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ABSTRACT: In this study, we present a new controller design method that not only effectively 
suppresses vibration in fexible systems, but also has the ability to save control energy. The 
proposed method allows integrated determination of sensor/actuator locations and feedback gain 
by minimizing the sum of the integral flexible system energy and the integral control energy. Also, 
the cost function is characterized by an effective representation of control systems, and is determined 
via an efficient solution of the Lyapunov equation. The optimization problem is solved by a recursive 
quadratic programming algorithm. The feasibility of applying this method to a simple and flexible 
structure confirms the direct relationship between our optimization criterion and effectiveness in 
vibration suppression. Copyright © 1996 Published by Elsevier Science Ltd 

L Introduction 

The positioning of sensors/actuators has recently become a challenging task in 
controlling vibration in flexible systems, particularly since large, lightweight, lightly- 
damped structures are frequently used in current aerospace applications. Owing to 
the property of space distribution for flexible systems, determining the number and 
placement of control devices as well as feedback gain is inherently an integral part of 
controller design. Moreover, additional freedom offered by adjusting the placement of 
control devices can affect the control effect in addition to the feedback controller. 
Therefore, in this study, we develop an optimal controller that allows integrated 
determination of the placement of control devices and feedback gain to achieve the 
ultimate optimum desired performance in controlling flexible systems. 

Much research has centered on the problem of selecting optimal locations for sensors 
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i 
and actuators (1, 2). The solution to this problem depends primarily on the optimization 
criterion selected. Most of the criteria are used to determine sensor locations and 
actuator locations separately; while in some research, the actuator's location is emphas- 
ized since these investigators treated the feedback state as accessible. Therefore, sel- 
ecting sensor locations would not be essential to determining the control effect. One 
method, as proposed by Schulz and Heimbold (3), has aroused great interest. This 
method allows integrated determination of sensor/actuator locations and feedback gain 
by maximizing the dissipation energy extracted by the action of the feedback system. 
Recently, Kondoh et al. (4) presented another optimization criterion based on min- 
imizing the weighted sum of the integral square regulating error and the integral square 
input. Their approach attempted to efficiently control as well as effectively suppress 
vibration. The weighting matrices used are variables so as to have freedom for the 
solution of the optimal positioning of sensors/actuators. The optimization criterion is 
determined via Riccati equations. However, the primary limitation of this approach is 
that selecting the weighting matrices Q and R is quite arbitrary; in addition, the problem 
of determining the moderate weighting matrices remains unresolved. 

In this study, we propose a new controller design method for optimal control of the 
vibration in flexible systems, thereby allowing integrated determination of dislocated 
sensor/actuator locations and feedback gain. The proposed method aims to sim- 
ultaneously obtain efficient control and effective suppression of vibration. The opti- 
mization criterion is based on minimizing the sum of the integral flexible system energy, 
i.e. the flexible system energy is the sum of kinetic and potential energy of the flexible 
systems, and the integral control energy. Determining the cost function is transformed 
into an efficient solution of the Lyapunov equation, instead of the Riccati equation. This 
can subsequently eliminate approximation errors due to the pseudo-inverse operation in 
determining the direct output feedback gain. For illustrative purposes, a simple can- 
tilever beam is adopted to evaluate our approach through direct velocity output feed- 
back design (DVOFB). 

IL System Modeling and Control 

Consider a generalized undamped continuous flexible system described by the partial 
differential equation (5) 

m(x)fP(x, t)+ ~ w ( x ,  t) = F(x, t) (1) 

where w(x, t) represents the space/time-dependent deformation of the structure, 5¢ a 
symmetric positive definite stiffness operator, m(x) the positive mass density function, 
and F(x, t) the distributed control force. The space coordinate x is subject to given 
boundary conditions. Although some small internal damping is present in lightly- 
damped structures, this structure with no internal damping is used to examine a worst- 
case design. The control force distribution is provided by discrete force actuators at m 
points 

F(x, t) = ~ 6(X--Xai)fi(t) (2) 
i ~ l  
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where f~(t) is the actuator force amplitude and 6(x-x~3 represents the Dirac delta 
function. 

