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Abstract A new method to find the optimal control of time delay systems with quadratic
performance index is discussed. The method is based on hybrid functions. The properties of
the hybrid functions which consists of block-pulse functions and orthonormal Taylor series
are presented. The operational matrices of integration, delay, dual and product are used to
reduce the solution of optimal control time delay system to the solution of algebraic equations.
Numerical examples are included to illustrate the effectiveness and validity of the technique.

Keywords Time delay system · Orthonormalization · Operational matrices ·
Hybrid functions

Introduction

The dynamics of many control systems may be expressed by time-delay equations. The
delay(s) may appear in the system state, control input and/or output. Delays occur frequently
in incubation periods, mechanics, viscoelasticity, physics, physiology, population dynamics,
communication, information technologies, stability of networked control systems,maturation
times, age structure, blood transfusions, biological, chemical, electronic and transportation
systems [1–3]. Therefore the control of time-delay systems has been interested by many
engineers and scientists, due to its variety presence in realistic models of phenomena. Since
the analytical methods, especially in optimal control of time-delay systems, have less imple-
mentation ability and the application of Pontryagin’s maximum principle to the optimization
of control systems with time-delays as outlined by Kharatishvili [4] results in a system of
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coupled two-point boundary-value (TPBV) problem involving both delay and advance terms
whose exact solution, except in very special cases, is very difficult [5], different numeri-
cal methods have been devised to overcome the problems arising from the application of
analytical methods. In other word, the main object of all computational aspects of optimal
time-delay systems have been to produce a new method to avoid the solution of the men-
tioned (TPBV) problem. Orthogonal functions (OFs) and polynomial series have received
considerable attentions in dealing with various problems of dynamic systems [6]. For such
kind of problem, the approach is that of converting the underlaying differential equations
govering the dynamical system to an algebraic form through the use of an operational matrix
of integration which can be uniquely determined based on the particular OFs. Special atten-
tions have been given to applications of Walsh functions [7], block-pulse functions [8–10],
Laguerre polynomials [11], Legendre polynomials [12–14], Chebyshev polynomials [15,16],
Taylor series [17,18] and Fourier series [19,20].

The aim of present paper is to introduce a new numerical method to solve the quadratic
optimal control problem with delay systems. This method consists of reducing the optimal
control problem to a set of algebraic equations by expanding the state and control vectors
as hybrid functions with unknown coefficients. These hybrid functions, which consist of
block-pulse functions and orthonormal Taylor series are given. The operational matrices of
integration and delay are introduced. The necessary conditions of optimality are derived as
a system of algebraic equations in the unknown coefficients of state and control vectors and
Lagrange multipliers. These coefficients are determined in such a way that the necessary
conditions for extremization are imposed. In this paper, we show a novel strategy by using
hybrid functions to find the approximate solutions of time delay optimal control problems. In
this method, we divided the time interval into N subintervals and approximate the trajectory
and control functions by hybrid of block-pulse functions and orthonormal Taylor series.
Indeed in applying the method, by increasing the accuracy of the approximate solutions,
but the CPU time and computer needed memory reduce nevertheless, since the operational
matrices have large number of zero elements and they are mostly sparce.

Hybrid Functions and Their Properties

Hybrid functions Hn,m(t), n = 1, 2, . . . , N ,m = 0, 1, . . . .M − 1; have three arguments; n
andm are the order of block-pulse functions and orthonormal Taylor series, respectively, and
t is the normalized time. They are defined on the interval [0, 1) as follows (since any interval
[a, b) can be shifted to [0, 1) therefore we consider [0, 1) here)

Hn,m(t) =
{√

NOTm(Nt − n + 1),
( n−1

N

) ≤ t < n
N ,

0, otherwise,
(1)

where OTm(t)’s are orthonormal Taylor series govered by the Gram–Schmidt orthonormal-
ization process on Tm = {1, t, t2, t3, . . . , tm} and the time interval is [0, 1] with the weight
function w(t) = 1. For example we have

