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ows showing the feasibility of the proposed approach.Key words. 
ow control, temperature control, optimization, Navier-Stokes equations, �nite elementmethodsAMS subject classi�cations. 49J20, 76D05, 49B22, 49K20Contents1. Introduction.1.1 The Governing Equations of A Thermally Convected Flow.1.2 Statement of the Optimal Control Problem.1.3 Notations2.Weak Formulation.2.1 Wellposedness3. Existence of Optimal Controls and Necessary optimality condition.4. Computational Methods.4.1 Finite Element Approximation.4.2 Newtons Method.5. Computational Results.5.1 Numerical Example 1.5.2 Numerical Example 2.6. Conclusion.1. Introduction. The control of viscous 
ows for the purpose of achieving some de-sired objective is crucial to many technological and scienti�c applications. In the past,these control problems have been addressed either through expensive experimental pro-cesses or through the introduction of signi�cant simpli�cations into the analyses used inthe development of control mechanisms. Recently mathematicians and scientists have beenable to address 
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2 K. ITO AND S.S. RAVINDRANThe control of vorticity has signi�cant applications in science and engineering such ascontrol of turbulence and control of crystal growth process. In this article we considerthe minimization of vorticity in viscous incompressible thermally convected 
ows usingboundary temperature as control mechanism.We formulate the control problem as a constrained optimization problem for steadyviscous incompressible thermally convected 
ow, namely that of computing a boundarytemperature on a part of the boundary that minimizes the vorticity in the 
uid. Theconstraint is the system of equations that represents steady viscous incompressible Navier-Stokes equations coupled with the energy equation. The choice for the cost is a quadraticfunctional involving the vorticity in the 
uid so that a minimum of that functional corre-sponds to the minimum possible vorticity subject to the constraints. We then prove theexistence of an optimal control and derive the �rst-order necessary conditions characterizingthe control. Once the necessary optimality conditions are derived, we develop numericalmethods to solve such conditions and present numerical results showing the feasibility ofthe approach for cavity and channel type 
ows.1.1. The governing equations of a thermally convected 
ow. The class of ther-mally convective 
ow we consider is modelled by Boussinesq equations whose derivation isbased on certain assumptions about the thermodynamics and the thermal e�ects on the
ow. The �rst one is that variations in density is negligible except for the body force term�g in the momentum equations, where � is the density and the vector g is the constantacceleration of gravity. We next assume that the density � in the term �g can be given by� = �0[1� �(T �T0)], where T0 and �0 are reference temperature and density, respectively,T is the absolute temperature and � is the thermal expansion coe�cient. Furthermore, weassume that in the energy equation, the dissipation of mechanical energy is negligible andthe viscosity �, the heat conductivity �, the thermal expansion coe�cient � and the speci�cheat at constant pressure cp are constant. Then under these assumptions the steady 
owis governed by following equations:���u+ �0(u � r)u+rp = g�0[1� �(T � T0)] in 
 ;r � u = 0 in 
 ;���T + �0cpu � rT = 0 in 
 ;where 
 is a bounded open set and the heat source is assumed to be zero. If we assumethere is a length scale `, a velocity scale U and a temperature scale T1 � T0 in the 
ow,then one can de�ne nondimensional Prandtl number Pr = �cp=�, Grashof number Gr =�`3�20jgj(T1� T0)=�2 and Reynolds number Re = �0U`=�. Next, if we nondimensionalizeaccording to x x=`, u u=U, T  (T � T0)=(T1 � T0), and p (p� g � x)=(�0U2), we



OPTIMAL CONTROL OF THERMALLY CONVECTED FLUID FLOWS 3obtain the following nondimensional form of Boussinesq equations.� 1Re�u+ (u � r)u+rp+ GrRe2Tg = 0 in 
 ;r � u = 0 in 
 ;� 1RePr �T + u � rT = 0 in 
 ;where g is now a unit vector in the direction of gravitational acceleration.1.2. Statement of the optimal control problem. Let us next state the optimalcontrol problem we consider(1:1) Minimize J (u; g) = 12 Z
 jr � uj2 d
+ �2 Z�1 jgj2 d�subject to the state(1:2) 8>>>>><>>>>>: � 1Re�u+ (u � r)u+rp+ GrRe2Tg = 0 in 
 ;r � u = 0 in 
 ;� 1RePr �T + u � rT = 0 in 
 :with the boundary conditions as follows. Let � = �0 [ �1 [ �2 where �0, �1 and �2 aredisjoint portions of the boundary � of the domain 
.(1:3) 8><>: u = u0; T = T 0 on �0u = 0; @T@n = h (g � T ) on �1u = 0; T = T 1 on �2 ;where u0, T 0 and T 1 are given on the boundary and g is a temperature control by theradiational heating or cooling. In the cost functional J , the term R
 jr�uj2 d
 is a measureof vorticity !!! = r � u in the 
ow, the term R�1 jgj2 d� is the measure of the magnitudeof the control which is also required for the rigorous mathematical analysis of the controlproblem and the penalizing parameter � adjusts the size of the terms in the cost. The 
owquantities u, T and p denote as usual the velocity, temperature and pressure, respectively.The outline of the paper is as follows. In x2, we give a variational formulation of thestate equations and study their wellposedness. We believe it is new since it deals withnonhomogeneous boundary conditions. In x3 the existence of optimal solutions and �rstorder optimality conditions for optimal control problems are established. x4 deals withcomputational methods to solve the necessary conditions of optimality. Finally, in x5, wepresent numerical results for control of cavity and channel 
ows using boundary temperaturecontrols.



