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Abstract. In this paper we analyze discretization of optimal control problems governed by
convection-diffusion equations which are subject to pointwise control constraints. We present a
stabilization scheme which leads to improved approximate solutions even on corse meshes in the
convection dominated case. Moreover, the in general different approaches “optimize-then-discretize”
and “discretize-then-optimize” coincide for the proposed discretization scheme. This allows for a
symmetric optimality system on the discrete level and optimal order of convergence.
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1. Introduction. This paper is concerned with the discretization of optimal
control problems using stabilized finite element methods. We consider the following
optimal control problem governed by linear convection diffusion reaction equations on
a polygonal domain Ω ⊂ Rd, d = 2, 3:

Minimize J(q, u) =
1
2
‖u− ud‖2L2(Ω) +

α

2
‖q‖2L2(Ω), u ∈ V, q ∈ Qad (1.1)

subject to

−ε∆u + β · ∇u + σu = f + q in Ω , (1.2)
u = 0 on ∂Ω . (1.3)

The state variable u is searched for in the space V = H1
0 (Ω) and the admissible set

Qad ⊂ Q = L2(Ω) is given by pointwise box constraints, i.e.:

Qad = {q ∈ L2(Ω) : a ≤ q ≤ b a.e. in Ω},

where a, b ∈ R ∪ {±∞}, a < b.
For the data of the problem we assume: f, ud ∈ L∞(Ω), σ ∈ L∞(Ω) with σ ≥

σ0 > 0 and α > 0. To simplify the notation we set throughout σ = 1. Further we
assume β to be a constant vector of length ‖β‖.

It is well known that for convection dominated problems standard finite ele-
ment discretizations applied to the equations (1.2) – (1.3) lead to strongly oscilla-
tory solutions unless the mesh size h is sufficiently small with respect to the ratio
between ε and ‖β‖. Several methods are known to improve the approximation prop-
erties of the pure Galerkin discretization and to reduce the oscillatory behavior, see
e.g. [6, 13, 15, 21, 22].

In [9] the authors apply the SUPG method (streamline upwind Petrov Galerkin
method, see e.g. [15]) to the optimal control problem (1.1) – (1.3). They discuss two
different approaches to the discretization of the optimal control problem: “optimize-
then-discretize” and “discretize-then-optimize”. In the “optimize-then-discretize” ap-
proach first the necessary optimality conditions are established on the continuous
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level consisting of the state, adjoint and the optimality equations, and then these
equations are discretized using a stabilized finite element scheme, e.g. SUPG. In the
“discretize-then-optimize” approach the state equation is discretized and then the op-
timality system for the finite dimensional optimization problem is derived. It is well
known that these two approaches lead to the same discretization scheme provided a
pure Galerkin discretization is used. However, in the presence of stabilization terms
these approaches may differ. In [9] it is shown by numerical computations that for the
SUPG discretization the “optimize-then-discretize” approach leads to better asymp-
totic convergence properties. However, the “discretize-then-optimize” approach has
the important advantage of consistency of the state and the adjoint equations on the
discrete level which is reflected in the fact that the corresponding optimality sys-
tem is symmetric. In [18] the authors propose a method with similar behavior for a
SUPG-like discretization, based on a non-symetric modification of the Lagrangian.

In this paper we analyze a stabilization method, which leads to symmetric opti-
mality systems and has optimal order of convergence. For the resulting discretization
scheme the approaches “optimize-then-discretize” and “discretize-then-optimize” co-
incide. The presented method uses standard finite element discretization with sta-
bilization based on local projections (called LPS-method), see in [13] for convection
diffusion reaction equations and for the Stokes-, Oseen- and Navier-Stokes equations
see [2, 4, 5]. The control space is likewise discretized by first-order finite elements.

The main contribution of this paper is the a priori error analysis of the discretiza-
tion of the optimal control problem (1.1) – (1.3) by stabilized finite elements. For both
the unconstrained case (Qad = Q) and the constrained case (Qad 6= Q) we obtain the
estimate of order O(h3/2) for the L2-error in the control, state and the adjoint state.

For the a priori error analysis of pure Galerkin finite element discretizations for
optimal control problems with pointwise inequality constraints, we refer e.g. to [1,
10, 14, 20]. In [24] discretization by stabilized finite element for an optimal control
problem governed by Stokes equations is analyzed.

