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OPTIMAL CONTROL OF THE UNDAMPED LINEAR WAVE
EQUATION WITH MEASURE VALUED CONTROLS∗
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Abstract. Measure valued optimal control problems governed by the linear wave equation are
analyzed. The space of vector measures M(Ωc, L2(I)) is chosen as control space and the corre-
sponding total variation norm as the control cost functional. The support of the controls (sparsity
pattern) is time-independent, which is desired in many applications, e.g., inverse problems or optimal
actuator placement. New regularity results for the linear wave equation are proven and used to show
the well-posedness of the control problem in all three space dimensions. Furthermore first order
optimality conditions are derived and structural properties of the optimal control are investigated.
Higher regularity of optimal controls in time is shown on the basis of the regularity results for the
state. Finally the optimal control problem is used to solve an inverse source problem.
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1. Introduction. This work is dedicated to optimal control problems of the
following form:

(P) min
u,y

J(y) + α ‖u‖M(Ωc,L2(I))

subject to

(1.1)


∂tty − c2∆y = u in I × Ω,

y = 0 on I × ∂Ω,

(y, ∂ty) = (y0, y1) in {0} × Ω.

The set Ω ⊂ Rd, d ∈ {1, 2, 3}, denotes a bounded domain with a sufficiently
smooth boundary ∂Ω and I = (0, T ), T > 0, is the time interval. Furthermore the
control set Ωc is a compact subset of Ω. Problem (P) constitutes an optimal control
problem governed by the linear undamped wave equation with constant wave speed
c ∈ R∗+ and homogeneous Dirichlet boundary conditions. Equation (1.1) describes
the generation of acoustic waves by the source u and its evolution in a homogeneous
medium. More complicated (vector-valued) versions of this equation model the be-
havior of seismic waves. The control u is chosen from M(Ωc, L

2(I)), the space of
finite vector measures with values in L2(I), and enters the state equation as a source
term. The cost functional J consists of a quadratic tracking functional and a control
cost functional. We will concentrate on a tracking functional of the form

(1.2) J(y) =
1

2

{
ν1‖y − z1‖2L2(I×Ω) + ν2‖y(T )− z2‖2L2(Ω) + ν3‖∂ty(T )− z3‖2H−1(Ω)

}
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SPARSE CONTROL OF THE LINEAR WAVE EQUATION 1213

with νi ≥ 0, so C(Ī , L2(Ω)) ∩ C1(Ī , H−1(Ω)) regularity of the state y will be essential.
The nonsmooth control cost term is given by the total variation norm for vector
measures u ∈M(Ωc, L

2(I)) and is weighted by a control cost parameter α > 0.
The choice of the control space M(Ωc, L

2(I)) can be motivated by the following
considerations. Every vector measure u ∈ M(Ωc, L

2(I)) can be decomposed into a
space-dependent measure part |u| ∈ M(Ωc)

+ and a space-time-dependent function
u′(x, t) ∈ L1((Ω, |u|), L2(I)) (Radon–Nikodym derivative); in particular it has the
form

du(t) = u′(x, t) d|u|.

Therefore the support of a vector measure u ∈M(Ωc, L
2(I)) (sparsity pattern) is

time-independent and thus the control spaceM(Ωc, L
2(I)) can be seen as a measure-

valued generalization of group (joint, directional) sparsity. This concept is well known
in the context of compressed sensing, e.g., [16]. We note that pointwise controls with
fixed positions and time-dependent intensities

(1.3) u(t) =

N∑
i=1

ui(t)δxi , {ui}i=1,...,N ⊂ L2(I), {xi}i=1,...,N ⊂ Ωc,

or more general controls of the form

u(t) =

N∑
i=1

ui(t)µ(x), µ ∈M(Ωc),

e.g., µ as a line or surface measure, can be realized within M(Ωc, L
2(I)). Such

controls are of great interest in the context of inverse problems or optimal actuator
placement problems. In particular point sources of the form (1.3) are often used as
simple models for localized acoustic or seismic events, e.g., explosions, earthquakes
or volcano eruptions. The optimal control problem which uses directly the ansatz
(1.3) and therefore optimizes the position of the point sources and their intensities
directly is nonconvex, whereas the formulation in the space of vector measures is a
convex optimization problem which also optimizes for the locations of the potential
point sources and their intensities. But it can be guaranteed only under certain
assumptions on the optimal adjoint state that the optimal control of problem (P)
has the structure (1.3). These conditions will emerge from the first order optimality
conditions of (P).

The particular control space was first investigated in a paper [20], which deals with
optimal control problems governed by linear parabolic PDEs. The authors establish
the well-posedness of the optimal control problem and derive first order optimality
conditions. We will rely partly on their analysis. In [18] the concept of group spar-
sity was introduced to optimal control of PDEs. The functional ‖u‖L1(Ωc,L2(I)) +
‖u‖2L2(I×Ωc)

is used as control cost term. In [7] the authors consider the control space

L2(I,M(Ωc)), the space of L2-functions in time with values inM(Ωc), in connection
with parabolic optimal control problems. The major difference between our control
space and their control space is that the latter allows for a time-dependent support
of the measure (sparsity pattern), e.g., moving point sources are allowed as controls.
The article [10] studies controls fromM([0, T̂ ]×Ωc) with T̂ < T , therefore space-time
Dirac measures are allowed as controls. Furthermore it can be guaranteed that the
optimal controls consist of a finite sum of Dirac measures in the setting of [10]. In
[9] the authors investigate a measure valued optimal control problem involving the
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1214 K. KUNISCH, P. TRAUTMANN, AND B. VEXLER

initial data as control. Measure valued controls were also investigated in connection
with elliptic PDEs; see, e.g., [11, 12] and semilinear elliptic PDEs [8]. In [4] measure
valued controls are considered from the inverse problem point of view.

The main contributions of the present paper are the following. First we show
improved regularity results for (1.1) with controls from M(Ωc, L

2(I)). In particular
we prove

y ∈ C(Ī , [H2(Ω) ∩H1
0 (Ω), L2(Ω)]1/2−θd) ∩ C1(Ī , [L2(Ω), (H2(Ω) ∩H1

0 (Ω))∗]−θd)

with θd = (1− d)/4. This is a 1
2 + ε improvement in Sobolev regularity over standard

regularity theory for the linear wave equation, which uses the embedding

M(Ωc, L
2(I)) ↪→ L2(I,M(Ωc)) ↪→ L2(I,H−d/2−ε(Ω))

for arbitrary ε > 0, e.g., [26, 23]. The proof is based on improved regularity results
for (1.1) with u(t) = f(t)δx̃ ∈ M(Ωc, L

2(I)), f ∈ L2(I), and x̃ ∈ Ωc which can be
found in [25, 28, 24]. Furthermore the proof uses explicitly the properties of the space
M(Ωc, L

2(I)) and is not based on the embedding M(Ωc, L
2(I)) ↪→ L2(I,M(Ωc)).

The second important result of this paper is the well-posedness of problem (P). The
proof utilizes the mentioned improved regularity results for the state variable. Fur-
thermore improved regularity of the optimal control in time is established, namely,
ū ∈ C2−d, 12−ε(Ī ,M(Ωc)) for d = 1, 2 and any 0 < ε ≤ 1/2. Moreover we adopt
the problem formulation (P) for the solution of an inverse problem motivated by a
geophysical application, namely, the reconstruction of the locations and intensities of
seismic events from noisy observations of the emitted waves.

The outline of this paper is as follows. In section 2 the space M(Ωc, L
2(I)) is

introduced. In section 3 the required results from interpolation theory of Sobolev
spaces are collected. In section 4 well-posedness of the wave equation and dual wave
equation for different regularity classes of data is discussed. Section 5 is dedicated to
improved regularity for the primal and dual wave equation. In section 6 well-posedness
of the control problem (P) is proven. Section 7 is concerned with the derivation of
first order optimality conditions for problem (P). In section 8 the discretization of
(P) with finite elements and its algorithmic solution by a continuation method are
discussed. Finally in section 9 the problem formulation (P) is applied to an inverse
source problem.

2. The space M(Ωc, L
2(I)). In this section we introduce the control space

M(Ωc, L
2(I)) and its properties. Let µ : B(Ωc) → L2(I) be a countably additive

mapping on the Borel sets B(Ωc) of Ωc with values in L2(I). For µ we denote by
|µ| ∈ M+(Ωc) (positive regular Borel measure) the total variation measure defined
by

|µ|(B) = sup
π

∑
E∈π
‖µ(E)‖L2(I),

where π is the set of all disjoint partitions of B ∈ B(Ωc). The space

M(Ωc, L
2(I)) = {µ : B(Ωc)→ L2(I) : µ countably additive, |µ|(Ωc) <∞}

is the space of vector measures with values in L2(I). Equipped with the norm

‖µ‖M(Ωc,L2(I)) = |µ|(Ωc)
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SPARSE CONTROL OF THE LINEAR WAVE EQUATION 1215

it is a Banach space. The support of µ, respectively, of its total variation measure |µ|,
is defined by

suppµ = supp |µ| = Ωc \
(⋃
{B open in Ωc| |µ|(B) = 0}

)
.

The vector measure µ possesses a Radon–Nikodym derivative (see [21]),

(2.1) µ′ ∈ L∞((Ωc, |µ|), L2(I)) with ‖µ′(·)‖L2(I) ≡ 1

with respect to its total variation measure |µ|. So µ can be represented in the following
way:

dµ = µ′ d|µ|.

Next we introduce the space C(Ωc, L2(I)) of vector-valued continuous functions
p : Ωc → L2(I). Equipped with the norm

‖p‖C(Ωc,L2(I)) = max
x∈Ωc

‖p(x, ·)‖L2(I)

it is a separable Banach space. The dual space of C(Ωc, L2(I)) can be characterized
by M(Ωc, L

2(I)), i.e.,
C(Ωc, L2(I))∗ ∼=M(Ωc, L

2(I)).

A proof is given in [17]. Next we introduce the space L2(I,M(Ωc)). It is the
space of weakly-∗ measurable functions µ : I →M(Ωc) which satisfy∫ T

0

‖µ(t)‖2M(Ωc)
dt <∞,

whereM(Ωc) is the space of Radon measures on Ωc and ‖·‖M(Ωc) is the total variation
norm in M(Ωc). There holds

(2.2) M(Ωc, L
2(I)) ↪→ L2(I,M(Ωc)).

This follows from the facts that the embedding

L2(I, C(Ωc)) ↪→ C(Ωc, L2(I))

is continuous and dense and that

(L2(I, C(Ωc)))∗ ∼= L2(I,M(Ωc))

holds. Next we deal with sequential weak-∗ compactness in M(Ωc, L
2(I)). Let

{µn}n∈N be a bounded sequence in M(Ωc, L
2(I)). Then there exists an element

µ ∈M(Ωc, L
2(I)) and a subsequence {µnk}k∈N with

(2.3) µnk ⇀
∗ µ in M(Ωc, L

2(I));

see, e.g., [6, Corollary 3.30]. Finally we state the following density result involving the
space M(Ωc, H

1(I)) which can be constructed in the same manner as M(Ωc, L
2(I)).