4 K. ITO AND S.S. RAVINDRAN1.3. Notations. Throughout, C or Ci (where i is any subscript) denotes a constantdepending only the domain 
 which is assumed to be a bounded set in RI 2 with smoothboundary �. We denote by L2(
) the collection of square-integrable functions de�ned on
. LetH1(
) = nv 2 L2(
) : @v@xi 2 L2(
) for i = 1; 2o; H10(
) = fv 2 H1 : vj� = 0g;L20(
) = fq 2 L2(
) : Z
 q d
 = 0gand Hm(
) = nv 2 L2(
) : @j�jv@x�11 @x�22 2 L2(
); for all � = (�1; �2) with j�j � mo.Vector-valued counterparts of these spaces are denoted by bold-face symbols, e.g.,H1(
) =[H1(
)]2: The trace spaces Hr(�) (r > 0) are the restriction to the boundary of Hr+1=2(
).We denote the norms and inner products for Hs(
) or Hs(
) by k � ks and (�; �)s, respec-tively. The L2(
) or L2(
) inner product is denoted by (�; �). We denote the norms andinner products for Hr(�) or Hr(�) by k � kr;� and (�; �)r;�, respectively. The L2(�) or L2(�)inner product is denoted by (�; �)�.Let V0 be the divergence free subspace of H10 de�ned byV0 = fv 2 H10(
) : r � v = 0gand H0 is the completion of V0 with respect to L2(
) norm and is given byH0 = fv 2 L2(
) : r � v = 0; and v � nj� = 0g:The space H0 is equipped with the norm k � k0 and V0 is equipped with juj1 = kruk0. LetV1 be the subspace of H1(
) de�ned byV1 = f 2 H1(
) :  = 0 on �0 [ �2gand setV = V0�V1. LetV�0 and V �1 be the strong dual spaces ofV0 and V1, respectively, andh�; �i denote the dual product on either V�0�V0 or V �1 �V1. Throughout the mathematicaldiscussions, for the sake of convenience we set b� = 1Re , b� = 1RePr and b� = GrRe2 which are notto be confused with the physical quantities such as kinematic viscosity and conductivity.We de�ne the following bilinear and trilinear formsa0(u;v) = Z
 b�(ru) : (rv) d
 8 u;v 2 H1(
) ;a1(T;  ) = Z
 b�rT � r d
 8 T;  2 H1(
) ;c(u; q) = � Z
 qr�u d
 8 u 2 H1(
); 8 q 2 L2(
) ;



OPTIMAL CONTROL OF THERMALLY CONVECTED FLUID FLOWS 5b0(u;v;w) = Z
(u � r)v �w d
 8 u;v;w 2 H1(
)and b1(u; T;  ) = Z
 u � rT;  d
 8 u 2 H1(
); 8 T;  2 H1(
) :We have the coercivity relations associated with a0(�; �) and a1(�; �):a0(u;u) = b�kruk20 � C1 kuk21 8 u 2 H10(
)and a1(T; T ) = b�krTk20 � C2 kTk21 8 T 2 H1(
)\ V1which are a direct consequence of Poincar�e inequality.2. Weak Formulation. In this section we discuss the weak variational formulationof the Boussinesq system (1.2) and establish the existence of weak solutions.It follows from the Hopf extension (see [10]) that for each � > 0, there exists a functionu 2 H1(
) such that r � u = 0 and uj�0 = u0, uj�1[�2 = 0 andjb0(v;u;v)j � � jvj21 8 v 2 V0provided that the boundary data u0 2 H 12 (�) satis�es (n � u0; 1)�0 = 0. In the sequel wewill take � = b�2 . Let T 2 H1(
) be a function such that T j�0 = T 0 and T j�2 = T 1. Thenany function (u; T ) 2 H1(
) � H1(
) satisfying the inhomogeneous boundary condition(1.3) and r � u = 0 can be represented by(u; T ) = (w; �) + (u; T) where (w; �) 2 V = V0 � V:We then obtain a weak variational form of (1.2). For (u; T ) 2 V+ (u; T ),(2:1) a0(u;v) + b0(u;u;v)+ b� (Tg;v) = 0 8 v 2 V0a1(T;  ) + b1(u; T;  )+ b�h (T � g;  )�1 = 0 8  2 V1:A solution (u; T ) 2 V + (u; T) is called a weak solution of (1.2) if equation (2.1) issatis�ed.Regarding the bilinear form b0(�; �; �), we have the following results.Lemma 2.1. For u;v;w 2 H1(
), the trilinear form b0(�; �; �) satis�es(2:2) jb0(u;v;w)j � C3 kuk1kvk1kwk1and b0(u;v;w)+ b0(u;w;v) = 0 for r � u = 0 and w 2 V0:



6 K. ITO AND S.S. RAVINDRANProof. The �rst inequality follows from the Holders inequality. We obtainjb0(u;v;w)j � kukL4krvkL2kwkL4 � C3 kuk1kvk1kwk1:The second result follows from Green's formula(2:3) b0(u;v;w)+ b0(u;w;v) = (u;r(v �w)) = (n � u;v �w)�provided that r � u = 0 and v 2 H1(
).It follows from the proof of Lemma 2.1 that(2:4) b0(u;v;v) = 0 for v 2 V0 and r � u = 0and(2:5) b1(u; T;  )+ b1(u;  ; T ) = 0for u 2 V0 + u and  2 V1.2.1. Wellposedness. In this section we prove the existence of a weak solution to (2.1).Let Z = V+ (u; T).Theorem 2.2. Given g 2 L2(�1) there exists a weak solution (u; T ) 2 Z to (2.1) andk(u; T )k1 � C (kgk0;�1 + kTk1):Moreover, if g(x), T 0(x) and T 1(x) are bounded below by T 1 and bounded above by T 2almost everywhere then T1 � T (x) � T2 almost everywhere in 
 for every solution.Proof. Step I (Existence): We show that (2.1) has a solution (u; T ) 2 Z. Givenbu 2 V0 + u and (w; �) 2 V, we de�ne linear equations by(2:6a) a0(u;v) + b0(bu;w;v)+ b0(u;u;v) + (b�Tg;v) = 0 for v 2 V0;(2:6b) a1(T;  )+ b1(bu; T;  )+ b�h (T � g;  )�1 = 0 for  2 V1;where u = w + u; bu = bw + u; and T = � + T: First, we show that (2.6) has a uniquesolution (w; �) 2 V. Then, we show that the solution map S onV0+u de�ned by S(bu) = u,where (u; T ) 2 Z is the unique solution to (2.6), has a �xed point by Sch�auder �xed pointtheorem. The �xed point u 2 V0 + u and the corresponding solution T 2 V1 + T de�ne asolution to (2.1).We �rst note, from Lemma 2.1 and (2.5), that the bilinear form �1(�; �) de�ned by�1(�; �) = a1(�; �) + b1(bu; �; �)+ b�h(�; �)�1



OPTIMAL CONTROL OF THERMALLY CONVECTED FLUID FLOWS 7on V1�V1 is bounded and V1{coercive. It thus follows from Lax-Milgram theorem that theequation �1(�;  ) = b�h(g;  )�1 � a1(T;  )� b1(bu; T ;  )for  2 V1 has a unique solution � 2 V1 and T = � + T satis�es (2.6b).Setting  = sup(0; T � T 2) 2 V1 in (2.6b), we havea1(T;  )+ b1(bu; T;  )+ b�h (T � T 2;  )�1 = b�h (g � T 2;  )�1:It follows from (2.5) that b1(bu;  ;  ) = 0 and thusa1( ;  )+ 12b�h k k20;�1 � 12b�h kg � T 2k20;�1 :This implies k k0 � C4 kg � T 2k0;�1 :Similarly, letting � = inf(0; T � T 1) 2 V1 we obtaink�k0 � C5 kg � T 1k0;�1:From the de�nition of � and  , it follows that kTk0 � C6 which is independent of bu 2 V0+u.Next, we de�ne the bilinear form �0(�; �) on V0 �V0 by�0(w;v) = a0(w;v) + b0(bu;w;v)+ b0(w;u;v):It then follows from Lemma 2.1, (2.4) and the inequalityjb0(v;u;v)j � 12 a0(v;v)that �0(�; �) is bounded and V0{coercive. Thus, by Lax-Milgram theorem, the equation�0(w;v) = �(b�Tg;v)� b0(u;u;v)� a0(u;v);for v 2 V0, has a unique solution w 2 V0 and u = w + u satis�es (2.6a). Setting v = win (2.6a) and using the estimate kTk0 � C6, we get(2:7) jwj1 � 2C7b� kTk0 ++2C3b� (kuk21 + kuk1) � 
where kvk0 � C7 jvj1; v 2 V0. Let ��� be a closed convex subspace of H1(
), de�ned by��� = fu = w+ u : w 2 V0 satisfying jwj1 � 
g:Then it follows from (2.7) that S maps from ��� into ���. Moreover, the solution map S iscompact. In fact, if bwk converges weakly to bw in V0 then kbuk � bukL4 ! 0, since H1(
)