OT0(t) = 1,

OT1(t) = (2t − 1)
√
3,

OT2(t) = (6t2 − 6t + 1)
√
5,

OT3(t) = (2t − 1)(10t2 − 10t + 1)
√
7,

OT4(t) = (70t4 − 140t3 + 90t2 − 20t + 1)
√
9.
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A function f (t) belongs to the space L2[0, 1] may be expanded by hybrid functions as
follows:

f (t) =
∞∑
n=1

∞∑
m=0

cn,mHn,m(t). (2)

By truncating the series (2), we can abtain an approximation for f (t) as follows:

f (t) �
N∑

n=1

M−1∑
m=0

cn,mHn,m(t) = CT H(t), (3)

where

C = [c1,0c1,1 . . . c1,M−1c2,0c2,1 . . . c2,M−1 . . . cN ,0 . . . cN ,M−1]T ,

and

H(t) = [H1,0(t)H1,1(t) . . . H1,M−1(t)H2,0(t)H2,1(t) . . . H2,M−1(t) . . .

HN ,0(t)HN ,1(t) . . . HN ,M−1(t)]T , (4)

where, cn,m, n = 1, 2, . . . , N ,m = 0, 1, . . . , M − 1, are the coefficients expansion of the
function f (t) in the n-th subinterval [ (n−1)

N , n
N ).

We have cn,m = 〈 f (t).Hn,m(t)〉 and 〈.〉 is the standard inner product on L2[0, 1).
Operational Matrix of Integration

We can approximate the integration of H(t) defined in (4) as follows:

∫ t

0
H(s)ds � PhH(t), (5)

where Ph is MN × MN operational matrix for integration and is given as:

Ph =

⎛
⎜⎜⎜⎜⎜⎝

A1 B1 B1 . . . B1

0 A1 B1 . . . B1

0 0 A1 . . . B1
...

...
... . . .

...

0 0 0 . . . A1

⎞
⎟⎟⎟⎟⎟⎠ , (6)

where

B1 = 1

N

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
... . . .

...

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

(M×M)

,
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and

A1 = 1

2N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
√
1
√
3

1×3 0 0 0 . . . 0

−
√
1
√
3

1×3 0
√
3
√
5

3×5 0 0 . . . 0

0 −
√
3
√
5

3×5 0
√
5
√
7

5×7 0 . . . 0
...

...
... . . .

... . . . 0

0 0 0 . . .
... . . .

√
2M−1

√
2M−3

(2M−1)×(2M−3)

0 0 0 . . .
... −

√
2M−1

√
2M−3

(2M−1)×(2M−3) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(M×M)

.

Dual and Product Operational Matrices

Since Hn,m(t)’s are disjoint and orthonormal sets on [0, 1), so the dual operational matrix of
H(t) is

L =
∫ 1

0
H(t)HT (t)dt = I,

where I is MN identity matrix. Also the following property of the product of two hybrid
function vectors will be used. Let

H(t)HT (t)C � C̃ H(t), (7)

where C̃ is a MN × MN product operational matrix. To show the calculation procedure we
may choose N = 4 and M = 3. Thus we have

C = [c1,0c1,1c1,2 . . . c4,0c4,1c4,2]T , (8)

H(t) = [H1,0(t)H1,1(t)H1,2(t) . . . H4,0(t)H4,1(t)H4,2(t)]T , (9)

where

H1,0 = 2
H1,1 = 2(8t − 1)

√
3

H1,2 = 2(96t2 − 24t + 1)
√
5

⎫⎬
⎭ 0 ≤ t <

1

4
,

H2,0 = 2
H2,1 = 2(8t − 3)

√
3

H2,2 = 2(96t2 − 72t + 13)
√
5

⎫⎬
⎭ 1

4
≤ t <

2

4
, (10)

and
H3,0 = 2
H3,1 = 2(8t − 5)

√
3

H3,2 = 2(96t2 − 120t + 37)
√
5

⎫⎬
⎭ 2

4
≤ t <

3

4
,

H4,0 = 2
H4,1 = 2(8t − 7)

√
3

H4,2 = 2(96t2 − 168t + 73)
√
5

⎫⎬
⎭ 3

4
≤ t < 1.

