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Abstract:  This paper discusses a class of state constrained optimal control problems
for which it is possible to formulate second order necessary or sufficient conditions that do
not involve all curvature terms for the constraints. This kind of result is classical in the
case of polyhedric control constraints. Our theory of optimization problems with partially
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Problemes de commande optimale
sous contraintes partiellement polyédriques

Résumé : Cet article discute une classe de problemes de commande optimale pour lesquels
il est possible d’énoncer des conditions nécessaires du second ordre qui ne font apparaitre
qu’une partie des termes de courbure des contraintes. Ce type de résultat est classique
dans le cas de contraintes polyédriques sur la commande. Notre théorie des problemes
partiellement polyédriques étend ces résultats au cas ou les contraintes polyédriques sur
la commande sont combinées avec des contraintes sur 1’état. L’analyse est basée sur une
hypothese dite de condition de qualification stricte semilinéarisée. Nous appliquons ces
résultats & des problémes de commande optimale d’équations elliptiques avec des contraintes
sur la commande et sur 1’état.

Mots-clé : Commande optimale, systemes elliptiques, analyse de sensibilité, développement
des solutions, conditions d’optimalité du deuxieme ordre, formes de Legendre, polyédricité.
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1 Introduction

This study is motivated by optimal control problems that have local control constraints
and a finite number of state constraints. The problem was considered recently in [15], where
second order necessary optimality conditions were obtained. The aim of this paper is to show
that this result is a particular case of a general property of abstract optimization problems
that have two types of constraints, the first of them being polyhedric. Polyhedricity theory
for convex sets is a classical tool for obtaining formulas for the directional derivative of the
projection over a convex set [18, 25], was applied to nonlinear control problems [30, 23], and
has been linked to the recent work on sensitivity analysis for abstract optimization problems
6, 8, 10].

The paper is organized as follows. Section 2 presents a theory of second order neces-
sary or sufficient optimality conditions for abstract optimization problems that satisfy the
strict semilinearized qualification condition. In the case corresponding to an optimal control
problem with polyhedric control constraints and a finite number of additional inequality
constraints, the theory is complete in the sense that there is no gap between the neces-
sary and sufficient conditions. More precisely, we obtain a characterization of the quadratic
growth condition.

In section 3, assuming a weak second order sufficient condition, and the strict semilineari-
zed qualification condition, we provide a formula for computing the directional derivative of
the optimal control (as well as a second order expansion of the value function) with respect
to a perturbation.

The last section discusses the application of the previous results to some optimal control
problems of elliptic equations. We consider the case of nonnegative control subject to a
finite number of state constraints.

Notations Let (P) be an optimization problem. By F(P), e-S(P) and val(P), we denote
the feasible set, set of € solutions and value of problem (P), respectively.

2 Second order abstract optimality conditions

In this section we discuss the theory of second order optimality conditions for optimization
problems of the following type:

(AP) Min, f(z); z € Kx; G(z) € Ky.

Here X and Y are Banach spaces, Kx and Ky are closed convex subsets of X and Y,
respectively, and f and G are twice continuously differentiable mappings from X into IR
and Y. We remind that, if K is a convex subset of a Banach space X, and z € K, then the
tangent and normal cones, Tx and Ni, and the cone of feasible directions R, are defined
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as
Te(a) = {yeX; Ia(o) =z+oy+o(0) €K, o >0},
Nk(z) = {2" €A™ (2%,y) <0,Vy € Tx(z)},
Ri(z) = {yeX;It>0; z+ty e K},

with the convention that these sets are empty if x ¢ K. An interesting case is when Ky is
polyhedric in the following sense [25, 18].

Definition 1 Let zg € Kx and x* € Nk, (xo). We say that Kx is polyhedric at xo for the
normal direction x* if

Trx (20) N (2%)" = Ricy (20) N (2*) L. (2.1)
If Kx is polyhedric at each xo € Kx for all x* € Nk, (zo), we say that Kx is polyhedric.

By setting
K:=Kx xKy, Y:=XxY, G):=(z,G)),

we can write the abstract optimization problem (AP) under the form
(AP2) Min, f(x) s.t. G(z) € K,

with G(z), twice continuously differentiable mapping from X into ), and K closed convex
subset of V. We will use several times the relationship between the two formats, in order to
use the results that were derived for problem (AP2). For instance, the standard constraint
qualification condition for zy € F(AP2), due to Robinson [26], is as follows:

0 € int{DG(z0)X — (K — G(0))}- (2.2)

Lemma 2.1 (Robinson [26]). Let ©o € F(AP2) satisfy (2.2). Then the following metric
reqularity property holds. There exists € > 0 and a > 0 such that, for all x € B(xy,¢) there
exists £ € G~H(K) satisfying

|2 — z|| < adist(G(z), K).