Proposition 2.1. The space M(Ωc, H
1(I)) is densely embedded into

M(Ωc, L
2(I)).
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1216 K. KUNISCH, P. TRAUTMANN, AND B. VEXLER

Proof. We chose any µ ∈ M(Ωc, L
2(I)) and let µ′ ∈ L∞((Ωc, |µ|), L2(I)) be its

Radon–Nikodym derivative. Extension by zero and the Tonelli–Fubini theorem imply
that µ′ ∈ L2(R × Rd,L ⊗ |µ|) holds, where L ⊗ |µ| denotes the product measure
consisting of the Lebesgue measure on R and the total variation measure |µ| extended
to Rd by zero. Due to the density of C∞c (R × Rd) in L2(R × Rd,L ⊗ |µ|) (cf. [3,
Corollary 4.2.2]), there exists for each ε > 0 a function µ̃′ ∈ C∞c (R× Rd) such that

‖µ′ − µ̃′‖L2(R×Rd,L⊗|µ|) < ε

holds. Furthermore we define µ̃ ∈M(Ωc, H
1(I)) ⊂M(Ωc, L

2(I)) by

dµ̃ = µ̃′|I×Ωc d|µ|.

Then we use the dual formulation of the norm in M(Ωc, L
2(I)) and get

‖µ− µ̃‖M(Ωc,L2(I)) = sup
‖ψ‖C(Ωc,L2(I))≤1

∫
Ωc

∫ T

0

ψ(x, t)(µ′(x, t)− µ̃′(x, t)) dt d|µ|

≤ c (Ωc) ‖µ′ − µ̃′‖L2(R×Rd,L⊗|µ|) < c (Ωc) ε,

which proves the assertion.

3. Interpolation spaces. In this section we discuss the required interpolation
theory of Sobolev spaces based on L2(Ω). Let A = −∆: D(A) ⊂ L2(Ω) → L2(Ω) be
the Laplace operator with the dense domain

D(A) = {v ∈ L2(Ω)| v|∂Ω = 0, Av ∈ L2(Ω)}.

It is an unbounded, positive, self-adjoint, and therefore closed operator with a
bounded inverse A−1 : L2(Ω) → D(A). The fractional powers Aθ of A with domains
D(Aθ) can be defined for θ ≥ 0 as in [2, Part 2, section 1.5]. In the following sections
we will use the notation

V 3 = D(A3/2), V 2 = D(A), V = D(A1/2), H = L2(Ω).

The space D(Aθ) is a Banach space when endowed with the graph norm

v 7→ ‖v‖H + ‖Aθv‖H , v ∈ D(Aθ).

The functional
v 7→ ‖Aθv‖H , v ∈ D(Aθ),

defines an equivalent norm on D(Aθ) and we set ‖ · ‖D(Aθ) := ‖Aθ · ‖H . For 0 ≤ θ ≤ 1

the spaces D(Aθ) can be represented using complex interpolation spaces [·, ·]1−θ in
the following form:

(3.1) D(Aθ) = [V 2, H]1−θ;

see [2, Proposition 6.1, Part 2, section 1]. The spaces D(Aθ) can also be characterized
as the Sobolev spaces H2θ(Ω) with additional boundary conditions as follows:

D(Aθ) =

{
v ∈ H2θ(Ω):

v|∂Ω = 0 if 1 ≥ θ > 1/4

v · ζ−1/2 ∈ H if θ = 1/4

}
,
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SPARSE CONTROL OF THE LINEAR WAVE EQUATION 1217

where ζ ∈ C∞(Ω̄) vanishes on ∂Ω of the order of dist(x, ∂Ω) (distance from x to ∂Ω).
In particular there holds that

(3.2) D(Aθ) =


H2θ(Ω) ∩ V, 3/4 < θ ≤ 1,

H2θ
0 (Ω), 1/4 < θ ≤ 3/4,

H
1/2
00 (Ω), θ = 1/4,

H2θ(Ω), 0 ≤ θ < 1/4;

e.g., see [26, Chapter 1, Theorems 11.5, 11.6, 11.7]. The space H
1/2
00 (Ω) is given by

H
1/2
00 (Ω) =

{
v ∈ H1/2(Ω)| ζ−1/2v ∈ H

}
and therefore we have H

1/2
00 (Ω) ⊂ H1/2(Ω). The space D(Aθ)∗ is a Banach space

when endowed with the operator norm

‖w‖D(Aθ)∗ = sup
‖v‖

D(Aθ)
≤1

〈w, v〉D(Aθ)∗,D(Aθ), w ∈ D(Aθ)∗.

The topological dual operator of Aθ has the following property (Aθ)∗ : H →
D(Aθ)∗ and

(y,Aθv)H = 〈(Aθ)∗y, v〉D(Aθ)∗,D(Aθ), y ∈ H, v ∈ D(Aθ).

Since Aθ is an isomorphism from D(Aθ) to H, the operator (Aθ)∗ is also an iso-
morphism with the inverse (Aθ)−∗ : D(Aθ)∗ → H. This also means that the equation

(Aθ)∗y = w in D(Aθ)∗

has a unique solution y = (Aθ)−∗w ∈ H for every w ∈ D(Aθ)∗. Using this dual
equation we can estimate

‖w‖D(Aθ)∗ = sup
‖v‖

D(Aθ)
≤1

〈w, v〉D(Aθ)∗,D(Aθ) = sup
‖v‖

D(Aθ)
≤1

〈(Aθ)∗y, v〉D(Aθ)∗,D(Aθ)

≤ ‖y‖H = ‖(Aθ)−∗w‖H

and

‖(Aθ)−∗w‖H =
(y,AθA−θy)H
‖y‖H

=
〈(Aθ)∗y,A−θy〉D(Aθ)∗,D(Aθ)

‖A−θy‖D(Aθ)

≤ ‖w‖D(Aθ)∗ ,

which implies
‖w‖D(Aθ)∗ = ‖(Aθ)−∗w‖H .

The duality pairing 〈·, ·〉D(Aθ),D(Aθ)∗ can be expressed using (Aθ)−∗ in the follow-
ing form:

〈w, v〉D(Aθ)∗,D(Aθ) = 〈(Aθ)∗y, v〉D(Aθ)∗,D(Aθ) = (y,Aθv)H

= ((Aθ)−∗w,Aθv)H for v ∈ D(Aθ), w ∈ D(Aθ)∗.

In the following we give a characterization of D(Aθ)∗ by Sobolev spaces with
negative indices. According to [26, Chapter 1, Theorem 6.2]

D(Aθ)∗ = [H,V 2∗]θ, 0 ≤ θ ≤ 1,
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1218 K. KUNISCH, P. TRAUTMANN, AND B. VEXLER

holds, and more concretely

D(Aθ)∗


⊂ H−2θ(Ω), 3/4 < θ ≤ 1,

= H−2θ(Ω), (0 ≤ θ < 1/4) ∨ (1/4 < θ ≤ 3/4) ,

= (H
1/2
00 (Ω))∗, θ = 1/4,

e.g., [26, Chapter 1, Theorem 12.2], where H−1/2(Ω) ⊂ H
1/2
00 (Ω)∗. Using (3.2) it

follows by classical theory for fractional Sobolev spaces that

(3.3) D(Aθ) ↪→ C(Ωc)

holds for θ > d/4 and therefore also

(3.4) M(Ωc) ↪→ D(Aθ)∗

for θ > d/4. Finally we define the space

Xθ :=

{
D(Aθ), 0 ≤ θ ≤ 3/2,

D(A|θ|)∗, − 3/2 ≤ θ < 0,

which will be convenient in our analysis. Its norm is denoted by ‖ · ‖Xθ and is given
by the norm of the underlying space. The duality pairing is denoted by 〈·, ·〉Xθ,X−θ .

4. Well-posedness of the state equation and adjoint equation. In this
section we introduce the weak and very weak formulations of the linear wave equation

(4.1)


∂tty −∆y = f in I × Ω,

y = 0 on I × ∂Ω,

(y, ∂ty) = (y0, y1) in {0} × Ω.

(With no loss of generality we set the constant wave speed to c = 1.) We show
existence, uniqueness, and regularity of solutions of (4.1) and its dual counterpart for
different regularity classes of data. First we introduce the notion of a weak solution
of (4.1).

Definition 4.1. Let (f, y0, y1) ∈ L1(I,H)× V ×H. A function

y ∈ L2(I, V ) ∩W 2,1(I, V ∗)

is called a weak solution of (4.1) if it satisfies∫ T

0

〈∂tty, v〉V ∗,V + (∇y,∇v)H dt =

∫ T

0

(f, v)H dt ∀v ∈ H1(I, V ),

y(0) = y0,

∂ty(0) = y1.

Remark 4.2. The values of y(0) and ∂ty(0) are well defined since

L2(I, V ) ∩W 2,1(I, V ∗) ↪→ C(Ī , H) ∩ C1(Ī , V ∗).

Next we deal with the existence, uniqueness, and regularity of a weak solution for
the linear wave equation (4.1). For that we need the following Gronwall lemma.
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Lemma 4.3. Suppose

v(t)2 ≤ c2 + 2

∫ t

0

ψ(s)v(s) ds a.e. t ∈ I,

where c ∈ R, ψ ∈ L1(I) with ψ(t) ≥ 0, and v ∈ L∞(I) with v(t) ≥ 0. Then there
holds

v(t) ≤ c+

∫ t

0

ψ(s) ds a.e. t ∈ I.

Proof. The proof can be found, e.g., in [13, Theorem 5].

Furthermore we require the following lemma concerning integration by parts in
time.

Lemma 4.4. Let Z be a separable Hilbert space and y ∈ W 1,1(I, Z) as well as
φ ∈W 1,1(I, Z∗). Then there holds∫ T

0

〈y, ∂tφ〉Z,Z∗ dt = −
∫ T

0

〈∂ty, φ〉Z,Z∗ dt+ 〈y, ∂tφ〉Z,Z∗ |T0 .

Proof. According to [5, Corollary A.4], the mapping B : t 7→ 〈y(t), φ(t)〉Z,Z∗ be-
longs toW 1,1(I). Owing to the fundamental theorem of calculus forW 1,1(I) functions,
we get ∫ T

0

∂tB dt = 〈y, φ〉Z,Z∗ |T0 .

Moreover, we have
∂tB = 〈∂ty, φ〉Z,Z∗ + 〈y, ∂tφ〉Z,Z∗ .

Combining these two facts implies the result.

