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CHAPTER I 

INTRODUCTION 

In past years engineers have utilized various methods of analysis 

and synthesis for the design of automatic control systems. These meth­

ods include one of the crudest methods, "build and try", to more sophis­

ticated methods such as designing in the frequency domain via Bode 

plots, root locus plots, and Nyquist plots. 

Due to increased demands for more accurate and better performing 

systems, control engineers started to develop more sophisticated methods 

for the synthesis of control systems. The rapid growth of the computer 

industry helped the control engineer in his development of better tech­

niques in that the high-speed digital computer became readily available 

to him. Thus, he is able to utilize the digital computer not only as a 

problem solving tool for applying advanced analytical techniques, but 

with the advent of the mini-computer he is able to actually use a com­

puter as an element of his control loop. This factor now and even more 

in the future makes the more sophisticated control synthesis techniques 

usable to the practicing engineer. 

Thus, since both military and industrial applications are calling 

for better performing systems~ the development of what is generally 

known as control theory will continue at the rapid pace it has enjoyed 

the last decade. The development will be not only to find better meth­

ods to analyze and synthesize deterministic linear systems which various 



prior methods were limited, but also, for example, to find methods to 

design systems with nonlinearities and systems with stochastic parame­

ters and inputs. 

This research develops the basis for the synthesis of optimal con­

trol for a special class of control systems. The class of systems con­

sidered are systems with state dependent time delay. 

Mathematical Model 

The first step in any control problem is that of obtaining a 

suitable mathematical model of the system. The mathematical model must 

be of sufficient accuracy to model the system. Yet, it must be simple 

enough such that the task of analyzing the system is not impossible. 

However, failure to correctly model the system may lead to a design 

that is inadequate for the particular task the system is to accomplish 

and may cause various undesirable system problems such as instability. 

Many dynamical systems may be best modeled by differential­

difference equations. That is, equations of the form 

where: 

xh = x( t - h) 

uh = u( t - h), 

may be used to best represent many physical systems. The variable h is 

a non-negative function and may be a constant, a function of time, a 

function of x(t), or a stochastic process. 

The state of a system or of a mathematical process is a 

minimum set of numbers which along with the knowledge of the future 

2 
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inputs contain sufficient information about the history of the system or 

process to allow computation of future behavior. In a finite-dimensional 

system· the variable x( t) would define the state of the system. 

However, for a system modeled by differential-difference equations, the 

state at a time t is a continuous vector function as shown 

x(r), t-h < 'T < t. 

Systems modeled by differential-difference equations are also referred 

to as systems with time delay or systems with transport lag. With this 

mathematical introduction to systems with time delays, typical applica­

tions of such systems will be discussed. 

Applications of Time Delay 

Applications where time delays may occur include problems of 

guidance and control of distant space vehicles (63), control of complex 

processing plants (27), economic systems, biological systems, human 

operator models, and remote control of lunar surface vehicles (43). 

Typical examples of systems with time delays are as follows. 

The first problem is-that of high accuracy, ground-based attitude 

control of space vehicles. Sabroff (58) presents a sound case for 

Earth-based attitude control of deep-space satellites assuming that the 

control problem created by the time delay can be solved. Measurement 

devices aboard the spacecraft may send attitude error signals to the 

Earth-based controller via a data link. This controller will calculate 

a control law to reduce the attitude error to some tolerable level and 

send the control signal back to the satellite. Pictorially, the problem 

may be seen as follows. 



u(t-h) Satellite x(t) 

r -- Attitude 
Controller 

-- - -, 
I 
I 

Transmission Transmission 
La ··Lag 

I I 
I I I Earth-Based _J L_ -- Control - -

u(t) Station x(t - h) 

Figure 1. Schematic of Ground-Based Attitude Control System 

The signals x(t) denote the error signals sent from the vehicle at 

time t. However, since the signal must travel over a long distance to 

reach the Earth-based control station, the control station will receive 

the signal at some time later than when the measurement occurred. It 

then must use this delayed signal to calculate the required control 

signal to send back to the vehicle to correct for attitude errors. But 

the control problem is further complicated since the control signal must 

again travel over a long distance to reach the satellite. Thus, there 

is a time delay or transmission lag associated with tne paths the 

signals must travel over to reach their respective destinations. Also, 

unless the satellite is in a circular orbit, the time delay will be a 

function of time, thus further complicating the problem. The time delay 

may be predicted from an ephemeris of the spacecraft. It is assumed 

that there is no computational delay in obtaining the correct control 

law. That is, the ground-based controller may instantaneously compute 

the control law. 

A similar problem of guidance and control of deep-space vehicles 
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was presented in reference (63). In this reference, the author pre-

sented a deterministic guidance problem of an Earth-to-Mars mission. 

Again, the problem of transmission lags occurred and were considered in 

the guidance philosophy. 

High-accuracy, Earth-based, guidance and control of spacecraft on 

outer-planet missions make the problem of time delays extremely impor-

tant since the time delays incurred are much larger than the Earth-to-

Mars voyage considered in ( 6:3'). Also, moon roving surface vehicles 

remotely controlled from the earth make the time delay problem extremely 

important in this aspect since delays on the order of three seconds 

occur (l.iJ). 

Another problem where time delay models are frequently used are in 

human operator models such as pilot models for aircraft control design 

purposes. Considerable research is still being accomplished in obtain-

ing a representative model for the human in different control tasks. 

However, an example of a particular model in Laplace transform notation 

is 

Ke- h s ( 1: + ·'l'J. s ) 
H(s) = (1+·'T'2 s)(1+r3 s) • 

The variable h denotes the magnitude of the time delay. 

Many complex industrial processing plants have large multiple time 

delays. Not only are large delays inherent in flow lines, mixing pro-

cesses, and heating processes, but high-order complex nonlinear systems 

may be approximated by a linear time delay system. That is, the time 

constants and the time delays are adjusted until the system response due 

to this model fits actual measured system response data. An example of 



a particular model that is used in the chemical processing industry to 

model complex components in a processing plant is 

G(s) 

An example of a simple control loop that may just be a secondary 

control loop of a large processing plant that has many more control 

loops will now be illustrated. This example was taken from reference 

(27). 

An aqueous stream is diluted continuously in a 500-gal. 
tank equipped with a 16 in. turbine. A portion of the exit 
stream is sent to a controller which adjusts the flow of 
water to the tank. The total flow is about 100 gpm, and 
there is a 10-sec. delay in the measurement line. 

0,~ Controller I-@ 

Figure 2. Typical Processing System With Time Delay 

The variable 90 represents some desired set point. The 
delays L1 and ~ are of the order of 12 sec. and 10 sec. , 
respectively. 

Again, this may represent only a portion of a highly complex processing 
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plant that may have many time delays of various magnitudes. This is not 

uncommon in many industrial processes. 

There are three basic ways time delays may occur in systems: 

1. A delay in the control variable may occur when the control 

signal has to travel over a long distance to reach the 



system to be controlled. An example is the attitude control 

of distant space vehicles via Earth-based controllers. 

2. A delay in one or more of the state variables may occur in 

man-in-the-loop systems, process control plants, and economic 

systems. 

J. A delay may occur in measuring one or more of the output vari­

ables of a control system. Examples of such delays include 

measurements of the temperature of the output of a nuclear 

reactor downstream from the reactor and measurement of the 

position of a deep-space vehicle via Earth-based radar. 