8 K. ITO AND S.S. RAVINDRANis compactly embedded into L4(
). Let (uk; Tk) 2 Z and (u; T ) 2 Z be the correspondingsolution of (2.6), respectively to buk and bu. Then we havea1(Tk � T;  )+ b1(buk � bu; T;  )+ b1(buk; Tk � T;  )+ b�h (Tk � T;  )�1 = 0for  2 V1. Setting  = Tk � T , we have from Lemma 2.1 and (2.5) thatkTk � Tk1 � C8 kbuk � bukL4kTk1which implies kTk � Tk1! 0. Similarly, we haveb� juk � uj1 � C9 kbuk � bukL4 jwj1+ b�C10 kTk � Tk0and thus juk � uj1 ! 0. Now, by Sch�auder �xed point theorem (see [20]) there exists atleast one solution to (2.6).Let us next derive the appriori estimate. Setting  = � in (2.6b) we obtaina1(� + T; �) + b1(bu; � + T; �) + b�h (� + T � g; �)�1 = 0:Equivalently,a1(�; �) + b1(bu; �; �) + b�h (�; �)�1 = �a1(T; �)� b1(bu; T ; �)� b�h (T � g; �)�1:Then using the coercivity and continuity properties of a1(�; �) and b1(�; �; �) and the antisym-metry property of b1(�; �; �), it follows that(2:8) k�k1 � C11(kTk1 + kgk0;�1)for some constant C11 independent of bu. From (2.7){(2.8), we obtain the appriori estimate(2:9) k(u; T )k1 � k(w; �)k1+ k(u; T)k1 � C(kgk0;�1 + kTk1)for some constant C.Step II (L1 estimate): We show that if T 1 � g � T 2 thenT 1 � T � T2 almost everywhere x 2 
:for every solution (u; T ) 2 Z to (2.1). In fact, letting  = inf(0; T � T 1) in the secondequation of (2.1) and using the same arguments as above, we obtaina1( ;  ) + b�h (T � g;  )�1 = 0where (T � g) = (T � T 1 � (g � T 1)) � j j2 on �1:Thus, we obtain k k21 = 0 which implies  = 0 and hence T � T 1. Similarly, one can provethat T � T 2, choosing the test function  = sup(0; T � T 2).



OPTIMAL CONTROL OF THERMALLY CONVECTED FLUID FLOWS 9We also have the uniqueness of solutions under the smallness assumption on u andT 1 � T 2.Theorem 2.3. If g(x), T 0(x) and T 1(x) are bounded below by T 1 and bounded aboveby T 2 almost everywhere and if jT 2 � T 1j and kuk1 are su�ciently small, then (2.1) has aunique solution in Z.Proof. Suppose (ui; Ti) 2 Z; i = 1; 2 are two solutions to (2.1). Then letting eu = u1�u2and eT = T1 � T2, we havea0(eu;v) + b0(u1; eu;v) + b0(eu;u2;v) + b� ( eTg;v) = 0a1( eT;  ) + b1(u1; eT;  ) + b1(eu; T2;  ) + b�h ( eT;  )�1 = 0for (v;  )2 V. Setting v = eu and  = eT , we obtain, using (2.4) and (2.5), thata0(eu; eu) � C3 ku2k1jeuj21 + b� k eTk0keuk0and a1( eT; eT ) + b�h k eTk20;�1 � kT2 � T0kL1keuk0k eTk1;where T0 = 12(T1 + T 2). This implies(b� � C3 ku2k1) jeuj21 � b�C7C12 jeuj1k eTk1and b� k eTk21 � C7kT2 � T0kL1 jeuj1k eTk1;where k k0 � C12k k1 for  2 V1. Hence ifb�(b� � C3 ku2k1)� b�C27C12 kT2 � T0kL1 > 0then jeuj1 = k eTk1 = 0 and thus (u1; T1) = (u2; T2).From Theorem 2.2 and (2.7), we havekT2 � T0kL1 � T 2 � T 12and ku2k1 � 2C7b� b� kT2 � T0k0 + 2C3b� (kuk21 + kuk1):Thus, if jT 2 � T 1j and kuk1 are su�ciently small then (2.1) has a unique solution in Z.



10 K. ITO AND S.S. RAVINDRAN3. Existence of Optimal Controls and Necessary Optimality Conditions. Inthis section, we show the existence of optimal solutions for the minimization problem (1.1){(1.3) and estabilish a necessary optimality condition. Let us �rst assume that C is a closedconvex subset of L2(�1). For example C can be de�ned to beC = fg 2 L2(�1) : T 1 � g � T 2 almost everywhere gor C = L2(�1). Let us denote the setS(g) = f(u; T; g)2 X = Z� C : g 2 C and (u,T) satis�es (2.1)g:Let us de�ne the cost functional J (u; T; g) to beJ (u; T; g) = '''(u; T ) + �2 kgk20;�1;and cast the control problems in the following abstract setting: For x = (u; T; g) 2 X =Z� C with Minimize J (x)x 2 Xsubject to E(x) = 0 and g 2 C;where the equality constraint E : X! Y = V� represents the state equations (2.1),hE(x); (v;  )iV��V = a(z; (v;  ))+ b(u; z; (v;  ))+ b�h (T � g;  )�1 + (b�Tg;v)for (v;  )2 V, where a(z; (v;  )) = a0(u;v) + a1(T;  )b(u; z; (v;  )) = b0(u;u;v) + b1(u; T;  ):Then, we have the existence of solutions to the optimal control problem.Theorem 3.1. Consider the minimization problem:(3:1) Minimize J (u; T; g)(u; T; g)2 S(g)� Cwhere C is a closed convex subset of L2(�1). Assume that the function'''(z) : z = (u; T ) 2 Z! RI +is convex and lower semicontinuous and satis�es '''(z) � c1 kzk21+c2 for c1; c2 2 RI +. Thenthe minimization problem has a solution.