Theorem 4.5. The following existence, uniqueness, and regularity results hold
true:

1. (Standard regularity) Let (f, y0, y1) ∈ Lr(I,H)× V ×H for r ∈ [1,∞]. Then
there exists a unique weak solution y of (4.1) satisfying the following regularity
property:

y ∈ C(Ī , V ) ∩ C1(Ī , H) ∩W 2,r(I, V ∗).

Furthermore there exists a constant c > 0 such that

‖y‖C(Ī,V ) + ‖∂ty‖C(Ī,H) + ‖∂tty‖Lr(I,V ∗)(4.2)

≤ c
(
‖f‖Lr(I,H) + ‖y0‖V + ‖y1‖H

)
holds.

2. (Higher regularity) Let (f, y0, y1) ∈ Lr(I, V ) × V 2 × V for r ∈ [1,∞]. Then
the solution of (4.1) satisfies

y ∈ C(Ī , V 2) ∩ C1(Ī , V ) ∩W 2,r(I,H)

and there exists a constant c > 0 such that

‖y‖C(Ī,V 2) + ‖∂ty‖C(Ī,V ) + ‖∂tty‖Lr(I,H)(4.3)

≤ c
(
‖f‖Lr(I,V ) + ‖y0‖V 2 + ‖y1‖V

)
is fulfilled.
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1220 K. KUNISCH, P. TRAUTMANN, AND B. VEXLER

Proof. Uniqueness is shown first. Let y ∈ L2(I, V ) ∩ W 2,1(I, V ∗) be a weak
solution of (4.1) for y0 = y1 = f = 0. Then we define the function

ψ(t, x) =

{
−
∫ s
t
y(σ, x) dσ, t ≤ s,

0 else

for some 0 < s ≤ T . In particular, ψ ∈ H1(I, V ). So we can test (4.1) with ψ and get∫ s

0

〈
∂tty,−

∫ s

t

y(σ) dσ

〉
V ∗,V

−
(
∇y,∇

∫ s

t

y(σ) dσ

)
H

dt = 0.

Partial integration in time, which is permissible according to Lemma 4.4, and
∂tψ = y on (0, s) yield∫ s

0

−〈∂ty, y〉V ∗,V + (∇∂tψ,∇ψ)H dt = 0.

Then y ∈ L2(I, V ) ∩H1(I, V ∗) ↪→ C(Ī , H) and ψ ∈ H1(I, V ) ↪→ C(Ī , V ) yield

‖y(s)‖2H + ‖ψ(0)‖2V = 0 ∀s ∈ Ī .

This implies y ≡ 0 and therefore the uniqueness of the solution y. In order to
show existence we approximate the data by smooth functions. The corresponding
smooth solutions y satisfy the estimates

‖y‖C(Ī,V ) + ‖∂ty‖C(Ī,H) + ‖∂tty‖Lr(I,V ∗) ≤ c1
(
‖y0‖V + ‖y1‖H + ‖f‖Lr(I,H)

)
and

‖y‖C(Ī,V 2) + ‖∂ty‖C(Ī,V ) + ‖∂tty‖Lr(I,H) ≤ c2
(
‖y0‖V 2 + ‖y1‖V + ‖f‖Lr(I,V )

)
for some c1, c2 > 0 independent of y and the data. Indeed, the estimates for y and ∂ty
can be derived by testing the equation ∂tty −∆y = f with ∂ty, respectively, −∆∂ty,
and by using Lemma 4.3. The estimate for ∂tty follows from

‖∂tty‖Lr(I,V ∗) = ‖∆y + f‖Lr(I,V ∗) ≤ c3
(
‖y0‖V + ‖y1‖H + ‖f‖Lr(I,H)

)
for some c3 > 0 independent of y and the data. The estimate for ‖∂tty‖Lr(I,H) can be
derived in a similar fashion. Then a standard density argument yields the existence
of a weak solution with the claimed regularity properties.

Remark 4.6. Due to the time reversibility of the linear wave equation, Theo-
rem 4.5 can be applied to the adjoint wave equation

(4.4)


∂ttp−∆p = φ in I × Ω,

p = 0 on I × ∂Ω,

(p, ∂tp) = (p0, p1) in {T} × Ω

and yields existence, uniqueness, and the same regularity results for p as for the
solution of (4.1).

In the remainder of the section we turn our attention to the case with a more
irregular source term f .
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Definition 4.7. For (f, y0, y1) ∈ L1(I, V 2∗)× V ∗ × V 2∗ a function y with

(y, y(T ), ∂ty(T )) ∈ L∞(I, V ∗) ∩W 2,1(I, V 3∗)× V ∗ × V 2∗

is called a very weak solution of (4.1), if it satisfies the equation∫ T

0

〈y, φ〉V ∗,V dt− 〈y(T ), p1〉V ∗,V + 〈∂ty(T ), p0〉V 2∗,V 2

=

∫ T

0

〈f, p〉V 2∗,V 2 dt− 〈y0, ∂tp(0)〉V ∗,V + 〈y1, p(0)〉V 2∗,V 2(4.5)

for all (φ, p1, p0) ∈ L1(I, V )× V × V 2, where p(φ, p1, p0) ∈ C(Ī , V 2) ∩ C1(Ī , V ) is the
solution of (4.4).

We remark that very weak solutions of linear PDEs are also called solutions by
transposition; see, e.g., [26]. Next, we show the existence and uniqueness of a very
weak solution.

Proposition 4.8. Let (f, y0, y1) ∈ Lr(I, V 2∗) × V ∗ × V 2∗ for r ∈ [1,∞]. Then
there exists a unique very weak solution y of (4.1) which has the following regularity
property:

y ∈ C(Ī , V ∗) ∩ C1(I, V 2∗) ∩W 2,r(I, V 3∗).

Furthermore there exists a constant c > 0 such that

‖y‖C(Ī,V ∗) + ‖∂ty‖C(Ī,V 2∗) + ‖∂tty‖Lr(I,V 3∗)

≤ c
(
‖f‖Lr(I,V 2∗) + ‖y0‖V ∗ + ‖y1‖V 2∗

)
(4.6)

holds.

Proof. Uniqueness is shown first. Suppose that y is the very weak solution of
(4.1) for the datum f = y0 = y1 = 0. Then we have∫ T

0

〈y, φ〉V ∗,V dt− 〈y(T ), p1〉V ∗,V + 〈∂ty(T ), p0〉V 2∗,V 2 = 0

for all (φ, p1, p0) ∈ V × V × V 2. This implies y = y(T ) = ∂ty(T ) = 0. The proof of
existence is based on approximation of the data; cf. [26, Chapter 3, Theorem 9.3].
For that purpose we introduce the following approximating sequences:

• {fn}n∈N ⊂ C∞c (I × Ω) with fn → f in L1(I, V 2∗),
• {y0,n}n∈N ⊂ C∞c (Ω) with y0,n → y0 in V ∗,
• {y1,n}n∈N ⊂ C∞c (Ω) with y1,n → y1 in V 2∗.

Then we consider the auxiliary problem

(4.7)


∂ttyn −∆yn = fn in I × Ω,

yn = 0 on I × ∂Ω,

(yn, ∂tyn) = (y0,n, y1,n) in {0} × Ω,

which has a unique smooth solution yn. Subsequently we multiply ∂ttyn −∆yn = fn
with A−2∂tyn, integrate over (0, t)× Ω for some t ∈ (0, T ], and see∫ t

0

(∂ttyn, A
−2∂tyn)H dt =

∫ t

0

(A−1∂ttyn, A
−1∂tyn)H dt

=
1

2

(
‖∂tyn(t)‖2V 2∗ − ‖y1,n‖2V 2∗

)
,
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∫ t

0

(−∆yn, A
−2∂tyn)H dt =

∫ t

0

(yn, A
−1∂tyn)H dt

=

∫ t

0

(∇A−1yn,∇A−1∂tyn)H dt =
1

2

(
‖yn(t)‖2V ∗ − ‖y0,n‖2V ∗

)
as well as∫ t

0

(fn, A
−2∂tyn)H dt =

∫ t

0

(A−1fn, A
−1∂tyn)H dt ≤

∫ t

0

‖fn‖V 2∗‖∂tyn‖V 2∗ dt.

Applying the Gronwall-type Lemma 4.3 yields the following estimate:

(4.8) ‖yn‖C(Ī,V ∗) + ‖∂tyn‖C(Ī,V 2∗) ≤ c (‖fn‖L1(I,V 2∗) + ‖y0,n‖V ∗ + ‖y1,n‖V 2∗).

Next we derive an estimate for ∂ttyn. We get

∫ T

0

(∂ttyn, ψ)H dt =

∫ T

0

(fn + ∆yn, ψ)H dt

=

∫ T

0

(fn, ψ)H + (yn,∆ψ)H dt ≤ c
(
‖fn‖Lr(I,V 2∗) + ‖yn‖C(Ī,V ∗)

)
‖ψ‖Ls(I,V 3)

for any ψ ∈ Ls(I, V 3) with r−1 + s−1 = 1, which implies

‖∂ttyn‖Lr(I,V 3∗) ≤ c (‖yn‖C(Ī,V ∗) + ‖fn‖Lr(I,V 2∗))

≤ c (‖fn‖Lr(I,V 2∗) + ‖y0,n‖V ∗ + ‖y1,n‖V 2∗).

This estimate implies that {yn}n∈N is a Cauchy sequence in

C(Ī , V ∗) ∩ C1(Ī , V 2∗) ∩W 2,r(I, V 3∗).

So there exist a y with yn → y in C(Ī , V ∗) ∩ C1(Ī , V 2∗) ∩W 2,r(I, V 3∗). Next we
multiply ∂ttyn −∆yn = fn with the solution p ∈ C(Ī , V 2) ∩ C1(Ī , V ) of (4.4) for any
(φ, p1, p0) ∈ L1(I, V )×V ×V 2 and integrate over I ×Ω. Integration by parts in time
and in space yields∫ T

0

(yn, φ)H dt− (yn(T ), p1)H + (∂tyn(T ), p0)H

=

∫ T

0

(fn, p)H dt− (y0,n, ∂tp(0))H + (y1,n, p(0))H .(4.9)

After passing to the limit in (4.9) we see that y fulfills (4.5). Moreover y satisfies

‖y‖C(Ī,V ∗) + ‖∂ty‖C(Ī,V 2∗) + ‖∂tty‖Lr(I,V 3∗)

≤ c (‖f‖Lr(I,V 2∗) + ‖y0‖V ∗ + ‖y1‖V 2∗).(4.10)

Now we can achieve the following regularity results by interpolation of the solu-
tion operator S : (f, y0, y1) 7→ (y, ∂ty, ∂tty) between the results of Theorem 4.5 and
Proposition 4.8.
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Corollary 4.9. Let θ ∈ [−1, 1/2]. If (f, y0, y1) ∈ Lr(I,Xθ) ×Xθ+1/2 ×Xθ for
r ∈ [1,∞]. Then there exists a unique solution y of (4.1) which satisfies

y ∈ C(Ī , Xθ+1/2) ∩ C1(Ī , Xθ) ∩W 2,r(I,Xθ−1/2).