7 

In all physical systems there is inherent time delay; however, in 

some systems the time delays may be small enough to be ignored. Failure 

to consider time delays in a system may lead to a system that is un,.- · 

stable, or may lead to a set of controls that is not optimal if 

optimality is the design criterion. 

Since time delays may significantly affect system performance, it 

becomes extremely important that the control engineer considers time 

delay in the mathematical model of his system. 

There are several forms that the time delay argument may have. 

First, the time delays in a system may be a constant. This assumption 

is most often used in the literature. However, this assumption may be 

erroneous in some systems since the time delay may be time-varying such 

as in the example of the remote attitude control of deep-space vehicles. 

If the position of the vehicle can be determined from an ephemeris of 

the vehicle, the time delay can be found as a function of time. Another 

example where the constant time delay assumption may be invalid is that 

there may be a particular known bias that is a function of time causing 
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the time delay to be time-varying. Thus, the second type of time delay 

is that of a time-varying delay. The third type is that of a state­

dependent time delay. This implies that the time delay is a function of 

the state of the system. Note that the meaning of "state" in this in­

stance is actually the leading terminus of the state function at time t 

and not the function that actually denotes the state of the system. 

Examples of systems where the time delay is a function of the state 

include any control system of a conveyor process where measurement 

devices may be located several feet from a process. The feedback from 

the measurement devices may be used to control the conveyor velocity and 

the process. Since the time delay for the system may be proportional to 

the velocity, and the velocity is one of the state variables, the time 

delay may be said to be state-dependent. In a deep-space guidance and 

control problem with an Earth-based ground control the time delay of 

signals propagating to and from the spacecraft is a function of the 

position of the spacecraft measured from an Earth-based coordinate 

system. If the position vector components are treated as state 

variables, then the problem is that of a state-dependent time delay. 

Optimal Control Theory 

One of the more important synthesis techniques for design of con­

systems is that of optimal control. A system designed via optimal con"' 

trol can be claimed to be 11best 11 according to some prescribed criterion 

of performance. The philosophy of optimal control is to choose a set 

of inputs, or controls, to the system such that it most satisfactorily 

represents the desired goals of the system. The desired goals of the 

system must be expressed in the form of a scalar mathematical criterion, 
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called the performance index. Once the mathematical model of the system 

is obtained and the performance index is chosen, then optimal control 

theory may be applied to obtain a set of controls such that the perfor­

mance index is minimized (or maximized). This set of controls, which 

may, also, be constrained to a particular set, is then called the opti~ 

mal control for the particular system model, the particular performance 

index, and the particular constraints. It is always desirable to con­

strain the control set to be a function of the output of the system. 

This type of control is called feedback control. The reason feedback 

control is always desirable is that the system may be subject to dis­

turbances such as uncertainties in the dynamic model or uncertainties 

in the operating environment. A feedback control can compensate for 

these errors and still obtain optimality since the control depends only 

on the state of the system. A control calculated as a function of time 

may become, at best, suboptimal if these errors become too large. 

Once the optimal controls are found they may be implemented into 

the system. If economic considerations are such that the added com­

plexity of implementing the optimal controls cannot be achieved, then 

the optimal controls and the value of the optimal performance index may 

be used as a standard. The designer may use this standard to find con­

trols that are suboptimal in the sense that they do not minimize the 

mathematical performance index. Yet, he is able to compare the value 

of the standard to that of his suboptimal controls in order to obtain 

a tradeoff between system performance and economic considerations. 

Thus, if the optimal control cannot be implemented, then it is still of 

benefit to the designer to know what the optimal control is in order to 

better approximate it, and yet, still obtain a degree of optimality. 



There are many archive journal articles on the applications of 

optimal control theory. Two excellent books on the general topic of 

optimal control which include applications are by Bryson and Ho (12) 

and Athans and Falb ()). However, these books do not include systems 

with time delay. 

Research Objectives 

The class of systems considered in this research are modeled by 

nonlinear differential-difference equations where the time delay is a 

piecewise differentiable scalar function, h(x(t),t), of time and of 

x(t), where x(t)eRn and is determined from the state of the system. 

The systems to be considered are modeled by nonlinear differential­

difference equations 
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( 1) 

with the definitions 

xh = x[t-h(x(t),t)] 

uh = u[t-h(x(t),t)] 

The objective of this research was to present a basis for the 

synthesis of an optimal control for systems with state-dependent time 

delay. Necessary conditions for an optimal control of a general class 

of dynamical systems involving time delays and constraints are 

developed. The development and results are shown in Chapter III. 

The necessary conditions were utilized to obtain the optimal con­

trol for a system that is linear in the explicit variables, but the 

function for the time delay is not necessarily linear in the state 



variables. A quadratic performance index is used. A numerical 

algorithm is proposed to solve this problem by using the resulting 

necessary conditions. Examples of systems with state-dependent time 

delay are shown in Chapter V. 

Extensions to a gradient algorithm developed by Seb~sta (60) were 

developed and the gradient algorithm is outlined in Chapter IV. 

The next chapter gives the results of a literature survey of 

optimal control of systems with time delay. 

11 



CHAPTER II 

LITERATURE SURVEY 

The literature in control theory for systems with time delay has 

become quite extensive in the past several years. This chapter gives 

the results of a literature survey for optimal control of systems with 

time delay. The survey was divided into four categories: systems with 

a constant time delay, systems with a time varying time delay, systems 

with a state-dependent time delay, and numerical algorithms for systems 

with time delay. 

There are several books treating differential-difference equations 

(9), (26), (51). Also, there is a book (48) that is devoted to the 

theory of control systems with time delay. 

The majority of time delay control systems can be classified as 

that of systems with a constant time delay. However, in some instances 

this may be only approximate in that the time delay may vary as time or 

the time delay may even be a stochastic process. 

Systems With Constant Time Delay 

Kharatishvili (52) derived necessary conditions for optimality for 

systems with time delay by extending Pontryagin's maximum principle. 

In this work, the results were formulated for a system with a time 

delay in the state variable; however, in (JO) Kharatishvili has extended 

the previous results to systems with a time delay in the state and in 
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the control. The necessary conditions derived in Chapter III reduce to 

the results obtained by the extension of the maximum principle. 

Chyung and Lee (1~) give both necessary and sufficient conditions 

for optimality of linear systems with time delay and a quadratic per­

formance index. The conditions for optimality are obtained by using 

set theoretic arguments similar to (~1). The results are identical to 

that obtained by extension of the maximum principle, but sufficiency is 

also proved. A theorem giving necessary and sufficient conditions for 

controllability of a linear system with a time delay in the state is 

given without proof. The controllability matrix has the same form as 

the controllability matrix of a linear system without time delay and 

differs only in that the transition matrix is that for the delayed 

system. 

Krasovskii (36), (37) states without proof the form of the optimal 

cost and the form of a feedback controller for a system with a time 

delay in the state and a quadratic performance index. His motivation 

for this form of controller is to obtain a control law which stabilizes 

the system. He does not give the form of certain coefficient matrices 

in the feedback control law that he states. Alekal (2) proved that this 

form of the feedback control law is optimal and derived the equations 

for the coefficient matrices. The equations are coupled ordinary and 

partial differential equations. Eller et al. (17) independently proved 

these results and derived the equations for the coefficient matrices. 