Our results are optimal for the following two reasons: First, it is well known
that stabilized finite elements leads to optimal order of convergence of O(h3/2) in
L2(Ω)-norm for the convection diffusion reaction equation (1.2) – (1.3) on general
quasi-uniform meshes, see e.g. [26]. Second, the presence of control constraints leads
to the fact, that the optimal control q̄ is in general not in H2(Ω) and only O(h3/2)
convergence can be expected for the piecewise (bi)linear discretization of the control
space, see e.g. [23].

The outline of the paper is as follows: In the next section we discuss the precise
formulation of the optimal control problem and the optimality conditions. In Section 3
we describe the discretization of (1.1) – (1.3) and formulate our main results. In
Section 4 we prove an error estimate for the optimal control problem without control
constraints. The extension to the case with pointwise control constraints is presented
in Section 5. In Section 6 we present numerical results.

2. Optimal control problem. In this section we discuss the optimality condi-
tions for the optimal control problem (1.1) – (1.3).

A weak solution u ∈ V = H1
0 (Ω) of the state equation (1.2) – (1.3) is determined

by

a(u, v) = (f + q, v) ∀v ∈ V

using the bilinear form a : V × V → R given by:

a(u, v) = ε(∇u,∇v) + (β · ∇u, v) + (u, v).
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Throughout the paper we make the following assumption on the domain Ω:
Assumption 1. There exists s ∈ R, s > d such that the weak solution v ∈ H1

0 (Ω)
of

−ε∆v + β · ∇v + v = g in Ω , (2.1)
v = 0 on ∂Ω (2.2)

satisfies the a priori error estimates:

‖v‖W 2,p(Ω) ≤ c ‖g‖Lp(Ω) for all g ∈ Lp(Ω), 2 ≤ p ≤ s.

Remark 2.1. For d = 2 a sufficient condition for the above assumption is the
convexity of the domain Ω, see e.g. [12]. For d = 3 one needs an additional angle
condition, see e.g. [16].

Theorem 2.2. Under the above assumption the optimal control problem (1.1) –
(1.3) admits a unique solution (q̄, ū) ∈ (Qad ∩W 1,∞(Ω))× (H1

0 (Ω) ∩W 2,s(Ω)).
The proof of this theorem follows standard arguments, see e.g. [11, 19, 25].
Remark 2.3. In the case Q = Qad, i.e. in the absence of control constraints, the

optimal control q̄ has better regularity properties, i.e. q̄ ∈ W 2,s(Ω).
We denote by S : Q → H1

0 (Ω) ∩ H2(Ω) the solution operator of the state equa-
tions (1.2) – (1.3) and introduce the reduced cost functional j : Q → R by:

j(q) = J(q, Sq).

This allows us to eliminate the state equation and to reformulate the optimization
problem as:

Minimize j(q), q ∈ Qad.

The reduced cost functional j is continously differentiable and its derivatives are given
in the following lemma:

Lemma 2.4. There holds:

j′(q)(δq) = (z, δq) + α(q, δq),

where z ∈ H1
0 (Ω) ∩W 2,s(Ω) is the solution of the adjoint equation:

−ε∆z − β · ∇z + z = u− ud in Ω , (2.3)
z = 0 on ∂Ω , (2.4)

where u = Sq is the associated state to q; z is called adjoint state.
Proof. Using standard arguments, see e.g. [25], we obtain the above formula for

the derivatives of j with z ∈ H1
0 (Ω). Due to the fact that u ∈ H2(Ω) ↪→ L∞(Ω) and

consequently u− ud ∈ L∞(Ω), Assumption 1 implies that z ∈ W 2,s(Ω).
Due to the fact that Qad is convex the necessary and sufficient optimality condition

for this problem can be formulated as follows:

j′(q̄)(δq − q̄) ≥ 0 ∀δq ∈ Qad. (2.5)

Remark 2.5. Using Lemma 2.4 condition (2.5) can be rewritten as:

(z̄ + αq̄, δq − q̄) ≥ 0 ∀δq ∈ Qad,
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where z̄ is the associated adjoint state to q̄. This condition together with the state
equation (1.2) – (1.3) and the adjoint equation (2.3) – (2.4) builds the optimality
system for optimal control problem (1.1) – (1.3).

In the sequel we will need the gradient ∇j(q) ∈ L2(Ω) of the reduced cost func-
tional j, which is given as the Riesz representative of j′(q)(·) by:

∇j(q) = z + αq.

Obviously, there holds ∇j(q̄) ∈ W 1,∞(Ω).
Since j is quadratic, the second derivative j′′(q)(δq, τq) does not depend on q and

there holds:

j′′(q)(δq, δq) ≥ α‖δq‖2L2(Ω) ∀δq ∈ Q. (2.6)

3. Discretization and main results. In this section we present the discretiza-
tion of the optimal control problem (1.1) – (1.3) and formulate our main result con-
cerning the asymptotic convergence properties.

