OPTIMAL CONTROL OF THERMALLY CONVECTED FLUID FLOWS *
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Abstract. We examine the optimal control of stationary thermally convected fluid flows from the the-
oretical and numerical point of view. We use thermal convection as control mechanism, that is, control is
effected through the temperature on part of the boundary. Control problems are formulated as constrained
minimization problem. Existence of optimal control is given and a first order necessary conditions of opti-
mality from which optimal solutions can be obtained is established. We develop numerical methods to solve
the necessary conditions of optimality and present computational results for control of cavity and channel
type flows showing the feasibility of the proposed approach.
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1. Introduction. The control of viscous flows for the purpose of achieving some de-
sired objective is crucial to many technological and scientific applications. In the past,
these control problems have been addressed either through expensive experimental pro-
cesses or through the introduction of significant simplifications into the analyses used in
the development of control mechanisms. Recently mathematicians and scientists have been
able to address flow control problems in a systematic, rigorous manner and established a
mathematical and numerical foundation for these problems; see [1-2], [4-5], [8-9], [11], and
[15—-18].
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The control of vorticity has significant applications in science and engineering such as
control of turbulence and control of crystal growth process. In this article we consider
the minimization of vorticity in viscous incompressible thermally convected flows using
boundary temperature as control mechanism.

We formulate the control problem as a constrained optimization problem for steady
viscous incompressible thermally convected flow, namely that of computing a boundary
temperature on a part of the boundary that minimizes the vorticity in the fluid. The
constraint is the system of equations that represents steady viscous incompressible Navier-
Stokes equations coupled with the energy equation. The choice for the cost is a quadratic
functional involving the vorticity in the fluid so that a minimum of that functional corre-
sponds to the minimum possible vorticity subject to the constraints. We then prove the
existence of an optimal control and derive the first-order necessary conditions characterizing
the control. Once the necessary optimality conditions are derived, we develop numerical
methods to solve such conditions and present numerical results showing the feasibility of
the approach for cavity and channel type flows.

1.1. The governing equations of a thermally convected flow. The class of ther-
mally convective flow we consider is modelled by Boussinesq equations whose derivation is
based on certain assumptions about the thermodynamics and the thermal effects on the
flow. The first one is that variations in density is negligible except for the body force term
pg in the momentum equations, where p is the density and the vector g is the constant
acceleration of gravity. We next assume that the density p in the term pg can be given by
p = po[l — B(T —1Tp)], where Ty and pg are reference temperature and density, respectively,
T is the absolute temperature and 3 is the thermal expansion coefficient. Furthermore, we
assume that in the energy equation, the dissipation of mechanical energy is negligible and
the viscosity p, the heat conductivity x, the thermal expansion coeflicient 5 and the specific
heat at constant pressure ¢, are constant. Then under these assumptions the steady flow
is governed by following equations:

—pAu+ po(u-Vyu+ Vp =gpo[l = (T~ Tp)] in Q,
V-u=0 in Q,

—x AT 4 pocpu-VI =0 in Q,

where € is a bounded open set and the heat source is assumed to be zero. If we assume
there is a length scale £, a velocity scale U and a temperature scale 77 — Ty in the flow,
then one can define nondimensional Prandtl number Pr = pc,/k, Grashof number Gr =
BCp2lgl(Ty — To)/pn? and Reynolds number Re = polU{/p. Next, if we nondimensionalize
according to x «— x/{, u — u/U, T « (T — Ty)/(Ty — Tp), and p «— (p — g - x)/(poU?), we
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obtain the following nondimensional form of Boussinesq equations.
—ﬁAu—l—(u-V)u—l—Vp—l— %Tg: 0 in Q,
V-u=0 in 0,
— 7= AT +u-VI'=0 inQ,

where g is now a unit vector in the direction of gravitational acceleration.

1.2. Statement of the optimal control problem. Let us next state the optimal
control problem we consider

1 6
(1.1) Minimize J(u,g)= —/ |V x ul?dQ + _/ |g|? dT
2 Q 2 I'y

subject to the state

—ﬁAu—l—(u-V)u—l—Vp—l— g@ng:O in Q,
(1.2) V-u=0 in Q,

— 7= AT +u-VI'=0 in Q.

with the boundary conditions as follows. Let I' = I'g U I'y U I's where I'g, I'y and I's are
disjoint portions of the boundary I' of the domain €.

u = ug, T:To on Fo
(1.3) u=0, L =ph(g-T7) on I}

u=0, T=T" on Iy,

where ug, 7° and T! are given on the boundary and ¢ is a temperature control by the
radiational heating or cooling. In the cost functional 7, the term [, |V xu|? dQ is a measure
of vorticity w = V x u in the flow, the term [r |g|? dT" is the measure of the magnitude
of the control which is also required for the rigorous mathematical analysis of the control
problem and the penalizing parameter § adjusts the size of the terms in the cost. The flow
quantities u, T and p denote as usual the velocity, temperature and pressure, respectively.