(11)

For example from (1) one can obtain

H1,1(t) = √
4OT1(4t) = 2(8t − 1)

√
3, 0 ≤ t <

1

4

H2,1(t) = √
4OT1(4t − 1) = 2(8t − 3)

√
3,

1

4
≤ t <

2

4

H3,1(t) = √
4OT2(4t − 3) = 2(8t − 5)

√
3,

2

4
≤ t <

3

4

H4,1(t) = √
4OT2(4t − 5) = 2(8t − 7)

√
3,

3

4
≤ t < 1,
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We also have
H(t)HT (t)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1,0H1,0 H1,0H1,1 H1,0H1,2

H1,1H1,0 H1,1H1,1 H1,1H1,2 ©
H1,2H1,0 H1,2H1,1 H1,2H1,2

. . .

© H1,0H1,0 H1,0H1,1 H1,0H1,2

H1,1H1,0 H1,1H1,1 H1,1H1,2

H1,2H1,0 H1,2H1,1 H1,2H1,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where © denoted zero matrix. By using the vector C in (8) the 12 × 12 matrix C̃ in (7) is

C̃ =

⎛
⎜⎜⎝
C̃1 0 0 0
0 C̃2 0 0
0 0 C̃3 0
0 0 0 C̃4

⎞
⎟⎟⎠ , (12)

where C̃i ’s, i = 1, 2, 3, 4 are 3 × 3 matrices given by

C̃i =
⎛
⎜⎝
2ci,0 2ci,1 2ci,2
2ci,1 2ci,0 + 4

√
5
5 ci,2 4

√
5
5 ci,1

2ci,2 4
√
5
5 ci,1 2ci,0 + 4

√
5
7 ci,2

⎞
⎟⎠ . (13)

Delay Operational Matrix

The delay function H(t − τ) is the shifted of the function H(t) defined in (4), along the time
axis by τ. In other word we have

H(t − τ) = Dτ H(t), t > τ, 0 ≤ t ≤ 1, (14)

where Dτ is the delay operational matrix of hybrid functions. To find Dτ , we first choose N
the order of block-pulse functions, as the following manner [5]:

N =
{ 1

τ
, 1

τ
∈ Z,[ 1

τ

] + 1 otherwise,
(15)

where [.] denotes greatest integer value.
Note that in the interval τ ≤ t ≤ 2τ , the terms H1,m(t) for m = 0, 1, . . . , M − 1 are non-
zero and all other terms are zero. So if we expand H1,m(t) in terms of H2,m(t) then the
coefficients form an M × M identity matix since we have H1,m(t − τ) = H2,m(t). Similar
manner can be used to all other intervals. Thus if we expand H(t − τ) in terms of H(t) we
find NM × NM matrix Dτ as

Dτ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 I 0 0 . . . 0
0 0 I 0 . . . 0
0 0 0 I . . . 0
...

...
... . . .

...

0 0 0 0 . . . I
0 0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (16)

where I is M × M identity matrix.
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Problem Statement

Consider the following quadratic time-independent delay control system:

min J = 1

2
xT (1)Fx(1) + 1

2

∫ 1

0
{xT (t)Sx(t) + uT (t)Wu(t)}dt, (17)

s.t ẋ(t) = Ax(t) + Bx(t − τ1) + Eu(t) + Du(t − τ2), 0 ≤ t ≤ 1, (18)

x(0) = x0, (19)

x(t) = θ(t), −τ1 ≤ t < 0, (20)

u(t) = ψ(t), −τ2 ≤ t < 0, (21)

where W is symmetric positive definite and F, S are positive semi-definite matrices [21],
x(t) ∈ R

p, u(t) ∈ R
q are state and control vectores respectively and A, B, E, D are matrices

of appropriate dimensions, x0 is a constant specifiedvector, and θ(t), ψ(t) are arbitrary known
functions. We choose W as a symmetric positive definite and F, S as positive semi-definite
to show that the cost functional J is quadratic and convex, so the necessary conditions for
existence of solution, is also sufficient. The problem is to find x(t) and u(t), 0 ≤ t ≤ 1,
satisfying (18)–(21) while minimizing (17).