By using the separation principle, an approximate solution of the homogeneous part 
of Eq. (1) is represented by 

w(x, t) = ~ dpi(x)q,(t) 
i = l  

= tkX(x)q(t) (3) 

where ~(x) is a vector of the space-dependent admissible function solving the eigenvalue 
problem (mode shapes or eigenfunctions) and q(t) is the vector of the time-dependent 
generalized coordinates (modal coordinates). The value n, which represents the number 
of modeled modes, is chosen to be a sufficiently large finite number. 

By substituting Eqns (2) and (3) into Eq. (1) and then using the orthonormality 
conditions of the eigenfunction cki(x), a system of second-order differential equations 
can be obtained as 

Mq(t) +Kq(t) = B(x~)f (4) 

where M = diag [1] represents the n x n normalized mass matrix, K = diag [092] the 
n x n normalized stiffness matrix, B(xa) = [~(x, l ) , . . . ,  ~(Xam)] the n x m input matrix, 
and f the m-dimensional force input vector. Also, the r-dimensional velocity measure- 
ment vector v is denoted as 

v = Cv(xs)/l(t) 

with velocity measurement matrix 

(5) 

C~(x~) = i (6) 

where the superscript T represents the transposition of the matrix. Let the output 
feedback be defined by 

r = - G v v  (7) 

where G~ is an m x r constant gain matrix. Substituting Eqns (5) and (7) into Eq. (4) 
yields the closed-loop equation 

Mq(t) + B(xa)GvC v (Xs)tl(/) -1-Kq(t) + 0. (8) 

The control problem investigated here entails how to effectively suppress vibration 
when the system is initially subject to a disturbance force. The control system design 
attempts to determine actuator locations xa, sensor locations xs and feedback gain Gv 
in one integrated design procedure. The motivation behind the design problem is to 
select an appropriate criterion that involves the effects of sensor/actuator placement 
and feedback gain. 
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IlL Formulation of the Optimization Criterion 

Selecting an appropriate criterion is essential in optimal control problems to find the 
most desirable performance. This criterion depends on how the system's physical 
requirements are translated into a mathematical form. To effectively suppress vibration 
in flexible systems, the total energy stored in the flexible system can be considered 
to be a good representation of the vibration response. The primary feature of this 
representation is that vibration measurement can be expressed as a scalar. The time 
behavior of this scalar function can be used to evaluate the effectiveness of vibration 
suppression. Furthermore, in light of practical and economic considerations, control 
energy must be saved in the controller design. Therefore, we propose a criterion which 
minimizes the sum of the integral flexible system energy and the integral control 
energy with respect to sensor/actuator locations and feedback gain. The quadratic cost 
function J is given by 

L(,q j ~_.~_ T T 

0 q 
= L ([qT ~iT][ K M][~l]+fTf)dt (9) 

where Q = diag [K, M] and R = I are the weighting matrices. The first term of this 
equation represents the integral flexible system energy, and the second term represents 
the integral square input (the integral control energy). The objective is to make both 
values as small as possible. Substituting the control input [Eq. (7)] into Eq. (9) yields 

f;( o 
j =  [qV /l z] M+CvT(x~)G~GvCv(x~)JL~IJ/ 

(1o) 

The sum of  integral flexible system energy and integral control energy J explicitly 
depends on the sensor locations xs and feedback gain Gv and implicitly depends on the 
actuator locations Xa. The optimization criterion with respect to xs, Xa and Gv is 
therefore formulated as 

min J(xs, Xa, Gv) ~ x *  x *  C.* 
xs ,Xa ,Gv s,  a~ ~ 'v '  

( l l )  

with constraints 

xseXs, XaeXa, GveGv (12) 

where Xs and Xa are the regions on the flexible structure in which the sensors/actuators 
are allowed to be placed, and Gv poses upper bounds on the feedback gain Gv. 