The outline of the paper is as follows. In §2, we give a variational formulation of the
state equations and study their wellposedness. We believe it is new since it deals with
nonhomogeneous boundary conditions. In §3 the existence of optimal solutions and first
order optimality conditions for optimal control problems are established. §4 deals with
computational methods to solve the necessary conditions of optimality. Finally, in §5, we
present numerical results for control of cavity and channel flows using boundary temperature
controls.
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1.3. Notations. Throughout, C' or C; (where ¢ is any subscript) denotes a constant
depending only the domain Q which is assumed to be a bounded set in IR? with smooth
boundary T'. We denote by L%(Q) the collection of square-integrable functions defined on
Q. Let

ov

() = {ve L}Q): 5 € LX(Q) for i = 1,2}, HY(Q)={ve H':vlr =0},

LXQ) = {g € L¥}(Q) : /Q ¢dQ = 0}

and H™(Q) = {v € LX(Q) : ;Ate € LX(Q), foralla = (ar,az) with [a] < m}.

x9S
Vector-valued counterparts of theselsp;ces are denoted by bold-face symbols, e.g., H!(Q) =
[H'(Q)]%. The trace spaces H"(T') (r > 0) are the restriction to the boundary of H"+1/2(Q).
We denote the norms and inner products for H*(2) or H*(Q) by || - ||s and (-,-)s, respec-
tively. The L*() or L*(Q) inner product is denoted by (-,-). We denote the norms and
inner products for H"(T') or H"(T) by || - ||.r and (-, -),r, respectively. The L?(T') or L*(T)
inner product is denoted by (-, -)r.
Let Vi be the divergence free subspace of H} defined by

Vo={vecH}Q): V.-v=0}
and Hy is the completion of Vo with respect to L%(2) norm and is given by
Ho:{veL2(Q):V.V:07 and v-nlr = 0}.

The space Hy is equipped with the norm || -||o and Vj is equipped with |ufy = ||Vul|o. Let
Vi be the subspace of H'(Q) defined by

Vi={pe H (Q):¥=00onTouUTy}

and set V.= VyxV;. Let V§ and V;* be the strong dual spaces of Vg and Vj, respectively, and
(-,-) denote the dual product on either Vi x Vi or V{* x V;. Throughout the mathematical
discussions, for the sake of convenience we set v = ﬁ, K= ﬁ and a = % which are not
to be confused with the physical quantities such as kinematic viscosity and conductivity.

We define the following bilinear and trilinear forms

ao(u,v):/Qﬁ(Vu):(Vv)dQ Vu,veHY(Q),
al(T,zb):/QEVT-VdeQ YT, e HY(Q),

c(u,q):—/ﬁqV-udQ YueH'(Q),Yqe L¥Q),
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bo(u,v,w):/(u-V)v-WdQ Vu,v,we H'(Q)
Q

and
bl(u,T,zb):/ W VT, 0d2  VueH(Q)VT,de HY(Q).
Q

We have the coercivity relations associated with ag(-,-) and aq(-,-):
ap(u,u) = o[ Vullg > Cy[lulli ¥ ue Hy(Q)
and
a(T,T)=R|VT|§ > C [Tl VT eH (NN

which are a direct consequence of Poincaré inequality.

2. Weak Formulation. In this section we discuss the weak variational formulation
of the Boussinesq system (1.2) and establish the existence of weak solutions.

It follows from the Hopf extension (see [10]) that for each € > 0, there exists a function
u € HY(Q) such that V-uw =0 and u|p, = ug, ulr,ur, = 0 and

lbo(v, @, v)| < e|v] Vv eV,

provided that the boundary data ug € H%(F) satisfies (n - ug,1l)r, = 0. In the sequel we
will take € = % Let T € H'(Q) be a function such that T|p, = 7° and T|r, = T'. Then
any function (u,7) € H(Q) x H'(Q) satisfying the inhomogeneous boundary condition
(1.3) and V - u = 0 can be represented by

(u,T)=(w,0)+ (u,T) where (w,0) € V=VyxV.
We then obtain a weak variational form of (1.2). For (u,T) €V + (w,T),

ap(u,v)+ bo(u,u,v)+a(Tg,v) =0V veV,

(2.1)
al(T7¢) + bl(u7T7¢)+ Kh (T - gv¢)F1 =0V ¢ € Vl-

A solution (u,T) € V + (u,T) is called a weak solution of (1.2) if equation (2.1) is
satisfied.
Regarding the bilinear form bg(-, -, -), we have the following results.