Assume that

x(t) = [x1(t)x2(t) . . . xp(t)]T , (22)

u(t) = [u1(t)u2(t) . . . uq(t)]T , (23)

Ĥ(t) = Ip ⊗ H(t), (24)

Ĥ1(t) = Iq ⊗ H(t), (25)

where Ip and Iq are the p and q dimensional identity matrices and ⊗ denotes Kronecker
product [22]. Here

Ĥ(t) = Ip ⊗ H(t) =
⎛
⎜⎝

H(t) . . . H(t)
...

...
...

H(t) . . . H(t)

⎞
⎟⎠

p×p

,

Ĥ1(t) = Iq ⊗ H(t) =
⎛
⎜⎝

H(t) . . . H(t)
...

...
...

H(t) . . . H(t)

⎞
⎟⎠

q×q

.

Ĥ(t) and Ĥ1(t) are pMN × p and qMN × q matrices respectively while H(t) is the vector
function defined in (4). Assume that each of xi (t) and each of u j (t), i = 1, 2, . . . , p, j =
1, 2, . . . , q , can be written in terms of hybrid functions as

xi (t) = HT (t)Xi ,

u j (t) = HT (t)Uj .

Using Eqs. (22)–(25) we have

x(t) = Ĥ T (t)X, (26)

u(t) = Ĥ T
1 (t)U, (27)
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where

X = [X1X2 . . . X p]T ,

U = [U1U2 . . .Uq ]T .

Similarly we have

x(0) = Ĥ T (t)G, (28)

θ(t − τ1) = Ĥ T (t)K , (29)

ψ(t − τ2) = Ĥ T (t)R, (30)

where

G = [g1g2 . . . gp]T ,

K = [k1k2 . . . kp]T ,

R = [r1r2 . . . rq ]T .

We can also write x(t − τ1) and u(t − τ2) in terms of hybrid functions as

x(t − τ1) =
{
Ĥ T (t)K , 0 ≤ t ≤ τ1,

Ĥ T (t)D̂T
1 X, τ1 ≤ t ≤ 1,

u(t − τ2) =
{
Ĥ T (t)R, 0 ≤ t ≤ τ2,

Ĥ T (t)D̂T
2 U, τ2 ≤ t ≤ 1,

where D̂1 = Ip ⊗ Dτ1 and D̂2 = Iq ⊗ Dτ2 and Dτ1 , Dτ2 are respectively delay operational
matrices given in (16).

Moreover we have∫ t

0
Ĥ T (s)ds = (Ip ⊗ HT (t))(Ip ⊗ PT

h ) = Ĥ(t)P̂T
h , (31)

∫ t

0
x(s − τ1)ds =

{
Ĥ T (t)P̂T

h K , 0 ≤ t ≤ τ1,

Ĥ T (t)Z1K + Ĥ T (t)P̂T
h D̂T

1 X, τ1 ≤ t ≤ 1,
(32)

∫ t

0
u(s − τ2)ds =

{
Ĥ T (t)P̂T

h R, 0 ≤ t ≤ τ2,

Ĥ T (t)Z2R + Ĥ T (t)P̂T
h D̂T

2 U, τ2 ≤ t ≤ 1,
(33)

where Ph is the operationalmatrix of integration given in (6) and the constantmatrices Z1, Z2

are ∫ τi

0
Ĥ T (t)dt = Ĥ T (t)Zi , i = 1, 2.

