the followings, we denote @L
@x
, @L
@u

as row vectors and we denote
@f
@x

as an n�n matrix whose (i1; i2)-th element is
@fi1
@xi2

. Similar notations apply to @H
@x

, @H
@u

, @f
@u
, etc.

Consider the equivalent Problem 5.2, de�ne

~f1(x; u; �; xn+1)
4
= (xn+1 � t0)f1(x; u; t0 + (xn+1 � t0)�); (6.1)

~f2(x; u; �; xn+1)
4
= (tf � xn+1)f2(x; u; xn+1 + (tf � xn+1)(� � 1)); (6.2)

~L1(x; u; �; xn+1)
4
= (xn+1 � t0)L(x; u; t0 + (xn+1 � t0)�); (6.3)

~L2(x; u; �; xn+1)
4
= (tf � xn+1)L(x; u; xn+1 + (tf � xn+1)(� � 1)): (6.4)

Regarding xn+1 as a parameter, it is not diÆcult to see that the optimal solution x(�) for

Stage 1(a) is actually a function of xn+1. Consequently we denote it as x(�; xn+1). We de�ne the

parameterized Hamiltonian as

H(x; p; u; �; xn+1)
4
=

8>>><
>>>:

~L1(x; u; �; xn+1) + pT ~f1(x; u; �; xn+1);

for � 2 [0; 1);
~L2(x; u; �; xn+1) + pT ~f2(x; u; �; xn+1);

for � 2 [1; 2]:

(6.5)
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Assume that a parameter xn+1 is given, then we can apply Theorem 4.1 to the equivalent Prob-

lem 5.2. The necessary conditions (a) and (b) provides us with the following state, costate and

stationarity equations

State equation:
@x

@�
= (

@H

@p
)T = ~f1(x; u; �; xn+1); (6.6)

Costate equation:
@p

@�
= �(

@H

@x
)T = �(

@ ~f1
@x

)T p� (
@ ~L1

@x
)T ; (6.7)

Stationarity equation: 0 = (
@H

@u
)T = (

@ ~f1
@u

)T p+ (
@ ~L1

@u
)T : (6.8)

in � 2 [0; 1) and

State equation:
@x

@�
= (

@H

@p
)T = ~f2(x; u; �; xn+1); (6.9)

Costate equation:
@p

@�
= �(

@H

@x
)T = �(

@ ~f2
@x

)T p� (
@ ~L2

@x
)T ; (6.10)

Stationarity equation: 0 = (
@H

@u
)T = (

@ ~f2
@u

)T p+ (
@ ~L2

@u
)T : (6.11)

in � 2 [1; 2]. Note that the p and u corresponding to the optimal solution are also functions of �

and xn+1. Therefore, in the following, we denote them as p = p(�; xn+1) and u = u(�; xn+1).

From the necessary condition (c) of Theorem 4.1, we obtain the boundary conditions

x(0; xn+1) = x0; (6.12)

p(2; xn+1) = (
@ 

@x
(x(2; xn+1)))

T : (6.13)

The necessary condition (d) tells us that p(�; xn+1) is continuous at � = 1 for �xed xn+1, i.e.,

p(1�; xn+1) = p(1+; xn+1): (6.14)

(6.6)-(6.8), (6.9)-(6.11) along with boundary conditions (6.12) and (6.13) form a two point

boundary value di�erential algebraic equation (DAE) which is parameterized by xn+1. For each

given xn+1, the DAE can be solved using numerical methods. Now assume that we have solved the

above DAE and obtain the optimal x(�; xn+1), p(�; xn+1) and u(�; xn+1), we then have the optimal

value of J which is a function of the parameter xn+1

J1(xn+1) =  (x(2; xn+1)) +

Z 1

0

~L1(x; u; �; xn+1) d� +

Z 2

1

~L2(x; u; �; xn+1) d�: (6.15)

Di�erentiating J1 with respect to xn+1 provides us with

dJ1

dxn+1
=

@ (x(2; xn+1))

@x

@x(2; xn+1)

@xn+1
+

Z 1

0
[L(x; u; t0 + (xn+1 � t0)�)

+(xn+1 � t0)(
@L

@x

@x

@xn+1
+
@L

@u

@u

@xn+1
+ �

@L

@t
)] d�

+

Z 2

1
[�L(x; u; xn+1 + (tf � xn+1)(� � 1))

+(tf � xn+1)(
@L

@x

@x

@xn+1
+
@L

@u

@u

@xn+1
+ (2� �)

@L

@t
)] d�: (6.16)
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So we need to obtain the function @x(�;xn+1)
@xn+1

and @u(�;xn+1)
@xn+1

(here we assume that xn+1 is �xed)

in order to obtain the value dJ1
dxn+1

. By di�erentiating the above state, costate and stationarity

equations (6.6)-(6.8) and (6.9)-(6.11) with respect to xn+1, we obtain

@

@�
(
@x

@xn+1
) =

@

@xn+1
(
@x

@�
)