Furthermore there exists a constant c > 0 such that

(4.11) ‖y‖C(Ī,Xθ+1/2) + ‖∂ty‖C(Ī,Xθ) + ‖∂tty‖Lr(I,Xθ−1/2)

≤ c
(
‖f‖Lr(I,Xθ) + ‖y0‖Xθ+1/2

+ ‖y1‖Xθ
)

holds.

Remark 4.10. The results of Corollary 4.9 hold also for the dual equation (4.4).

Finally we consider the state equation (1.1) with controls fromM(Ωc, L
2(I)). We

recall (2.2) and (3.4) which imply the embedding

(4.12) M(Ωc, L
2(I)) ↪→ L2(I,M(Ωc)) ↪→ L2(I,X−d/4−ε)

for any 3/4 > ε > 0. Then we can use Corollary 4.9 to establish the well-posedness
of (1.1) in the following sense.

Corollary 4.11. For any (u, y0, y1) ∈ M(Ωc, L
2(I)) × X(2−d)/4−ε × X−d/4−ε,

0 < ε < 3/4, there exists a unique very weak solution y of (1.1) which additionally
satisfies

y ∈ C(Ī , X(2−d)/4−ε) ∩ C1(Ī , X−d/4−ε) ∩H2(I,X−(2+d)/4−ε)

and there exists a constant c > 0

‖y‖C(Ī,X(2−d)/4−ε)
+ ‖∂ty‖C(Ī,X−d/4−ε)

+ ‖∂tty‖L2(I,X−(2+d)/4−ε)

≤ c
(
‖u‖M(Ωc,L2(I)) + ‖y0‖X(2−d)/4−ε + ‖y1‖X−d/4−ε

)
.

According to the last corollary there holds y ∈ C(Ī , L2(Ω)) ∩ C1(Ī , H−1(Ω)) only
for d = 1.

Since the embedding (4.12) is used for the proof of Corollary 4.11 it is not clear
if the regularity results of Corollary 4.11 are sharp. In the next section we will see
that regularity is lost by using the embedding (4.12).

5. Improved regularity results for the state and adjoint equation. In
this section we will establish higher regularity of the state variable y using explicitly
properties of the control space M(Ωc, L

2(I)) and not through the embedding (4.12).
To do so we will first establish C(Ωc, L2(I)) regularity of the solution p of the dual
wave equation (4.4) for certain regularity classes of data. These results can be used to
show the mentioned higher regularity of the primal variable. In the following we will
invoke and recap some regularity results for the primal equation (4.1) with a specific
source term f(t) = h(t)δx0

with x0 ∈ Ωc and h ∈ L2(I) which were proven in [28, 24]
for dimensions d = 1, 2, 3 and in [25] for d = 3. These results will play an important
role in the proof of the C(Ωc, L2(I)) regularity of p. In other words, we consider the
following equation:

(5.1)


∂tty −∆y = hδx0

in I × Ω,

y = 0 on I × ∂Ω,

(y, ∂ty) = 0 in {0} × Ω.
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Corollary 4.11 implies that a unique very weak solution y of (5.1) exists and has
at least the regularity

y ∈ C(Ī , X−(d−2)/4−ε) ∩ C1(Ī , X−d/4−ε) ∩H2(I,X−(d+2)/4−ε).

But this result is not optimal. In the remainder of this paper we fix the following
notation:

θd =
1− d

4
.

Proposition 5.1. Let h ∈ L2(I), x0 ∈ Ωc and let y be the very weak solution of
(5.1). Then

y ∈ C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd) ∩H2(I,Xθd−1/2)

holds. Moreover there exists a constant c(Ωc) > 0 independent of y, h, and x0 such
that

(5.2) ‖y‖C(Ī,Xθd+1/2) + ‖∂ty‖C(Ī,Xθd ) + ‖∂tty‖L2(I,Xθd−1/2) ≤ c ‖h‖L2(I)

holds.

Proof. This result is essentially proved in [28, Theorem 2.1], without detailing the
dependence on x0. But since the dependence of the constant c in (5.2) on x0 plays an
important role for the following consideration, we repeat the important steps of the
proof in order to investigate the role of x0. We first consider the free space problem

(5.3)

{
∂ttψ −∆ψ = hδx0

in Rn × I,
(ψ, ∂tψ) = 0 on {0} × Rn.

In [28] it is shown using the Laplace transform in time and the Fourier transform
in space that (5.3) admits a solution ψ with the regularity property

ψ ∈ C(Ī , [H2(Rn), L2(Rn)]1/2−θd) ∩ C1(Ī , [L2(Rn), H−2(Rn)]−θd)

and that there exists a constant c > 0 independent of ψ, h, and x0 such that

(5.4) ‖ψ‖C(Ī,[H2(Rn),L2(Rn)]1/2−θd ) + ‖∂tψ‖C(Ī,[L2(Rn),H−2(Rn)]−θd ) ≤ c ‖h‖L2(I)

holds. This results can be transferred to bounded domains. For that purpose we
introduce a smooth cut-off function ξ ∈ C∞c (Ω) with the property that ξ|Ωc = 1.
Then we introduce the function ψ0 = ξψ ∈ C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd). This function
solves the equation 

∂ttψ0 −∆ψ0 = hδx0
+ f in I × Ω,

ψ0 = 0 on I × ∂Ω,

(ψ0, ∂tψ0) = 0 in {0} × Ω

with f = −∆ξ ψ − 2∇ξ · ∇ψ in the very weak sense. Additionally we introduce the
function w = ψ0 − y which is a very weak solution of

∂ttw −∆w = f in I × Ω,

w = 0 on I × ∂Ω,

(w, ∂tw) = 0 in {0} × Ω,
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where y is the very weak solution of (5.1). Since ψ ∈ C(Ī , [H2(Rn), L2(Rn)]1/2−θd)
we have

f = −∆ξ ψ − 2∇ξ · ∇ψ ∈ C(Ī , Xθd).

Therefore, Corollary 4.9 implies that

w ∈ C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd) ∩H2(I,Xθd−1/2)

and

(5.5) ‖w‖C(Ī,Xθd+1/2) + ‖∂tw‖C(Ī,Xθd ) + ‖∂ttw‖L2(I,Xθd−1/2) ≤ c‖f‖L2(I,Xθd ).

According to the definition of w we have y = ψ0 − w, which implies that

y ∈ C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd).

Finally we show the a priori estimate (5.2). We use y = ψ0 −w, the a priori estimate
(5.5) for the w-problem, and the definition of f to get

‖y‖C(Ī,Xθd+1/2) ≤ ‖ψ0‖C(Ī,Xθd+1/2) + ‖w‖C(Ī,Xθd+1/2)

≤ c
(
‖ξψ‖C(Ī,Xθd+1/2) + ‖∆ξψ‖C(Ī,Xθd+1/2) + ‖∇ξ · ∇ψ‖C(Ī,Xθd )

)
.

Then we use the estimate

‖∇ξ · ∇ψ‖C(Ī,Xθd ) + ‖∆ξψ‖C(Ī,Xθd+1/2) + ‖ξψ‖C(Ī,Xθd+1/2)

≤ c
(
‖ξ‖L∞(Ω) + ‖∇ξ‖L∞(Ω) + ‖∆ξ‖L∞(Ω)

)
‖ψ‖C(Ī,[H2(Rn),L2(Rn)]1/2−θd ),

which follows by interpolation of the continuous operators ψ 7→ ξψ, ψ 7→ ∆ξψ and
ψ 7→ ∇ξ · ∇ψ. By assumption Ωc is compact, so there exists a constant c(Ωc) > 0
such that

‖ξ‖L∞(Ω) + ‖∇ξ‖L∞(Ω) + ‖∆ξ‖L∞(Ω) ≤ c

holds. Then (5.4) implies the assertion. The estimate for ‖∂ty‖C(Ī,Xθd ) can be derived

analogously. The estimate

‖∂tty‖L2(I,Xθd−1/2) ≤ c(Ωc)‖h‖L2(I)

follows from

(5.6)

∫ T

0

〈y, v〉Xθd+1/2,X−θd−1/2
∂ttψ dt =

∫ T

0

〈y,∆v〉Xθd+1/2,X−θd−1/2
ψ dt

+ (h, ψ)L2(I)v(x0)

≤ c
(
‖y‖C(Ī,Xθd+1/2) + ‖h‖L2(I)

)
‖v‖X−θd+1/2

‖ψ‖L2(I)

for any ψ ∈ C∞c (I) and v ∈ X−θd+1/2. The equation in (5.6) is proven by setting
φ = ∂ttψv −∆vψ in the very weak formulation for y.

Remark 5.2. The compactness assumption on Ωc is essential in the proof of
Proposition 5.1. The crucial point is the need for the regularity of the cut-off function
ξ ∈ C∞c (Ω). We demand that ξ|Ωc = 1. Suppose that dist(Ωc, ∂Ω) → 0. Then there
would hold

‖∇ξ‖L∞(Ω) + ‖∆ξ‖L∞(Ω) →∞.
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1226 K. KUNISCH, P. TRAUTMANN, AND B. VEXLER

This implies

‖y‖C(Ī,Xθd+1/2) ≤ c(‖∇ξ‖L∞(Ω), ‖∆ξ‖L∞(Ω))‖h‖L2(I) →∞ for dist(Ωc, ∂Ω)→ 0,

which makes this estimate unusable. Proposition 5.1 also can be proved using other
techniques. For instance, in the cases d = 1 and d = 3, we can proceed as follows.
Let ψ be the solution of (5.3). Further let z be a function satisfying the following
equation:

(5.7)


∂ttz −∆z = 0 in I × Ω,

z = g on I × ∂Ω,

(z, ∂tz) = 0 in {0} × Ω.

Problem (5.7) has a unique solution z ∈ C(Ī , [H2(Ω), L2(Ω)]1/2−θd) for Dirichlet
data from g ∈ O with O = L2(I × ∂Ω) for d = 3 and O = H1(I)2 for d = 1 and the a
priori estimate

‖z‖C(Ī,[H2(Ω),L2(Ω)]1/2−θd ) ≤ c ‖g‖O

holds; see, e.g., [23]. The solution of (5.1) is given by y = ψ − z if g = ψ|∂Ω, where ψ
is the solution of the free space problem (5.3). Therefore we can estimate

‖y‖C(Ī,Xθd+1/2) ≤ ‖ψ‖C(Ī,[H2(Rn),L2(Rn)]1/2−θd ) + ‖z‖C(Ī,[H2(Ω),L2(Ω)]1/2−θd )

≤ ‖ψ‖C(Ī,[H2(Rn),L2(Rn)]1/2−θd ) + c ‖ψ‖O.