By integrating (18) from 0 to t and using (26)–(33) we have

Ĥ T (t)X − Ĥ T (t)G = AĤT (t)P̂T
h X + BĤT (t)P̂T

h K

+BĤT (t)Z1K + BĤT (t)P̂T
h D̂T

1 X

+E ĤT (t)P̂T
h U + DĤT (t)P̂T

h R

+DĤT (t)Z2R + DĤT (t)P̂T
h D̂T

2 U. (34)

From Eq. (34) and by deleting Ĥ T (t) from both sides we have

C∗ = X − G − AP̂T
h X − B P̂T

h K − BZ1K − B P̂T
h D̂T

1 X

−E P̂T
h U − DP̂T

h R − DZ2R − DP̂T
h D̂T

2 U = 0. (35)
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Similarly for J in (17), we have

J (X,U ) = 1

2
XT (H(1)HT (1) ⊗ F)X + 1

2
XT (L ⊗ S)X

+1

2
UT (L ⊗ W )U, (36)

where L = ∫ 1
0 H(t)HT (t)dt and indeed we know that L = I , where I is MN identity

matrix.
The delay optimal control problem has now been reduced to a parameter optimization

problem which can be stated as follows. Find X andU so that J (X,U ) is minimized subject
to the constraints in Eq. (35).

Let

J ∗(X,U,λ) = J (X,U ) + λ
T C∗, (37)

where the vector λ represents the unknown Lagrange multipliers, then the necessary condi-
tions for stationary are given by

∂

∂X
J ∗(X,U,λ) = 0,

∂

∂U
J ∗(X,U,λ) = 0,

∂

∂λ
J ∗(X,U,λ) = 0. (38)

Illustrative Examples

In this section numerical examples are given to demonstrate the applicability, efficiency and
accuracy of our proposed method.

Example 1

For a system described by [23]

ẋ(t) = −x(t) + u(t) − 0.5u

(
t − 2

3

)
, 0 ≤ t ≤ 1,

x(0) = 1.0,

u(t) = 0, t ∈
[
−2

3
, 0

]
,

minimize

J (X,U ) = 1

2

∫ 1

0
{x2(t) + u2(t)}dt.

Here, we solve this problem with hybrid functions. Note that in this example delay is applied
on control only, and τ = 2

3 . Suppose that

x(t) = XT H(t), u(t) = UT H(t), x(0) = CT
0 H(t),
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Table 1 J values in Example 1
with N = 3

M J value

3 0.195494339136585

4 0.195494339136887

5 0.195494339136887

6 0.195494339136887

where XT ,UT , H(t) are defined previously and C0 is the coefficient vector of 1 in term of
hybrid functions expansion. If we integrate ẋ(t) from 0 to t and use (31)–(33)we have∫ t

0
ẋ(s)ds = −

∫ t

0
x(s)ds +

∫ t

0
u(s)ds − 1

2

∫ t

0
u

(
s − 2

3

)
ds. (39)

For time delay control function one can easily find that∫ t

0
u

(
s − 2

3

)
ds =

{
0, 0 ≤ t ≤ 2

3 ,

UT PhDτ2H(t), 2
3 ≤ t ≤ 1.

(40)

So from (39) we obtain

XT H(t) − CT
0 H(t) = −XT PhH(t) +UT PhH(t) − 1

2
UT Dτ2 PhH(t). (41)

By deleting H(t) from both sides and reordering of (41) we conclude that

C∗ = XT − CT
0 + XT Ph −UT Ph + 1

2
UT Dτ2 Ph = 0. (42)

Now for cost functional J we have

J = 1

2

∫ 1

0

{
XT H(t)HT (t)X +UT H(t)HT (t)U

}
dt

= 1

2

[
XT LX +UT LU

]
,

where L is defined previously. Thus we have reduced the system as follows

min J = 1

2

[
XT LX +UT LU

]
,

s.to C∗ = XT − CT
0 + XT Ph −UT Ph + 1

2
UT Dτ2 Ph = 0.

We have solved this example with N = 3 and M = 3, 4, 5, 6 by Maple 15 software with the
CPU time of a core i5 in 2.45 s. The values of J are presented in Table 1. The curves of state
and control functions for M=6 are shown in Fig. 1.

Example 2

Consider the following delay optimal control system [14,19,24]

min J = 1

2

∫ 2

0

{
x2(t) + u2(t)

}
dt, (43)

s.t ẋ(t) = x(t − 1) + u(t), 0 ≤ t ≤ 2, (44)

x(t) = 1 − 1 ≤ t ≤ 0. (45)
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State x(t)

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
t

(a)

State u(t)

–0.3

–0.25

–0.2

–0.15

–0.1

–0.05

0
0.2 0.4 0.6 0.8 1

(b)

Fig. 1 State vector x(t) and control u(t) in Example 1. a State x(t). b Control u(t)

Suppose that

x(t) = XT H(t), u(t) = UT H(t), x(0) = CT
0 H(t).