= f1 + (xn+1 � t0)(
@f1

@x

@x

@xn+1
+
@f1

@u

@u

@xn+1
+ �

@f1

@t
); (6.17)

@

@�
(
@p

@xn+1
) = �

@

@xn+1
(
@p

@�
) = �(

@f1

@x
)T p� (

@L

@x
)T � (xn+1 � t0)[(

@f1

@x
)T

@p

@xn+1

+(pT
@2f1

@x2
@x

@xn+1
)T + (pT

@2f1

@x@u

@u

@xn+1
)T + �(pT

@2f1

@x@t
)T

+
@2L

@x2
@x

@xn+1
+

@2L

@x@u

@u

@xn+1
+ �

@2L

@x@t
]; (6.18)

0 = (
@f1

@u
)T p+ (

@L

@u
)T + (xn+1 � t0)[(

@f1

@u
)T

@p

@xn+1

+(pT
@2f1

@u@x

@x

@xn+1
)T + (pT

@2f1

@u2
@u

@xn+1
)T + �(pT

@2f1

@u@t
)T

+
@2L

@u@x

@x

@xn+1
+
@2L

@u2
@u

@xn+1
+ �

@2L

@u@t
]; (6.19)

for � 2 [0; 1) and

@

@�
(
@x

@xn+1
) =

@

@xn+1
(
@x

@�
)

= �f2 + (tf � xn+1)(
@f2

@x

@x

@xn+1
+
@f2

@u

@u

@xn+1
+ (2� �)

@f2

@t
); (6.20)

@

@�
(
@p

@xn+1
) = �

@

@xn+1
(
@p

@�
) = (

@f2

@x
)T p+ (

@L

@x
)T � (tf � xn+1)[(

@f2

@x
)T

@p

@xn+1

+(pT
@2f2

@x2
@x

@xn+1
)T + (pT

@2f2

@x@u

@u

@xn+1
)T + (2� �)(pT

@2f2

@x@t
)T

+
@2L

@x2
@x

@xn+1
+

@2L

@x@u

@u

@xn+1
+ (2� �)

@2L

@x@t
]; (6.21)

0 = �(
@f2

@u
)T p� (

@L

@u
)T + (xn+1 � t0)[(

@f2

@u
)T

@p

@xn+1

+(pT
@2f2

@u@x

@x

@xn+1
)T + (pT

@2f2

@u2
@u

@xn+1
)T + (2� �)(pT

@2f2

@u@t
)T

+
@2L

@u@x

@x

@xn+1
+
@2L

@u2
@u

@xn+1
+ (2� �)

@2L

@u@t
]; (6.22)

for � 2 [1; 2].

In the above equations, @2f1
@x2

is an n � n � n array whose (j1; j2; j3) element is
@2f1;j1
@xj2@xj3

and the notation pT @2f1
@x2

@x
@xn+1

denotes an 1 � n row vector which has its j2-th element asPn
j1=1

Pn
j3=1 pj1

@2f1;j1
@xj2@xj3

@xj3
@xn+1

where f1;j1 is the j1-th element of f1, pj1 is the j1-th element of
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p and xj2 is the j2-th element of x. Similarly, pT @2f1
@x@u

@u
@xn+1

denotes an 1� n row vector which has

its j2-th element as
Pn

j1=1

Pm
j3=1 pj1

@2f1;j1
@xj2@uj3

@uj3
@xn+1

; pT @2f1
@u2

@u
@xn+1

denotes an 1�m row vector which

has its j2-th element as
Pn

j1=1

Pm
j3=1 pj1

@2f1;j1
@uj2@uj3

@uj3
@xn+1

; pT @2f1
@u@x

@x
@xn+1

denotes an 1�m row vector

which has its j2-th element as
Pn

j1=1

Pn
j3=1 pj1

@2f1;j1
@uj2@xj3

@xj3
@xn+1

. The expressions of pT @2f2
@x2

@x
@xn+1

,

pT @2f2
@x@u

@u
@xn+1

, pT @2f2
@u2

@u
@xn+1

and pT @2f1
@u@x

@x
@xn+1

are understood similarly.