For the discretization of the optimal control problem (1.1) – (1.3) we consider
a family {Th}h>0 of two- or three dimensional meshes consisting of (open) cells K
which are either triangles, tetrahedra, quadrilaterals, or hexahedra and constitute a
non-overlapping covering of the computational domain Ω. The mesh parameter h is
defined as a cell-wise constant function by setting h|K = hK and hK is the diameter
of K. We use the symbol h also for the maximal cell size, i.e.

h = max
K∈Th

hK . (3.1)

The family of meshes {Th}h>0 is assumed to fulfill the standard conditions of quasi-
uniformity and shape-regularity, see e.g. [8]. In addition, we require that the mesh
Th is organized in a patch-wise manner. This means that it results from a coarser
regular mesh T2h by an uniform refinement. By a patch P of elements we denote a
group of cells in Th which results from a common coarser cell in T2h.

For each node x of the mesh Th we denote by Nh(x) ⊂ Ω the “neighborhood” of
x, which is the union of all cells K with x ∈ ∂K. For quasi-uniform, shape-regular
meshes there exists a constant cN such that

diam(Nh(x)) ≤ cNh. (3.2)

On the mesh Th we define finite element spaces Qh ⊂ H1(Ω) and Vh ⊂ H1
0 (Ω)

consisting of linear or bilinear shape functions, see e.g. [15]. In addition we define the
space of cell-wise constant functions on patches V disc

2h .
In the sequel, we will need an L2-orthogonal projection operator πh : L2(Ω) →

V disc
2h . This operator has the following approximation and stability properties for

P ∈ T2h:

‖πhv‖L2(P ) ≤ c‖v‖L2(P ) ∀v ∈ L2(P ), (3.3)

‖v − πhv‖L2(P ) ≤ ch‖∇v‖L2(P ) ∀v ∈ H1(P ). (3.4)

For a positive stabilization parameter δ we introduce a stabilization (bilinear, sym-
metric) form sδ

h : Vh × Vh → R by:

sδ
h(uh, vh) = δ

(
β · ∇uh − πh(β · ∇uh), β · ∇vh − πh(β · ∇vh)

)
,
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and the discrete semilinear form ah : Vh × Vh → R by:

ah(uh, vh) = a(uh, vh) + sδ
h(uh, vh). (3.5)

Then, the discretized optimal control problem is formulated as follows:

Minimize J(qh, uh), q ∈ Qad,h = Qad ∩Qh, uh ∈ Vh (3.6)

subject to

ah(uh, vh) = (f + qh, vh) ∀vh ∈ Vh. (3.7)

This problem possess a unique solution (q̄h, ūh) ∈ Qad,h×Vh. Similar to the continuous
case we introduce a discrete solution operator Sh : Q → Vh defined by:

ah(Shq, vh) = (f + q, vh) ∀vh ∈ Vh

and the discrete reduced cost functional

jh(q) = J(q, Shq).

The optimality condition for the discretized problem reads:

j′h(q̄h)(δqh − q̄h) ≥ 0 ∀δqh ∈ Qad,h. (3.8)

The derivatives of jh are given similar to the continuous case in the following lemma:
Lemma 3.1. There holds:

j′h(q)(δq) = (zh, δq) + α(q, δq),

where zh ∈ Vh is the solution of the adjoint equation:

ah(vh, zh) = (uh − ud, vh) ∀vh ∈ Vh. (3.9)

where uh = Shq is the associated discrete state to q. The solution zh is the associated
discrete adjoint state.

Remark 3.2. We note that we obtain the same discrete adjoint equation as (3.9)
if we directly discretize the continuous adjoint equation by the same (stabilized) dis-
cretization scheme. This property relies on the symmetry of the stabilization term and
leads to the fact that the approaches “optimize-then-discretize” and “discretize-then-
optimize” coincide in our case.

We note that similar to the continuous case the second derivative j′′h(q) does
depend on q and we have analog to (2.6):

j′′h(q)(δq, δq) ≥ α‖δq‖2L2(Ω) ∀δq ∈ Q. (3.10)

In the following theorem we formulate our main result for the optimal control
problem without control constraints.