In order to establish (5.2) we need to derive an estimate of the following form:

(5.8) ‖ψ‖O ≤ c ‖h‖L2(I).

Furthermore, we have to investigate the dependence of c on dist(Ωc, ∂Ω). In the
case d = 1 it is easy to show by using the explicit solution formula for problem (5.3)
that the constant in (5.8) is bounded for dist(Ωc, ∂Ω) → 0. In the case d = 3 the
estimate

(5.9) ‖ψ‖C(Ī,L2(∂Ω)) ≤
c

dist(Ωc, ∂Ω)
‖h‖L2(I)

is shown by Lions in [25] by using the explicit solution formula. Estimate (5.9) is
sharp in the sense that it can happen that

‖ψ‖C(Ī,L2(∂Ω)) →∞ for dist(x0, ∂Ω)→ 0,

where x0 is the position of the point source. This is shown by the following example.
Let Ω have the following form:

Ω = {x ∈ R3 : x2
1 + x2

2 < 1, − 1 < x3 < 0}.

We set h ≡ 1 and x0 = (0, 0,−%) with % > 0. The solution of (5.3) in this case is
given by

ψ(t, x) =

{
1

4π
1

‖x−x0‖R3
if t ≥ ‖x− x0‖R3 ,

0 else;

see [25]. Next we calculate ‖ψ(t)‖L2(∂Ω1) for
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SPARSE CONTROL OF THE LINEAR WAVE EQUATION 1227

∂Ω1 = {x ∈ R3 : x2
1 + x2

2 ≤ 1, x3 = 0}.

This amounts to

‖ψ(t)‖L2(∂Ω1) =

{
1

4
√
π

(ln(t2)− ln(%2))
1
2 if t ≥ %,

0 else,

and therefore it holds that

‖ψ‖C(Ī,L2(∂Ω)) →∞ for %→ 0.

In the case d = 2 the explicit solution formula has a more complicated structure
and therefore an estimate of the form (5.8) has not been obtained. Thus, this approach
is not applicable.

Next we show that the solution p of (4.4) lies in C(Ωc, L2(I)) for certain classes
of data using the previous regularity result for the primal equation.

Theorem 5.3. Let (φ, p1, p0) ∈ L1(I,X−θd−1/2) × X−θd−1/2 × X−θd . Then the
solution p of (4.4) satisfies

p ∈ C(Ωc, L2(I)) ∩ C(Ī , X−θd) ∩ C1(Ī , X−θd−1/2) ∩W 2,1(I,X−θd−1)

and there exists a constant c > 0 such that

(5.10) ‖p‖C(Ωc,L2(I)) ≤ c
(
‖φ‖L1(I,X−θd−1/2) + ‖p0‖X−θd + ‖p1‖X−θd−1/2

)
holds.

Proof. We intend to show C(Ωc, L2(I)) regularity of p. For that we choose the
following approximating sequences:

• {φn}n∈N ⊂ C∞c (I × Ω) with φn → φ in L1(I,X−θd−1/2),
• {p0,n}n∈N ⊂ C∞c (Ω) with p0,n → p0 in X−θd,
• {p1,n}n∈N ⊂ C∞c (Ω) with p1,n → p1 in X−θd−1/2.

Then we consider the following equation:

(5.11)


∂ttpn −∆pn = φn in I × Ω,

pn = 0 on I × ∂Ω,

(pn, ∂tpn) = (p0,n, p1,n) in {T} × Ω.

For x0 ∈ Ωc arbitrary, let ξn be the very weak solution of the following problem:

(5.12)


∂ttξn −∆ξn = pn(x0, t)δx0 in I × Ω,

ξn = 0 on I × ∂Ω,

(ξn, ∂tξn) = 0 in {0} × Ω.

Proposition 5.1 implies that

ξn ∈ C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd) ∩H2(I,Xθd−1/2)

as well as the existence of a constant c > 0 independent of x0 such that

(5.13) ‖ξn‖C(Ī,Xθd+1/2) + ‖∂tξn‖C(Ī,Xθd ) ≤ c ‖pn(x0, ·)‖L2(I)
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1228 K. KUNISCH, P. TRAUTMANN, AND B. VEXLER

holds. Using the very weak formulation (4.5) of (5.12) and (5.13) we can estimate

‖pn(x0, ·)‖2L2(I) =

∫ T

0

〈ξn, φn〉V ∗,V dt− 〈ξn(T ), p1,n〉V ∗,V + 〈∂tξn(T ), p0,n〉V 2∗,V 2

=

∫ T

0

〈ξn, φn〉Xθd+1/2,X−θd−1/2
dt− 〈ξn(T ), p1,n〉Xθd+1/2,X−θd−1/2

+ 〈∂tξn(T ), p0,n〉Xθd ,X−θd
≤ ‖ξn‖C(Ī,Xθd+1/2)‖φn‖L1(I,X−θd−1/2) + ‖ξn(T )‖Xθd+1/2

‖p1,n‖X−θd−1/2

+ ‖∂tξn(T )‖Xθd‖p0,n‖X−θd
≤ c ‖pn(x0, ·)‖L2(I)

(
‖φn‖L1(I,X−θd−1/2) + ‖p0,n‖Xθd−1/2

+ ‖p1,n‖X−θd
)
.

Since x0 ∈ Ωc was arbitrary and the constant c in the last estimate does not depend
on x0 according to Proposition 5.1 we get

(5.14) ‖pn‖C(Ωc,L2(I)) ≤ c
(
‖φn‖L1(I,X−θd−1/2) + ‖p0,n‖X−θd + ‖p1,n‖X−θd−1/2

)
.

The inequality (5.14) and linearity of (5.11) imply that {pn}n∈N is a Cauchy se-
quence in C0(Ω, L2(I)). So there exists a p̃ ∈ C(Ωc, L2(I)) with pn → p̃ in C(Ωc, L2(I)).
Finally we have to show that p̃ is a solution of the adjoint wave equation (4.4). We
know from Corollary 4.9 and Remark 4.10 that

‖pn‖C(Ī,X−θd ) + ‖∂tpn‖C(Ī,X−θd−1/2) + ‖∂ttpn‖L1(Ī,X−θd−1)

≤ c
(
‖φn‖L1(I,X−θd−1/2) + ‖p0,n‖X−θd + ‖p1,n‖X−θd−1/2

)
holds, which implies that {pn}n∈N is also a Cauchy sequence in C(Ī , X−θd) ∩
C1(Ī , X−θd−1/2) ∩W 2,1(I,X−θd−1). Therefore there holds

p̃ ∈ C(Ī , X−θd) ∩ C1(Ī , X−θd−1/2) ∩W 2,1(I,X−θd−1).

Then we pass to the limit in∫ T

0

(pn, f)H dt+ (pn(0), y1)H − (∂tpn(0), y0)H

=

∫ T

0

(φn, y)H dt+ (p0,n, ∂ty(T ))H − (p1,n, y(T ))H

for all (f, y0, y1) ∈ L1(I, V )×V 2×V , where y ∈ C(Ī , V 2)∩C1(Ī , V ) is the solution of
(4.1) for the data (f, y0, y1). We see that p̃ satisfies the very weak formulation (4.5)
of (4.4). Consequently p̃ is a very weak solution of (4.4).

Remark 5.4. The results of Proposition 5.1 and Theorem 5.3 can be interpreted
as a hidden regularity result for the linear wave equation; cf. [23].

In order to establish higher regularity of the velocity ∂ty we need the following
lemma.

Lemma 5.5. Let φ ∈W 1,1
0 (I,X−θd) and consider the following equation:

(5.15)


∂ttp−∆p = ∂tφ in I × Ω,

p = 0 on I × ∂Ω,

(p, ∂tp) = 0 in {0} × Ω.
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Then there exists a constant c(Ωc) > 0 such that

‖p‖C(Ωc,L2(I)) ≤ c ‖φ‖L1(I,X−θd )

holds.

Proof. Since ∂tφ ∈ L1(I,X−θd), Corollary 4.9, Remark 4.10, and Theorem 5.3
guarantee the existence of a unique solution p of (5.15) with

p ∈ C(Ī , X−θd+1/2) ∩ C1(Ī , X−θd) ∩W 2,1(I,X−θd−1/2) ∩ C(Ωc, L2(I)).

Next choose any x0 ∈ Ωc. Then let ξ ∈ C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd) be the very
weak solution of (5.1) with h = p(x0, ·)δx0

. Then we proceed similarly as in the proof
of Theorem 5.3 using integration by parts (cf. Lemma 4.4):

‖p(x0)‖2L2(I) =

∫ T

0

〈ξ, ∂tφ〉Xθd ,X−θd dt

= −
∫ T

0

〈∂tξ, φ〉Xθd ,X−θd dt

≤ ‖∂tξ‖C(Ī,Xθd )‖φ‖L1(I,X−θd )

≤ c(Ωc) ‖p(x0)‖L2(I)‖φ‖L1(I,X−θd ).

This finishes the proof.

The following proposition establishes higher regularity of the state variable for
sources which are smoother in time, in particular from M(Ωc, H

1(I)). These results
will be extended to M(Ωc, L

2(I)) in a combined density and duality argument in
Theorem 5.7.

Proposition 5.6. Let (f, y0, y1) ∈ M(Ωc, H
1(I)) × Xθd+1/2 × Xθd . Then the

solution y of (4.1) has the following regularity properties:

y ∈ C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd) ∩ C2(Ī , Xθd−1/2).

Proof. First we remark that

M(Ωc, H
1(I)) ⊂ H1(I,X−d/4−ε) ⊂ H1(I,Xθd−1/2)

for ε > 0 small enough. Indeed, let u ∈M(Ωc, H
1(I)) and let u′ ∈ L∞((Ωc, |u|), H1(I))

be its Radon–Nikodym derivative. Then the mapping t 7→ u′(·, t)|u| is an element of
H1(I,X−d/4−ε). Then we approximate the data by smooth functions, i.e.,

• {y0,n} ⊂ C∞c (Ω), y0,n → y0 in Xθd+1/2,
• {y1,n} ⊂ C∞c (Ω), y1,n → y0 in Xθd ,
• {fn} ⊂ C∞(Ī , C∞c (Ω)), fn → f in H1(I,Xθd−1/2).

For the smooth versions of the data we consider the equation
∂ttyn −∆yn = fn in I × Ω,

yn = 0 on I × ∂Ω,

(yn, ∂tyn) = (y0,n, y1,n) in {0} × Ω,

as well as 
∂ttỹn −∆ỹn = ∂tfn in I × Ω,

ỹn = 0 on I × ∂Ω,

(ỹn, ∂tỹn) = (y1,n, fn(0) + ∆y0,n) in {0} × Ω.
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It is easy to see that ∂tyn = ỹn. According to Corollary 4.9 the following estimate
holds true:

‖∂tyn‖C(Ī,Xθd )+‖∂ttyn‖C(Ī,Xθd−1/2)

≤ c ·
(
‖y0,n‖Xθd+1/2

+‖y1,n‖Xθd+‖fn‖H1(I,Xθd−1/2)

)
.