In fact, the above-proposed criterion can be extended to an undamped conservative 
system with both displacement and velocity feedback. Let the measurement originate 
from m locally discrete displacement and velocity sensors. To simplify the underlying 
analysis, the locations of the displacement sensors and velocity sensors are assumed to 
be coincident. Therefore, the measurement output y(t), 



consists of two parts: 

and 
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y(t) = [yd x y TiT, (13) 

Ya = Cd(Xs)q(t) (14) 

Yv = Cv(Xs)q(t) (15) 

where Cd is the displacement measurement matrix and Cd = Cv by assumption. 
Let the output feedback be defined by 

f = --[Gd Gv]y(t) (16) 

where Go and Gv are both m × r constant non-negative definite gain matrices. Thus, the 
closed-loop equation becomes 

M/j(t) + B(xa)GvCv(xs)/l(t) + (K + B(xa)GaCd(Xs))q(t) = 0. (17) 

From Eq. (9), the quadratic cost function J can be written as 

J = fi ([q T qT FK+CT(xs)GTGdCd(xs)| C~(xs)GdXGvCv(xs) ]Fq]~dt.  

] l  CT(xs)GvTGdCd(x~) M + CT(xs)GvTGvCv(xs)] LqJJ 

(18) 

IV. Determination of the Cost Function 

Transforming the uncontrolled system of Eq. (4) into state space form yields 

[0 '1 [°lf = z +  (19) 
- M - I K  0 B(xa) 

v = [0 Cv(xs)]z (20) 

where v is velocity sensor output and z = [q(t) q(t)] x. Equations (19) and (20) can be 
rewritten more briefly as 

= A'z + B'f (21) 

v = C'z. (22) 

For the active damping design [see Eq. (7)], the closed-loop system matrix is given as 

= A' + B'GvC' 

~ ~ = [ 0 I ]. (23) 
- M - t K  -M-'B(xa)G,,C,,(Xs) 

We define 
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0 1 
(~ = M+C~GvG~C~ T T 

The quadratic cost function J can be written as 

(24) 

J = f o  zxOz d'r. (25) 

The application of standard state transformation techniques to Eq. (25) yields 

J = zX(0) I ~ e xT~. I~. e x~ d~z(0). 
30  

(26) 

We now define 

P = - f o  eXT'" (~" ex~ dr, (27) 

which is a solution of the following Lyapunov equation 

.~xp + p~_ = (~. (28) 

The quadratic cost function is then determined as 

J = -zT(O)Pz(O). (29) 

The determination of the quadratic cost function J of a flexible system with n modes 
requires the solution of the Lyapunov equation (28) for 2n × 2n matrices. The solution 
of Eq. (28) exists and is unique as long as the eigenvalues of A have negative real parts 
(6). The numerical solution of the Lyapunov equation can be obtained efficiently 
using Bartels and Stewart's algorithm (7), as symmetry of Q is guaranteed. During 
optimization, the search path is restricted to matrices A having eigenvalues with nega- 
tive real parts. 

Guaranteeing the stability for dislocated control systems still remains an unresolved 
problem. In general, the control system is designed on the basis of a low-order system 
with few modes because of accuracy and calculation time restrictions. Instability may 
occur as soon as truncated residual modes are implemented in the model and have a 
zero crossing between actuator and sensor positions. An extension of our optimization 
method can treat this unavoidable spiliover effect by adding an additional constraint. 
Under this constraint, the controller-induced damping matrix for the closed-loop 
higher-order system must be at least semidefinite. Schulz and Heimbold (3) proposed 
similar extensions for the energy dissipation method. 

The optimization criterion can also be determined while the structure of controller 
is selected as the displacement and velocity feedback. Since its configuration in the 
controller design for vibration suppression is quite similar to the DVOFB and much 
computational effort is involved to obtain the minimum value of cost function, this 
case is not provided with illustrative examples here. However, determination of the 
cost function is presented in the Appendix for further reference. 
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V. Application of the Proposed Method to a Cantilever Beam 

In this section, we apply the proposed method through the DVOFB controller to a 
relatively simple cantilevered gravity-free beam, for which characteristic data taken 
from Schulz and Heimbold (3) are listed in Table I. As in (3), an impulse surface load 
acting on the beam was chosen as a disturbance force; this force is inversely proport ional  
to the mode amplitude. In the following design example, the first four modes are 
considered to be the controlled modes. The initial conditions of  the generalized coor- 
dinate vector are given by 

q(O)T=[o o o o] 

~1(0)T=[0.525 0.292 0.171 0.1221 

with the initial total energy H0 = 0.203. 
The optimization problem as formulated earlier is a nonlinear optimization with 

constraints. The constraints are inequality constraints in the actuator locations Xa, 
sensor locations xs and the feedback gain Gv. An inherent problem with the optimization 
procedures used is that a theoretically global opt imum is difficult to find. The optimal 
parameters  achieved depend on their initial values, i.e. only several locally optimal 
solutions can be obtained. Consequently, when searching for a possible globally optimal 
solution, various initial guesses for the sensor/actuator positioning and feedback gain 
are given in each case. In this study, the optimization program provided by IMSL Inc. 
(8) is used to compute the optimization. 