Theorem 3.3. Let (q̄, ū) be the solution of the optimal control problem (1.1) –
(1.3) with Qad = Q and (q̄h, ūh) be the solution of the discretized problem (3.6) – (3.7)
with Qad,h = Qh, then the following estimate holds:

‖q̄ − q̄h‖L2(Ω) ≤
c

α
τ(δ) h (‖ū‖H2(Ω) + ‖z̄‖H2(Ω)) +

c

α
h2 ‖q̄‖H2(Ω) ,
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where

τ(δ) =
(
δ1/2‖β‖+ min(δ−1/2, ‖β‖ε−1/2)h + h + ε1/2

)
. (3.11)

The proof of this theorem will be given in the next section. As a direct consequence
of this theorem we give a rule for choosing the stabilization parameter δ. A similar
rule is known for the SUPG or LPS discretization of convection-diffusion-reaction
equations. The stabilization parameter is chosen in dependence of the Peclet number:

Pe =
h ‖β‖

ε

by

δ =

{
0, if Pe < 1,

h
‖β‖ , if Pe ≥ 1.

(3.12)

This choice leads to the following corollary
Corollary 3.4. Let (q̄, ū) be the solution of the optimal control problem (1.1) –

(1.3) with Qad = Q and (q̄h, ūh) be the solution of the discretized problem (3.6) – (3.7)
with Qad,h = Qh. Let moreover δ be chosen as in (3.12), then the following estimates
hold:

1. if Pe < 1

‖q̄ − q̄h‖L2(Ω) ≤
c

α
ε1/2 h (‖ū‖H2(Ω) + ‖z̄‖H2(Ω)) +

c

α
h2 ‖q̄‖H2(Ω) ,

2. if Pe ≥ 1

‖q̄ − q̄h‖L2(Ω) ≤
c

α
‖β‖1/2 h3/2 (‖ū‖H2(Ω) + ‖z̄‖H2(Ω)) +

c

α
h2 ‖q̄‖H2(Ω) .

Remark 3.5. In the case that β 6= Const or in the case of variating cell diameter
hK the Peclet number has to be defined locally, i.e. cell-wise. Then, the stabilization
parameter δ is also chosen locally.

Remark 3.6. We note, that our error estimate is proportional to 1
α . This

is a typical situation if the coercivity constant of j coincide with the regularization
parameter α, see (3.10). However, this not always the case.

Let us consider a variant of the optimal control problem (3.6) – (3.7) with a finite
dimensional control space Q = Rn:

Minimize J(q, u) =
1
2
‖u− ud‖2L2(Ω) +

α

2
‖q‖2Q, u ∈ V, q ∈ Qad

subject to

−ε∆u + β · ∇u + σu = f +
n∑

i=1

qi gi in Ω

u = 0 on ∂Ω ,

where gi ∈ L∞(Ω) are linearly independent functions. This problem possess a solution
also in the case α = 0. Moreover, there holds:

j′′(q̄)(δq, δq) ≥ γ‖δq‖2Q with γ ≥ α.
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For this problem similar error estimates can obtained which are proportional to 1
γ .

In order to formulate our main result for the control constrained case we need an
additional assumption. We group the cells of the mesh Th in two classes Th = T 1

h ∪T 2
h

with T 1
h ∩ T 2

h = ∅ as follows: The cell K belongs to T 1
h if and only if one of the

following conditions is satisfied:
(a) q̄ ≡ a on K,
(b) q̄ ≡ b on K,
(c) a < q̄ < b on Nh(xi) for each node xi ∈ ∂K.

The set T 2
h is given by T 2

h = Th \ T 1
h and consists of the cells which lie “close to the

free boundary between the active and the inactive sets”.
Assumption 2. We assume that∣∣ ⋃

K∈T 2
h

K
∣∣ ≤ c h.

A similar assumption is used in [20] and in [24].
Remark 3.7. This assumption is valid if the boundary of the level sets

{x : q̄(x) = a} and {x : q̄(x) = b}

consists of a finite number of rectifiable curves.
In addition we assume −∞ < a < b < +∞ and introduce the inactive set in

optimum:

ΩI = {x ∈ Ω : a < q̄(x) < b}.

Using this set we define a norm, we need in the sequel:

‖q‖2,ad =
(
‖q‖2W 1,∞(Ω) + ‖∇2q‖2L2(ΩI)

)1/2

.

In the following theorem we formulate our main result for the optimal control problem
with control constraints.