Di�erentiating the boundary conditions (6.12), (6.13) and the continuity condition (6.14) with

respect to xn+1, we obtain

@x(0; xn+1)

@xn+1
= 0; (6.23)

@p(2; xn+1)

@xn+1
=

@2 (x(2; xn+1))

@x2
@x(2; xn+1)

@xn+1
; (6.24)

@p(1�; xn+1)

@xn+1
=

@p(1+; xn+1)

@xn+1
: (6.25)

It can now be observed that (6.6)-(6.8), (6.9)-(6.11) and (6.17)-(6.19), (6.20)-(6.22) along with

the boundary conditions (6.12), (6.13) and (6.23), (6.24) and with the continuity conditions (6.14),

(6.25) form a two point boundary value DAE for x(�; xn+1), p(�; xn+1), u(�; xn+1) and
@x(�;xn+1)
@xn+1

,
@p(�;xn+1)
@xn+1

, @u(�;xn+1)
@xn+1

. By solving them and substitute the result into (6.16), we can obtain dJ1
dxn+1

.

Remark 6.1 If all subsystems are linear in control and the cost function L is quadratic in control,

then u can be solved from the stationarity equation as a function of x and p. By di�erentiation with

respect to xn+1,
@u

@xn+1
can also be expressed as a function of x, p, @x

@xn+1
and @p

@xn+1
. If we substitute

these functions for u and @u
@xn+1

into the state, costate equations and their di�erentiations, the

two point boundary value DAE can hence be reduced to a two point boundary value di�erential

equation in x, p, @x
@xn+1

and @p
@xn+1

, which can be solved more easily than the DAE (e.g., using

shooting methods for two point boundary value di�erential equations). 2

Remark 6.2 In general, we need to resort to numerical methods to �nd the solution to the two

point boundary value DAE. Methods similar to the shooting methods for solving boundary value

di�erential equations can be adopted. We can guess the unknown boundary conditions at � = 0

and then discretize the DAE and numerically solve it forward in � . At the end time � = 2, we

regard the minimum square error between the required end condition and the corresponding values

for the current solution as a function of the unknown initial conditions. Numerical optimization

methods are then used to minimize the minimum square error. Ideally, it will converge to 0. Once

we have successfully located the correct initial conditions, the trajectory of @x
@xn+1

and @u
@xn+1

as

a function of � can be solved from the DAE. However, since we are using numerical methods to

solve it, we can only obtain their values at some discrete instants. In this case, if we regard the

integration in (6.16) as a sum, it may not be accurate enough. One way to address this issue is to
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introduce an auxiliary state variable y that satis�es

dy

d�
=

8>>>><
>>>>:

L(x; u; t0 + (xn+1 � t0)�) + (xn+1 � t0)(
@L
@x

@x
@xn+1

+@L
@u

@u
@xn+1

+ � @L
@t
); for � 2 [0; 1);

�L(x; u; xn+1 + (tf � xn+1)(� � 1)) + (tf � xn+1)(
@L
@x

@x
@xn+1

+@L
@u

@u
@xn+1

+ (2� �)@L
@t
); for � 2 [1; 2];

(6.26)

y(0) = 0: (6.27)

Solving the di�erential equation (6.26) along with the DAE, we can obtain the value

dJ1

dxn+1
=
@ (x(2; xn+1))

@x

@x(2; xn+1)

@xn+1
+ y(2): (6.28)

In this way, the resultant dJ1
dxn+1

would be quite accurate. 2

Remark 6.3 (Several Subsystems and More Than One Switchings) There is no diÆculty

in applying the above method to problems with several subsystems and more than one switchings.

Assuming that there are K switchings, we can transcribe the Stage 1 problem into an equivalent

problem by introducing K new state variables xn+k's, k = 1; � � � ;K which correspond to the

switching instants tk's and satis�es

dxn+k

dt
= 0; (6.29)

xn+k(0) = tk: (6.30)

The new independent time variable � has a piecewise linear relationship with t where � = 0

corresponds to t = t0, � = 1 corresponds to t = t1, � � � , � = K + 1 corresponds to t = tf . It is

then straightforward to apply the necessary conditions in Theorem 4.1 to the equivalent problem

to come up with the state, costate, stationarity equations, the boundary and continuity conditions.

Similarly to the case of a single switching, we can then obtain x, p, u, @x
@xn+k

's, @p
@xn+k

's and @u
@xn+k

's

by solving the two point boundary value DAE formed by the state, costate, stationarity equations,

the boundary and continuity conditions along with their di�erentiations with respect to xn+k's. By

substituting them into the expressions of @J1
@xn+k

's which can be derived similarly to (6.16), we can

then �nd the accurate values of @J1
@xn+k

's. 2

Remark 6.4 (Second Order Derivatives) If we take second order partial derivatives on equa-

tion (6.15), we can obtain the expression for d2J1(t1)
dt21

which depends on the values of @x
@xn+1

, @u
@xn+1

,

@2x(�;xn+1)
@x2n+1

and @2u(�;xn+1)
@x2n+1

. Similarly to the above procedure, taking �rst and second order deriva-

tives of the state, costate and stationarity equations (6.6)-(6.8) and (6.9)-(6.11), the boundary

conditions (6.12)-(6.13) and the continuity condition (6.14) with respect to xn+1 will result in a

two point boundary value DAE in x, p, u, @x
@xn+1

, @p
@xn+1

, @u
@xn+1

, @2x
@x2n+1

, @2p

@x2n+1
, @2u
@x2n+1

. There is no

diÆculty in obtaining the values of dJ1(t1)
dt1

and d2J1(t1)
dt21

by solving the DAE and substituting the

results to the expressions of them. This procedure can similarly be applied to the case of several

subsystems and more than one switchings. 2
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7 General Switched Linear Quadratic Problems