Garrard (23) used a technique similar to that of (32) in order to ob­

tain a suboptimal controller to circumvent the solution of the coupled 

ordinary and partial differential equations. A suboptimal control law 



was given and a numerical algorithm derived to obtain the suboptimal 

coefficient matrices. 

Ross and Flugge-Lotz (56), (57) solved a specific case of the above 

problem. The problem solved was that of an infinite final time qua-

dratic performance index. The results were obtained by a method similar 

to that used by Alekal et al. The equations for the coefficient gain 

matrices are a coupled set of algebraic equations, and ordinary and 

partial differential equations. An approximate solution for the optimal 

control was also discussed. 

Oguztoreli (48), (49), (50) has considered the time optimal prob-

lem in detail for systems with a time delay in the state. The optimal 

control is similar to that of the non-delay problem in that the optimal 

control is bang-bang. The case of multiple time delays was also 

treated. Westdal (64) also treats the case of a time optimal system. 

This paper used a higher order non-delayed system to approximate the 

time delay system. The maximum principle was then used to obtain an 

optimal control. An example was shown. 

Friedman (19) extended the maximum principle to hereditary 

processes of the form 

t 
x(t) = x(t0 ) +J hr (t-r)f(r,u(r),x(r)) d!f. 

to 

Bates (8) has considered in detail the problem of optimal control of 

systems described by linear differential-integral equations of the form 

t 
x = J [F(t,r) x(r) + D(t,r) u(r)}d'r. 

-CD 



The optimal control problem was studied with the quadratic, the time 

optimal, and the minimum effort performance index. McClamrock (44), 

(45) has obtained necessary and sufficient conditions for linear 

hereditary processes. 
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Fuller (20) has studied in detail a particular control system with 

time delay for the integral-square error performance index. In this 

paper Fuller gives two references to older papers that show the approxi­

mation of a high-order nonlinear system by a lower order system with 

time delay can be quite accurate. This type approximation is used 

extensively in the chemical processing industry. 

Kramer (35) and Jen Wei (29) considered the control problem for a 

linear system with a constant delay in the state variable. The method 

used is dynamic programming. Merriam (46) used dynamic programming to 

solve the problem of a time delay in the control variable. 

Halanay (26) rigorously obtained a maximum principle for a general 

class of delayed systems. The necessary conditions admit as special 

cases hereditary equations and differential-difference equations. Some 

results were also obtained for systems with variable time delay. 

Khatri (31) used a Laplace transform approach to obtain the optimal 

control as a function of time for a quadratic performance index. The 

control is not in a feedback form. As one of the reviewers pointed out, 

the problem has .. ~. solution for a feedback control, (60). 

Budelis (13) analytically solved a specific example in which the 

system contains both an undelayed control variable and a delayed con­

trol variable. The results are valid if the final time is less than 

twice the time delay. This problem occurred in an economic situation. 



Banks (7) has obtained a rigorous maximum principle for systems 

described by functional differential equations. 
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Day (16) obtained a feedback control results for a linear system 

with an infinite final time quadratic performance index by discretizing 

the problem. 

Koepche (33) used dynamic programming to solve the problem of 

discrete-time optimization with delay in the control. 

Systems with Variable Time Delay 

Various situations where the time delay may not be a constant, but 

a function of time, result when the system to be controlled is moving 

relative to the controller or when the medium through which a signal is 

propagated changes properties as a function of time. Examples of sys­

tems with variable time delay include ground based attitude control of 

spacecraft, guidance of spacecraft, and any process control plant where 

the medium through which the signal is propagated changes properties. 

Sebesta (60), (61) has derived necessary conditions for a nonlinear 

system with time varying delay in the state variable and in the control 

variable. A lemma proved in (10) was utilized as the basis for the 

work. The performance index was of the Bolza type, and terminal con­

straints were included in the problem. An exact feedback law was ob­

tained for a linear system with a delay in the control, and an 

approximate feedback law was obtained for systems with a small time 

delay. Sebesta (63) applied these results to a spacecraft guidance 

problem. In (62) the results were extended to systems with state and 

control variable inequality constraints. Budelis (13) has also obtained 

necessary conditions for the control variable inequality constraint 



problem. The results are the same as that of Sebesta and not as 

general; i.e., state variable inequality constraints were not 

considered. 

Banks (6) has obtained a rigorous maximum principle for systems 

with time varying delays. The work included transversality conditions 

for variable initial function. 

Systems with State-Dependent Time Delay 

17 

Examples of systems where the time delay is a function of the state 

include any control system of conveyor process where measurement devices 

may be located several feet from a process. The feedback from the 

measurement devices may be used to control the conveyor velocity and 

the process (see example in Chapter V). Since the time delay of the 

system is proportional to the velocity, and velocity is one of the state 

variables, the time delay may be said to be state-dependent. Also if 

the measurement device is moved as a function of the state or if there 

was a digital computer in the loop that purposely was programmed to 

delay the feedback information an amount dependent on the current value 

of the state, then the problem would be of this class. In a deep-space 

guidance problem with an Earth-based ground control the time delay of 

signals propagating to and from the spacecraft is a function of the 

position of the spacecraft measured from an Earth-based coordinate 

system. If the position vector components are treated as state 

variables, then the problem is that of a state-dependent time delay. 

Ragg (5~) had attempted to derive necessary conditions for a state­

dependent time dealy. However, the necessary conditions published were 



incorrect as pointed out in (4) and are correct only for a constant 

time delay. 

Schweizer (59) has obtained necessary conditions for a state­

dependent time delay problem without constraints. Gabasov (21) has 
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also considered this problem by proving a maximum principle. The work 

in this thesis was accomplished independently of the two previous 

papers, and also represents an extension since both state and control 

variable inequality constraints were included. The necessary conditions 

obtained in this report agree with the unconstrained problem in the 

previously cited work. The results also reduce to that of° Sebesta (60) 

for the case of the time varying delay. 

Computational Algorithms 

Little work has been done to numerically solve the time delay 

problem. Mueller (47), Kurzweil (38), and Koepke (33) have investi­

gated computational methods for special types of systems with time 

delay. Mueller obtained an algorithm for a linear system with a time 

delay in the state. Kurzweil and Koepke studied the time optimal 

problem for linear time invariant delay systems. 

Sebesta (60) developed a gradient algorithm for nonlinear systems 

with time-varying delays in both the state and control variables. 

MacKinnon (42) developed an algorithm for systems with a time 

delay in the state. Some unpublished reports have extended MacKinnon 1 s 

results to various other forms of the time delay problem; however, the 

validity of these algorithms has not been verified. 

The next chapter contains the derivation of the necessary condi­

tions for the state-dependent time delay problem. The results are 
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utilized to obtain the optimal control for a system that is linear in 

the explicit state and control variables, but does not necessarily have 

a time delay, h, that is linear in the state. 



CHAPTER III 

OPTIMAL CONTROL OF SYSTEMS WITH TIME DELAY 

In this chapter necessary conditions for optimal control of systems 

containing a time delay that is a function of the state of the system 

and of time are derived by utilizing calculus of variations. The time 

delay may be in the state vector and in the control ve.ctor. The state 

vector and the control vector can be constrained by inequality con­

straints. A transformation to eliminate state variable inequality·con­

straints by increasing the dimensions of state space, developed by 

Jacobson (28) for an undelayed system, is extended· to a system with time 

delays. 