Then we use the strong formulation of the wave equation and the last estimate
in order to get

‖yn(t)‖Xθd+1/2
= ‖Aθd−1/2Ayn(t)‖H = ‖(Aθd−1/2(fn − ∂ttyn))(t)‖H

≤ c
(
‖y0,n‖Xθd+1/2

+ ‖y1,n‖Xθd + ‖fn‖H1(I,Xθd−1/2)

)
for any t ∈ Ī. The last estimates show that {yn} is a Cauchy sequence in

C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd) ∩ C2(Ī , Xθd−1/2).

A standard limiting argument involving the very weak formulation yields the
assertion.

Now we have introduced all preparatory results in order to prove higher regularity
of the state.

Theorem 5.7. Let (u, y0, y1) ∈M(Ωc, L
2(I))×Xθd+1/2×Xθd and y be the very

weak solution of the state equation (1.1). Then there holds

y ∈ C(Ī , Xθd+1/2) ∩ C1(I,Xθd) ∩H2(I,Xθd−1/2).

Furthermore there exists a constant c > 0 such that

‖y‖C(Ī,Xθd+1/2) + ‖∂ty‖C(Ī,Xθd ) + ‖∂tty‖L2(I,Xθd−1/2)(5.16)

≤ c
(
‖u‖M(Ωc,L2(I)) + ‖y0‖Xθd+1/2

+ ‖y1‖Xθd
)

holds.

Proof. Corollary 4.11 implies the existence of a unique solution y of (1.1) which
satisfies

y ∈ C(Ī , X−(d−2)/4−ε) ∩ C1(Ī , X−d/4−ε) ∩H2(I,X−(d+2)/4−ε), 1/4 > ε > 0.

But the regularity of y can be essentially improved in the following way. First of
all we consider the case with homogeneous initial data y0 = y1 = 0. Proposition 2.1
implies the existence of a sequence {un}n∈N ⊂M(Ωc, H

1(I)) with

(5.17) ‖u− un‖M(Ωc,L2(I)) → 0 for n→∞.

Now we consider the problem

(5.18)


∂ttyn −∆yn = un in I × Ω,

yn = 0 on I × ∂Ω,

(yn, ∂tyn) = 0 in {0} × Ω,

which has a solution unique solution yn with

yn ∈ C(Ī , Xθd+1/2) ∩ C1(I,Xθd) ∩ C2(I,Xθd−1/2)
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according to Proposition 5.6. Next we prove the estimate

‖yn‖L∞(I,Xθd+1/2) ≤ c‖un‖M(Ωc,L2(I))

using the very weak formulation of (5.18) in the form∫ T

0

〈yn, φ〉Xθd+1/2,X−θd−1/2
dt = 〈un, p〉M(Ωc,L2(I)),C(Ωc,L2(I)),

where p is the solution of 
∂ttp−∆p = φ in I × Ω,

p = 0 on I × ∂Ω,

(p, ∂tp) = 0 in {T} × Ω

with φ ∈ L1(I,X−θd−1/2). According to Theorem 5.3 this equation has a unique
solution p ∈ C(Ωc, L2(I)) which fulfills the following estimate:

‖p‖C(Ωc,L2(I)) ≤ c‖φ‖L1(I,X−θd−1/2).

Therefore we can estimate in the following manner:∫ T

0

〈yn, φ〉Xθd+1/2,X−θd−1/2
dt = 〈un, p〉M(Ωc,L2(I)),C(Ωc,L2(I))

≤ ‖un‖M(Ωc,L2(I))‖p‖C(Ωc,L2(I))

≤ c‖un‖M(Ωc,L2(I))‖φ‖L1(I,X−θd−1/2).

This implies that
‖yn‖L∞(I,Xθd+1/2) ≤ c‖un‖M(Ωc,L2(I))

holds. We proceed with an estimate of the form

‖∂tyn‖L∞(I,Xθd ) ≤ c‖un‖M(Ωc,L2(I))

using the very weak formulation of (5.18) involving the solution p of
∂ttp−∆p = ∂tφ in I × Ω,

p = 0 on I × ∂Ω,

(p, ∂tp) = 0 in {T} × Ω

with φ ∈ W 1,1
0 (I,X−θd). According to Theorem 5.3 this equation has a unique solu-

tion p ∈ C(Ωc, L2(I)) and the estimate

‖p‖C(Ωc,L2(I)) ≤ c‖φ‖L1(I,X−θd )

holds according to Lemma 5.5. We choose any φ ∈ W 1,1
0 (I, V ) and have after inte-

gration by parts in time (cf. Lemma 4.4) that∫ T

0

〈∂tyn, φ〉Xθd ,X−θd dt = −
∫ T

0

〈yn, ∂tφ〉Xθd+1/2,X−θd−1/2
dt

= −〈un, p〉M(Ωc,L2(I)),C(Ωc,L2(I))

≤ ‖un‖M(Ωc,L2(I))‖p‖C(Ωc,L2(I))

≤ c‖un‖M(Ωc,L2(I))‖φ‖L1(I,X−θd ).
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The density of W 1,1
0 (I,X−θd) in L1(I,X−θd) yields the desired estimate

‖∂tyn‖L∞(I,Xθd ) ≤ c‖un‖M(Ωc,L2(I)).

The estimate
‖∂ttyn‖L2(I,Xθd−1/2) ≤ c‖un‖M(Ωc,L2(I))

follows from∫ T

0

〈yn, v〉Xθd+1/2,X−θd−1/2
∂ttψ dt =

∫ T

0

〈yn,∆v〉Xθd+1/2,X−θd−1/2
ψ dt

+ 〈un, vψ〉M(Ωc,L2(I)),C(Ωc,L2(I))

for any ψ ∈ C∞c (I) and v ∈ X−θd+1/2 in the same manner as in the proof of Propo-
sition 5.1. Now we take any n,m ∈ N and use the linearity of the state equation to
obtain the following estimate:

‖yn − ym‖L∞(I,Xθd+1/2) + ‖∂t(yn − ym)‖L∞(I,Xθd )

+ ‖∂tt(yn − ym)‖L2(I,Xθd−1/2) ≤ c‖un − um‖M(Ωc,L2(I)).

Hence (5.17) implies that {yn}n∈N is a Cauchy sequence in

C(Ī , Xθd+1/2) ∩ C(Ī , Xθd) ∩H2(I,Xθd−1/2).

Therefore there exists an element y ∈ C(Ī , Xθd+1/2)∩C1(Ī , Xθd)∩H2(I,Xθd−1/2)
with (yn, ∂tyn, ∂ttyn)→ (y, ∂ty, ∂tty). We pass to the limit in the very weak formula-
tion of (5.18) and see that y fulfills the very weak formulation of the state equation.
Therefore y is a very weak solution of the state equation. Due to the linearity of
the state equation the case with inhomogeneous initial data can be treated separately
using Corollary 4.9.

6. Existence of optimal controls. In this section we prove the well-posedness
of (P), employing the regularity results of the last section. Throughout the remainder
of this paper we assume that (y0, y1) ∈ Xθd+1/2×Xθd . The control-to-state mapping
is denoted by

(6.1) S : M(Ωc, L
2(I))→ L2(I × Ω)×H × V ∗, u 7→ (y, y(T, ·), ∂ty(T, ·)),

where y is the very weak solution of (1.1) for a control u. According to Theorem 5.7,
it is a bounded affine linear operator. Furthermore we specify the data tracking
functional

J(y1, y2, y3) =
1

2

{
ν1‖y1 − z1‖2L2(I×Ω) + ν2‖y2 − z2‖2H + ν3‖y3 − z3‖2V ∗

}
for (y1, y2, y3) ∈ L2(I × Ω)×H × V ∗, (z1, z2, z3) ∈ L2(I × Ω)×H × V ∗, and νi ≥ 0.
Using the operator S we introduce the reduced cost functional

(6.2) j(u) = J(Su) + α‖u‖M(Ωc,L2(I)).

Next we proof weak continuity properties of S.

Lemma 6.1. Let {un}n∈N ⊂ M(Ωc, L
2(I)) and u ∈ M(Ωc, L

2(I)) with un ⇀
∗ u

in M(Ω, L2(I)). Then there holds Sun ⇀
∗ Su in L∞(I,H)×H × V ∗ for d = 1, 2, 3

and additionally Sun → Su in L2(I × Ω)×H × V ∗ for d = 1, 2.
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Proof. Let yn be the solution of (1.1) for the control un. From the a priori estimate
(5.16) it follows that there exist a subsequence of {yn}n∈N (denoted with the same
index n) and elements

(y, ŷ, ỹ) ∈ L∞(I,H) ∩H1(I, V ∗) ∩H2(I, V 2∗)×H × V ∗

such that

(yn, yn(T ), ∂tyn(T )) ⇀∗ (y, ŷ, ỹ) in L∞(I,H) ∩H1(I, V ∗) ∩H2(I, V 2∗)×H × V ∗

holds. Due to the weak to weak continuity of the time-point evaluation operator

E : H1(I, V ∗) ∩H2(I, V 2∗)→ V ∗ × V 2∗, y 7→ (y(T ), ∂ty(T ))

there holds ŷ = y(T ) and ỹ = ∂ty(T ). By passing to the limit in the very weak
formulation (4.5) of the equation for yn we obtain that y fulfills∫ T

0

(y, φ)H dt− (y(T ), p1)H + 〈∂ty(T ), p0〉V ∗,V

= 〈u, p〉M(Ωc,L2(I)),C(Ωc,L2(I)) − (y0, ∂tp(0))H + 〈y1, p(0)〉V ∗,V ,

where p ∈ C(Ī , V )∩C1(Ī , H)∩C(Ωc, L2(I)) is the solution of (4.4) for any (φ, p1, p0) ∈
L1(I,H) × H × V . Overall this means that y is a very weak solution of the state
equation for the control u. From (5.16) we conclude that (yn, yn(T ), ∂tyn(T )) is
bounded in (

C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd)
)
×Xθd+1/2 ×Xθd .

For d = 1, 2 the embedding(
C(Ī , Xθd+1/2) ∩ C1(Ī , Xθd)

)
×Xθd+1/2 ×Xθd ↪→ L2(I × Ω)×H × V ∗

is compact according to the Aubin–Lions lemma [27, Chapter 3, Proposition 1.3].
This implies strong convergence of (yn, yn(T ), ∂tyn(T )) in L2(I × Ω)×H × V ∗. The
uniqueness of y implies the convergence of the whole sequence.

Now we are ready to prove the well-posedness of problem (P) by classical argu-
ments.

Proposition 6.2. Problem (P) has a solution ū ∈M(Ωc, L
2(I)) which is unique

for ν1 > 0.