In this section, the idea in Section 6 is applied to general switched linear quadratic (GSLQ) problems

and a more eÆcient method for deriving accurate numerical values of dJ1
dxn+1

is developed. The

method only needs to solve an initial value ODE which is formed by the parameterized general

Riccati equation and its di�erentiation with respect to the switching instant in order to compute

the values of dJ1
dxn+1

. For simplicity of notation, we consider the following Stage 1 GSLQ problem

with two subsystems and one switching.

Problem 7.1 (Stage 1 of a GSLQ problem) For a switched system

_x = A1x+B1u; t0 � t < t1 (7.1)

_x = A2x+B2u; t1 � t � tf ; (7.2)

�nd an optimal switching instant t1 and an optimal continuous input u(t) such that the cost func-

tional in general quadratic form

J =
1

2
x(tf )

TQfx(tf ) +Mfx(tf ) +Wf +

Z tf

t0

(
1

2
xTQx

+xTV u+
1

2
uTRu+Mx+Nu+W ) dt (7.3)

is minimized. Here tf and x(t0) = x0 are given; Qf ;Mf ;Wf ; Q; V;R;M;N;W are matrices of

appropriate dimensions with Qf � 0, Q � 0 and R > 0. 2

In view of the method in Section 5, we transcribe Problem 7.1 into its equivalent problem.

Problem 7.2 (Equivalent to Problem 7.1) For a system with dynamics

dx(�)

d�
= (xn+1 � t0)(A1x+B1u); (7.4)

dxn+1

d�
= 0; (7.5)

in the interval � 2 [0; 1) and

dx(�)

d�
= (tf � xn+1)(A2x+B2u); (7.6)

dxn+1

d�
= 0; (7.7)

in the interval � 2 [1; 2], �nd an optimal xn+1 and an optimal u(�) such that the cost functional

J =
1

2
x(2)TQfx(2) +Mfx(2) +Wf +

Z 1

0
(xn+1 � t0)L(x; u) d�

+

Z 2

1
(tf � xn+1)L(x; u) d� (7.8)

where

L(x; u) =
1

2
xTQx+ xTV u+

1

2
uTRu+Mx+Nu+W (7.9)

is minimized. Here tf , x(0) = x0 are given. 2
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Similar to Remark 5.2, Problem 7.2 can be regarded as a GSLQ problem parameterized by

the switching instant xn+1. Assume that we are given a �xed xn+1, we can apply the principle of

optimality to Problem 7.2 as follows. We assume that the optimal value function is

V �(x; �; xn+1) =
1

2
xTP (�; xn+1)x+ S(�; xn+1)x+ T (�; xn+1) (7.10)

where P T (�; xn+1) = P (�; xn+1). The HJB equation is

�
@V �

@�
(x; �; xn+1) = min

u(�)
f(xn+1 � t0)[L(x; u) +

@V �

@x
(x; �; xn+1)f1(x; u)]g (7.11)

in the interval � 2 [0; 1) and

�
@V �

@�
(x; �; xn+1) = min

u(�)
f(tf � xn+1)[L(x; u) +

@V �

@x
(x; �; xn+1)f2(x; u)]g (7.12)

in the interval � 2 [1; 2].

Using a method similar to the method for solving conventional linear quadratic regulator prob-

lems (see e.g., [7]), it can be obtained that the solution to (7.11) in the interval � 2 [0; 1) is

u(x; �; xn+1) = �K(�; xn+1)x(�; xn+1)�E(�; xn+1) (7.13)

where

K(�; xn+1) = R�1(BT
1 P (�; xn+1) + V T ); (7.14)

E(�; xn+1) = R�1(BT
1 S

T (�; xn+1) +NT ); (7.15)

and P (�; xn+1), S(�; xn+1) and T (�; xn+1) (in the following abbreviated as P , S and T ) satisfy the

following parameterized general Riccati equation (parameterized by xn+1)

�
@P

@�
= (xn+1 � t0)(Q+ PA1 +AT

1 P � (PB1 + V )R�1(BT
1 P + V T )); (7.16)

�
@S

@�
= (xn+1 � t0)(M + SA1 � (N + SB1)R

�1(BT
1 P + V T )); (7.17)