The necessary conditions are utilized to obtain the optimal control 

for a system that is linear in the explicit variables, but the function 

for the time delay is not necessarily linear in the state variables. A 

numerical algorithm is proposed to solve this problem by use of the re­

sulting necessary conditions. 

In the next section, the mathematical problem is formulated. 

Statement of the Problem 

The system to be considered is modeled by a set of non-linear 

differential-difference equations 

(1) 
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with the definitions 

xh = x[ t - h ( x ( t) , t)] 

uh u[t-h(x(t),t)] 

and where x(t) is a continuous n-vector denoting the leading terminus 

of the state function at time t. 

u(t) is a m-vector denoting the control variables at time t and is 

piecewise continuous and has at most a finite number of discontinuities. 

x(t - h) is a n-vector denoting the trailing terminus of the state 

function and is x at time t - h(x( t), t). 

u(t - h) is a m-vector denoting the delayed control variables at 

time t - h(x(t) ,t). 

h(x(t),t) is a scalar piecewise differentiable function which must 

satisfy the following conditions: 

h[ x ( t ) 't J > 0 (2) 

dh[ x ( t) , t J _j 1 
dt r • (3) 

Equation (2) is evident from physical considerations in that the system 

is nonanticipatory. Equation (3) is required in order for the equations 

formulating the necessary conditions to be non-sing~lar. 

Since a differential-difference equation is infinite-dimensional, 

the initial condition must be an initial function. The initial condi-

tion function 

x ( r ) = C' ( r) , min [ t - h ( :x: ( t ) , t ) ] !5_ r < t 0 (4) 

is assumed given. 
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The problem is to find the set of controls, u(t), in order that the 

state of the system intersects a terminal surface 

where W is a q-vector, q S'. n, and such that the performance index 

is minimized. 

J = G[x(t,),t,J + Jtt Q[x(t),xh,u(t),uh,t] dt 
ta 

The control trajectory and the state trajectory are assumed con-

strained by the following inequality constraints: 

s[x(t),t] < o , 

where S is a r-vector of state variable inequality constraints, and 

C[x(t) ,xh ,u(t) ,uh ,t] < 0 

where C is a k-vector of control variable inequality constraints. 

(5) 

(6) 

(7) 

(8) 

Equation (2) may be put into the form of a state variable inequality 

constraint as in (7) by multiplying both sides of (J) by a minus one. 

This inequality constraint will be assumed to be an element of (7). 

Since the control is contained explicitly in (8), the control u(t) 

may be found such as to not violate this constraint. However, when the 

control is not contained explicitly in the constraint as in (7), addi-

tional consideration must be given to the determination of the control 

such that the constraint is not violated. The next section discusses a 

procedure to eliminate both types of inequality constraints. 
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Inequality Constraints 

Control variable inequality constraints may be reduced to equality 

constraints by use of a real variable known as Valentine's device or as 

a slack variable. The slack variable vector Z0 is defined by the fol-

lowing equation: 

C(x,u,t) + z; = 0 

T 
where Z02 = [Z12 Za2 ••• Zic2 ] 0 and is constrained to be a real variable, and 

C(x,u,t) is the k-vector of inequality constraints (the subscript, c, 

denotes the slack variable, z, associated with the control variable 

inequality constraints. The equality constraint may now be adjoined to 

the performance index. 

The state variable inequality constraints can be eliminated by a 

transformation that increases the dimensions of state space. This was 

developed by Jacobson for an undelayed system. This transformation will 

now be developed. 

th 
The q order inequality constraint is defined as the lowest time 

derivative of S[x(t),t] that contains either u or uh. That is, the 

dqS 
lowest order of dtq such that 

(10) 

Thus, the qth_order inequality constraint may contain either uh or u. 

It is assumed that the state variable inequality constraints (7) are 

first-order inequality constraints in the subsequent analyis. 

By using a slack variable, Z9 , the state variable inequality con-

straint may be written as an equality constraint 



( 11) 

wha-e Z6
2 = [Zi2 Z22 ••• Zr2 ]:. The superscript, T, denotes the transpose, and 

the subscript, s, denotes the slack variable, z, associated with the 

state variable inequality constraints. 

Each element S1 of the vector S may now be differentiated • 

. 
Si + Zi Z1 = o, i = 1, 2, ••• , r. 

8 s 
(12) 

Since S is a first-order inequality constraint, it will contain either 

u(t) or uh explicitly. 

T 
The vector v may be defined as v = [Z1 Z2 • • • Zr ] and state space 

increased by defining a new state vector 

The new state vector, X, is a n + r vector. A vector, w, a ,psuedo 

control vector to be determined, is defined as w = [Z1 Z1 
s s 

The additional state equations may be written as 

;,.(t) = w(t) 

where the initial conditions for v may be found from 

(13) 

Equation (12) may now be written in terms of the elements of v and w; 

that is, 

. 
Si + v1 w1 = o, i = 1, 2, ••• , r. 

If one assumes that all r equations in (14) are independent, r elements 
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of u or uh may be eliminated in terms of the remaining elements of u and 

u~"' the new state vector, X( t), and the psuedo control vector, w( t). It 

may be advantageous to eliminate uh. However, if any elements of u or 

uh appear linearly, then that element which appears linearly may be the 

variable solved for and then utilized to eliminate that variable from 

(1) 9 (6) 9 and (8). 

At this point in the development, the control variable inequality 

constraint has now been transformed into an equality constraint by use 

of a slack variable. Also, the state variable inequality constraints 

have been eliminated by increasing the dimensions of the state space and 

by eliminating r elements of u or uh in terms of the remaining control 

variables, the new state vector, and the pseudo control vector. 

In the subsequent analysis it will be assumed that the state vari­

able inequality constraints have been eliminated by the preceding tech­

nique. Thus, the state vector x(t) is assumed to be the augmented state 

vector, and the control vector, u(t), is taken to be the control vector 

containing the remaining elements of u(t) and the elements of the pseudo 

control vector w(t). 

Development of Necessary Conditions 

In this section necessary conditions for an optimal control are 

derived by use of calculus of variations. The necessary conditions are 

a basis for synthesis by indirect methods of optimal control problems 

for systems with time delay. The development allows discontinuities to 

appear in the variables. Corner conditions for points of discontinuity 

are derived, and it is shown that the Lagrange multipliers are con­

tinuous. This would not be the case if the transformation to eliminate 
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the state variable inequality constraints was not utilized (39). This 

is important since this eliminates the problem of finding the locations 

of the points of discontinuity and of discontinuous Lagrange multi-

pliers. Also, the final time is allowed to be free. 

The nomenclature used is the same as the preceding sections, except 

that the state variable inequality constraints are assumed eliminated by 

use of the trans'formation. 

The problem is to determine necessary conditions in order to deter-

mine u(t), for all te[min(t- h),tt] such that the performance index, (6) 

is minimized while satisfying all constraints. 

For simplicity of nomenclature and for comparison with Pontryagin's 

maximum principle a scalar Hamiltonian may be defined as 

(15) 

where A is a n-vector of time-varying Lagrange multipliers and ~ is a k-

vector of time-varying Lagrange multipliers. 