LEMMA 2.1. For u,v,w € HY(Q), the trilinear form bo(-,-,-) satisfies

[bo(w, v, w)| < Cs[Jul[1[[v[[x[lw]h
(2.2)
and bo(u,v,w)+ bo(u,w,v)=0 for V-u=0andw € V.
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Proof. The first inequality follows from the Holders inequality. We obtain
bo(w, vow)| < Jullps 9 wilzs < Cs [full vl ws:
The second result follows from Green’s formula
(2.3) bo(u,v,w)+bo(u,w,v)=(u,V(v-w))=(n-u,v-w)r
provided that V-u =0 and v € H'(Q).

It follows from the proof of Lemma 2.1 that

(2.4) bo(u,v,v)=0 for ve Vogand V-u=0
and
(2.5) bi(u, T, 9)+ bi(u, 9, T) =0

for u € Vo +w and ¢ € V;.

2.1. Wellposedness. In this section we prove the existence of a weak solution to (2.1).

Let Z =V +(u,T).
THEOREM 2.2. Given g € L*(T'y) there ewists a weak solution (u,T) € Z to (2.1) and
10w, Tl < C (llgllory + IT1)-

Moreover, if g(x), T°(x) and T'(x) are bounded below by Ty and bounded above by T+
almost everywhere then Ty < T(x) < Ty almost everywhere in Q for every solution.

Proof. Step I (Existence): We show that (2.1) has a solution (u,7") € Z. Given
u€ Vo+uand (w,8) € V, we define linear equations by

(2.6a) ap(u,v)+ bo(u,w,v)+ bo(u,w,v)+ (aTg,v) =0 forv e Vy,

(2.6b) ar (T, )+ by(u,T,9)+ Rh (T — g,¢)r, =0 for ey € Vi,

where u = w4+ T, i=w+1u, and T = 6+ T. First, we show that (2.6) has a unique
solution (w,#) € V. Then, we show that the solution map S on Vo+u defined by S(u) = u,
where (u,7") € Z is the unique solution to (2.6), has a fixed point by Schauder fixed point
theorem. The fixed point u € Vg + u and the corresponding solution T" € V; 4+ T define a
solution to (2.1).

We first note, from Lemma 2.1 and (2.5), that the bilinear form (-, -) defined by

Ul('v ) = al('v ) + bl(ﬁv "y ) + Eh(-, ')F1
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on V1 x V7 is bounded and Vi—coercive. It thus follows from Lax-Milgram theorem that the
equation

01(07 ¢) = Rh(gv ¢)F1 - al(Tv ¢) - bl(ﬁvTv ¢)

for 1) € V4 has a unique solution # € Vi and T' = 6 + T satisfies (2.6b).
Setting ¢ = sup(0,7 — T3) € V4 in (2.6b), we have

al(T7¢) + bl(ﬁvTvlb)—l_ Kh (T - T?v¢)F1 =kh (g - T?v¢)F1‘

It follows from (2.5) that b1(u,, )= 0 and thus

wa (b, 0) + SRR IR, < SRRl — Tl
This implies
1¥]lo < Callg = Tollo,r,-
Similarly, letting = inf(0,7 —T;) € V; we obtain
Inllo < Csllg = Tillo,r,-

From the definition of 7 and 1, it follows that ||1']|o < Cs which is independent of u € V4.
Next, we define the bilinear form og(-,-) on Vo x Vg by

oo(w,v) = ag(w,v) + bo(u,w,v)+ bo(w, T, v).
It then follows from Lemma 2.1, (2.4) and the inequality
bo(v, Wv)| < 5 ao(v, )
that og(-,-) is bounded and Vp—coercive. Thus, by Lax-Milgram theorem, the equation
oo(w,v)=—(aTlg,v)— bo(u, @, v) — ap(T, v),

for v € Vy, has a unique solution w € Vg and u = w + u satisfies (2.6a). Setting v =w
in (2.6a) and using the estimate ||7]|o < Cég, we get

2C 2Cs3 ., _
(2.7) Wit < —==I1Tllo + +==(I[allt + [lall) <5
where [|v|lo < C7|v]1, v € Vg. Let ¥ be a closed convex subspace of H'(Q2), defined by
Y={u=w+1u:w e Vgsatisfying |w|; < v}.