�
@T

@�
= (xn+1 � t0)(W �

1

2
(N + SB1)R

�1(BT
1 S

T +NT )): (7.18)

The solution to (7.12) in the interval � 2 [1; 2] is

u(x; �; xn+1) = �K(�; xn+1)x(�; xn+1)�E(�; xn+1) (7.19)

where

K(�; xn+1) = R�1(BT
2 P (�; xn+1) + V T ); (7.20)

E(�; xn+1) = R�1(BT
2 S

T (�; xn+1) +NT ); (7.21)

and P , S and T satis�es the following parameterized general Riccati equation

�
@P

@�
= (tf � xn+1)(Q+ PA2 +AT

2 P � (PB2 + V )R�1(BT
2 P + V T )); (7.22)

�
@S

@�
= (tf � xn+1)(M + SA2 � (N + SB2)R

�1(BT
2 P + V T )); (7.23)

�
@T

@�
= (tf � xn+1)(W �

1

2
(N + SB2)R

�1(BT
2 S

T +NT )): (7.24)
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Once we have solved (7.16-7.18) and (7.22-7.24) (for a �xed xn+1), we can obtain the parame-

terized optimal cost at � = 0, i.e., the optimal J1 under �xed xn+1 as

J1(t1) = J1(xn+1) = V �(x0; 0; xn+1)

=
1

2
xT0 P (0; xn+1)x0 + S(0; xn+1)x0 + T (0; xn+1): (7.25)

From (7.25), we have

dJ1

dxn+1
(xn+1) =

@V �

@xn+1
(x0; 0; xn+1)

=
1

2
xT0

@P

@xn+1
(0; xn+1)x0 +

@S

@xn+1
(0; xn+1)x0 +

@T

@xn+1
(0; xn+1): (7.26)

In order to obtain the value of dJ1
dxn+1

from (7.26), we need to know @P
@xn+1

, @S
@xn+1

and @T
@xn+1

at

(0; xn+1). To obtain these values, we di�erentiate (7.16-7.18) and (7.22-7.24) with respect to xn+1

to obtain the following equations

�
@

@�
(
@P

@xn+1
) = (Q+ PA1 +AT

1 P � (PB1 + V )R�1(BT
1 P + V T ))

+(xn+1 � t0)(
@P

@xn+1
A1 +AT

1

@P

@xn+1
� (

@P

@xn+1
B1)R

�1(BT
1 P + V T ))

�(PB1 + V )R�1(BT
1

@P

@xn+1
))) (7.27)

�
@

@�
(
@S

@xn+1
) = (M + SA1 � (N + SB1)R

�1(BT
1 P + V T )) + (xn+1 � t0)(

@S

@xn+1
A1

�(
@S

@xn+1
B1)R

�1(BT
1 P + V T )� (N + SB1)R

�1(BT
1

@P

@xn+1
)) (7.28)

�
@

@�
(
@T

@xn+1
) = (W �

1

2
(N + SB1)R

�1(BT
1 S

T +NT ))

+(xn+1 � t0)(�
1

2
(
@S

@xn+1
B1)R

�1(BT
1 S

T +NT )

�
1

2
(N + SB1)R

�1(BT
1 (

@S

@xn+1
)T )) (7.29)
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in the interval � 2 [0; 1) and

�
@

@�
(
@P

@xn+1
) = �(Q+ PA2 +AT

2 P � (PB2 + V )R�1(BT
2 P + V T ))

+(tf � xn+1)(
@P

@xn+1
A2 +AT

2

@P

@xn+1
� (

@P

@xn+1
B2)R

�1(BT
2 P + V T ))

�(PB2 + V )R�1(BT
2

@P

@xn+1
))) (7.30)

�
@

@�
(
@S

@xn+1
) = �(M + SA2 � (N + SB2)R

�1(BT
2 P + V T )) + (tf � xn+1)(

@S

@xn+1
A2

�(
@S

@xn+1
B2)R

�1(BT
2 P + V T )� (N + SB2)R

�1(BT
2

@P

@xn+1
)) (7.31)

�
@

@�
(
@T

@xn+1
) = �(W �

1

2
(N + SB2)R

�1(BT
2 S

T +NT ))

+(tf � xn+1)(�
1

2
(
@S

@xn+1
B2)R

�1(BT
2 S

T +NT )

�
1

2
(N + SB2)R

�1(BT
2 (

@S

@xn+1
)T )) (7.32)

in the interval � 2 [1; 2].