It is easy to show (e.g. [10]) that the qualification condition for a problem of the form
(AP) (after it has been put under the form (AP2)) is equivalent to

0 € int{DG(wo)(Kx — o) — (Ky — G(a0))}- (2.3)

The critical cone at o € F(AP) is defined as the set of directions of decrease of the cost
function that are tangent to the feasible set. More precisely,

C(xo) := {h € Tk (20); Df(x0)h < 0; DG(x0)h € Tk [G(20)]}-
The Lagrangian function and the set of Lagrange multipliers are defined as

L(z,A) = f(z)+(AG(2)),
Alz) = {(g,A) € Nk (z) x Nk, [G(z)]; DzL(x,\) + g = 0}.
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Lemma 2.2 (Zowe-Kurcyusz [31]). Let o be a local solution of (AP) satisfying the qualifi-
cation hypothesis (2.2). Then with zy is associated a non empty and bounded set of Lagrange
multipliers.

It is convenient to use the following well-known characterization of the critical cone.
Lemma 2.3 Let A(x) # 0, say contains (¢, \). Then D f(x)h =0 whenever h € C(z), and
C(z) ={h € Tk, (z) Ng*; DG(x)h € Tk, [G(z)] N ALY (2.4)

ProofLet h € X be tangent to the feasible set of (AP), in the sense that h € Tk, ()
and DG(z)h € Tk, [G(z)]. By definition of A(z), we have

0= (DzL(x,A) + ¢, h) = Df(z)h + (A, DG(x)h) + (¢, h).

Since the last two terms are nonpositive, we have D f(z)h > 0, and Df(z)h < 0 iff the last
two terms are zero. The result follows. I

Let x € F(AP). Using the above lemma, we may view the critical cone as a linearization
of the following set
Ag,)) := {h € (Kx —2)Nq*; DG(z)h € Tk, [G(x)] N A}, (2.5)

Note that in this expression we chose to “linearize” the constraint G(z) € Ky, but not
the relation z € Kx. The set A(g, ) is the inverse image, through the linear continuous
mapping h — (h, DG(z)h), of the closed convex set

((Kx =) Ng*) x (T [G@)] NAY)

We will use the associated qualification condition, that we will call the strict semilinearized
qualification condition (we justify this terminology below). From the above discussion, it
follows that the expression of the strict semilinearized qualification condition is

(CQA) 0€ int {DG(z) (Kx —z) Ng") — Tky [G(z)] N AT} .

We may compare this condition to the more classical strict qualification condition, introduced
in [28] (see also [4]), whose expression, for problem (AP), is

0 € int {DG(z) (Kx —2)Ng") — (Ky — G(z)) N A*}. (2.6)

Lemma 2.4 (i) Condition (2.6) implies (CQA), and both conditions are equivalent if K is
a polyhedron.

(ii) Assume that the standard constraint qualification (2.2) holds. Then condition (CQA)
implies existence and uniqueness of the Lagrange multiplier.
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Proof.(i) Since (Ky — G(x)) C Tk, (G(z)), we obviously have that (2.6) implies (CQA).

Assume now that K is finite dimensional, and that (CQA) holds. Since R4 (Ky — G(z)) =
Rk, (2) is equal to Tk, (G(x)), conditions (CQA) and (2.6) are obviously equivalent.
(ii) Tt is known that the strict qualification condition (2.6) implies existence and uniqueness
of the Lagrange multiplier, see [28]. Since (CQA) is nothing but the strict qualification
condition after linearization of the second constraint (that leaves invariant the set of La-
grange multipliers), we obtain that the set of Lagrange multipliers, that by (2.2) is non
empty, is in fact a singleton. i

It is possible to express a second order necessary optimality condition for problem (AP),
using the result of [16], in term of the second order tangent set to K C Y, at y € Ky in
direction z € Tk, (y), that is defined as

t? A
Tiey (4,2) = {w €Y; y + tz + Sw+o(t?) € Ky, t > 0}.

Let zo be a qualified local minimum of (AP). Set
T(h) := Tk, [G(z0), DG(z0)h).