Then it follows from (2.7) that S maps from X into ¥. Moreover, the solution map 9 is
compact. In fact, if Wy converges weakly to W in Vg then [[Uf — U+ — 0, since H'(Q)
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is compactly embedded into L*(Q). Let (ug,Tx) € Z and (u,T) € Z be the corresponding
solution of (2.6), respectively to uy and u. Then we have

ar(Ty — T, )+ bi(Ug — U, T,¢) + b0k, Tx — T, ¥) + Kh (T, = T,¢)r, = 0
for ¢ € V;. Setting 1 = T, — T, we have from Lemma 2.1 and (2.5) that
1T = Tl < Cs[Jug — ul| e[| T}y
which implies ||T% — 7’|l — 0. Similarly, we have
viug —ufy < Col|uy — uf|ps|wly + aCro || T = Tllo

and thus |ug — uly — 0. Now, by Schéuder fixed point theorem (see [20]) there exists at
least one solution to (2.6).
Let us next derive the appriori estimate. Setting ¢» = 6 in (2.6b) we obtain

ar(0+T,0)+ by (0,0 +T,0)+Fh(0+T —g,0)r, = 0.
Equivalently,
ay(0,0) + b1(1,0,0) + &h(0,0)r, = —a1(T,0) — by(0,T,0) — &h (T — g,0)r,.

Then using the coercivity and continuity properties of a;(-,-) and by(-, -, -) and the antisym-
metry property of by(-,-,-), it follows that

(2.8) 16lx < CuliTx + llgllo.r,)
for some constant Cy; independent of u. From (2.7)—(2.8), we obtain the appriori estimate
(2.9) 100, T < (1w, Ol + 1103 Dl < Clllgllor, + I T1]1)

for some constant C.
Step II (L estimate): We show that if Ty < g < T3 then

T, <T <T, almost everywhere 2z € Q.

for every solution (u,T) € Z to (2.1). In fact, letting ¢» = inf(0,7 — T4) in the second
equation of (2.1) and using the same arguments as above, we obtain

al(¢,¢)+2h(T—g,¢)rl =0
where
(T—g)o=(T-Ty—(g—T1))¥ > [¢|* on T.

Thus, we obtain [|¢]|? = 0 which implies ¢» = 0 and hence T > T. Similarly, one can prove
that T < T, choosing the test function ¢ = sup(0,7 —T5).
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We also have the uniqueness of solutions under the smallness assumption on w and
T, —T,.

THEOREM 2.3. If g(x), T°(x) and T (x) are bounded below by Ty and bounded above
by T almost everywhere and if |Ty — T1| and ||[u]|y are sufficiently small, then (2.1) has a
unique solution in Z.

Proof. Suppose (u;,T;) € Z, i = 1,2 are two solutions to (2.1). Then letting & = u; —uy
and T =Ty — T, we have

ao(,v) + bo(uy, @, v) + bo(8, uy, v) + a (T'g,v) = 0
ar(T,9) 4 bi(wr, T, 6) 4 by (8, T, 9) + 5h (T, 9)r, =0
for (v,1) € V. Setting v = 1 and ¢ = T, we obtain, using (2.4) and (2.5), that
ao(1,8) < Cs [|uzlla[6F + &[T lol|Tllo
and
ar(T, 1)+ &h||Tl5 r, < 1Tz = Tollz=|8llol| 71
where Ty = %(Tl + T3). This implies
(7 = Cs [uzlh) [alf < @CCra a7k
and
RITIE < C7IT2 = Tollp=[li]|T 1,
where [|¥]]o < Cyg||9||1 for ¥ € V;. Hence if
RV = Calugll) — @CFC12 || Tz — Tol| = > 0

then |, = ||T]|; = 0 and thus (uy,T}) = (uy, Ty).
From Theorem 2.2 and (2.7), we have

T, -T

T2 = ol < =5

and

2C7 2Cs3 _
Juzlly < —= a7z = Tollo + —= (el + (1)

Thus, if |Ty — T| and [|u]]; are sufficiently small then (2.1) has a unique solution in Z. I



10 K. ITO AND S5.5. RAVINDRAN

3. Existence of Optimal Controls and Necessary Optimality Conditions. In
this section, we show the existence of optimal solutions for the minimization problem (1.1)-
(1.3) and estabilish a necessary optimality condition. Let us first assume that C is a closed
convex subset of L?(I'1). For example C can be defined to be

C={ge€ Lz(Fl) : Ty < g < Ty almost everywhere }
or C = L*(I'1). Let us denote the set
S(g)={(u,T,9)e X =Z xC:g€C and (u,T) satisfies (2.1)}.

Let us define the cost functional J(u,7,¢) to be

0
T(w.T.9) = ¢(w,T) + S gl

and cast the control problems in the following abstract setting: For x = (u,7,¢) € X =
Z x C with

Minimize J(x)
x € X
subject to E(x) =0and g € C,
where the equality constraint E : X — Y = V* represents the state equations (2.1),
(E(x), (v, 9))vexv = al(z, (v, 8)) + b(u, 2, (v, 9) + #h (T = g,¢)r, + (@ Tg, V)

for (v,1) € V, where

a(z,(v,¥)) = ag(u,v)+ a1 (T, 1)

b(u,z,(v,1)) = bo(u,u,v)+bi(u,7T,9).
Then, we have the existence of solutions to the optimal control problem.