Proof. Since j is bounded from below there exists a sequence

{un}n∈N ∈M(Ωc, L
2(I))

with j(un)→ infu∈M(Ωc,L2(I)) j(u) = j̄. For all n ∈ N large enough it holds that

α‖un‖M(Ωc,L2(I)) ≤ j(un) ≤ j(0) + 1.

We recall the weak-∗ sequential precompactness of bounded sets inM(Ωc, L
2(I))

from section 2. Consequently there exists a subsequence {unk}k∈N and ū ∈
M(Ωc, L

2(I)) with unk ⇀
∗ ū in M(Ωc, L

2(I)). From Lemma 6.1 we know Sunk ⇀
∗

Sū in L∞(I,H) ×H × V ∗. Moreover J is weak lower semicontinuous in L2(I,H) ×
H×V ∗ and ‖ ·‖M(Ωc,L2(I)) is weak-∗ lower semicontinuous inM(Ωc, L

2(I)). So there
holds
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j̄ = lim inf
k→∞

j(unk) ≥ lim inf
k→∞

J(Sunk) + lim inf
k→∞

α‖unk‖M(Ωc,L2(I))

≥ J(Sū) + α‖ū‖M(Ωc,L2(I)),

which implies that ū is a minimizer of j.

Remark 6.3. Concerning uniqueness of the optimal control, we observe that it
cannot be obtained from the control cost ‖u‖M(Ωc,L2(I)) since it is not strictly convex.
However, since (y1, y2, y3) 7→ J(y1, y2, y3) is strictly convex, uniqueness of the optimal
control follows from injectivity of the control-to-state operator S. In the case of solely
terminal observation S is not injective (ν1 = 0).

So far we assumed the availability of observations on all of I×Ω. In the case that
the observation domain is of the form Ωo × I with Ωo ⊂ Ω, existence of a solution to
(P) remains correct. Uniqueness of the solution is guaranteed if the control-to-state
operator S : M(Ωc, L

2(I)) → L2(Ωo × I) × L2(Ωo) × H−1(Ω) is injective. This is
related to the Huygens principle and the location of Ωo relative to Ω.

In the next section we derive optimality conditions for (P).

7. First order optimality conditions. In this section we derive first order
optimality conditions. We rely on similar arguments in [20]. Furthermore we use
the first order optimality conditions to establish structural properties of the optimal
control. Finally we prove improved regularity of the optimal adjoint state and optimal
control. First we introduce the predual operator S′? of the linearized control-to-
observation operator S′ which is equal to S for zero initial data. It is given by

S′? : L2(I × Ω)×H × V → C(Ωc, L2(I)), (q1, q2, q3) 7→ p,

where p is the solution of (4.4) for φ = q1, p0 = q3, and p1 = −q2 and satisfies

((S′u)1, q1)L2(I×Ω) + ((S′u)2, q2)H + 〈(S′u)3, q3〉V ∗,V
= 〈u, S′?(q1, q2, q3)〉M(Ωc,L2(I)),C(Ωc,L2(I)).

Moreover, it is linear and bounded. It has the mentioned properties according to
Theorem 5.3.

Theorem 7.1. Let (ū, ȳ) be a solution of (P). Then there exists a unique adjoint
state p̄ ∈ C(Ωc, L2(I)) which solves

(7.1)


∂ttp̄−∆p̄ = ν1(ȳ − z1) in I × Ω,

p̄ = 0 on I × ∂Ω,

p̄(T ) = ν3A
−1/2(A−1/2)∗(∂tȳ − z3) in {T} × Ω,

∂tp̄(T ) = ν2(z2 − ȳ) in {T} × Ω

and fulfills the subgradient condition

−p̄ ∈ α∂‖ū‖M(Ωc,L2(I))

or equivalently

(7.2) α‖ū‖M(Ωc,L2(I)) = 〈ū,−p̄〉M(Ωc,L2(I)),C(Ωc,L2(I)), ‖p̄‖C(Ωc,L2(I)) ≤ α.

Proof. Problem (P) can be formulated in the form

min
u∈M(Ωc,L2(I))

(J ◦ S + F )(u)

D
ow

nl
oa

de
d 

05
/2

6/
19

 to
 1

43
.5

0.
47

.1
47

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPARSE CONTROL OF THE LINEAR WAVE EQUATION 1235

with F (u) = α‖u‖M(Ωc,L2(I)). The control ū ∈M(Ωc, L
2(I)) is a solution of problem

(P) if and only if

0 ∈ ∂(J ◦ S + F )(ū),

where ∂ · is the subdifferential of a convex function on M(Ωc, L
2(I)) equipped with

its weak-∗ topology. Due to the Fréchet differentiability of J the optimality condition
can be rewritten as

(7.3) − S′?(J ′(Sū)) ∈ ∂F (ū).

Next we differentiate J ◦ S with respect to u in direction δu ∈M(Ωc, L
2(I)) and

obtain the following expression:

〈J ′(Su), δu〉C(Ωc,L2(I)),M(Ωc,L2(I)) = ν1((Su)1 − z1, (S
′δu)1)L2(I×Ω)

+ ν2((Su)2 − z2, (S
′δu)2)H + ν3〈A−1/2(A−1/2)∗((Su)3 − z3), (S′u)3〉V,V ∗ .

We define

p̄ := S′?(ν1((Sū)1 − z1), ν2((Sū)2 − z2), ν3A
−1/2(A−1/2)∗((Su)3 − z3)),

which means that p̄ is the solution of the adjoint wave equation with right-hand side
φ = ν1(z1 − (Sū)1), initial displacement p0 = ν3(A−1/2(A−1/2)∗((Sū)3 − z3)), and
initial velocity p1 = ν2(z2 − (Su)2). Thus (7.3) can be expressed in the following
form:

(7.4) − p̄ ∈ ∂F (ū).

This subgradient condition is equivalent to

(7.5) F (ū) + F ?(−p̄) = 〈ū,−p̄〉M(Ωc,L2(I)),C(Ωc,L2(I))

(e.g., see [14, Proposition 5.1]), where F ? is the convex conjugate of F with respect
to the weak-∗ topology. It is given by

(7.6) F ?(p) =

{
0, ‖p‖C(Ωc,L2(I)) ≤ α,
∞ else.

Therefore (7.5) is equivalent to (7.2).

Next we establish structural properties of the optimal control ū.

Proposition 7.2. Let ū ∈ M(Ωc, L
2(I)) be the solution of (P), |ū| its total

variation measure, ū′ its Radon–Nikodym derivative, and p̄ the optimal adjoint state.
Then there holds

ū′ = − 1

α
p̄ in L1((Ωc, |ū|), L2(I)),(7.7)

supp |ū| ⊆ {x ∈ Ωc : ‖p̄(x)‖L2(I) = α}.(7.8)

Proof. A proof for these results can be found in [20, Theorem 2.12].

Next we show improved regularity of the optimal adjoint state p̄ in space and of
the optimal control ū in time.
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1236 K. KUNISCH, P. TRAUTMANN, AND B. VEXLER

Theorem 7.3. Let ū ∈M(Ωc, L
2(I)) be the solution of (P) and p̄ ∈ C(Ωc, L2(I))

the corresponding optimal adjoint state. Additionally let z1 ∈ C(Ī , Xθd+1/2), z2 ∈
Xθd+1/2, and z3 ∈ Xθd . Then the regularity result

p̄ ∈ C(Ī , Xθd+1) ∩ C1(Ī , Xθd+1/2) ∩ C2(Ī , Xθd)

for d = 1, 2, 3 and
ū ∈ C2−d,1/2−ε(Ī ,M(Ωc))

for d = 1, 2 and any ε ∈ (0, 1/2] holds.

Proof. Due to the assumptions on z1, z2, z3 and according to Theorem 5.7 there
holds

φ = ȳ − z1 ∈ C(Ī , Xθd+1/2), p1 = z2 − ȳ(T ) ∈ Xθd+1/2,

p0 = A−1/2(A−1/2)∗(∂tȳ(T )− z3) ∈ Xθd+1 for d = 2, 3,

p0 = A−1(∂tȳ(T )− z3) ∈ V 2 for d = 1.

So the improved regularity of p̄ for d = 1, 2 follows from Remark 4.10 and the
fact that the continuity of the right-hand side φ in time implies the continuity of ∂ttp̄
in time. Next we show the improved regularity of ū for d = 1, 2. We have for any
ε ∈ (0, 1/2]

p̄ ∈ C1(Ī , X1/2) ∩ C2(Ī , X0) ↪→ C1,1/2−ε(Ī , X1/4+ε) ↪→ C1,1/2−ε(Ī , C(Ωc)) for d = 1

and

p̄ ∈ C(Ī , X3/4) ∩ C1(Ī , X1/4) ↪→ C0,1/2−ε(Ī , X1/2+ε) ↪→ C0,1/2−ε(Ī , C(Ωc)) for d = 2.

Details concerning this embedding of vector-valued spaces can be found in [1,
Theorem 5.2]. First we consider the case d = 2. We recall that

dū = − 1

α
p̄ d|ū|

holds. Then we pick any t0, t1 ∈ Ī and estimate using the continuity of p̄ in space

‖ū(t0)− ū(t1)‖M(Ωc) = sup
‖φ‖C(Ωc)≤1

∫
Ωc

φ(x) d(ū(t0)− ū(t1))

= sup
‖φ‖C(Ωc)≤1

1

α

∫
Ωc

φ(x)(p̄(x, t0)− p̄(x, t1)) d|ū|

≤ 1

α
‖p̄(t1)− p̄(t0)‖C(Ωc)‖ū‖M(Ωc,L2(I))

≤ c|t0 − t1|1/2−ε‖ū‖M(Ωc,L2(I)),

which implies that
ū ∈ C0, 12−ε(Ī ,M(Ωc)).
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The property ū ∈ C1, 12−ε(Ī ,M(Ωc)) in the case d = 1 can be shown analogously

using that p̄ ∈ C1, 12−ε(Ī , C(Ωc)) and

d∂tū = − 1

α
∂tp̄ d|ū|.

8. Numerical solution. Next we turn our attention to the discretization of
problem (P) by finite elements. For the discretization of the state equation (1.1) we
rewrite it as a system of first order equations in time,

(8.1)


∂ty − v = 0 in I × Ω,

∂tv −∆y = u in I × Ω,

v = y = 0 on I × ∂Ω,

(y, v) = (y0, y1) in {0} × Ω.