The equations (7.16-7.18) and (7.27-7.29) for � 2 [0; 1) and the equations (7.22-7.24) and (7.30-

7.32) for � 2 [1; 2] together with the following boundary conditions at � = 2

P (2; xn+1) = Qf (7.33)

S(2; xn+1) = Mf (7.34)

T (2; xn+1) = Wf (7.35)

@P

@xn+1
(2; xn+1) = 0 (7.36)

@S

@xn+1
(2; xn+1) = 0 (7.37)

@T

@xn+1
(2; xn+1) = 0 (7.38)

form an initial value ordinary di�erential equation (ODE) for P , S, T , @P
@xn+1

, @S
@xn+1

and @T
@xn+1

which can be solved eÆciently using the function ode45 in MATLAB. From the solution of this

ODE, values of @P
@xn+1

(0; xn+1),
@S

@xn+1
(0; xn+1) and

@T
@xn+1

(0; xn+1) can be obtained and substituted

into (7.26) to obtain the value of dJ1
dt1

. The conceptual Algorithm 4.1 can then be applied.

Remark 7.1 (Several Subsystems and More Than One Switchings) It can be seen that

there is no diÆculty in applying the above method to GSLQ problems with several subsystems

and more than one switchings. First of all, we can translate the problem to an equivalent problem

in � 2 [0;K + 1] if there are K switchings as mentioned in Remark 6.3. It is then straight-

forward to di�erentiate the Riccati equation which are parameterized by xn+1,� � � ,xn+K (i.e.,

t1,� � � ,tK) to obtain additional di�erential equations for @P
@xn+k

's, @S
@xn+k

's and @T
@xn+k

's. Along with

the boundary conditions P (K+1; xn+1; � � � ; xn+K) = Qf , S(K+1; xn+1; � � � ; xn+K) =Mf , T (K+

1; xn+1; � � � ; xn+K) = Wf ,
@P

@xn+k
(K + 1; xn+1; � � � ; xn+K) = 0, @S

@xn+k
(K + 1; xn+1; � � � ; xn+K) = 0
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and @T
@xn+k

(K + 1; xn+1; � � � ; xn+K) = 0 for all 1 � k � K, we can solve the resultant initial value

ODE backwards in � to �nd the their values at � = 0. Once we have their values at � = 0, we can

substitute the values into

@J1

@xn+k
=

@V �

@xn+k
(x0; 0; xn+1; � � � ; xn+K) =

1

2
xT0

@P

@xn+k
(0; xn+1; � � � ; xn+k)x0

+
@S

@xn+k
(0; xn+1; � � � ; xn+k)x0 +

@T

@xn+k
(0; xn+1; � � � ; xn+k) (7.39)

to derive the accurate values of @J1
@tk

's. 2

Remark 7.2 (Second Order Derivatives) It is not diÆcult to see that if we take second order

partial derivatives of equation (7.25), we obtain

d2J1

dx2n+1

(t1) =
@2V �

@x2n+1

(x0; xn+1; 0)

=
1

2
xT0

@2P

@x2n+1

(0; xn+1)x0 +
@2S

@x2n+1

(0; xn+1)x0 +
@2T

@x2n+1

(0; xn+1): (7.40)

While following similar ideas of di�erentiation of the parameterized general Riccati equation, we

can take �rst and second-order di�erentiations of (7.16)-(7.18) and (7.22)-(7.24) with respect to

xn+1 and form a set of ordinary di�erential equations. Along with the initial conditions (7.33)-

(7.38) and 0's at � = 2 for @2P
@x2n+1

, @2S
@x2n+1

and @2T
@x2n+1

, the resultant initial value ODE for P , S, T ,

@P
@xn+1

, @S
@xn+1

, @T
@xn+1

, @2P
@x2n+1

, @2S
@x2n+1

and @2T
@x2n+1

can be readily solved and hence the accurate value of

d2J1
dx2n+1

can be obtained. With this information, the conceptual Algorithm 4.1 can then be applied.

2

8 Some Examples

In this section, we illustrate the e�ectiveness of the methods developed in Sections 6 and 7 using

several examples.

Example 8.1 Consider a switched system consisting of

subsystem 1:

(
_x1 = �x1 + 2x1u

_x2 = x2 + x2u
(8.1)

subsystem 2:

(
_x1 = x1 � 3x1u

_x2 = 2x2 � 2x2u
(8.2)

subsystem 3:

(
_x1 = 2x1 + x1u

_x2 = �x2 + 3x2u
(8.3)

Assume that t0 = 0, tf = 3 and the system switches at t = t1 from subsystem 1 to 2 and at t = t2

from subsystem 2 to 3 (0 � t1 � t2 � 3). We want to �nd optimal switching instants t1, t2 and an

optimal input u such that the cost functional J = 1
2(x1(3) � e2)2 + 1

2(x2(3) � e2)2 + 1
2

R 3
0 u

2(t) dt

is minimized. Here x1(0) = 1 and x2(0) = 1.
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For this problem, we use the method in Section 6 to obtain the values of @J1
@t1

and @J1
@t2

. Since the

problem is linear in control, we need only to solve a two point boundary value di�erential equation.