THEOREM 3.1. Consider the minimization problem:

Minimize J(u,T,g)
(3.1)

(u,T,9) € S(g) xC

where C is a closed convex subset of L*(I'1). Assume that the function

pz):z=(u,T)eZ— RT

is convex and lower semicontinuous and satisfies p(z) < cq ||z||3 +cq for ey, ca € RT. Then
the minimization problem has a solution.
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Proof. Let (uy, Tk, gx) € S(gx) x C be a minimizing sequence. Since § > 0, ||gxllor,
is uniformly bounded in k and thus from (2.9) so is ||(ug,7%)|l1. Hence there exists a
subsequence of {k}, which will be denoted by the same index, such that (ug, T, gx ) converges
weakly to (u, T, g) € ZxC, since V x L*(T'y) is a Hilbert space and C is a closed and convex
set. Since H1(2) is compactly embedded into L*(£2), it follows from Lemma 2.1 that

bo(ug, ug,v) — bo(u,u,v) Vv € Vg
and
bl(uvak7¢) - bo(ll,T,Qﬁ) v ¢ € Vl

which implies (u,T") € S(g). Now, since ¢ is convex and lower semicontinuous it follows
from [3] that (u,7’, ¢) minimizes (3.1). il

Assume that x* = (z*,¢*) = (u*,T*,¢*) denotes an optimal pair of (3.1). Then we
have the following theorem.

THEOREM 3.2. Assume that x* is a regular point in the sense that
(3.2) 0 € it {E(x*)(v,¥,n—g"): (v,) € Vandn € C}.
Then there exists Lagrange multipliers ((,\) € V such that
(33)  al(€A), (v28)) + (v, 2% (6 ) B, (v, ), (6 )+ (@(27), (v, ) = 0
for (v,¢) €V and

(3.4) (69" —RhA,n—g")r, 20 V necC.

Proof. 1t follows from [14] that if (3.2) is satisfied, then there exists a Lagrange multi-
pliers (¢, A\) € V such that

<¢/(Z*)7 (V7¢)> + 6 (9*777 - g*)F1 + E/(X*)((Vﬂb)?n_ g*) > 0

for all (v,1) € V and n € C, that is

35) (@(27), (v, ) +6(g7, n—g")r; +al(§A), (v, )+ b(v, 27, ((, A))
3.5

+b(u*v(vv¢)v(C7A)) — kh (77 - g*v /\)F1 > 0

for all (v,%) € V and n € C. Setting (v,1) = 0, we obtain (3.4). Next, setting 7 = ¢* in
(3.5), we obtain (3.3). B

Concerning the regular point condition (3.2), we have
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LEmMMA 3.3. If ¢* € int(C) then the reqular point condition (3.2) is equivalent to the
following condition. Suppose y = (w,0) € V satisfies

56 a(y, (v,¥))+ b(w,z", (v,¥)) + b(u,y,(v,¥)) =0 V (v,9) eV
3.6
and =0 on TYy.

Theny = 0.

Proof. If g* € int (C) then (3.2) is equivalent to G = E/(x*) is surjective. Define the
linear map F € £L(V x L*(T1), V) by F((w,0),n) = € where £ € V is a unique solution to

a(§, (v, )+ b(w, 2%, (v, ) + b(u™, (w,0), (v, ¥)) + Kh (§ =1, d)r, =0 ¥ (v,9) e V.

Then, since H'() is embedded compactly to L*(Q2), by Lemma 2.1, F is compact. Thus,
it follows from Banach closed range and Riesz-Schauder theorems that E'(x*)((w,#),n) is
surjective if and only if ker(G*) = {0}, which is equivalent to (3.6). |

Finally, if C = L*(I'1) and the cost functional is given as in (1.1) then (3.3)-(3.4) can
be equivalently written as

ao(C,v)+ bo(u,v,¢) + bo(v,u,{) + bi(v, T, \)+ (VXxu,Vxv)=0
(37) al(A,V¢) + bl(“ﬂbv /\)+ a (Cv ¢g) + gh(/\vlb)Fl =0
6g—RhA=0 only

for all (v,9) € V.

To facilitate the computational discussion, let us collect the necessary conditions of
optimality (2.1) and (3.7) and recast them by using the vector decomposition of L?((2),
(see [10]), L3(Q) = Ho + {V¢ : ¢ € H(Q)}, and by introducing pressure p and adjoint
pressure 7. We obtain: Foru € Vo+u, T € Vi + T, ( € H)(Q), A € Vi, p € L3(Q) and
™€ L3(Q),

ap(u,v)+ bo(u,u,v)+ ¢e(v,p)+ a(Tg,v)=0 Vve H(IJ(Q) ,
(3.8) c(u,q)=0 VgeLjQ),

al(Tvlb)—I'bl(uvTva)—l_gh(T_gv¢)F1 =0 v¢ € Vl
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aO(va) + bo(u,V,C) + bO(V7 qu) + bl(V7T7 A) + C(Vv ﬂ-)
+HVxu,Vxv)=0VYveH|Q)
co(€,q)=0 VqeLiQ),

al(/\vv¢) + bl(“ﬂbv /\) + a(Cv ¢g) + gh(/\vlb)Fl =0VyeW

6g—RhA=0 only.