In the case where only one sensor/actuator pair is used for the proposed design, the 
constraints are bounds on xa, xs and Gv~,: 

0 < Xa, Xs ~< L 

--100 ~< Gv,, ~< 100. 

To treat spillover effects discussed in Section 4, a constraint is added: 

D*>~ 0 

TABLE I 
Flexible structure specifications: characteristic data for a 

cantilevered gravity free beam of len#th L 

Mass/length m = 1.49 kg/m 
Length L = 3.81 m 
Modulus of elasticity E = 2.07 × 105 N/mm 2 
Moments of inertia J = 6.35 mm 4 
Stiffness EJ = 1.31 N m 2 

Eigenfrequency of the first four modes: 
wl --- 0.227 rad/s w2 = 1.42 rad/s 
w3 = 3.99 rad/s w 4 = 7.85 rad/s 
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TABLE II 
Optimal positions and feedback #ain for an impulse surface load 

Sensor Actuator Integral 
Solution (xs/L) (xa/L) Gain Quadratic cost control energy 

1 0.075 0.336 28.808 3.152 1.0078 
2 0.300 0.338 2.989 2.335 0.1069 
3 0.448 0.469 1.441 1.364 0.0597 
4 0.597 0.616 0.985 0.954 0.0179 
5 0.685 0.700 1.081 0.792 0.0069 
6 0.894 0.893 0.478 2.423 0.0033 
7 1.0 0.999 0.184 1.108 0.002 

where 

De* -- ~1 {B* (Xa)Gv, 1 C * ( X s )  ~-- [B* (Xa)Gv] 1 C ~ ( X s ) ] T ~  • 

Thereby, B*(xa) and C*(xs) represent the corresponding B and C matrices (with n 
number  of  modes) for a system with n* number  of  modes, where n* > n. In this study, 
n* is equal to 6 and n is equal to 4. 

The subroutine N C O N F  in the IMSL program is called for. This subroutine min- 
imizes a function using the successive quadratic programming algorithm and a finite- 
difference gradient. Table II lists the optimization results with a set of  50 initial values 
for Xa, Xs, Gv,, and integral control energy. Solution 5 is the smallest cost value that the 
authors could find among those local optima. Figure 1 illustrates these seven locally 
optimal positions. Moreover,  Figs 2 and 3 display the time responses at points 
x~ = 0.25L, x2 = 0.5L, x3 = 0.75L and x4 = 1.0L of the beam and control input for 
each solution as well as that of  the open loop case (without control input); every curve 
of  the time response in each figure is normalized with respect to the largest deviation 
from the equilibrium occuring at x4 of  the open loop case. Because decay time of the 

Solution : 

(D @ @  @ @ 

0 . I .2 .3 .4 .5 .6 .7  .8 .9 1 

Length 

FIG. 1, Mode shapes and optimal actuator (~) and sensor (y) positions. 
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smallest among those local optima. Furthermore, because of  the constraint of integral 
control energy, an economic control input can be obtained. Thus, it is a trade-off 
between the integral system energy and integral control energy. 

Next, we show the case where two pairs of  sensors/actuators are used for the proposed 
design; the constraints are bounds on xa, xs and Gv: 

0 < Xsl,Xs2,Xal,Xa2 ~ L 

0 < Gvl,, Gv12, Gv2~, Gv2~ ~< 50. 

Similarly, to treat spillover effects, a constraint is also added: 

D*>~0, w h e r e n * = 6 .  