We solve this example with N = 2 and M = 4. By expanding x(0) in terms of hybrid
functions we get

x(0) = [1, 0, 0, 0, 1, 0, 0, 0]T = kT1 H(t). (46)

Also we have

∫ t

0
x(s − 1)ds =

{
kT2 H(t), 0 ≤ t ≤ 1,

kT3 H(t) + XT Dτ PhH(t), 1 ≤ t ≤ 2,
(47)
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Table 2 Results of Example 2 with N = 2 and M = 6

Time State x(t) Control u(t)

Method of [23] Peresent method Method of [23] Peresent method

0.00 1.0000 1.000000 −1.9870 −1.987936

0.20 0.8364 0.836465 −1.6566 −1.657582

0.41 0.7299 0.729501 −1.3691 −1.370340

0.61 0.6794 0.678789 −1.1143 −1.143743

0.81 0.6703 0.669425 −0.9547 −0.955914

1.02 0.6971 0.695945 −0.7947 −0.795585

1.22 0.7321 0.730322 −0.6525 −0.652911

1.43 0.7716 0.770880 −0.5031 −0.495490

1.63 0.8310 0.826640 −0.3362 −0.336116

1.83 0.9163 0.910498 −0.1631 −0.162960

2.00 1.0189 1.011921 0.0000 0.00000

where

k2 =
[
1

2
,

√
2
√
6

12
, 0, 0, 0, 0, 0, 0

]T

, (48)

k3 = [0, 0, 0, 0, 1, 0, 0, 0]T , (49)

and Ph is the operational matrix of integration given in (6) and Dτ is the delay operational
matrix given by

Dτ =
(
0 I4
0 0

)
, (50)

where I4 is 4-dimensional identity matrix. If we integrate (44) from 0 to t and use (45)–(50)
we have

XT − XT Dτ Ph −UT Ph − kT = 0, (51)

where we have k = k1 + k2 + k3.
The cost functional J in (43) now changes to the following form

J (X,U ) = 1

2
(XT LX +UT LU ). (52)

Now we have reduced the system as follows

min J (X,U ) = 1

2
(XT LX +UT LU ),

s.t C∗ = XT − XT Dτ Ph −UT Ph − kT = 0.

The results obtained are given in Table 2. The results are compared well with the solutions
obtained in [23].

Values of cost functional J in [23], is reported as 1.6497 with m = 100 and 1.6504 with
m = 10. Moreover in [14], J value is reported as 2 2226

2615 . Approximate values of the cost
function J with N = 2 and for M = 4, 5, 6, 8 are given in the Table 3. The curves of state
and control functions for M = 6 are shown in Fig. 2.
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Table 3 The cost functional J in
Example 2 with N = 3

M J

4 1.64787431

5 1.64787419

6 1.64787419

State x(t)

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t
(a)

Control u(t)

–2

–1.5

–1

–0.5

0
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

(b)

Fig. 2 State vector x(t) and control u(t) in Example 2. a State x(t). b Control u(t)

Example 3

Consider the following delay optimal control system [5,9,14,23]

min J = 1

2

∫ 1

0
{x2(t) + 1

2
u2(t)}dt, (53)
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s.t ẋ(t) = −x(t) + x(t − 1/3) + u(t) − 1

2
u(t − 2/3), 0 ≤ t ≤ 1, (54)

x(t) = 1, −1 ≤ t ≤ 0, (55)

u(t) = 0, −2/3 ≤ t < 0. (56)

Here we have different delays in state(τ1 = 1/3) and control(τ2 = 2/3). The problem is
to find the optimal control u(t) which minimizes J in (53) subject to (54)-(56). The exact
solution of this problem is not known, so we solve it by hybrid functions and by choosing
N = 3 and M = 4. Suppose that

x(t) = XT H(t), u(t) = UT H(t), x(0) = CT
0 H(t).