The resultant di�erential equation for x1, x2, p1, p2,
@x1

@xn+1
, @x2
@xn+1

, @p1
@xn+1

, @p2
@xn+1

, @x1
@xn+2

, @x2
@xn+2

, @p1
@xn+2

and @p2
@xn+2

is formed by the following di�erential equations and their di�erentiations with respect

to xn+1 and xn+2.

For � 2 [0; 1), the di�erential equations are

8>>><
>>>:

@x1
@�

= xn+1(�x1 + 2x1u)
@x2
@�

= xn+1(x2 + x2u)
@p1
@�

= �xn+1(�p1 + 2p1u)
@p2
@�

= �xn+1(p2 + p2u)

(8.4)

where u = �2x1p1 � x2p2.

For � 2 [1; 2), the di�erential equations are

8>>><
>>>:

@x1
@�

= (xn+2 � xn+1)(x1 � 3x1u)
@x2
@�

= (xn+2 � xn+1)(2x2 � 2x2u)
@p1
@�

= �(xn+2 � xn+1)(p1 � 3p1u)
@p2
@�

= �(xn+2 � xn+1)(2p2 � 2p2u)

(8.5)

where u = 3x1p1 + 2x2p2.

For � 2 [2; 3], the di�erential equations are

8>>><
>>>:

@x1
@�

= (3� xn+2)(2x1 + x1u)
@x2
@�

= (3� xn+2)(�x2 + 3x2u)
@p1
@�

= �(3� xn+2)(2p1 + p1u)
@p2
@�

= �(3� xn+2)(�p2 + 3p2u)

(8.6)

where u = �x1p1 � 3x2p2.

The boundary conditions are

x1(0) = 1; x2(0) = 1; p1(3) = x1(3)� e2;

p2(3) = x2(3) � e2; @x1
@xn+1

(0) = 0; @x2
@xn+1

(0) = 0;
@p1

@xn+1
(3) = @x1

@xn+1
(3); @p2

@xn+1
(3) = @x2

@xn+1
(3); @x1

@xn+2
(0) = 0;

@x2
@xn+2

(0) = 0; @p1
@xn+2

(3) = @x1
@xn+2

(3); @p2
@xn+2

(3) = @x2
@xn+2

(3):

(8.7)

In the expressions of the above boundary conditions, in order to keep the notation simple, we omit

the arguments xn+1, xn+2 for the functions. For example, we write x1(0; xn+1; xn+2) simply as
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x1(0). The values of
@J1
@t1

and @J1
@t2

can be obtained from

@J1

@xn+1
= (x1(3)� e2)

@x1(3)

@xn+1
+ (x2(3)� e2)

@x2(3)

@xn+1

+

Z 1

0
(
1

2
u2 + xn+1u

@u

@xn+1
) d� +

Z 2

1
[�

1

2
u2 + (xn+2 � xn+1)u

@u

@xn+1
] d�

+

Z 3

2
[(3� xn+1)u

@u

@xn+1
] d�; (8.8)

@J1

@xn+2
= (x1(3)� e2)

@x1(3)

@xn+2
+ (x1(3)� e2)

@x1(3)

@xn+2

+

Z 1

0
(xn+1u

@u

@xn+2
) d� +

Z 2

1
[
1

2
u2 + (xn+2 � xn+1)u

@u

@xn+2
] d�

+

Z 3

2
[�

1

2
u2 + (3� xn+1)u

@u

@xn+2
] d�: (8.9)

Choose initial nominal values t1 = 1:1 and t2 = 2:1. By applying the conceptual Algorithm

4.1 with the gradient projection method, after 18 iterations we �nd that the optimal switching

instants are t1 = 1:0050, t2 = 1:9993 and the corresponding optimal cost is 2:7599 � 10�6. After

translating the result into the form suitable for the original problem, the corresponding continuous

control and state trajectory are shown in Figure 2 (a) and (b). Note that the theoretical optimal

solutions for this problem are topt1 = 1, topt2 = 2, uopt � 0 and Jopt = 0, so the result we obtained is

quite accurate. Also note that the result for this problem obtained using the method in this paper

is more accurate than that reported in [28, 24]. 2
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Figure 2: Example 8.1: (a) The control input. (b) The state trajectory.

Example 8.2 Consider a switched system consisting of

subsystem 1: _x =

"
0:6 1:2

�0:8 3:4

#
x+

"
1

1

#
u; (8.10)

subsystem 2: _x =

"
4 3

�1 0

#
x+

"
2

�1

#
u: (8.11)

Assume that t0 = 0, tf = 2 and the system switches once at t = t1 (0 � t1 � 2) from subsystem 1

to 2. We want to �nd an optimal switching instant t1 and an optimal input u such that the cost
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functional

J =
1

2
(x1(2)� 4)2 +

1

2
(x2(2)� 2)2 +

1

2

Z 2

0
(x2(t)� 2)2 + u2(t) dt (8.12)

is minimized. Here x(0) = [0; 2]T .