Here, only one solution of optimization is presented with a set of  20 initial values for 
Xa, Xs, Gv, quadratic cost and integral control energy: 

T [0.399 0.826] Actuators: xa = 
T [0.506 0.848] Sensors: Xs = 

__F13  000  
Feedback gain: G~ [_0.00 1.35J 

Optimal quadratic cost: J = 0.4593 
Integral control energy: F1 = 0.3699. 

The quadratic cost for this case is less than that for the case of one sensor/actuator 
pair. The number of  sensors/actuators obviously plays an influential role on the effec- 
tiveness of vibration suppression. Figure 4(a) shows the time responses of the beam in 
this design. Although the integral control energy for this case is larger than that for the 
case of one sensor/actuator pair, the control system performance is much better because 
of low quadratic cost J. 

If we chose the cost function J = integral flexible system energy, the optimal problem 
becomes 

min J(x~, Xa, Gv) ~ --s, Y* "*a, Y* ~ v  ~ *  (30) 
Xs,Xa,Gv 

with constraints 

xs~X~, xa~Xa, Gv~Gv. (31) 

One locally optimal solution is illustrated as follows: 

T [0.399 0.826] Actuators: Xa = 
T [0.506 0.848] Sensor: Xs = 

=[7 .798  5.6361 
Feedback gain: Gv 12.580 9.630/ 

Optimal quadratic cost: 3 = 1.246 × 10 -2 
Proposed quadratic cost: J = 15.3577 
Integral total control energy: F2 = 15.3565. 

Figure 4(b) displays the time response. The normalized response is excellent in this 
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FIG. 4. Time responses and control input force for two sensor/actuator pairs using different cost 
functions. 

case (the integral flexible system energy is 1.246 × 10-2); however,  the integral control  
energy is extremely large (F2 >> F 0  and the max imum absolute value o f  control  input 
is also large. Hence, no guarantee is made of  economic  control  input in this case. 

VI. Conclusions 

This paper  presents an optimal controller  design method  which effectively suppresses 
vibrat ion in flexible systems and saves control  efforts. This method allows integrated 
determinat ion o f  sensor /actuator  locations and feedback gain. In the structure o f  direct 
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velocity feedback design, the quadratic cost function of the infinite-time linear quadratic 
problem is reduced to an efficient solution of a Lyapunov equation. In numerical 
calculations, the optimization is performed by a recursive quadratic programming 
algorithm. Applying this method to a simple flexible structure demonstrates that the 
vibration can be effectively suppressed with an economic control input. Numerical 
results also reveal that, in addition to the placement of  sensors/actuators, the number  
of  sensors/actuators plays an influential role in vibration suppression. 
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Appendix--Determination of  the Cost Function with Displacement and Velocity 
Feedback 

Here, we reconsider the direct output feedback controller with displacement and velocity 
feedback in Section III. Transforming the uncontrolled system of Eq. (4) into a state space form 
yields 

y:p:s  
where y is displacement and velocity sensor output. Equations (AI) and (A2) can be rewritten 
in a brief form as 

= A'z+B'f  (A3) 
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y = C'z. (A4) 

For the displacement and velocity feedback design [Eq. (16)], the closed-loop system matrix is 
given as 

,i, = A'+B'[Gd Gv]C' 

I 0 I ] (A5) 
- M -  l K -  M -  IB(x~)GdCd(X~) -- M -  'B(x~)GvC~(x~) 

According to Eq. (18), we define 

= r K+CT(xs)GdTGdCd(xs) CdT(xs)GTGvCv(x') 1 

0 k Cv(x)GvGdCd(Xs) T T " T T M +  Cv (xs)Gv G~Cv(xs)] 

The quadratic cost function J can be written as 

J = zT0z dz. 
0 

Applying standard state transformation techniques to Eq. (A7) yields 

(0) I '° e xT~- Q" e x~ (0) J = z T dzz . 
J o  

We now define 

(A6) 

(A7) 

(A8) 

~0 c P = - e xT*" O" e x" dz, (A9) 

which is a solution of the following Lyapunov equation 

~Tp+p~,  = 1~. (A10) 

The quadratic cost function is then determined as 

J = --zT(0)Pz(0). (A11) 

Determining the cost function J requires solving the Lyapunov equation (A10) for 2n × 2n 
matrices. The procedure of solution is the same as in Section IV. 