The augmented performance index may be written as 

N .~ 

J = G+\J1 11J+ l s:j (H-A1 X+~Tza)dt 
j=1 tj-1 

-J:to 
+ ~T (c + za) dt 

min[t - h(x(t),t)] 
(16) 

where the tj 's, j = 1, 2, ••• , N, represent points of discontinuity of 

u, x, h, xh, and ~ht and t~ represents the final time tt• The slack 

variable Z is taken to be the variable Zc of the last section, and llJ is 

the terminal surface of Equation (5). Also, \J is a q-vector of con-

stant Lagrange multipliers. The last integral of (16) is due to the 

requirement that the control variable inequality constraints must also 

be satisfied for te [min(t - h) ,to]. 
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If existence of an optimal control is assumed, then the necessary 

conditions for a minimum is that the first variation of the performance 

index vanish (2~); i.e., 

5J = 0 (17) 

and the second variation must be non-negative; i.e., 

The first variation of (16) may be written as 

(19) 

The following term of (19) may be separated for simplicity and expanded 

by use of Leibnitz's rule; i.e., 

A. r i: + cpr z2 ) dt • (20) 

If the following variables are defined as 

'!"(x,t) = t - h(x,t) 

then the last term in (20) may be written as 
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oHT oHT oHT • 
+ ob('j") fib('!")+ o'A, f>'A,+ Ocp 5cp-A,Tf>x-i:T5A,+5cpTz:3 +cpT8(Z2 )) dt. 

(21) 

The reason for the change in nomenclature is due to possible con-

fusion as to exactly what is the total variation in xh. It is assumed 

that t is held constant under the integral. Thus, a variation in a(,.) 

is due to a variation in a holding '!" constant and, also, due to a varia-

tion in '!"• That is, 

dxh 
f)a = 5xh + d'j" d '!". 

Similarly, 

5b 
duh 

= f>uh + -.- d'j" . d'j" 

A graphical picture of Equation (22) can be seen in Figure 3. Also, 

ohT 
= - -. 5x ox 

therefore, Equations (22) and (23) may be written as 

f)a( '!") 

Since the final time is free, 

dx 5x + i:dt 

(22) 

(23) 

(2'*) 



a( 'T) 

,.[ x( t), t] 

I 

I 
I 
I 

da Cr) d'f 
- ctr 
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Oa('f) 

f 

__________ _,. _______________________________________ ,. 
'T + d'l" 

x( t) x(t)+l)x(t) 

Figure J. VariatiQns in the Delayed Variables 

= d'iT l)x(t) 
dx 

f 

x(t) 
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The term in (21) containing the derivative of the variation of the state 

may be written as 

Also, 

k 

=I 2Z1 6Z1 • 

i=1 

Therefore, the first variation may be written as 

k 

+ Ml( z2 + ~g) + l 2q>1 z1 az1 ] dt • 
j=1 

(25) 

(26) 

The variations x and xh,. and u and uh are not independent. Conse-

quently, a transformation must be accomplished to eliminate x and u at 

more than one value of the independent variable. Let t = s - h(x,s) and 

the inverse of this equation be s = g(t) and utilize this transformation 

on the delayed parts of the integral (see reference (60)). 
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(27) 

and 

I
t'j oHT Itj-h(x(t~),t'j) ·1 . '::.HT 

8 dt = .. ' £...._ ( s ) 8 u dt 
+ ouh uh + + + 1 - h ( s ) ouh 

tJ-1 tJ_1-h(x(tJ-1),tJ-l 
(28) 

where 

• ohT oh . 
h(t)= ox (t)f(t)+ 0t<tJ. (29) 

The use of (26) and (27) in (25) along with the transformation 

(JO) 

allows the necessary conditions to be written as follows: 

Transversality conditions at t =tr are 

( A.T - oGT - \)T ow )c1x = o 
ox ox 

(31) 

(32) 

(J.3) 

Corner conditions at t = tJ, j = 1, 2, ••• , N- 1 are 

(.34) 

(35) 

Euler-Lagrange equations are: 

For¥ te[min(t-h(x(t),t)),t0 ] 



. 
f..T = 

~T = 

1 oHT oC 
• - ( s ) + Cf) T -::.u = 0 . 1 - h ( s ) ouh 0 

c + z2 = o 

z1 Ct>i = o , i = 1 , 2 , ••• , k. 

1, 2, ... ' 

x = f ( x, u, xh , uh , t) 

z2 + c = o 

Z1 cp1 = 0 , i = 1, 2 , ••• , k 

.. 1 oHT (s) 
1 - h ( s ) 'dx';;'" 

oH 
-+ OU 

1 oH (s) = O 
1 - h(s) ouh • 

Z1cp1 = O, i = 1, 2, ••• , k 

oH 
OU = 0 • 

It is assumed that no discontinuities occur in the intervals 

32 

(36) 

(37) 

(38) 

(39) 

( 4:0) 

( 4:1) 

( 4:2) 

( 4:3) 

( '*'*) 

( 4:6) 

( 4:7) 

( 4:8) 
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min[t- h(x(t),t)] ~ t ~ t 0 and tf - h(x(tt ),tf) ~ t < tf. 

The difference in the necessary conditions developed by Sebesta 

(60) and the necessary conditions developed in this work is the addition 

of terms in the equations for the Lagrange multipliers that are depend-

ent on the time derivative of the delayed state and the delayed control. 

When the time delay is not a function of state, the necessary conditions 

reduce to the conditions developed by Sebesta. 

The Quadratic Criteria Problem With 

State-Dependent Time Delay 

One of the more important problems in optimal control is that of 

minimizing a performance index that is quadratic in the state and in the 

control. The problem is that of obtaining a state near zero at the 

final time with minimum control energy expenditure. The state might 

represent an error variable to be reduced. 

The system to be controlled is 

x(t) = A(t) x(t) + B(t) xh + C(t) u(t) 

with the initial functions 

x(r) = cr('T") 
'} ¥ (50) 

The problem is to find u(t), ¥ t e[ t 0 ,t;] such that the following per-

formance index is minimized. 

(51) 

where 

Q is a n X n positive semi-definite matrix 
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S is a n X n positive semi-definite matrix 

R is a m X m positive definite matrix 

and h = h(x,t) is a scalar function, assumed to be positive semi-definite 

in order to avoid problem-oriented inequality constraints. (The time 

delay h must be constrained to be greater than or equal to zero if it 

is not a positive semi-definite function. However, the form of h is 

problem-oriented.) 

The necessary conditions previously developed may be utilized to 

obtain the required equations, 

. 
x = Ax + B xh + u, t e [t0 , t, ] 

. 
/.. 

(52) 

Boundary conditions are 

x ( r ) = cr ( r ) , ¥ t e [min ( t - h) , t 0 ] (SJ) 

/..(tt) = Sx(tt)• 

An algorithm that may be used to find the control is as follows: 

1. An initial guess of the optimal control may be taken. 

2. With the guessed control,- the state equations may be 



integrated forward in time. The state trajectory is 

stored. 

3. The equations for the Lagrange multipliers may be 

integrated backward in time. 

4. The control may be modified at each instant of time 

by the following equation where uold represents the 

current value of the control: 

u 
new 

The quantity e is an arbitrary positive number to be 

chosen, and 

oH 
au = Ru + cTA,. 