The system (3.8)—(3.9) forms the necessary conditions of optimality that optimal states and
control must satisfy. This system will also be called the optimality system.

4. Computational Methods. In this section we describe a computational method
to find the optimal control by solving the optimality system (3.8)—(3.9).

4.1. Finite Element Approximations. A finite element discretization of the op-
timality system (3.8)—(3.9) is defined in the usual manner. First one chooses families of
finite dimensional subspaces X, C H(Q) and 5; C L%Q). We let X? = X, N HI(Q),
59 = S, N L3(Q) and X, = [X;)?. These families are parameterized by a parameter h
that tends to zero; commonly, h is chosen to be some measure of the grid size. These finite
dimensional function spaces are defined on an approximate domain €. For simplicity we
will state our results in this section by assuming ; = . We assume that these finite
element spaces satisfy the following approximation properties (see, [7, 10]): there exist an
integer k£ and a constant C', independent of h, v, ¢ and 1, such that

inf ||v—v"h <CE™|V]|pmy1 YVvEH™NQ), 1<m<k,
vheVh

inf g = d'llo < CH" gy ¥ g € H™(9)013(©), 1< m < k.
S

and

St 10— 6" < R @l ¥ € HMHHR), LS m <
Here we may choose any pair of subspaces X} and S such that X9 and 59 can be used
for finding finite element approximations of solutions of the Navier-Stokes equations with
homogeneous Dirichlet conditions. Thus, we make the following standard assumptions,
which are exactly those employed in well-known finite element methods for the Navier-Stokes
equations. Next, we assume the inf-sup condition: there exists a constant ', independent
of h, such that

- vy dQ)
inf su —fQ G N Vi
0£9n€S] 0v,ex?  |[Vallt[lnllo
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This condition assures the stability of finite element discretizations of the Navier-Stokes
equations and also that of the optimlity system (3.8)—(3.9). The references [9] and [6] may
also be consulted for a catalogue of finite element subspaces that meet the requirements
of the above approximation properties and the inf-sup condition. We also define Z, to be
Zy C LQ(Fl).

Once the approximating subspaces have been chosen, we look for an approximate op-
timal solution (wp, phy Thy €y Thy Ahy gn) € Xp X 5P x X x X9 x S x X3, x Z), by solving
the discrete optimality system of equations

(6gn — RhAn, zi)r, =0 Yz, € Zp 0 L3(Ty),

ag(up, vy) + bo(up, up, vy) + c(vip,pr) + a(Thg,vi) =0 Vv € X?L ,
ar(Th, ¥n) + br(w, Ty o) + BA(Th — g,%)r, =0 Vb € XpnVy,
c(wp,qn) =0 YagneSy,

(4.1)

ao(Cp, Vi) + bo(un, v, €p) + bo(Vh, un,§r) + (Vi Th) + bi(Va, Thy Ap)
+(V xup,Vxvy)=0 Vv, e XY,

ar(An, ¥n) + bi(up, ¥n, An) + a(¥n, 8€r) + Kh(Pn, An)r, =0
Vb, € X NnV4(Q),

c(Chrqn) =0 Vg, €57,

We next briefly sketch the proof of optimal error estimates. We first prove optimal error
estimates for the approximations of the linearized optimality system. Then by a careful
choice of spaces and operators we can fit the optimality system into the framework of Brezzi-
Rappaz-Raviart theory (see [10]). By verifying all the requirements of that theory, we obtain
optimal error estimates for the approximation of the optimality system of equations.

THEOREM 4.1. Assume (u,T,p,(, A, 7)€ H™ Q) x H™(Q) x H™TH{Q) x H™TL(Q) x
H™(Q)x H™1(Q) is a nonsingular solution of the optimality system (3.8)-(3.9). Then for
each sufficiently small h, the approximate optimality system (3.10) has a unique solution
(uh,Th,ph,Ch, AMNrhy e X x 89 % X x X9 x S9x Xy, in a neighborhood of (u, T, p,¢, A, ),
such that

= w4 llp = pPllo 17 = T4 + 1€ = "l +lix = = flo+ A = A%}y
< O™ {ullotr + Il + 1T s+ 1Clmss + Ul + AL} B

We employ Newton’s iteration method to solve this finite dimensional nonlinear system
of equations.
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4.2. Newtons Method. The Newton’s method based on exact Jacobian for solving
the discrete optimality system is given as follows:
1° Triangulate the flow domain with a sufficiently small mesh size h; choose finite element
spaces Xy and S3; choose an initial guess (uO,TO,pO,CO, A 70 g%