OPTIMAL CONTROL OF THERMALLY CONVECTED FLUID FLOWS 11Proof. Let (uk; Tk; gk) 2 S(gk) � C be a minimizing sequence. Since � > 0, kgkk0;�1is uniformly bounded in k and thus from (2.9) so is k(uk; Tk)k1. Hence there exists asubsequence of fkg, which will be denoted by the same index, such that (uk; Tk; gk) convergesweakly to (u; T; g) 2 Z�C, since V�L2(�1) is a Hilbert space and C is a closed and convexset. Since H1(
) is compactly embedded into L4(
), it follows from Lemma 2.1 thatb0(uk;uk;v)! b0(u;u;v) 8 v 2 V0and b1(uk; Tk;  )! b0(u; T;  ) 8  2 V1which implies (u; T ) 2 S(g). Now, since ''' is convex and lower semicontinuous it followsfrom [3] that (u; T; g) minimizes (3.1).Assume that x� = (z�; g�) = (u�; T �; g�) denotes an optimal pair of (3.1). Then wehave the following theorem.Theorem 3.2. Assume that x� is a regular point in the sense that(3:2) 0 2 int fE0(x�)(v;  ; �� g�) : (v;  ) 2 V and � 2 Cg:Then there exists Lagrange multipliers (���; �) 2 V such that(3:3) a((���; �); (v;  ))+ b(v; z�; (���; �)) + b(u�; (v;  ); (���; �)) + h'''0(z�); (v;  )i= 0for (v;  ) 2 V and(3:4) (� g� � b�h �; �� g�)�1 � 0 8 � 2 C:Proof. It follows from [14] that if (3.2) is satis�ed, then there exists a Lagrange multi-pliers (���; �) 2V such thath'''0(z�); (v;  )i+ � (g�; �� g�)�1 +E0(x�)((v;  ); �� g�) � 0for all (v;  )2 V and � 2 C, that is(3:5) h'''0(z�); (v;  )i+ � (g�; � � g�)�1 + a((���; �); (v;  ))+ b(v; z�; (���; �))+b(u�; (v;  ); (���; �))� b�h (� � g�; �)�1 � 0for all (v;  ) 2 V and � 2 C. Setting (v;  ) = 0, we obtain (3.4). Next, setting � = g� in(3.5), we obtain (3.3).Concerning the regular point condition (3.2), we have



12 K. ITO AND S.S. RAVINDRANLemma 3.3. If g� 2 int (C) then the regular point condition (3.2) is equivalent to thefollowing condition. Suppose y = (w; �) 2 V satis�es(3:6) a(y; (v;  ))+ b(w; z�; (v;  ))+ b(u�;y; (v;  )) = 0 8 (v;  ) 2Vand � = 0 on �1:Then y = 0.Proof. If g� 2 int (C) then (3.2) is equivalent to G = E0(x�) is surjective. De�ne thelinear map F 2 L(V� L2(�1);V) by F((w; �); �) = ��� where ��� 2 V is a unique solution toa(���; (v;  ))+ b(w; z�; (v;  ))+ b(u�; (w; �); (v;  ))+ b�h (��� � �;  )�1 = 0 8 (v;  ) 2 V:Then, since H1(
) is embedded compactly to L4(
), by Lemma 2.1, F is compact. Thus,it follows from Banach closed range and Riesz-Schauder theorems that E0(x�)((w; �); �) issurjective if and only if ker(G�) = f0g, which is equivalent to (3.6).Finally, if C = L2(�1) and the cost functional is given as in (1.1) then (3.3){(3.4) canbe equivalently written as(3:7) 8>>>>><>>>>>: a0(���;v) + b0(u;v; ���) + b0(v;u; ���) + b1(v; T; �)+ (r� u;r� v) = 0a1(�;r )+ b1(u;  ; �)+ b� (���;  g) + b�h (�;  )�1 = 0� g � b�h � = 0 on �1for all (v;  )2 V.To facilitate the computational discussion, let us collect the necessary conditions ofoptimality (2.1) and (3.7) and recast them by using the vector decomposition of L2(
),(see [10]), L2(
) = H0 + fr� : � 2 H1(
)g; and by introducing pressure p and adjointpressure �. We obtain: For u 2 V0 + u, T 2 V1 + T , ��� 2 H10(
), � 2 V1, p 2 L20(
) and� 2 L20(
),(3:8) 8>>>>><>>>>>: a0(u;v) + b0(u;u;v)+ c(v; p)+ b� (Tg;v) = 0 8 v 2 H10(
) ;c(u; q) = 0 8 q 2 L20(
) ;a1(T;  ) + b1(u; T;  )+ b�h (T � g;  )�1 = 0 8  2 V1