Theorem 3.8. Let (q̄, ū) be the solution of the optimal control problem (1.1) –
(1.3) and (q̄h, ūh) be the solution of the discretized problem (3.6) – (3.7). Let moreover
Assumption 2 be fulfilled. Then the following estimate holds:

‖q̄ − q̄h‖L2(Ω) ≤
c

α
τ(δ) h (‖ū‖H2(Ω) + ‖z̄‖H2(Ω)) +

c

α
h3/2‖q̄‖2,ad

with s > d from Assumption 1 and τ(δ) defined in (3.11).
The proof of this theorem is given is Section 5.
For the choice of δ according to (3.12) we obtain the following corollary:
Corollary 3.9. Let (q̄, ū) be the solution of the optimal control problem (1.1) –

(1.3) and (q̄h, ūh) be the solution of the discretized problem (3.6) – (3.7). Let moreover
Assumption 2 be fulfilled and δ be chosen according to (3.12). Then the following
estimates hold:

1. if Pe < 1

‖q̄ − q̄h‖L2(Ω) ≤
c

α
ε1/2 h (‖ū‖H2(Ω) + ‖z̄‖H2(Ω)) +

c

α
h3/2‖q̄‖2,ad ,

2. if Pe ≥ 1

‖q̄ − q̄h‖L2(Ω) ≤
c

α
‖β‖1/2 h3/2 (‖ū‖H2(Ω) + ‖z̄‖H2(Ω)) +

c

α
h3/2‖q̄‖2,ad .
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Remark 3.10. Theorem 3.3 and Theorem 3.8 provide error estimates for the
error in the control variable. The corresponding estimates for the state and the adjoint
variable have similar structure since there holds:

‖ū− ūh‖L2(Ω) + ‖z̄ − z̄h‖L2(Ω) ≤ ch2(‖ū‖H2(Ω) + ‖z̄‖H2(Ω)) + c‖q̄ − q̄h‖L2(Ω).

4. Error analysis for the unconstrained problem. In this section we con-
sider the unconstrained case, i.e. for Qad = Q and prove Theorem 3.3. To this end
we need a special interpolation operator:

Lemma 4.1. There is an interpolation operator Ih : V ∩ H2(Ω) → Vh with the
following properties: There holds for all v ∈ V ∩H2(Ω)

(i) (v − Ihv, wh) = 0 ∀wh ∈ V disc
2h , (4.1)

(ii) ‖v − Ihv‖L2(Ω) + h ‖∇(v − Ihv)‖L2(Ω) ≤ ch2 ‖∇2v‖L2(Ω). (4.2)

A constructive proof of this lemma can be found in [4].
In the sequel, we will need an assertion of the term sδ

h(Ihv, Ihv). This assertion
is given in the following lemma.

Lemma 4.2. For any v ∈ V ∩H2(Ω) the following estimate holds:

|sδ
h(Ihv, Ihv)| ≤ c δ ‖β‖2 h2 ‖v‖2H2(Ω).

Proof. We start by

sδ
h(Ihv, Ihv) = sδ

h(v + Ihv − v, v + Ih − v) ≤ 2
(
sδ

h(v, v) + sδ
h(v − Ihv, v − Ihv)

)
For the first term we use the interpolation property of πh, see (3.4):

sδ
h(v, v) = δ‖β · ∇v− πh(β · ∇v)‖2L2(Ω) ≤ c δ h2‖∇(β · ∇)‖2L2(Ω) ≤ c δ h2‖β‖2 ‖v‖2H2(Ω).

For the second term we use the L2-stability of πh and obtain:

sδ
h(v − Ihv, v − Ihv) ≤ c δ ‖β · ∇(v − Ihv)‖2L2(Ω)

≤ c δ ‖β‖2‖∇(v − Ihv)‖2L2(Ω) ≤ c δ ‖β‖2 h2 ‖v‖2H2(Ω).

This completes the proof.
In the following lemma we give an error estimate for the discretization of the state

equation with an additional perturbation in the right hand side. To this end we first
introduce a norm:

|||v|||2 = ‖v‖2L2(Ω) + ‖ε1/2∇v‖2L2(Ω) + sδ
h(v, v).

Lemma 4.3. Let for q ∈ Q, u = Sq ∈ V ∩H2(Ω) be a associated solution of the
state equation (1.2) – (1.3), and for p ∈ Q, wh = Shp ∈ Vh be the associated discrete
solution, i.e:

ah(wh, vh) = (f + p, vh) ∀vh ∈ Vh.
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Then the following estimate holds:

|||u− wh||| ≤ ‖q − p‖L2(Ω) + c τ(δ) h ‖u‖H2(Ω),

where τ(δ) is defined as in (3.11).
Proof. For the error u− wh there holds a perturbed Galerkin orthogonality rela-

tion:

a(u− wh, vh) = sδ
h(wh, vh) + (q − p, vh) ∀vh ∈ Vh.