Theorem 2.1 Assume that Kx is polyhedric. Let xo be a qualified local minimum of (AP)
satisfying the strict semilinearized qualification condition (CQA). Then
() C(zo) N Ry (z0) is a dense subset of C(xo), and each h € C(xo) N Rk, (xo) satisfies

D32 L(zo, N)(h, k) = o(X, T (h)) > 0. (2.7)

(ii) If in addition h — o (X, T (h)) is lower semi continuous over C(xy), then (2.7) holds for
all critical direction h.
(iii) If Ky is a polyhedron, then for all critical direction h we have

D2, L(x0,A)(h, k) > 0. (2.8)

Proof.(i) Step a. We claim that C(zo) N Rk (xo) is a dense subset of C(zg). Let
h € C(zo), and fix ¢ > 0. Since Kx is polyhedric, there exists h. € Rk, (zo) N g+ such
that ||iLE — h|| <e. Let t. > 0 be such that zq + t.h. € Kx. We use the metric regularity
property that, by lemma 2.1, follows from (CQA):

There exists v > 0 and a > 0 such that, if @ € X, and ||©]| <7,

then there exists w € (Kx — 2¢) N ¢* such that

DG(zo)w € Tky [G(zo)] N AL, and

lw— | < a[dist(@, (Kx —20) N g*) + dist(DG(x0)0, Tkey, [G(m0)] N AL)].
Reducing t. if necessary, we have that . := t.h. is such that ||@e|| < v and we € (Kx —

x9) Ng*. Since
dist(DG (20, Ty [G(x0)] N A1) = O(et,),
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it follows that there exists w. € (Kx — 29) N ¢ such that

DG(z)w: € Tk, [G(zo)] N At
lwe — .|| = a dist(DG(z¢)b., Ty [G(x0)] N AT) = O(t.€).

Set h. :=t-'w.. Then h. € C(z9) N Rk (o), and ||k — h|| = O(€). This proves our claim.
Step b. Since xy is a qualified local solution of (AP), and the Lagrange multiplier is unique,
by [16, Thm 4.1], the following second order necessary condition holds: for any critical
direction h, we have

D2, L(z0, \)(h, h) — o(q, Tx (z0,h)) — a(A\, T (h)) > 0. (2.9)

On the other hand, since ¢ € Nk (2q), we have o(q, T% (20,h)) < 0 [16, Section 4]. If
h € Riy (20), then 0 € T (o, h), so that o(q, Tk, (z0, h)) = 0. Point (i) follows.
(ii) Let h € C(xzg). By (i) there exists hy — h, hy, € C(x9) N Rk (o), and

D2, L(z0, \) (b, hy) > oA, T (hy)).

Since the right hand side is Ls.c. by hypothesis, and D2,£(zo, \)(-,-) is a continuous func-
tion, we may pass to the limit in this inequality. Point (ii) follows.

(iii) If Ky is a polyhedron, then it is well known that 0 € 7(h) (e.g. [10]), whence
(A, T(h)) =0, for all critical direction h. The result follows then from (ii). il

In order to formulate second order sufficient conditions, we need the following concept.

Definition 2 (See e.g. [19]). We say that a quadratic form Q on a Hilbert space X is a

Legendre form if Q is weakly l.s.c. and, whenever a sequence {x} C X satisfies xy, S
and Q(zr) — Q(x), then z, — x.

The function  — ||z||? is the simplest example of a Legendre form. More generally,
if N > 0 and @ is a weakly continuous quadratic form, it is easy to check that x —
N|z||? + Q(z) is a Legendre form, see e.g. [11].

Definition 3 We say that x¢ is a local solution of (AP) satisfying the quadratic growth
condition if

Ja > 0; F(z) > F(zo) + al|lz — 20> + o(||z — z0]|?), Vz € F(AP). (2.10)

Theorem 2.2 Assume that Kx is a polyhedric subset of the Hilbert space X. Let xy be
a qualified local minimum of (AP) satisfying the strict semilinearized qualification condi-
tion (CQA), and let (go,No) be the unique associated Lagrange multiplier. If Qo(h) :=
D2,L(z0,\o)(h, h) is a Legendre form, and Ky is a polyhedron, then the following condition
is necessary and sufficient for quadratic growth,

D2, L(zo,Ao)(h,h) >0,  for all h € C(zp)\{0}. (2.11)
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Proof.Let x( satisfy the quadratic growth condition. Then there exists a > 0 such that
zo is a local solution of the problem

(AP,) Min, f(z) — %Hx —o|%; z € Kx; G(z) € Ky.

Since Ky is a polyhedron, and therefore (A, 7 (h)) = 0, (2.11) follows from theorem 2.1.
Conversely, assume that (2.11) holds, while the quadratic growth condition is not satis-
fied. Then there exists xy — zg such that

F(zx) < F(z0) + o[z — zo?)- (2.12)

Set tr := ||lzx — zo||. Extracting a subsequence if necessary, we may assume that z =
zo + trhg, ||he]l = 1, and hy, = h. Also h € Tk (x9) since hy € Ry (o), (2.12) implies
that DF(xo)h < 0, and from G(z;) € Ky we deduce that DG(z¢)h € Tk, (G(z0)). It
follows that h is a critical direction.