2° For n = 1,2, -, compute (u™, 7™, p", (", A", 7", ¢") from the following discrete system
of equations:

(6gn - ghAnvzh)IH =0 Vo € ZpN Lz(rl) 5

ao(u”,vh) + bO(un_lv unvvh) + bO(un - un—17 un_lvvh) + C(thpn)
+a(T"g,vp) =0 Vv, eX?,

C(un7Qh):0 V(]hesga

al(Tnv ¢h) + bl(unv ¢h7Tn_1) + bl(un_lv Qbthn - Tn_l)
—I_Eh(Tn_ganbh)IH =0 VQﬁh GXhmvlv

(4.2)
ao(€",vi) + bo(u" — w1, vy, (") e(vi, T + bo(vi, wt (T = (T
‘I’bO(un_lvthCn) + bO(Vh7 unvcn—l) + C(th ﬂ-n)
HV xu",Vxvy)=0V v, €X?,

C(Cn7Qh) =0 V(]}L € 527

al(Anv ¢h) + bl(unv ¢h7 An_l) + bl(un_lv ¢h7 AT — An_l) + a(¢hvcn)
+Rh(Yy, A")r, =0 Vairbe XpnVy.

At each Newton’s iteration, we solve the linear system of equations by Gaussian elimi-
nations for banded matrices. Under suitable assumptions, Newton’s method converges at
a quadratic rate to the finite element solution (wp, 7%, pa,Chns A, Th, gn). Quadratic con-
vergence of Newton’s method is valid within a contraction ball. In practice we normally
first perform a few successive approximations and then switch to the Newton’s method.
The successive approximations are defined by replacing the second, fourth, fifth and sixth
equations in the Newton’s iterations by

ap(u™,vy) + bo(u™= 1t u”, vy,) + c(vp, p") + a(T"g,vy) = 0,

al(T”, ¢h) + bl(un_l, ¢h,Tn) + Eh(T” — gn, ¢h)rl =0 R

(4.3) a0(C"v3) + bo(w, v, €™ + bo(vi w, ") + vy, 1)

+H(Vxu",Vx vy =0

al(Anv ¢h) + bl(un_lv ¢h7 An) + a(¢hvcn) + Rh(lbhv An)Fl =0.
In the case of the uncontrolled Navier-Stokes equations, the solution is unique for small
Reynolds numbers and the successive approximations converge globally and linearly; see
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[7]. However, in the present case of an optimal system of equations for the Navier-Stokes
equations, the solution is not shown to be unique and the successive approximation is not
shown to be globally convergent, even for small Reynolds numbers. OQur numerical expe-
rience seems to suggest that the global convergence of the successive approximations for
the optimality system is still valid for small Reynolds numbers. Thus the combined suc-
cessive approximations—Newton iterations gives an effective method for solving the discrete
optimality system of equations.

5. Computational Results. We will consider two test examples for vorticity mini-
mization using boundary temperature control. Both examples are related to optimization
and control of vapuor transport process for crystal growth. Some related works are re-
ported in [19], [13] and [5]. In [19], tracking temperature field in an ampoule using bound-
ary temperature control is considered, tracking a desired history of the freezing interface
location/motion in conduction driven solidification process using temperature control is
considered [13] and some optimal control problems in combustion are discussed in [5].

5.1. Numerical Example 1. In this example, we consider the control of vorticity
in a backward-facing-step channel flow. The vorticity is caused by the injection of flow
at the inlet of the channel and we try to control the vorticity or the recirculation rather
by adjusting the temperature at the top and bottom walls. A schematic of the backward-
facing-step channel is shown in Figure 1. The height of the step is 0.5 and that of the outflow
boundary is 1. The length of the very bottom of the channel is 5 and the total horizontal
length is 6. Figure 3 demonstrate the flow situation for high Reynolds numbers which is
computed with ¢ = 0 (no control) and the following boundary conditions for velocity and
temperature.

N u= (8(0.5—y)(1—y),0T) T=0
Lout u=((1-y)y,0) o =0

I'iop : u=(0,0) L = —hT
Fbottom : u = (0,0) % = —hT

Iy : u=(0,0) T=1.

The parameters were taken as follows: Re = 200, Pr = .72, Gr = 40,000 and h = 1.
The computational domain is divided into around 350 triangles with refined grid near the
corner, see Figure 2. The finite element spaces X, and X, are chosen to be piecewise
quadratic elements (for uy, and T}) defined over triangles and the space S}, is chosen to be
piecewise linear element (for py) defined over the same triangles.