OPTIMAL CONTROL OF THERMALLY CONVECTED FLUID FLOWS 13(3:9) 8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>: a0(���;v) + b0(u;v; ���) + b0(v;u; ���) + b1(v; T; �)+ c(v; �)+(r� u;r� v) = 0 8 v 2 H10(
)c(���; q) = 0 8 q 2 L20(
) ;a1(�;r )+ b1(u;  ; �)+ b� (���;  g) + b�h (�;  )�1 = 0 8  2 V1� g � b�h � = 0 on �1:The system (3.8){(3.9) forms the necessary conditions of optimality that optimal states andcontrol must satisfy. This system will also be called the optimality system.4. Computational Methods. In this section we describe a computational methodto �nd the optimal control by solving the optimality system (3.8){(3.9).4.1. Finite Element Approximations. A �nite element discretization of the op-timality system (3.8){(3.9) is de�ned in the usual manner. First one chooses families of�nite dimensional subspaces Xh � H1(
) and Sh � L2(
). We let X0h = Xh \ H10(
),S0h = Sh \ L20(
) and Xh = [Xh]2. These families are parameterized by a parameter hthat tends to zero; commonly, h is chosen to be some measure of the grid size. These �nitedimensional function spaces are de�ned on an approximate domain 
h. For simplicity wewill state our results in this section by assuming 
h = 
. We assume that these �niteelement spaces satisfy the following approximation properties (see, [7, 10]): there exist aninteger k and a constant C, independent of h, v, q and  , such thatinfvh2Vh kv� vhk1 � Chmkvkm+1 8 v 2 Hm+1(
) ; 1 � m � k ;infqh2Sh kq � qhk0 � Chmkqkm 8 q 2 Hm(
)\ L20(
) ; 1 � m � k ;and inf h2V h k �  hk1 � Chmk km+1 8  2 Hm+1(
) ; 1 � m � k :Here we may choose any pair of subspaces Xh and Sh such that X0h and S0h can be usedfor �nding �nite element approximations of solutions of the Navier-Stokes equations withhomogeneous Dirichlet conditions. Thus, we make the following standard assumptions,which are exactly those employed in well-known �nite element methods for the Navier-Stokesequations. Next, we assume the inf-sup condition: there exists a constant C, independentof h, such that inf06=qh2S0h sup06=vh2X0h R
 qhr � vh d
kvhk1 kqhk0 � C :



14 K. ITO AND S.S. RAVINDRANThis condition assures the stability of �nite element discretizations of the Navier-Stokesequations and also that of the optimlity system (3.8){(3.9). The references [9] and [6] mayalso be consulted for a catalogue of �nite element subspaces that meet the requirementsof the above approximation properties and the inf-sup condition. We also de�ne Zh to beZh � L2(�1).Once the approximating subspaces have been chosen, we look for an approximate op-timal solution (uh; ph; Th; ���h; �h; �h; gh) 2 Xh � S0h � Xh �X0h � S0h �Xh � Zh by solvingthe discrete optimality system of equations
(4:1) 8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(�gh � b�h�h; zh)�1 = 0 8 zh 2 Zh \ L2(�1) ;a0(uh;vh) + b0(uh;uh;vh) + c(vh; ph) + b�(Thg;vh) = 0 8 vh 2 X0h ;a1(Th;  h) + b1(u; Th;  h) + b�h(Th � g;  )�1 = 0 8  h 2 Xh \ V1 ;c(uh; qh) = 0 8 qh 2 S0h ;a0(���h;vh) + b0(uh;vh; ���h) + b0(vh;uh; ���h) + c(vh; �h) + b1(vh; Th; �h)+(r� uh;r� vh) = 0 8 vh 2 X0h ;a1(�h;  h) + b1(uh;  h; �h) + b�( h; g���h) + b�h( h; �h)�1 = 08  h 2 Xh \ V1(
) ;c(�h; qh) = 0 8 qh 2 S0h :We next brie
y sketch the proof of optimal error estimates. We �rst prove optimal errorestimates for the approximations of the linearized optimality system. Then by a carefulchoice of spaces and operators we can �t the optimality system into the framework of Brezzi-Rappaz-Raviart theory (see [10]). By verifying all the requirements of that theory, we obtainoptimal error estimates for the approximation of the optimality system of equations.Theorem 4.1. Assume (u; T; p; ���; �; �) 2 Hm+1(
)�Hm(
)�Hm+1(
)�Hm+1(
)�Hm(
)�Hm+1(
) is a nonsingular solution of the optimality system (3.8){(3.9). Then foreach su�ciently small h, the approximate optimality system (3.10) has a unique solution(uh; T h; ph; ���h; �h; �h) 2Xh�S0h�Xh�X0h�S0h�Xh in a neighborhood of (u; T; p; ���;���; �),such thatku� uhk1 + kp� phk0 + kT � T hk1 + k��� � ���hk1 + k� � �hk0 + k�� �hk1� Chmfkukm+1 + kpkm + kTkm+1 + k���km+1 + k�km + k�km+1g :We employ Newton's iteration method to solve this �nite dimensional nonlinear systemof equations.