By the first order optimality condition we have

(0, Tk — z0) < 0 and (Ao, G(zr) — G(z0)) < 0.
Combining with D, L(xg, Ao) + go = 0, we deduce that
L(xk,Mo) — L(x0, Ao) + (g0, T — To),

7 >
EQo(n) + o)

F(zp) — F(zo)

Y

Combining with (2.12), it follows that Qo(hs) < o(1). Since Qo(-) is 1.s.c., we have Qo(l_z)_g
0. Since h is critical, this with (2.11) imply that h = 0. Tt follows that Qo(hr) — Qo(h).
Due to ||ht|| = 1 and h = 0, this contradicts the fact that Qq(hy) is a Legendre form. J

3 Abstract sensitivity analysis

This section is devoted to the study of the family of perturbed optimization problems
(AP,) Min, F(z,u) s.t. z € Kx; G(z,u) € Ky.

Here u belongs to the Banach space U, Kx is a closed convex subset of the Hilbert space X,
Ky is a polyhedron included in the finite dimensional space Y, so that (CQA) is equivalent
to the strict qualification condition (2.6), f and G are twice continuously differentiable
mappings from X x U into IR and Y. The Lagrangian of this problem is

L(z, A\ u) = F(z,u) + (), G(z,u)).

We perform a sensitivity analysis along a path of perturbation variables of the form

t2
w(t) == ug + tug + 5 U2 + o(t?).
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The following problems may be interpreted as the linearization and the second order expan-
sion of problem (AP,) at (xo,uo) along the path u(t), respectively:

Minhefo(al'o,U())(h,’ul) s.t. he Tk, (CL’Q);
DG(.’L’(),’LLU)(h, ul) S TKy [G(al'o, U())],

(LP)
and, (go, Ao) being the Lagrange multiplier associated with zo:
(SP) MinheS(Lp)Du[:(.Z'g, /\0, U())UQ + D(Qz’u)zﬁ(.rg, )\0, ’U,())((h, ul), (h, ul));
Lemma 3.1 Let xy satisfy (CQA). Then (i) S(LP) is non empty, and
val (LP) = DU,C(.CL'(], )\0,’&0)11,1, (313)

where (go, Mo) s the unique Lagrange multiplier associated with xo, and
(ii) The set S(LP) N Rk (x0) is a dense subset of S(LP).

Proof.The dual, in the sense of convex analysis, to the linearized problem (LP), is known
to be (e.g. [8])

(L‘D) Ma’x(q,)\)Du‘c(mﬂa ’\a UQ)Ul; (qa A) € A('Z'O)

By lemma 2.4, we know that there exists a unique Lagrange multiplier (gq, Ag), and that
the primal and dual values are equal. This proves (3.13). It follows that h € X is solution
of (LP) iff h € F(LP) and the complementarity conditions

<QO5 h) = </\05 DG(Z.U; UO)(ha ul)) =0
are satisfied. In other words, h € S(LP) iff
h € Ty (x0) N (g0)";  DG(x0,u0)(h,u1) € Trey [G(20,u0)] N (Xo) ™

By (CQA) the set of such h is not empty, hence S(LP) is not empty.

(ii) This is a consequence of theorem 2.1(i) applied to problem (LP), once we have che-
cked that problem (LP) itself satisfies the strict semilinearized qualification condition. The
expression of the latter (for problem (LP)) is

0 € int { DG(@)[(Tix (s0) = ) N 6] = (T, (6120) DG (@0)R) N G}

Since (Kx — %9) C Tk y(zo) — h and Tk, [G(20)] C Ty, (G(20))DG(20)h, this is an obvious
consequence of (CQA). 1

Theorem 3.1 Assume that

(i) For small enought > 0, there exists x(t), o(t*)-solution of S(AP,)), such that x(t) — xo.
(ii) The point xg is the unigque solution of (APy), and satisfies (CQA) and the second order
sufficient optimality condition (2.11),
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(iii) The Hessian Qo(h) := D2, L (g, Ao, uo)(h, h) is a Legendre form over the Hilbert space
X,

Then

(a) The following expansion for the value function of (AP,) holds:

2
val (APy)) = val (APy,) + tval (LP) + %va,l (SP) + o(t?), (3.14)

(b) One has x(t) = xo + O(t). Any weak limit-point of t='(x(t) — xo) is a strong limit-
point, and is solution of (SP). In particular, if (SP) has a unique solution h, then x(t) =
xo + th + o(t).