The equation 

t = s-h(x(s), s) 

may be inverted at each value of t by a Newton-Raphson technique. A 

variable P may be defined as 

P = t-s+h(x(s) s) 

and 

The iterative formula is 

dP 
ds 

dh 
-1+­

ds • 

pi 
s1+1 s1- dP. • 

1 

ds 

35 



J6 

An important point to note for this problem is that an optimal 

feedback controller cannot be deduced from the necessary conditions 

established here. This fact should be explored further and a suboptimal 

feedback controller developed. 



CHAPTER IV 

COMPUTATIONAL ALGORITHM 

A gradient procedure for nonlinear systems with state-dependent 

time delay is outlined in this chapter. The gradient procedure is a 

direct optimization technique whereby the problem is to be solved by 

directly iterating to the optimal control. This is in contrast with 

using the necessary conditions in a numerical algorithm to solve the 

problem. 

The gradient technique has rapid convergence at the start of the 

optimization process, but it tends to oscillate about the optimal solu­

tion. Consequently, convergence properties are poor. However, it may 

give a control that is close to the optimal. 

The gradient procedure outlined is similar in form to Bryson (11) 

and is an extension of Sebesta 1s gradient procedure for nonlinear sys­

tems with time-varying time delay. 

Development of the Algorithm 

The system equations as given in Chapter III 

x(t) = f[x(t), xh, u(t), uh, t] (1) 

where the initial condition functions 

x(t) = cr(t), ¥te[min(t-h),t0 ] (2) 
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u ( t ) = a. ( t ) , ¥ t e [min ( t - h) , t 0 ] 

are assumed given. 

The problem is to determine u ( t), ¥ t e: [ t 0 , tr], such that the per-

f orman ce index 

(J) 

is minimized and such that the following constraints are satisfied: 

w[x(tt),tt] = 0 

and 

O[x(tt) ,tt] = o (5) 

where 

W is a (q- 1) vector of terminal constraints 

O is a scalar stopping condition, monotonic over (t0 ,tt)• 

A linearized trajectory may be obtained by expanding the state 

equations in a Taylor series about the nominal trajectory with the fol-

lowing definitions: 

a = x[ t - h ( x ( t ) , t)] 

b = u[ t - h(x(t), t) J • 

The linearized equations are 

• of of of of (6) ax = ox ax + - aa + - au + - 6b oa OU ob 

where the coefficient matrices are Jacobian matrices of the proper 

dimensions and are evaluated along the nominal trajectory. 

As was shown earlier in this thesis, the variations 6a and 6b are 
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Therefore, the linearized state equations may be written as 

. 
ax = Ao 8x + A1 &xh + Eb au + Bi auh (7) 

where 

The adjoint equations for (7) are 

• 1 
A = -AoT A - 1 - h ( s) Ai T ( s) A ( s) (8) 

where s is the inverse of 

t = s - h[ x ( s) ' s J • 

With the preceding modifications implemented, the remaining development 

of the computational algorithm follows that of Sebesta (60). 

Outline of the Algorithm 

This section gives the steps to be followed to apply the algorithm. 

1. The state equations are integrated by using the initial 



L.i,o 

function and a nominal control until the stopping condi-

tion is satisfied. The nominal trajectory is stored. 

2. The final conditions for the sensitivity functions are 

set 

· ' where st is the inverse of tt = st - h[x(st ) , st] 

' (t•) f'0..1. 'i -2.Q"'\. /\wn f = \:ax - n OX...{c: t ~ 

"°wo<t) = o, ¥t e[tn s; J 

IGG (tt) = 0 

Ii!rG(tt) = 0 

!WW (t1 ) = 0. 

J. The correction of u must be made small in order to stay 

within the linear region of the linearized state equa-

tions and adjoint systems. Consequently, a control 

effort constraint must be placed on the correction to u. 

where W(t) is a symmetric weighting matrix to be chosen, 

and (dR)2 is the control effort constraint. 

L.i,. The following differential-difference equations are 



integrated backward in time from tr to t 0 to obtain the 

required sensitivity functions. 

i_ = -Ao1 A. - 1/(1- h(s)) A11 (s) A.G,...,(s) 
GO GO ~' 

. 
\1ro = -Ao1 >.1110 - 1/(1- h(s)) A11 (s) >-wn(s) 

where 

~GO = A.~0 Bo + 1/1(1- h(s)) A.~0 (s) Bi (s) 

.;. T • T 'l!wo = >.1110 ~- + 1/1(1- h(s)) >.1110 (s} Bi (s). 

The functions ~ 1110 (t) and ~GO(t) and the resulting 

integrals IGG(t0 ), I$G(t0 ), and IWW(t0 ) are stored. 

5. A reasonable terminal condition change is selected, if 

required, to bring the next iteration close to the desired 

end conditions specified by the constraints $ = O. 

6. A reasonable control effort constraint, (dR) 2, is 

specified and the predicted change in the performance 

index is computed from 



If dG and dW are sufficiently small, the procedure has 

converged. If the quantity under the radical sign is nega-

tive, then either decrease dW or increase (dR)2 • The+ sign is 

used to maximize G, and the - sign is used to minimize G. 

7. If the procedure has not converged, then obtain a new nominal 

control by letting u(t) = u(t) ld + 5u(t), lit c[t0 ,t,J new o 

where 

5u(t)=± 

8. The procedure is repeated until convergence is obtained. 



CHAPTER V 

APPLICATIONS 

This chapter contains examples of optimization of systems with 

time delay. The first example is not an optimal control problem but 

that of a parameter optimation problem where the parameter to be opti­

mized is the time delay. This was placed in the thesis because of its 

interesting nature and because of the possible feasibility of using the 

necessary conditions derived herein for parameter optimization or 

identification problems of this type. The second example is that of a 

regulator for a steel rolling mill. The control problem contains both 

a state-dependent time delay and a state variable inequality constraint. 

The methods outlined in Chapter III are used to obtain the equations 

necessary to find the optimal control for the system. 

Optimal Time Delays 

Since some systems contain an inherent time delay, it may be ad­

vantageous to see if this delay (assumed constant and under a designers 

influence) may be chosen in an optimal manner. Koivuniemi (J~) has 

shown by use of numerical algorithm for linear time delay systems and 

two examples that the value of the time delay greatly affects the value 

of the performance index. However, necessary conditions for optimality 

of the time delay were not given. 

/, '> 



Since the necessary conditions for a system with state-dependent 

time delays have been derived it becomes a simple matter to obtain the 

required necessary conditions. The time delay is considered to be a 

constant. The state vector may be augmented by the following equation: 

0 ( 1) 

where the constant time delay is 

h Xn+l • (2) 

The problem then becomes a parameter optimization problem where 

the parameter to be optimized is the constant value of the time delay. 

Necessary conditions follow directly by application of the results in 

Chapter III. 

The above technique, for instance, may be used to obtain the 

optimal location for a sensor in a feedback control system in which the 

sensor location determines the delay magnitude, or the technique might 

be used to identify the time delay parameter in a human operator model. 

The following example will illustrate the use of the necessary 

conditions by using the necessary conditions to find an optimal time 

constant and an optimal time delay such that the system considered 

follows an ideal desired response. 

The example problem worked is trivial and seems to have a singular 

characteristic. However, it illustrates that the necessary conditions 

might be utilized to work a more realistic parameter optimization 

problem or identification problem where one of the parameters is a time 

delay. This idea could prove useful in identification of the magnitude 



of time delays in large processing plants from measured response data 

if the computational problem could be solved. 