We use the method in Section 7 to obtain the value of dJ1
dt1

. From an initial nominal t1 = 1:0, by

using the the conceptual Algorithm 4.1 with the gradient projection method, after 12 iterations we

�nd that the optimal switching instant is t1 = 0:1897 and the corresponding optimal cost is 9:7667.

The optimal continuous control input is in the state feedback form u(�) = �K(�; 0:1897)x(�) �

E(�; 0:1897) for the equivalent problem. We can then translate the result into the form suitable

for the original problem. The corresponding continuous control and state trajectory are shown in

Figure 3 (a) and (b). Figure 4 shows the optimal cost for di�erent t1's. 2
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Figure 3: Example 8.2: (a) The control input. (b) The state trajectory.
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Figure 4: The optimal cost for Example 8.2 for di�erent t1's.

As remarked in Remark 7.1, the approach we develop in Section 7 is also applicable to systems

with several subsystems and more than one switchings following the same idea except for more

notations. The following example illustrates such an application.
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Example 8.3 Consider a switched system consisting of

subsystem 1: _x =

"
�2 0

0 �1

#
x+

"
1

0

#
u; (8.13)

subsystem 2: _x =

"
0:5 5:3

�5:3 0:5

#
x+

"
1

�1

#
u; (8.14)

subsystem 3: _x =

"
1 0

0 1:5

#
x+

"
0

1

#
u: (8.15)

Assume that t0 = 0, tf = 3 and the system switches at t = t1 from subsystem 1 to 2 and at t = t2

from subsystem 2 to 3 (0 � t1 � t2 � 3). We want to �nd optimal switching instants t1; t2 and an

optimal input u such that the cost functional J = 1
2

R 3
0 u

2(t) dt is minimized. Here x(0) = [4; 4]T

and x(3) is required to be close to [�4:1437; 9:3569]T .

For this problem, we adjoin a penalty term [(x1(3)+4:1437)2+(x2(3)�9:3569)2 ] to J and then

consider the expanded cost functional Jexp. We use the method in Section 7 to obtain the values of
@J1
@t1

and @J1
@t2

. From initial nominal values t1 = 0:8, t2 = 1:8, by using the the conceptual Algorithm

4.1 with the gradient projection method, after 20 iterations we �nd that the optimal switching

instant is t1 = 0:9982, t2 = 1:9983 and the corresponding optimal cost is 4:4087 � 10�5. The

optimal continuous control input is in the state feedback form u(�) = �K(�; 0:9982; 1:9983)x(�) �

E(�; 0:9982; 1:9983) for the equivalent problem. We can then translate the result into the form

suitable for the original problem. The corresponding continuous control and state trajectory are

shown in Figure 5 (a) and (b). Note that the theoretical optimal solutions for this problem are

t
opt
1 = 1, topt2 = 2, uopt � 0 and J

opt
exp = 0, so the result we obtained is quite accurate. Figure 6

shows the optimal cost for di�erent t1 < t2. 2
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Figure 5: Example 8.3: (a) The control input. (b) The state trajectory.

It can be observed from Figure 6 that the function J1(t1; t2) has several ripples. Hence it is not

convex even for this simple GSLQ problem; that is why such problems pose signi�cant diÆculties.

25



0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3
0

50

100

150

200

250

300

1t
2t

1t
1J

(
)

2t
,

Figure 6: The optimal cost for Example 8.3 for di�erent (t1; t2)'s.

9 Conclusion

In this paper, we �rst formulated an optimal control problem of switched systems and proposed

a two stage optimization methodology for it. Then we focused on Stage 1 optimization problems

which can further be decomposed into Stage 1(a) and Stage 1(b). We proposed an approach to

obtain the accurate values of the derivatives that is necessary for Stage 1(b) optimizations. The

method �rst transcribes a Stage 1 problem into an equivalent problem parameterized by the switch-

ing instants and then derives the derivatives based on the solution of a two point boundary value

DAE formed by the state, costate, stationarity equations, the boundary and continuity conditions

and their di�erentiations. In particular, a modi�ed version of the method was proposed for GSLQ

problems which only need to solve an initial value ODE. Note that earlier results of this paper have

appeared in [26, 25, 27] and a more complete version can be found in [23]. Another earlier result

by the authors, which obtains approximations of the derivatives, is reported in [28, 24]. However,

note that the result in this paper is more accurate and straightforward than the one in [28, 24]. We

believe that the method described here has advantages over existing methods in that it combines

good numerical characteristics and it is based on concrete theoretical results. It is particularly

e�ective in the case of general switched linear quadratic problems and it may be used to address

practical problems.
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