Proof.Let Qu,(h) := D2,L(z0,o)((h,u1), (h,u1)). (Note that this notation is coherent
with the definition of Qq(-) given before.) Consider the subproblem

(SP;) Minye s pyDul(o, A, uo)uz + Qu, (h) — (g0, Tk (20, h)).

Since K is a polyhedron, we have o (X, T%[G(z0,u0), DG(zg,u0)(h,u1)]) = 0. It follows
from [8, Prop. 2.1] that

2
val(AP, ) < val(APy,) + tval(LP) + %val(SPa) +o(t),

while [8, Prop. 4.3] imply that the right-hand-side of (3.14) is a lower estimate of val(AP,)).
We now prove (3.14) by checking that val(SP) > val(SP,). By lemma 3.1, the set S(LP)N
Rk (zo) is a dense subset of S(LP). Also on S(LP)N Rk (xo) the cost functions of (SP)
and (SP,) coincide. Since o(qo,Tx, (%o, h)) <0, it follows that

inf D, , Ao, ” 7
(L PR (s (D E30 A0s 1)tz + Qu (1)
= inf ){Duﬁ(m, Ao, o)tz + Quy (h) — o(go, T2, (w0, 1))},

heS(LP)NRk 5 (zo0
val(SP,),

val(SP) =

\Y

as was to be proved.

(b) By [8, Prop 5.3], we have z(t) = o + O(t). Let us prove that any weak limit-point of
t~1(2(t) — o) is a strong limit-point. Let ¢, — 0%, 4 := z(t;), and hy := ¢, ' (v — o) be
such that hy = h. By [8, Prop 5.3], we know that

Qul (hk) - Qul (ﬁ)

Since Qo(-) is a Legendre form, we have hj, — h, as was to be proved. Finally if (SP) has a
unique solution A, it follows that ¢t~!(x(t) — xo) converges to h. The conclusion follows. I
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4 Application to state constrained optimal control pro-
blems

4.1 General results

In this section we apply the results of the previous sections to some optimal control problems
for semilinear elliptic equations. In the sequel of this paper, we denote by Q a bounded open
subset of IR™ (n < 3) with Lipschitz boundary I'. Given a function u € L?(2), (we take in
this section the standard notations for optimal control problems) we consider the following
boundary value problem:

—Ay + ¢(z,y) =u in Q, y(z) =0 on T, (4.15)

where ¢ : Q x IR — IR is a continuous function which is of class C?, and such that
¢y (x,) > 0, for all z € Q.

From now on, the weak solution of (4.15) associated with « will be denoted y,,. Under
the above assumption, we can prove the existence and uniqueness of a solution of (4.15).

Theorem 4.1 For every u € L2(Q), equation (4.15) admits a unique weak solution v, in
HL(Q) N C(Q), this solution is Holder continuous and we have

||yu||c(§) < CrL(1 + |[ullz2(0))s

where C; = C1(Q) is independent of u. Moreover, if we denote by A : L?(Q) — C(Q) the
mapping which associates with every control u the weak solution y,, of (4.15), then A is twice
continuously Fréchet differentiable, and for every u,h € L*(Q), if we denote y, = A(u) and
zn = A'(u)h, then zp, is the weak solution of

—Azp + ¢y (z,yu)zn = h  in Q, zn=0 onT. (4.16)

Proof. The above theorem is a collection of known results for semilinear elliptic equations
(see [7, 6, 15] and the general references [1, 2, 5]). 1
Consider the following control constraints:

L3(Q):={u€ L*(Q) |u(z) >0 ae. on z€Q}

Let us also consider a family of functions G; of class C? : L*(2) — R, for 1 < j < m. We
consider the following optimal control problem:

(P) Min{J(yu,u) | v € L3 (), G;(u) <0 for 1 < j <m},
where

F(u) := %/Q(yu(:c) —ya(z))? dz + %/ u(z)? dz, (4.17)

Q



12 J-F. BONNANS AND H. ZIDANI

with y4 is a given function in L2(2), and N > 0. The adjoint state p® associated with u is
defined as the unique solution in H?(Q) of the system

—Apy, + ¢y (€, yu)Pl = Yu —ya n @, pl =0 onT.
It is known that u — F(u) is a C? mapping with derivative
DF(u) = Nu + p0.