The block diagram of the system to be considered is as follows: 

t-~~~-..i 11--~~~~~~~.....-~x 

s 

-sh ke 

Figure 4. Block Diagram of Example 1 

The system equation may be written as 

x = -k x( t-h). 
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The system is constrained to be nonanticipatory. Also, hardware imple-

mentation of the time delay element will be deferred at this time. 

However, an approximation to this element will be given and the system 

hardware implemented. 

The problem is to determine the time constant, l/k and the time 

delay, h, such that the system follows some desired response over a 

given period of time. 



The performance index 

(J) 

where x is the desired response and is shown in Figure 6, and the final 

time is taken to be one second. 

The equations are transformed into a problem with state-dependent 

time delay by augmenting the state equations as follows: 

. 
-X2X1 ( t . ..; ~) xl = 

. 
0 ( l:i:) Xa = 

. 
0 X3 = 

where x2 denotes k and Xa denotes h. 

Since the system is constrained to be nonanticipatory, the admis-

sible region of state space for a solution excludes the region where x3 

is negative. A constraint must be added to the necessary conditions; 

i.e., 

(5) 

where z is a real variable. Unlike the optimal control. problem the 

state may be constrained in this manner. Thus, if the boundary is 

reached, then z must be zero. When not in the boundary, z must be a 

real variable. This excludes the possibility that x3 is negative. 



Therefore, the necessary conditions for a minimum of the 

performance index 

(6) 

may be written as 

. 
,;..X2X1 ( t>- ::ice)' Xl = 

. 
0 X;a = 

. 
0 v: t e[o, 1] Xa = (7) 

z:a - Xa = 0 

zcp = 0 

{
-2x1 + 2(1- t) + ~\i (t + x3 ) x2 (t +Jee),¥ t e[o, 

~= 
- 2x1 + 2 ( 1 - t ) , ¥ t e [ 1 - Xe , 1] 

(8) . 
A.2 = ·-A.i :x:ih, v: t e[o, 1] 

. 
A.3 = cp- A.1 :ic2iili·,~ 1f t'f: [o, _ 1] 

with boundary conditions 

A3(0) = A.a(.il.=O 
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The boundary conditions at the initial time for Aa and A3 are zero 

because the initial states for Xa and x3 are not given. Thus, the 

variation x2 (0) and x3 (0) in the necessary conditions are arbitrary; 

therefore, the corresponding Lagrange multipliers are zero. This 

development was not shown in the report; however, it is easily obtained. 

Before a solution of the necessary conditions is undertaken, the 

following parameter set may be utilized in Equation (7) and the 

differential equations solved. 

Xa = 1 

( 10) 

X3 = 1 

The solution .. for the system response using these values of the 

parameters yields the exact desired response 

x1 ( t) _ 1 - t. ( 11) 

The ~alue of the performance index by using (10) is zero. 

Since the performance index is positive semidefinite, this para-

meter set gives an absolute minimum of the performance index. However, 

the parameter set (10) is optimal only for the initial function given 

in ( 9). 

The solutions to the state equations are. 

xl = 1 - t I 
Xa = 1 

J 
¥ t·~e[o, · .. 1] (12) 

Xs = 1. 



Since x3 is equal to one, z must also be equal to one. This would 

imply that ~ is equal to zero. Thus, the solution to the equations for 

the Lagrange multipliers is 

Ai = \2 = As = o, v t e[o, 1] • ( 13) 

Therefore, the chosen parameters satisfy the necessary conditions. 

Figure 6 compares the desired response with the actual response 

for several values of h and k. The actual response for k = 1.0 and h 

h = 1.0 agrees exactly with the desired response. 

The solution has a singular characteristic in that all values of 

h greater than or equal to one will also satisfy the necessary 

conditions. Thus, the parameter set is not unique. 

Figure 7 is a contour plot of constant performance index for this 

particular example. 

An approximation for thee-ha element is the well known Pade 

approximation 

e"" h s = 1-hs/2 
1+hs/2 

The optimal system may now be approximated by 

r = o~~ 
l I 1-s/2 r-____. 

. 1+s/2 . 

Figure 5. Hardware Implementation of the 
Optimal Delay 

x 
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This system was compared with the ideal response and was found to be a 

good approximation. Even though the example is trivial, further work 

may find that this method of identification or parameter optimization 

may be feasible. 

Steel Rolling Mill 

This example illustrates how state-dependent time delays may occur 

in a realistic control problem. Also, the mathematical equations nec­

cessary to obtain a particular optimal control for this system are 

developed. Computer runs were not made for this example because of its 

complexity; however, the equations necessary to solve this problem are 

shown, thus illustrating the use of the necessary conditions in a 

realistic problem. 

This example illustrates control of a steel mill. The steel is 

rolled between two rolls, one of which is stationary and the other is 

moved by a control system that controls the variation in the required 

thickness of the steel plate, and also controls the velocity of the 

plate as it passes under the rolls. Due to physical limitations the 

measurement device for obtaining the thickness deviation has to be 

placed several feet from the process. Thus, a time delay occurs in 

measuring the deviation since the device measures x(t-h) and not x(t) 

(where x denotes the deviation of the thickness). 
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-ct=d=:J 
_!._... 

0 f 
Controller l~---~~~~~~~~----

Fi gure 8. Steel Rolling Mill 

The time delay, h, is equal to dfv~ A current proportional to the 

deviation is fed back to the controller, 

i(t) = k1x(t - d/v). ( 15) 

The roll is sus:pended on two heavy duty linear springs and is moved 

up or down by application of a control force proportional to the devi-

ation feedback plus a force (to be determined) that will give the 

required response for the performance index chosen. 

F cont 

Figure 9. Roll Suspension 



Fcont = F.,., ai(t) ( 16) 

= F - bx( t-d/v). 

Therefore, the equation for the roll can be formulated as 

mroll "i = F - kx(t) - bx(t-d/v). (17) 

As the rollers increase pressure on the steel plate, the velocity of 

the plate will change. The equation of motion for the plate is 

approximated as 

m 
plate v = F c F vo - cont ( 18) 

where Fvo is the force that controls the velocity of the plate and c is 

a proportionality constant; i.e., the force on the plate is assumed 

proportional to the thickness control force plus the velocity control 

force. 

The equation may be written as 

m V = Fvo - cF + bcx(t-d/v)., plate 
(19) 

. = x, 

then the state equations may be written as 

(20) 
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The following performance index is chosen in order to minimize the 

thickness and velocity deviations over a finite period of time with 

minimum effort. 

(21) 

Initial conditions are assumed to be 

(22) 

X3 (o) = Jtad + €:a 

where e1 and e2 are constants and x34 represents the desired velocity. 

The problem consists of finding the controls u1 ( t) and u2 ( t), \t·t e [C,)1 tr] 

in order to minimize the performance index. The necessary conditions 

will now be applied to this problem. 

The velocity, x3 , must be constrained to be greater or equal to 

zero by the following state variable inequality constraint. 

S = -x3 < 0 (2.3) 

T · · f' t d · l 't t · t · 0· (d~ · ..L· o· his is a irs or er inequa i y cons rain since ~ ,at) , . .- :. •= 

The procedure adopted earlier to eliminate state variable 

inequality constraints will now be utilized. 

Equation (23) may be changed into an equality constraint. 

-Xa + ~ z2 = o 
( 24:) 

. ,.:.Sea·:·+ z z,,= o 
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The new state component,v, and a pseudo control component, w, may be 

defined and utilized in (24). 