Then the state variables (y, v) are discretized by continuous linear finite elements
in time and space. The test functions are chosen from the space of piecewise con-
stant functions in time and piecewise linear, continuous functions in space. Due to
the different ansatz and test spaces in time the proposed discretization scheme is
a Petrov–Galerkin scheme. The resulting discrete system of equations corresponds
to the Crank–Nicolson time stepping scheme applied to the space-discrete version of
(8.1). More details on the proposed discretization method for the state equation can
be found in [19]. In this paper the authors also derive a gradient-consistent discrete
adjoint time stepping scheme. This adjoint scheme corresponds to the discretization
of the two adjoint state variables by piecewise constant functions in time and by piece-
wise linear, continuous functions in space. The discrete control variable has the form

ukh =

N∑
j=1

uj(t)δxj ,

where the functions ui(t) are piecewise constant and δxi are Dirac measures concen-
trated in the grid points xi of the spatial mesh. Therefore the discrete control cost
term has the form

‖ukh‖M(Ωc,L2(I)) =

N∑
j=1

(
NT∑
i=1

τiu
2
j,i

)1/2

,

where NT is the number time steps and τi the size of the ith time step. The resulting
discrete control cost term is a weighted l1 − l2-norm in RN×NT which is known in
compressive sensing in connection with the concept of group sparsity or joint sparsity.
This control discretization was also used and analyzed in [20] and [7].

After discretization of all variables problem (P) is a nonsmooth and convex op-
timization problem in RN×NT . For the solution of the discrete problem we adapt the
strategy of [20]. We add an additional L2-regularization term to the cost functional of
the continuous problem. The resulting regularized problem is posed in L2(Ω̊c×I) and
the corresponding semismooth Newton method can be applied and analyzed directly
on the continuous level (mesh independence). In order to solve the unregularized
problem we apply a continuation strategy. The regularization parameter is reduced
gradually and the solutions of the regularized subproblems are used for initialization
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Fig. 9.1. Schematic description of the inverse problem.

of the Newton iterations. This continuation strategy can also be seen as a globaliza-
tion strategy, since in numerical practice it can be observed that the Newton iteration
converges independently of the initial guess only if the regularization parameter is suf-
ficiently large. It can be verified that the solution of the regularized problem converges
in the weak-∗ sense to the solution of the unregularized problem; see [20].

9. Inverse source problem. In this section we use the problem formulation
(P) to solve an inverse source problem originating from geophysical sciences. Our
problem setup will not fit exactly to the problem formulation (P) and therefore the
theoretical findings of the previous sections can be applied only in part.

Seismic events, for example, earthquakes or eruptions of volcanoes, emit seismic
waves traveling through the ground. These waves are picked up by seismographs
all over the world. Geophysicists use the recorded data to reconstruct the locations
and intensities of the initial seismic events. Motivated by such a scenario we intend
to solve the following inverse source problem for the acoustic/scalar wave equation
(approximation of the elastic wave equation).

Let Ω ⊂ R2 be a domain in which N ≥ 1 sources of the form

(9.1) u(x, t) =
N∑
i=1

ui(t)δxi ∈M(Ωc, L
2(I)),

which emit waves. Moreover M ≥ 1 mean values zj(t) of the emitted waves on patches
Pj ⊂ Ω for j = 1, . . . ,M are observed over time. We aim to reconstruct the number
of point sources N , the locations xi, and the time-dependent intensities ui(t) from
noisy versions of these seismograms zi(t). The scenario is depicted in Figure 9.1. This
inverse problem can be formulated as an optimal control problem of the form

(9.2) min
u,X

1

2M

M∑
j=1

‖Oj(y)− zj‖2L2(I))D
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subject to

(9.3)


∂tty −∆y =

N∑
i=1

uiδxi in I × Ω,

∂ty + ∂ny = 0 on I × ∂Ω,

(y, ∂ty) = 0 in {0} × Ω

with

(9.4) Oj(y)(t) =
1

|Pj |

∫
Pj

y(t, x) dx, i = 1, . . . ,M,

u = {ui(t)}i=1,...,N , X = {xi}i=1,...,N ⊂ Ωc, and ∂n· the normal derivative on ∂Ω.
The condition ∂ny + ∂ty = 0 on ∂Ω is used as an approximative absorbing boundary
condition in order to avoid unrealistic reflections at the boundary; see, e.g., [15].

The optimal control problem (9.2) is not well-posed. If, as a first remedy, the
regularization term

(9.5) u 7→
N∑
i=1

‖ui‖L2(I)

is added, problem (9.2) is well-posed but not convex since the state y depends non-
linearly on the positions xi of the point sources. In order to obtain a convex problem
we instead formulate the optimal control problem in the space M(Ωc, L

2(I)) which
contains and favors sources of the form (9.1). We therefore suggest casting the inverse
problem in the form

(9.6) min
u,y

1

2M

M∑
j=1

‖Oj(y)− zj‖2L2(I) + α ‖u‖M(Ωc,L2(I))

subject to 
∂tty −∆y = u in I × Ω,

∂ty + ∂ny = 0 on I × ∂Ω,

(y, ∂ty) = 0 in {0} × Ω.

If the optimal control ū has the form (9.1), it holds that

‖ū‖M(Ωc,L2(I)) =

N∑
i=1

‖ui‖L2(I).

The problem formulation (9.6) is not covered by our analysis due to the absorbing
boundary condition of the state equation and the patchwise observation. The adjoint
of the linear observation operator Oj : L2(I, L1(Ω))→ L2(I) is given by

O∗j : L2(I)→ L2(I, L∞(Ω)), O∗j q =
1

|Pj |
χPj (x)q(t)

with

χPj (x) =

{
1, x ∈ Pj ,
0 else,
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and therefore the adjoint state equation has the form

(9.7)


∂ttp̄−∆p̄ =

1

M

M∑
j=1

O∗j (Oj(ȳ)− zj) in I × Ω,

−∂tp̄+ ∂np̄ = 0 on I × ∂Ω,

(p̄, ∂tp̄) = 0 in {T} × Ω.

Note that the source term of (9.7) is an element of L2(I×Ω). Therefore patchwise
observation fits into our framework (cf. Theorem 5.3) in the case of zero Dirichlet
boundary conditions. The adjoint waves p̄ are triggered by the time reversed misfit
terms Oi− zi on the observation patches Pi and travel into the domain. The optimal
control ū of problem (9.6) can be represented using the optimal adjoint state p̄ (see
Proposition 7.2) in the form

dū = − 1

α
p̄ d|ū|.

We recall from Proposition 7.2 that

supp |ū| ⊆ {x ∈ Ωc : ‖p̄(x)‖L2(I) = max
x∈Ωc

‖p̄(x)‖L2(I)}

holds. In the case that the function ‖p̄(x)‖L2(I) attains its maximum at N̂ discrete
points in Ωc the optimal control ū has the form

(9.8) ū(t) = − 1

α

Ñ∑
i=1

cip̄(t, xi)δxi

with Ñ ≤ N̂ and constants ci. The positions of the maxima of ‖p̄(x)‖L2(I) correlate to
regions in Ωc where the adjoint waves overlap. This feature is related to time reversal
techniques which are used by geophysicists for the reconstruction of seismic events
but are not optimization based; see, e.g., [22].

In our numerical experiment we set Ω = (0, 1)2, I = [0, 1.5], Ωc = [3/16, 13/16]2

and the patches Pi have the size 8−2. The time-dependent source functions are cho-
sen as

f1(t, ts, σ, k) =
1√
2πσ

sin

(
k(t− ts)

σ

)
e−

1
2 ( t−tsσ )

2

,

f2(t, ts, σ) =
2√

3σ
√
π

(
1−

(
t− ts
σ

)2
)
e−

1
2 ( t−tsσ )

2

.

The first is a Gabor wavelet and the second a Ricker wavelet. In our concrete ex-
ample we intend to reconstruct two point sources and their time-dependent intensities,
in particular,

(9.9) u†(t) = f1(t, 0.3, 0.1, 2) δx1
+ f2(t, 0.4, 0.1) δx2

with x1 = (0.3, 0.7) and x2 = (0.6, 0.5). The exact intensities and positions are
depicted in Figure 9.2. In Figure 9.3 four snapshots of the exact state y† = S(u†)
are shown. The exact state consists of two traveling waves originating from the two
point sources. During the evolution of the two waves they interfere with each other.
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0 0.5 1 1.5
−4

−2

0

2

4

time

(0.3, 0.7)

(a) f1(t, 0.3, 0.1, 2) and x1

0 0.5 1 1.5
−4

−2

0

2

4

time

(0.6, 0.5)

(b) f2(t, 0.4, 0.1) and x2

Fig. 9.2. Exact intensities and positions.

Fig. 9.3. Snapshots of the exact state y† at t = 0.12, 0.5, 0.7, 0.94.

As can be seen in Figure 9.4 the waves arrive at the observation patches at
different times. In this figure we also depict the observations (without noise) and
the noisy observations, which are used for the reconstruction. The artificial noisy
seismograms are given by zj = Oj(y†) + oj , where, oj ∈ L2(I) is the background
noise. For this example we chose a quite high noise level; in particular, the relative
noise level amounts to ∑M

j=1 ‖oj‖L2(I)∑M
j=1 ‖Oj(y†)‖L2(I)

≈ 0.4.
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0 0.5 1 1.5

−0.2

0

0.2

(a) P1

0 0.5 1 1.5

−0.2

0

0.2

(b) P2

0 0.5 1 1.5

−0.2

0

0.2

(c) P3

0 0.5 1 1.5

−0.2

0

0.2

(d) P4

0 0.5 1 1.5

−0.2

0

0.2

(e) P5

0 0.5 1 1.5

−0.2

0

0.2

(f) P6

0 0.5 1 1.5

−0.2

0

0.2

(g) P7

0 0.5 1 1.5

−0.2

0

0.2

(h) P8

Fig. 9.4. Exact and noisy observation (green: exact; blue: noisy).

Figure 9.5 shows the results of the reconstruction process. In Figure 9.5(a) we can
see that the total variation measure |ū| of the reconstruction ū consists of two point
sources which are close to the exact ones. Figure 9.5(b) shows that these positions
correlate with the positions where the function ‖p̄(x)‖L2(I) attains its maximum on
Ωc. The reconstructions of the time-dependent intensities fi(t) are depicted in Figures
9.5(c) and 9.5(d). Their shapes are captured well, but their magnitudes are too small
compared to the original ones. This is caused by the structure of our regularization
term which regularizes simultaneously in space and time with the same weight α. The
regularization parameter had to be chosen sufficiently large in order to avoid spurious
reconstructions in space caused by the noise. A possible remedy is a postprocessing
step consisting of solving problem (9.2) where the positions of the point sources are
fixed at the reconstructed values and (9.5) is chosen as the regularization term for the
optimization variables ui ∈ L2(I). In summary, our numerical results give evidence
that the proposed formulation produces reconstructions with the desired features.
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(a) Support of |ū| (b) ‖p̄(x)‖L2(I) on Ω

0 0.5 1 1.5

−1

0

1

time

(0.297, 0.703)

(c) Reconstruction of f1 and x1

0 0.5 1 1.5

−1

0

1

time

(0.602, 0.492)

(d) Reconstruction of f2 and x2

Fig. 9.5. Results of the reconstruction process.
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