OPTIMAL CONTROL OF THERMALLY CONVECTED FLUID FLOWS 154.2. Newtons Method. The Newton's method based on exact Jacobian for solvingthe discrete optimality system is given as follows:1� Triangulate the 
ow domain with a su�ciently small mesh size h; choose �nite elementspaces Xh and Sh; choose an initial guess (u0; T 0; p0; ���0; �0; �0; g0);2� For n = 1; 2; � � �, compute (un; Tn; pn; ���n; �n; �n; gn) from the following discrete systemof equations:
(4:2)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
(�gn � b�h�n; zh)�1 = 0 8 zh 2 Zh \ L2(�1) ;a0(un;vh) + b0(un�1;un;vh) + b0(un � un�1;un�1;vh) + c(vh; pn)+b�(Tng;vh) = 0 8 vh 2 X0h ;c(un; qh) = 0 8 qh 2 S0h ;a1(Tn;  h) + b1(un;  h; Tn�1) + b1(un�1;  h; Tn � Tn�1)+b�h(Tn � gn;  h)�1 = 0 8  h 2 Xh \ V1 ;a0(���n;vh) + b0(un � un�1;vh; ���n�1) + c(vh; �n) + b0(vh;un�1; ���n � ���n�1)+b0(un�1;vh; ���n) + b0(vh;un; ���n�1) + c(vh; �n)+(r� un;r� vh) = 0 8 vh 2 X0h ;c(���n; qh) = 0 8 qh 2 S0h ;a1(�n;  h) + b1(un;  h; �n�1) + b1(un�1;  h; �n � �n�1) + b�( h; ���n)+b�h( h; �n)�1 = 0 8  h 2 Xh \ V1 :At each Newton's iteration, we solve the linear system of equations by Gaussian elimi-nations for banded matrices. Under suitable assumptions, Newton's method converges ata quadratic rate to the �nite element solution (uh; Th; ph; ���h; �h; �h; gh). Quadratic con-vergence of Newton's method is valid within a contraction ball. In practice we normally�rst perform a few successive approximations and then switch to the Newton's method.The successive approximations are de�ned by replacing the second, fourth, �fth and sixthequations in the Newton's iterations by(4:3) 8>>>>>>>>>>>><>>>>>>>>>>>>: a0(un;vh) + b0(un�1;un;vh) + c(vh; pn) + b�(Tng;vh) = 0 ;a1(Tn;  h) + b1(un�1;  h; Tn) + b�h(Tn � gn;  h)�1 = 0 ;a0(���n;vh) + b0(un�1;vh; ���n) + b0(vh;un; ���n�1) + c(vh; �n)+(r� un;r� vh) = 0a1(�n;  h) + b1(un�1;  h; �n) + b�( h; ���n) + b�h( h; �n)�1 = 0 :In the case of the uncontrolled Navier-Stokes equations, the solution is unique for smallReynolds numbers and the successive approximations converge globally and linearly; see



16 K. ITO AND S.S. RAVINDRAN[7]. However, in the present case of an optimal system of equations for the Navier-Stokesequations, the solution is not shown to be unique and the successive approximation is notshown to be globally convergent, even for small Reynolds numbers. Our numerical expe-rience seems to suggest that the global convergence of the successive approximations forthe optimality system is still valid for small Reynolds numbers. Thus the combined suc-cessive approximations{Newton iterations gives an e�ective method for solving the discreteoptimality system of equations.5. Computational Results. We will consider two test examples for vorticity mini-mization using boundary temperature control. Both examples are related to optimizationand control of vapuor transport process for crystal growth. Some related works are re-ported in [19], [13] and [5]. In [19], tracking temperature �eld in an ampoule using bound-ary temperature control is considered, tracking a desired history of the freezing interfacelocation/motion in conduction driven solidi�cation process using temperature control isconsidered [13] and some optimal control problems in combustion are discussed in [5].5.1. Numerical Example 1. In this example, we consider the control of vorticityin a backward-facing-step channel 
ow. The vorticity is caused by the injection of 
owat the inlet of the channel and we try to control the vorticity or the recirculation ratherby adjusting the temperature at the top and bottom walls. A schematic of the backward-facing-step channel is shown in Figure 1. The height of the step is 0.5 and that of the out
owboundary is 1. The length of the very bottom of the channel is 5 and the total horizontallength is 6. Figure 3 demonstrate the 
ow situation for high Reynolds numbers which iscomputed with g = 0 (no control) and the following boundary conditions for velocity andtemperature. �in : u = (8(0:5� y)(1� y); 0) T = 0�out : u = ((1� y)y; 0) @T@n = 0�top : u = (0; 0) @T@n = �hT�bottom : u = (0; 0) @T@n = �hT�s : u = (0; 0) T = 1:The parameters were taken as follows: Re = 200, Pr = :72, Gr = 40; 000 and h = 1.The computational domain is divided into around 350 triangles with re�ned grid near thecorner, see Figure 2. The �nite element spaces Xh and Xh are chosen to be piecewisequadratic elements (for uh and Th) de�ned over triangles and the space Sh is chosen to bepiecewise linear element (for ph) de�ned over the same triangles.A recirculation appears at the corner region whose size increases with increasing Reynoldsnumber. The objective is to shape the recirculation region by applying temperature controlon the very top boundary �top and bottom boundary �bottom.We take the corner region of the channel 
� = (1; 3)� (0; :5), see Figure 1, for vorticityminimization. The control is computed by solving the optimality system (3.9){(3.10) byapplying �nite element and Newtons method described in x4.1{2. The parameter in thefunctional was chosen as � = 0:01 and the adjoint state variables ���, � and � were discretized