We split the error u− wh = η + ξ with

η = u− Ihu ξ = Ihu− wh

For the interpolation error η we obtain:

‖η‖L2(Ω) ≤ c h2 ‖u‖H2(Ω) (4.3)

and

|||η||| ≤ c (h + ε1/2 + δ1/2‖β‖) h‖u‖H2(Ω). (4.4)

For ξ ∈ Vh we use the perturbed Galerkin orthogonality and obtain:

|||ξ|||2 = a(ξ, ξ) + sδ
h(ξ, ξ) = (q − p, ξ) + sδ

h(Ihu, ξ)− a(η, ξ).

For the first term we have:

(q − p, ξ) ≤ ‖q − p‖L2(Ω)‖ξ‖L2(Ω) ≤ ‖q − p‖L2(Ω)|||ξ|||.

For the second term we use Lemma 4.2:

sδ
h(Ihu, ξ) ≤ (sδ

h(Ihu, Ihu))1/2(sδ
h(ξ, ξ))1/2 ≤ δ1/2 h ‖β‖ ‖u‖H2(Ω) |||ξ|||

For the third term we obtain:

|a(η, ξ)| ≤ |||η||| |||ξ|||+ |(β · ∇η, ξ)|.

The last term here can be estimated either using the property (4.1) of Ih

|(β · ∇η, ξ)| = |(η, β · ∇ξ)| = |(η, β · ∇ξ − πh(β · ∇ξ))|
≤ δ−1/2‖η‖L2(Ω) δ1/2‖β · ∇ξ − πh(β · ∇ξ)‖L2(Ω) ≤ δ−1/2‖η‖L2(Ω) |||ξ|||

or directly:

|(β · ∇η, ξ)| = |(η, β · ∇ξ)| ≤ ε−1/2 ‖β‖ ‖η‖L2(Ω) ‖ε1/2∇ξ‖L2(Ω)

≤ ε−1/2 ‖β‖ ‖η‖L2(Ω) |||ξ|||.

Therefore we have:

|||ξ||| ≤ ‖q − p‖L2(Ω) + min(δ−1/2, ε−1/2 ‖β‖) ‖η‖L2(Ω)

+δ1/2 h ‖β‖ ‖u‖H2(Ω) + |||η|||.
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Now we use the interpolation estimates (4.3) and (4.4) and obtain the desired estimate.

As a direct consequence of the above lemma we obtain an estimate for the error
in the adjoint states:

Lemma 4.4. Let for q ∈ Q, z ∈ V ∩ H2(Ω) be the associated adjoint solution,
i.e the solution of (2.3) – (2.4), and for p ∈ Q, yh ∈ Vh denote the associated adjoint
discrete solution, then the following estimate holds:

|||z − yh||| ≤ ‖q − p‖L2(Ω) + c τ(δ) h (‖u‖H2(Ω) + ‖z‖H2(Ω)),

where τ(δ) is defined as in (3.11).
The proof of this lemma is obtained similar to the proof of Lemma 4.3.
Now, we come to the proof of Theorem 3.3.
Proof. Let ph ∈ Qh be arbitrary. We obtain from (3.10):

α‖ph − q̄h‖2L2(Ω) ≤ j′′h(q̄h)(ph − q̄h, ph − q̄h) = j′h(ph)(ph − q̄h)− j′h(q̄h)(ph − q̄h).

Due to Qad = Q and Qad,h = Qh we have:

j′h(q̄h)(ph − q̄h) = 0 = j′(q̄)(ph − q̄h). (4.5)

Hence,

α‖ph − q̄h‖2L2(Ω) ≤ j′h(ph)(ph − q̄h)− j′(q̄)(ph − q̄h).

We use Lemma 2.4 and Lemma 3.1 and obtain:

α‖ph − q̄h‖2L2(Ω) ≤ (yh, ph − q̄h)− (z̄, ph − q̄h),

where z̄ is the associated adjoint state to q̄ and yh is the associated discrete adjoint
state to ph. Using Lemma 4.4 we obtain:

‖ph − q̄h‖L2(Ω) ≤
1
α
‖q̄ − ph‖L2(Ω) +

c

α
τ(δ) h (‖ū‖H2(Ω) + ‖z̄‖H2(Ω)),

where τ(δ) is defined as in (3.11). Due to Qad = Q we have that

q̄ =
1
α

z̄ ∈ V ∩H2(Ω).

Therefore we can choose ph ∈ Qh as the pointwise interpolation of q̄ with

‖q̄ − ph‖L2(Ω) ≤ c h2‖q̄‖H2(Ω).