We will detail later the cases when Gj(u) are some punctual or integral functions of the
state.
Let @ be an optimal solution of problem (P). Set

J+ = {je{la"'am}lGj(ﬂ)<0}a
Jo = {jE{l,-",m}|Gj(’fb)=0},
J- = {je{1,---,m}|Gj@m) =0, \; > 0}.

Then (Jy,J_,J4) is a partition of {1,---,m}. Problem (P) can be written as follows
Min{F(u) | u € L%(Q), G(u) € R™}.
In addition (see e.g. [10, 3]) Robinson’s constraint qualification assumption is equivalent to
v € L3 (Q), G;(a)+ DG;(a)(v—1u) < 0. (4.18)
Therefore we obtain the following (classical) expression of the first order optimality system.

Theorem 4.2 Assume that @ is a local solution of (P) satisfying (4.18). Denote by §
and p the state and adjoint state associated with @. Then there exist Lagrange multipliers
(@,)) € L2(Q) x R™ such that:

Aj>0,1<j<m, and \; =0 if G;(u) <0, (4.19)

Nu+p+Y NDGj(w)+q=0; (gu—-u)<0, VueL;(Q). (4.20)
j=1

Since L2 (Q2) is polyhedric in L?(Q) (see e.g. [18, 25]), (P) is of the form (AP), with
X =I2Q),Y = R™, Kx = I2(Q), Ky = R™

We now discuss the strict semilinearized qualification condition (CQA). We need a
notation for the contact set of @ and its complement (defined up to a null measure set):

Q_(u):={z € q(z) >0},  Qo(u):={ze; u(z) =0},

Qp(u) = {z € Q; u(z) > 0}.
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Since Q_(u) C Qo(@), we have:
Tp2 ()@ NG ={heL*Q); h>0 on Qo; h=0 on Q_(a)}.

Therefore, the strict qualification condition is identical to the qualification condition when
changing inequalities G;(-) < 0 into equalities, for j € J_, and adding the constraint that
the control is zero on _(a).

Lemma 4.1 Let w € F(P), with associated Lagrange multiplier (§,\). Then the three
conditions below are equivalent:

(i) The strict qualification condition (CQA) is satisfied.

(ii) The following conditions hold:

(i) {DGi(w)h; i€ J_; h€ (Tr2()()N at)} is onto,
(ii) In e (RLi(Q)(ﬁ) Ngt); DGi(a)h =0,i € J_; DG;(a)h < 0,i € Jo\J_.
(4.21)

(iii) There exists no (G, \) € L2(Q) x R™, with X # 0, satisfying the following relations:
(ii) @(z) =0 on Q4 (a), §(z) <0 on Qo(@)\Q-(2); (4.22)
(iil) §+ X 1<icm AiDGi(@) = 0.

Proof.By the definition, (CQA) holds iff, for any z € IR™, close enough to 0, there exists
h € (L2 (Q) — u) N g+ satisfying the following relations:

{ () i =0,i€Jy; A >0,i€Jo\J,

(1) DGz(ﬂ)h =2z, 1€ J_; (11) DGz(ﬂ)h <z, 1 € J()\J_. (423)
It follows from (4.23(i)) that the set
{DGi(a)h; i€ J_; he(Rpz)(@n g+)} is onto.

This implies that (4.21(i)) is a necessary condition for (CQA). Then taking z; =0,4i € J_,
and z; < 0, i € Jo\J_, we deduce that (4.21) is a necessary condition for (CQA), i.e.
(CQA) = (4.21). We end the proof by showing that (4.21)=(4.22)= (CQA).

Assume that (CQA) does not hold. Then the convex cone

E = {DG(ﬂ)h— z; h € RLi(Q)(ﬂ) ﬂq_l; 2; < 0,5 € Jy, 2 =0,1 € J_}

is not equal to IR™. Since the latter is a finite dimensional space, the closure of £ is not equal
to IR™. By the Hahn-Banach theorem, since E is a cone, there exists A € IR™, A # 0, such
that (A,y) >0, for all y € E. It follows that (4.22(i)) holds, while § defined by (4.22(iii)) is
such that

_(X, DG(a)h) = /Q d(@)h(z)dz <0, Vhe (I2(Q)—a)nq. (4.24)
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Since the polar of the intersection of two closed convex cones is the closure of the sum of
their polar cones, we have that

g€ (12 -u)ng")” =TZ(Q) —u) + Rq.