OPTIMAL CONTROL OF THERMALLY CONVECTED FLUID FLOWS 17using the same way as their state counterparts. At each Newton iteration a banded Gaussianelimination was used to solve the resulting linear system. We obtain the optimal solutiontypically in 7 Newton iterations.Figure 4 gives the controlled velocity �eld uh, Figures 5 and 6 are the blow-up of theuncontrolled and controlled 
ows, respectively, at the corner of the backward-facing-step.Figures 7 and 8 are the control distributions on the top and bottom boundaries.The values of the integral R
� jr � uj2 d
 without and with controls were .94 and .51,respectively. We see that we achieved a reduction of 45.74% in the L2(
){norm of thevorticity.5.2. Numerical Example 2. This example is motivated by the transport process inhigh pressure chemical vapour deposition (CVD) reactors (see [10{11] and [6]). A typicalvertical reactor, shown in Figure 9, is a classical con�guration for the growth of compoundsemiconductors by metalorganic vapor phase epitaxy. The reactant gases are introduced atthe top of the reactor and 
ow down to the substrate (�2) which is kept at high temperature.This means that least dense gas is closest to the substrate and the 
ow is likely to bea�ected by buoyancy driven convection. In order to have uniform growth rates and bettercompositional variations, it is essential to have 
ow �eld without recirculations.Our objective here is to minimize the vorticity by adjusting the temperature at the sidewalls (�1) in order to obtain a 
ow �eld without recirculations and thereby obtain bettervertical transport.The geometry of the prototype reactor, depicted in Figure 9, has two outlet portions,�o, and an inlet, �i, whose widths are 1/3. The size of the susceptor region �2 and that ofthe side walls �1 are 1; the height of the inlet port �s is 1/3.The boundary conditions for computations were as follows:�i : u = �0;�4(x� 13)(23 � x)� T = 0�o : @u@n = @v@n = 0 @T@n = 0�2 : u = (0; 0) T = 1�1 : u = (0; 0) @T@n = h(g � T )�s : u = (0; 0) T = 0For the uncontrolled 
ow computations, we take g = 0 and throughout the computationsin this problem we take the Reynolds number to be Re = 100, the Prandtl number to bePr = :72 and h = 1. For the discretization, the �nite element spaces were chosen to be thesame as in the previous example.We performed simulations with several values of Gr=Re2 for the uncontrolled case.The 
ow situations are shown in Figure 10a){15a) and the corresponding vorticity in L2norm is given in Table-I. Two standing circulation appear near the susceptor due to naturalconvection which did not appear at all when Gr=Re2 � 1. For the control simulationsheating/cooling control was applied to the side walls �1 with �xed in
ow rate and vorticitycost was minimized with the parameter � = 0:01. This control problem was solved usingour optimal control techniques.



18 K. ITO AND S.S. RAVINDRANThe resulting 
ow �elds for various Gr=Re2 values are shown in Figure 10b){15b) andthe corresponding vorticity in L2 norm is given in Table-I. The control values on the sidewalls are given in Figure 16a){b). We see, in Figure 10b){15b), signi�cant reduction inrecirculation for the controlled 
ow. Our computational experiments (not reported here)indicate that for Gr=Re2 � 1, thermal control mechanism on the side walls with �xed 
owrates may be less e�ective for the elimination of recirculation.Gr=Re2 0:9 1:0 1:1 1:2 1:3 1:4Uncontrolled Vorticity 0.1983 0.2600 0.3505 0.4712 0.6186 0.7878Controlled Vorticity 0.1126 0.1174 0.1113 0.1123 0.1147 0.1183Table I. Uncontrolled and Controlled Vorticity in L2 norm for di�erent Gr=Re26. Conclusion. In this article we studied vorticity minimization problem in 
uid 
owsusing boundary temperature controls. We formulated the problem as constrained minimiza-tion problem with cost functional being the vorticity in the 
ow. We proved the existenceof optimal solution and the existence of Lagrange multipliers. The necessary conditionsof optimality was given characterizing the controls and optimal states. Newton's methodcombined with mixed �nite element method is used to solve the necessary conditions ofoptimality. We �nally solved two canonical problems demonstrating the feasibility of theapproach.
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FIG. 2. Triangulation of the channel.
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FIG. 3. Uncontrolled Channel Flow at Re=200
FIG. 4. Controlled Channel Flow at Re=200



22 K. ITO AND S.S. RAVINDRAN
FIG. 5. Partial enlargement of FIG. 3

FIG. 6. Partial enlargement of FIG. 4
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FIG. 10a) Uncontrolled 
ow for Gr=Re2 = :9 b) Controlled 
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FIG. 11a) Uncontrolled 
ow for Gr=Re2 = 1 b) Controlled 
ow for Gr=Re2 = 1
FIG. 12a) Uncontrolled 
ow for Gr=Re2 = 1:1 b) Controlled 
ow for Gr=Re2 = 1:1
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FIG. 13a) Uncontrolled 
ow for Gr=Re2 = 1:2 b) Controlled 
ow for Gr=Re2 = 1:2
FIG. 14a) Uncontrolled 
ow for Gr=Re2 = 1:3 b) Controlled 
ow for Gr=Re2 = 1:3
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FIG. 15a) Uncontrolled 
ow for Gr=Re2 = 1:4 b) Controlled 
ow for Gr=Re2 = 1:4
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