Using this fact we obtain the desired estimate:

‖q̄ − q̄h‖L2(Ω) ≤
c

α
τ(δ) h (‖ū‖H2(Ω) + ‖z̄‖H2(Ω)) +

c

α
h2 ‖q̄‖H2(Ω) .
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5. Error analysis for the problem with control constraints. In this section
we provide the error estimate for the control constrained case. In the case Qad 6=
Q we can not use the same argument as for the proof of Theorem 3.3 since the
condition (4.5) does not hold any more. To overcome this difficulty we will construct
a special interpolation ph ∈ Qad,h of the solution q̄ ∈ W 1,∞(Ω) which fulfills the
following condition:

j′(q̄)(r − ph) ≥ 0 ∀r ∈ Qad. (5.1)

In the following lemma we use this condition in order to get an error estimate.
Lemma 5.1. Let (q̄, ū) be the solution of the optimal control problem (1.1) – (1.3)

and (q̄h, ūh) be the solution of the discretized problem (3.6) – (3.7). Let moreover
ph ∈ Qad,h fulfill condition (5.1). Then the following estimate holds:

‖q̄ − q̄h‖L2(Ω) ≤
1
α
‖q̄ − ph‖L2(Ω) +

c

α
τ(δ) h (‖ū‖H2(Ω) + ‖z̄‖H2(Ω)),

where τ(δ) is defined as in (3.11).
Proof. As in the unconstrained case there holds:

α‖ph − q̄h‖2L2(Ω) ≤ j′′h(q̄h)(ph − q̄h, ph − q̄h) = j′h(ph)(ph − q̄h)− j′h(q̄h)(ph − q̄h).

We use the discrete optimality condition (3.8) and the condition (5.1) with r = q̄h.
We obtain:

−j′h(q̄h)(ph − q̄h) ≤ 0 ≤ −j′(q̄)(ph − q̄h).

Hence,

α‖ph − q̄h‖2 ≤ j′h(ph)(ph − q̄h)− j′(q̄)(ph − q̄h).

Then we proceed as in the proof of Theorem 3.3 and obtain the desired estimate.
The interpolation ph ∈ Qad,h is constructed as follows: We prescribe the value of

ph at each node x of the mesh Th. To this end we use the “neighborhood” Nh(xi) of
a node xi defined in Section 3. We set

ph(xi) =


a, if min

x∈Nh(xi)
q̄(x) = a

b, if max
x∈Nh(xi)

q̄(x) = b

q̄(xi), else.

(5.2)

A similar construction can be found in [7].
In the following lemma we show that ph is well defined if h is small enough and

that ph fulfills condition (5.1).
Lemma 5.2. Let

h <
b− a

cN ‖q̄‖W 1,∞(Ω)
. (5.3)

Then ph is well defined and fulfills condition (5.1).
Proof. Due to the fact that q̄ ∈ W 1,∞(Ω) there holds:

max
x∈Nh(xi)

q̄(x)− min
x∈Nh(xi)

q̄(x) ≤ ‖q̄‖W 1,∞(Ω)diam(Nh(xi)) ≤ ‖q̄‖W 1,∞(Ω) cN h,
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with cN introduced by (3.2).
Therefore, either the first or the second or the third case applies, provided h

fulfills the condition (5.3). This proves that ph is well defined.
In order to prove that ph fulfills (5.1) we first consider a neighborhood N (xi) such

that

min
x∈N (xi)

q̄(x) = a.

Then there holds:

q̄(x) < b ∀x ∈ N (xi)

and consequently ∇j(q̄) ≥ 0 pointwise on N (xi). Therefore we obtain for an arbitrary
r ∈ Qad

∇j(q̄)(r − ph) = ∇j(q̄)(r − a) ≥ 0

pointwise on N (xi). For the cases

max
x∈N (xi)

q̄(x) = b

and

min
x∈N (xi)

q̄(x) > a and max
x∈N (xi)

q̄(x) < b

we proceed similarly and obtain that ∇j(q̄)(r−ph) ≥ 0 pointwise on Ω for all r ∈ Qad.
This completes the proof.

To complete the proof of Theorem 3.8 we have to provide an estimate for the
interpolation error ‖q̄ − ph‖L2(Ω).