Relation (4.22(ii)) follows. }
Finally, suppose that (4.21) holds, but (4.22) does not hold. Let (G, ) satisfy (4.22).
Then (4.24) holds. It follows that for each h € Rz (q)(@) N at

0<— / j(@)h(z)de = Y ADGi(w)h.
Q

1<i<m
This and (4.21(ii)) iNmply Xi =0, for all i € Jo\J_. Then, since L3 (Q) is po}yhedric, with
(4.21(i)) we obtain A; =0, for all ¢ € J_, in contradiction with the fact that A # 0. I

Denote by L?(2(u)) the Hilbert space of functions of L?(Q) that are a.e. null outside
Q4 (). Fom the above lemma, we deduce the following corollary, similar to [15, Thm 5.2].

Corollary 4.1 A sufficient condition for (CQA) is that the restriction of DG() to L*(Q4 (1)),
with tmage space IR™, is onto.

We now discuss second order optimality conditions. Since Qo(-) is a Legendre form,
we have the following result, that is an immediate consequence of Theorem 2.2. Note that
the assumption, that the Hessians D?G(%) are weakly continuous, is typically satisfied if
G represents state constraints, as will be the case in the examples to be seen later. The
expression of the Lagrangian for problem (P) is

L(u,N) := F(u) + i)\iGi(u).

Theorem 4.3 Let @ be an optimal solution of (P), with associated Lagrange multiplier
(q,)), satisfy condition (CQA). Assume that the Hessians D?G(u) are weakly continuous.
Then @ satisfies the quadratic growth condition iff

D2 L(@,\)(h,h) >0, Yh € C(a), h#0.

4.2 Problems with finitely many punctual state constraints

We consider in this subsection the case when the functions G, 1 < j < m, are defined by
Gj(u) = yu(z;) — b;.

Here b€ IR™ and z; € Q, 1 < j < m, are given. We denote § := yz. A simple consequence
of lemma 4.1 follows:
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Lemma 4.2 Assume that Q4 () has a non empty interior. Then the strict semilinearized
qualification condition (CQA) is satisfied.

ProofIf the conclusion does not hold, then by lemma 4.1, there exists (g, A € L2(Q) x
R™, with X # 0, satisfying (4.22). It is a classical result (see e.g. [12]) that ¢ € L?(Q) N
Wh#(Q), for all s <n/(n —1), and is the unique solution in W11(Q) of

—AG+ ¢y (2, 9)§ = — Di<icm Aib(zi) iInQ, §=0 onT. (4.25)

Here é(x;) stands for the Dirac measure at point z;. Since § = 0 on the interior of Q4,
and the latter is non empty, we have by the unique extension theorem [29] that ¢ = 0
over §) except perhaps at the points ;. But this implies A = 0, in contradiction with the
hypothesis. |

We now state the characterization of quadratic growth. By 2, we denote the solution of
the linearized equation (4.16) with y, = § and r.h.s. h. As a consequence of theorem 4.3,
we have:

Theorem 4.4 Let @ be a feasible point of (P), with associated Lagrange multiplier (g, \),
and assume that the interior of Q4 is non empty. Then u satisfies the quadratic growth
condition iff there exists p € W42(Q), for all s <n/(n — 1), such that

>0, 1<j<m, and \j =0 if Gj() <0, (4.26)
—A?+¢;($7§)I5=ﬂ—yd+25\j6(mj) inQ, p=0 onT; (4.27)
j=1
/(Nﬂ(m) + p(z))(uw(z) — @(z))dz > 0, Vue Li(Q), (4.28)
Q

and such that, for all h € C(a), h # 0, and zp, solution of (4.16) (in which § = yg):

/Q (Nh(@)? + 2(2)? — pa) ! (z,§)on(@)?) de > 0. (4.29)

We now discuss sensitivity of the solution of the optimal control problem with respect
to the target y4. Therefore we denote

1

F(u,yq) := 3 /Q(yu(a:) —yq(2))? dz + g/{lu(w)2 dz.

Consider a target path, where ¢t > 0,
2

t
Ya(t) = Yao + tya + 5 Yaz + o(t?).

Note that

Dy, F(u,y40)ya1 = — /Q@ — ya0)(x)yq1(z)dz.
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The subproblems to be considered here, corresponding to (LP) and (SP), are

(IP) Minper2(q) /Q(Nﬂ + p)(z)h(z)dz — /Q(?? — Yao)(@)ya1 (z)dz
s.t. h >0 on Qo(a); zn(z;) <0, i € Jy,

and, denoting by zp, the solution of (4.16) (in which y,, = §):
(S_P) Miﬂhes(ﬁ)DzF(ﬁa yao)((h,ya1), (h,ya1)) — /9(17 — Ya0)(%)Yq2(x)dz.

(An expression of the Hessian of F' in term of p and z, is given in [6].)