A recirculation appears at the corner region whose size increases with increasing Reynolds
number. The objective is to shape the recirculation region by applying temperature control
on the very top boundary Ftop and bottom boundary I'y t{om-

We take the corner region of the channel Q* = (1,3) x (0,.5), see Figure 1, for vorticity
minimization. The control is computed by solving the optimality system (3.9)-(3.10) by
applying finite element and Newtons method described in §4.1-2. The parameter in the
functional was chosen as § = 0.01 and the adjoint state variables {, 7 and A were discretized
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using the same way as their state counterparts. At each Newton iteration a banded Gaussian
elimination was used to solve the resulting linear system. We obtain the optimal solution
typically in 7 Newton iterations.

Figure 4 gives the controlled velocity field uy, Figures 5 and 6 are the blow-up of the
uncontrolled and controlled flows, respectively, at the corner of the backward-facing-step.
Figures 7 and 8 are the control distributions on the top and bottom boundaries.

The values of the integral [, |V X u|*dQ without and with controls were .94 and .51,
respectively. We see that we achieved a reduction of 45.74% in the L*(Q)-norm of the
vorticity.

5.2. Numerical Example 2. This example is motivated by the transport process in
high pressure chemical vapour deposition (CVD) reactors (see [10-11] and [6]). A typical
vertical reactor, shown in Figure 9, is a classical configuration for the growth of compound
semiconductors by metalorganic vapor phase epitaxy. The reactant gases are introduced at
the top of the reactor and flow down to the substrate (I'y) which is kept at high temperature.
This means that least dense gas is closest to the substrate and the flow is likely to be
affected by buoyancy driven convection. In order to have uniform growth rates and better
compositional variations, it is essential to have flow field without recirculations.

Our objective here is to minimize the vorticity by adjusting the temperature at the side
walls (I'1) in order to obtain a flow field without recirculations and thereby obtain better
vertical transport.

The geometry of the prototype reactor, depicted in Figure 9, has two outlet portions,
I',, and an inlet, I';, whose widths are 1/3. The size of the susceptor region I'; and that of
the side walls I'y are 1; the height of the inlet port 'y is 1/3.

The boundary conditions for computations were as follows:

T, u=(0,-4@z-HZ-2) T=0
r,» Z=2t=-09 2ZL=9p

Iy u=(0,0) T=1

Iy: u=(0,0) L =ng-T)

I's: u=(0,00 T=0

For the uncontrolled flow computations, we take g = 0 and throughout the computations
in this problem we take the Reynolds number to be Re = 100, the Prandtl number to be
Pr =.72and h = 1. For the discretization, the finite element spaces were chosen to be the
same as in the previous example.

We performed simulations with several values of Gr/Re? for the uncontrolled case.
The flow situations are shown in Figure 10a)-15a) and the corresponding vorticity in L2
norm is given in Table-I. Two standing circulation appear near the susceptor due to natural
convection which did not appear at all when Gr/Re? < 1. For the control simulations
heating/cooling control was applied to the side walls I'y with fixed inflow rate and vorticity
cost was minimized with the parameter § = 0.01. This control problem was solved using
our optimal control techniques.
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The resulting flow fields for various G'r/Re? values are shown in Figure 10b)-15b) and
the corresponding vorticity in L? norm is given in Table-I. The control values on the side
walls are given in Figure 16a)-b). We see, in Figure 10b)-15b), significant reduction in
recirculation for the controlled flow. Our computational experiments (not reported here)
indicate that for Gr/Re? > 1, thermal control mechanism on the side walls with fixed flow
rates may be less effective for the elimination of recirculation.

Gr/Re? 0.9 1.0 1.1 1.2 1.3 1.4
Uncontrolled Vorticity || 0.1983 | 0.2600 | 0.3505 | 0.4712 | 0.6186 | 0.7878
Controlled Vorticity 0.1126 | 0.1174 | 0.1113 | 0.1123 | 0.1147 | 0.1183

Table I. Uncontrolled and Controlled Vorticity in L? norm for different G'r/Re?

6. Conclusion. In this article we studied vorticity minimization problem in fluid flows
using boundary temperature controls. We formulated the problem as constrained minimiza-
tion problem with cost functional being the vorticity in the flow. We proved the existence
of optimal solution and the existence of Lagrange multipliers. The necessary conditions
of optimality was given characterizing the controls and optimal states. Newton’s method
combined with mixed finite element method is used to solve the necessary conditions of
optimality. We finally solved two canonical problems demonstrating the feasibility of the
approach.
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FIG. 1. Schematic of backward-facing-step channel.

FIG. 2. Triangulation of the channel.
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b) Controlled flow for Gr/Re? = 1.1

FIG. 12a) Uncontrolled flow for Gr/Re? = 1.1
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b) Controlled flow for G'r/Re? = 1.3

FIG. 14a) Uncontrolled flow for Gr/Re? = 1.3
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