Lemma 5.3. Let ph ∈ Qad,h be constructed as in (5.2) and Assumption 2 be
fulfilled, then the following estimate holds:

‖q̄ − ph‖L2(Ω) ≤
c

α
h3/2‖q̄‖2,ad,

with s > d from Assumption 1.
Proof. We start with

‖q̄−ph‖2L2(Ω) =
∑

K∈Th

‖q̄−ph‖2L2(K) =
∑

K∈T 1
h

‖q̄−ph‖2L2(K) +
∑

K∈T 2
h

‖q̄−ph‖2L2(K) (5.4)

For the first sum we have:∑
K∈T 1

h

‖q̄ − ph‖2L2(K) ≤
∑

K∈T 1
h

ch4‖∇2q̄‖2L2(K) ≤ ch4‖∇2q̄‖2L2(ΩI), (5.5)

since q ∈ H2(K) for each cell K ∈ T 1
h and ph is a usual point interpolation on the

cells from T 1
h .

For a cell K ∈ T 2
h we obtain that K ⊂ Nh(xi) with either

(i) min
x∈Nh(xi)

q̄(x) = a
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or

(ii) max
x∈Nh(xi)

q̄(x) = b.

In the first case we obtain:

‖q̄ − ph‖2L2(K) ≤ ‖q̄ − ph‖2Nh(xi)
≤ ‖q̄ − a‖2Nh(xi)

.

Due to the fact that q̄ ∈ W 1,∞(Ω) we have:

‖q̄ − a‖2Nh(xi)
≤ |Nh(xi)| ‖q̄ − a‖2L∞(Ω) ≤ |Nh(xi)|diam(Nh(xi))2 ‖q̄‖2W 1,∞(Ω).

The same estimate is obtained in the case (ii). By summing up and using Assump-
tion 2, we obtain:∑

K∈T 2
h

‖q̄ − ph‖2L2(K) ≤ ch2 ‖q̄‖2W 1,∞(Ω)

∑
K∈T 2

h

|K| ≤ ch3‖q̄‖2W 1,∞(Ω) (5.6)

Inserting (5.5) and (5.6) in (5.4) we obtain the desired estimate.
To complete the proof of Theorem 3.8 we combine the results from Lemma 5.1,

Lemma 5.2 and Lemma 5.3.

6. Numerical example. In this section we present a numerical example con-
firming our results. To this end we consider the optimization problem (1.1) – (1.3)
on the unit square, i.e with Ω = (0, 1)2 and with following parameters:

ε = 10−3, β = (−1,−2)t, σ = 1,

f = 1, ud = 1,

and

α = 0.1, a = 0.5, b = 10 .

The state and the control variables are discretized by bilinear finite elements as
described in Section 3. The discretized control constraint problems are solved by
primal dual active set method, see, e.g., [3] and [17].

Figure 6.1 shows the optimal control q̄h computed on the mesh Th with h =
2−6

√
2, i.e with Peclet number Pe ≈ 50 with and without stabilization. It turns out,

that the solution of the stabilized problem has slight oscillations only in the boundary
layer, whereas the solution of the discrete problem without stabilization shows strong
oscillations almost in the whole domain.

Since the exact solution of the optimal control problem under consideration is
not known, we show the evolution of the values of the cost functional J(q̄h, ūh) for a
sequence of uniformly refined meshes Th, for h tending to zero. From this sequence, we
compute the approximative order of convergence, see Table 6.1. The mean observed
order of convergence is r ≈ 1.73.
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Fig. 6.1. Optimal control q̄h (level sets) computed on the mesh Th with h = 2−6
√

2, Pe ≈ 50
without stabilization (left) and with stabilization (right). The active sets are indicated by the black
lines.

Table 6.1
Evolution of the values of the cost functional J(q̄h, ūh) for a sequence of uniformly refined

meshes Th, for h tending to zero

h/
√

2 J(q̄h, ūh) J(q̄h, ūh)− J(q̄2h, ū2h) order
2−2 0.293169 – –
2−3 0.273468 -1.97006e-2 –
2−4 0.265199 -8.26853e-3 1.25254
2−5 0.262427 -2.77226e-3 1.57657
2−6 0.261613 -8.13916e-4 1.76811
2−7 0.261409 -2.04352e-4 1.99383
2−8 0.261360 -4.86628e-5 2.07016
2−9 0.261346 -1.44169e-5 1.75505

7. Conclusion. In this paper we have derived a priori error estimates for a stabi-
lized finite element discretization of optimal control problems governed by advection-
diffusion equations subject to pointwise control constraints. The method has optimal
convergence behavior and has the commutativity property of discretization and opti-
mization, which is very convenient from an algorithmic point of view. No modification
of the Lagrangian is necessary. The presented analysis can be used to analyze related
stabilization methods as the one proposed in [6].
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