Theorem 4.5 Assume that 4 is the unique solution of (AP), and satisfies (CQA) as well
as the second order sufficient optimality condition (4.29). Then
(a) The following expansion for the value function of (AP,) holds:

2
val (AP, () = val (APy) + tval (EP) + %val (5P) + o(t2), (4.30)

(b) Let u(t) be a path of o(t*)-solutions. Then one has u(t) = a+O(t). Any weak limit-point
of t ! (u(t) — @) is a strong limit-point, and is solution of (SP). In particular, if (SP) has
a unique solution h, then u(t) = @ + th + o(t).

Proof.It is easy to check that the solutions of the perturbed problem are uniformly
bounded, and that they strongly converge in L?(f2) to u, see e.g. [6]. In addition the
Hessian of the Lagrangian, that is equal to the Hessian of the cost, is a Legendre form.
Therefore the conclusion is a consequence of theorem 3.1. J

4.3 Problems with integral state constraints

We consider in this subsection the case when the functions G;(u) 1 < j < m, are defined by

Gj(u) Z/ng(yu(x),:c) dz.

The functions g;(u) are assumed to be twice continuously differentiable functions R x Q —
IR. Then G(-) is itself a C* mapping. We know that the derivative of u — G;(u), viewed as
a function L*(Q) — R, is pj(u) € H*(Q) solution of

—Apj + ¢y (,9u)P; = Dygj(yu(z),2) in Q, p;=0 onT.

A simple consequence of lemma 4.1 follows:
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Lemma 4.3 The strict qualification condition (CQA) is satisfied iff the following system
has no solution (G, \) € W'*(Q) x R™:

—AG+ ¢y (2, 9)d = — E1§i§m AiDyg;(y(z),z) inQ, §=0 onT.
G(z) =0, onQy(@), §(z) >0 on Q(a)\Q-(z)
A#0; X=0i€Jy, X >0,i€ Jo\J-.

(4.31)

Let us give an example of such integral constraints for which condition (CQA) can be
checked. Let b € R™, and a; € C(Q), for 1 < j < m, with a;(z) of constant sign over
its support ; := supp(a;). Assume that these supports satisfy the following geometric
relation:

NQ;=0fori#j; Q\(Ui<j<m$;) is connected. (4.32)

We consider the case when
gj(u) := /Qaj(x)yu(x)dm —b;.
We assume also the following:

There exists 2, open subset of 4 (u), such that Q, NQ; =0,1 < j <m. (4.33)

Lemma 4.4 Under the above hypotheses, the strict qualification condition (CQA) is satis-
fied.

Proof.If the conclusion does not hold, then there exists (g, 5\) satisfying the condition of
lemma 4.3, and in particular

—Aq+¢ (z,9)d Z )\aJ inQ, §=0 onT, (4.34)
JjeEJoUJ_

as well as ¢ = 0 on Q,. Set A := Q\ (Ui<j<m;). Then A is a connected open set that
contains .. Since ), is open, and § = 0 on A, by the unique extension theorem [29] we
obtain ¢ = 0 on A, hence on 09y, for all 1 < j < m. Let j be such that 5\3- #0. Let A; be
the interior of Q;, 1 < j <'m, and let

Bj = {z € ; dist(z, 4;) <e}.
Take ¢ > 0 so small that B;\A; does not intersect {2;, for ¢ # j. Then § satisfies
—Ad+ ¢;(w;yu)q: —:\jaj in B;, §G=0on dB;.

This equation has a unique solution in H{(Bj;). Since a; is of constant sign, § is nonzero
over the interior of B;. But this is 1mp0551ble since the latter contains a nonempty open
set included in A.

Whenever (CQA) holds, we can state a characterization of quadratic growth. We omit
the statement since it is similar to theorem 4.2.
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5 Conclusion and possible extensions

Our theoretical results extend those in [6], that discuss problems with polyhedric control
constraints only. We were able to give an application of these results for control and state
constrained optimal control problems, when the number of state constraints is finite.

For technical reasons we discussed only the case when the space dimension n is less or
equal 3. Extension of these results in the case n > 3 seems possible by combining the
technique of this paper with the two norms approach [6, 22]. The latter would also allow
to extend our results to the case of boundary control, or to problems with a parabolic state
equation.

It seems also possible to extend our results to the case when Ky is not a polyhedron,
taking advantage of the results in [9]. For instance, the set of semi definite positive matrices
is a closed convex set that satisfies hypothesis (ii) of theorem 2.1. On the other hand, the
case of a punctual state constraint at every point of the domain 2 seems out of reach, since
the strict qualification condition is probably not satisfied in that case.
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