By expanding x(0) in terms of hybrid functions we get

x(0) =
[√

3

3
, 0, 0, 0,

√
3

3
, 0, 0, 0,

√
3

3
, 0, 0, 0

]T

= eT1 H(t). (57)

Also we have∫ t

0
x

(
s − 1

3

)
ds =

{
eT2 H(t), 0 ≤ t ≤ 1

3 ,

eT3 H(t) + XT Dτ1 PhH(t), 1
3 ≤ t ≤ 1,

(58)

∫ t

0
u

(
s − 2

3

)
ds =

{
0, 0 ≤ t ≤ 2

3 ,

UT Dτ2 PhH(t), 2
3 ≤ t ≤ 1,

(59)

where

e2 =
[√

3

18
,
1

18
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]T

, (60)

e3 =
[
0, 0, 0, 0,

√
3

9
, 0, 0, 0,

√
3

9
, 0, 0, 0

]T

, (61)

and Ph is the operational matrix of integration given in (6) and Dτ1 , Dτ2 are the delay
operational matrices given by

Dτ1 =
⎛
⎝ 0 I4 0
0 0 I4
0 0 0

⎞
⎠, (62)

and

Dτ2 =
⎛
⎝ 0 0 I4
0 0 0
0 0 0

⎞
⎠, (63)

where I4 is 4-dimensional identity matrix. By integrating (54) from 0 to t and using (55)-(56)
we have ∫ t

0
ẋ(s)ds = −

∫ t

0
x(s)ds +

∫ t

0
x(s − 1

3
)ds +

∫ t

0
u(s)ds − 1

2

∫ t

0
u(s − 2

3
)ds,

XT H(t) − eT1 H(t) = −XT PhH(t) + eT2 H(t) + eT3 H(t) + XT Dτ1PhH(t)

+UT PhH(t) − 1

2
UT Dτ2 PhH(t).
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Table 4 The cost functional J in
Example 3 with N = 3

BP method [9] Peresent method

0.3723904 (N = 6) 0.373112935 (N = 3, M = 4)

0.3732373 (N = 9) 0.373112935 (N = 3, M = 5)

0.3731831 (N = 12) 0.373112935 (N = 3, M = 6)

0.3731359 (N = 21) 0.373112935 (N = 3, M = 8)

0.3731179 (N = 45) 0.373112935 (N = 3, M = 10)

State x(t)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t

(a)

Control u(t)

–1

–0.8

–0.6

–0.4

–0.2

0

0 0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8 1

(b)

Fig. 3 State vector x(t) and control u(t) in Example 3. a State x(t). b Control u(t)

So it is easily to find that

XT + XT Ph − XT Dτ1 Ph −UT Ph + 1

2
UT Dτ2 Ph − eT = 0, (64)

where we have e = e1 + e2 + e3.
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The functional J can be written as

J (X,U ) = 1

2

(
XT LX + 1

2
UT LU

)
, (65)

where L is the dual operational matrix of H(t). Thus the system is reduced as follows

min J (X,U ) = 1

2

(
XT LX + 1

2
UT LU

)
,

s.t C∗ = XT + XT Ph − XT Dτ1 Ph −UT Ph + 1

2
UT Dτ2 Ph − eT = 0.

Approximate values of the cost function J with N = 3 and for M = 4, 5, 6, 8, 10 are given
in the Table 4 and are compared with the solutions obtained in [9]. The curves of state and
control functions for M = 6 are shown in Fig. 3.

Conclusion

A new approach in solving optimal control of time delay systems with quadratic performance
index has been proposed using hybrid of general block-pulse functions and orthonormal
Taylor series. The operational matrices of integration, dual, product and delay are obtained
and used to reduce the solution of optimal control problem to the solution of algebraic
equations. The operational matrices of integration and product have many zeros and so they
are sparse matrices which makes hybrid functions computationally very attractive. So the
computational cost is decreased. Illustrative examples demonstrate that the method is valid.
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