-i:3 + vw = 0 (25) 

or 

(26) 

The control u2 may be eliminated by solving for u2 in terms of v, w, ui, 

and xi ( t-d/x3 ) 

u2 :z:. ~ vw + cu1 - bcxi ( t-d/::xa ) • ( 27) 

This equation may now be used to eliminate u2 from the problem. After 

the augmented optimization problem has been solved, u2 can be obtained 

by use of this equation. The new state equations are 

. 
Xi = X2 

. 
1/mr [ ui - kxi bXi (t-d/x3 )] X2 = - (28) 

. 
X3 = vw 

. v = w 

The new performance index is 

(29) 

where Xih = x1 ( t-d/x3 ). 
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The boundary conditions are 

Xl ( t) = el' \rt< 0 

x2 (o) = 0 

(JO) 

Xa (o) = Xafi + ea 

v(o) = .:t. /2x3 (o) 

Either sign of the initial condition for v may be used. 

The new problem to be solved is that of finding u1 (t) and w(t), for 

all te[o, t 1 J such that the performance index (29) is minimized. Note 

that the state variable inequality constraint has now been eliminated. 

The Hamiltonian for the new problem is 

(31) 

The necessary conditions are derived in the following discussion. 

The state equations are 

. 
Xl = Xa 

. 
1/mr (u1 kx1 bxlii) Xa = - -

(32) . 
X3 = vw 

. 
v = w 
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The new state vector is x = [xi Jea ~ v]T. Also, the new control 

vector is u = [u1 w]T. 

The equations for the Lagrange multipliers may now be derived by 

use of Equations (42) and (47) in Chapter III. 

~ -A.1, ¥ t e[o, tr] 

. 
-2<!2 <:x:a - Xa ) ( 1/1 - h ( t)) ( cbci h i:x:aa ) [-2bcq4 (mp vw As = -d 

+ cu1- bcx1h) - bA.a/mr] , ¥ t e[o, tr] 

. 
-2q4mpw(mt>vw - bcx1h) - A_sw, ¥ t c[o, tr J • A.4 = + CU1 

Boundary conditions are 

Xl ( t ) €1 , ¥ t < 0 

x2 (0) = o 

v(O) = /2:x:a (O) 



Also, 

oH/eu = r2q3ul + 2q4c(rn]:I vw + cul - bcxlh) + }..2/mr] • 

_2q4mp v(mP vw + cu1 - bcXi h ) + ;\s v + )..4 
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These equations may be used in an algorithm as defined in Chapter 

III to find the optimal control as a function of time. This problem 

shows how to utilize the necessary conditions developed in Chapter III 

in a realistic problem. However, as in the majority of all optimal 

control problems, the computational burden of solving this problem is 

large. Thus, a less complicated problem will be solved in order to 

illustrate the character of the optimal controller. 

Scalar Example 

Consider the scalar example problem described by the following 

differential-difference equation 

x(t) = -.5x(t) - .5x(t - x.2) + u(t) (33) 

with initial condition function 

x(t) = 1, ¥t<.O. (34:) 

The problem is to find the control, u(t), such that the quadratic 

performance index 

(35) 

is minimized. 



The Hamiltonian for the problem may be written as 

H = 1/2(20x2 + u2 ) + A(-.5x - .5:xh +u). (36) 

Minimizing the Hamiltonian with respect to u yields 

u(t) = -A.(t). (37) 

The equation for the Lagrange multiplier, A, is given by 

~ = . 1 - h( 1) J :(38) 

with the boundary condition 

and where 

h(t) = 2x(t)x(t) 

Figures 10 and 11 are plots of the optimal response and control 

as functions of time. 

(39) 

(1±0) 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Necessary conditions for optimal control of systems containing a 

time delay that is a function of the state of the system and of time 

were derived by utilizing calculus of variations. The time delay was 

allowed to be in the state vector and in the control vector. The state 

vector and the control vector were considered to be in general con­

strained by inequality constraints. A transformation to eliminate state 

variable inequality constraints was extended to systems with time delays. 

Applications of the necessary conditions were shown by treating, in part, 

a realistic example and, in detail, a scalar example. Also, a gradient 

algorithm for systems with state-dependent time delays was outlined. 

The results derived should benefit the engineer who is interested 

in applications in that he may find what the optimal control and optimal 

performance cost is so that he can use these as a comparison for an 

actual design. Also, the theoretically inclined engineer can utilize 

the results obtained as a starting point, for example, in an analysis to 

find suboptimal controls. This could be done by assuming the form of 

the control to be a linear transformation of the observed variables, or 

by trying to find approximations to the necessary conditions such that a 

suboptimal control can be found. 



Areas Recommended for Further Study 

The following salient points should be pointed out as future 

research problems: 

1. Further investigations into computational algorithms to 

solve the optimal control problems should be conducted. 

2. Investigations into stochastic time delay problems 

should be conducted. 

J. The singular control problem should be investigated. 

~. Differential game problems where the dynamics of the 

competing systems have time delays should be investigated. 

5. Research in optimal and suboptimal schemes for feedback 

control of systems with time delays has been extremely 

limited. References (2) and (17) have obtained optimal 

feedback control laws for linear systems with a constant 

time delay in the state; i.e., 

i:(t) = A(t)x(t) + B(t);x:(t-h) + u(t) 

with a quadratic performance index. 

However, the preceding problem where the delay, h, is a 

function of time has not been solved for an optimal 

feedback control. Sebesta (61) has obtained an approxi-

mate feedback control law for sufficiently small time 

delay. However, no results are available when the time 

delay is large. The lemma proved by Eller et al. (17) 



possibly could be used in this problem to obtain sufficient 

conditions for an optimal control feedback form. 

6. The use of the necessary conditions for the identification 

of the time delay should be investigated more thoroughly. 

7. A fourth type of time delay has not appeared in the litera­

ture, yet it is the most realistic form for a time delay. 

The form is that of a time delay that is a random variable 

or a stochastic process. In reality, in all places where 

time delays occur, the time delay cannot be said to be a 

particular value of function of time with absolute cer­

tainty. There is error in making this assumption just as 

there is error in assuming a particular parameter value 

with certainty. This error may in fact be large enough 

such that a system based on absolute certainty may 

actually be unstable when implemented. Consider a time1 delay 

system where the system stability characteristics are due to 

a particular measurement sensor being placed a particular 

distance from the process. A design may have been based 

on the assumption that the time delay is within the 

stability boundary by some epsilon and, thus, stable. 

However, if the time delay happens to actually be just a 

small amount larger or smaller, then the system may fall 

within the unstable region. Thus, if it is known or is 

evidenced by taking experimental data that the time delay 

can vary significantly and in a random fashion, then this 

fact must be taken into account when designing a system 

or modifying an existing system. 
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The necessary conditions derived in this research may 

lead to a solution for the problem where the time delay is 

a random variable by augmenting the state vector with an 

additional element similar to the first example in Chapter 

V. The initial conditions for this new state element is 

random (the statistics may, however, be known a priori). 

8. Suboptimal feedback control laws should be derived for the 

linear quadratic problem. This might include assuming a 

form of the feedback law as a linear transformation of the 

available system states (or the terminus of the state) and 

solving for the optimal linear transformation (gain) 

matrix. 
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