
December 1987 LIDS-P-1729

OPTIMAL CONTROL RULES FOR

SCHEDULING JOB SHOPS

Sheldon X.C. Lou

Massachusetts Institute of Technology

December 25, 1987

Abstract

In this paper, we develop the control rules for job shop scheduling based on

the Flow Rate Control model. We derive optimal control results for job shops

with work station in series (transfer line). We use these results to derive rules

which are suboptimal, robust against random events, and easy to implement

and expand.

I INTRODUCTION

The success of a job shop scheduling (sometimes called Short Interval Scheduling

in contrast with the long term scheduling for a whole factory) system is primarily

determined by its control rules. Unfortunately, due to the extremely complex, of-

ten randomly perturbed environment, the rules can not be obtained even from the

most experienced managers. Since the search space is extremely large, the rules de-

rived from different search algorithms usually are time consuming. Therefore, they

cannot deal with the highly varying job shop environment in real time. There are

different dispatching rules, such as First-In-First-Out, Last-In-First-Out, Sortest-

Processing-Time. Although they are dynamic, they usually are ad hoc and lack

systematic analysis. It is also difficult to determine which rules should be used

under given conditions. Further, they often rely on local information such as the

number of parts in the buffer of one machine but not the global information of the

whole production line.

In this paper, a systematic analysis of optimal job shop scheduling rules is

presented. The methodology we use is the Flow Rate Control approach, which is

based on stochastic control theory and dynamic programming algorithms.
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The job shop environment is characterized by many random events such as

machine failures, demand, and yield. If the job shop is not fully automated, which

in general is the case, the interference of the human operators (e.g. operators

may make mistakes) should also be considered. Therefore, a successful scheduling
algorithm should be robust in the presense of random interferences.

The algorithm should also be relatively simple, simple to understand and simple

to implement. Moreover, it should be simple to expand when new machines and

part types are added.

The scheduling rules proposed in this paper is robust and simple. Instead of

providing a static schedule, it provides feedback control which is determined on

line by the current state of the job shop. It adjusts the production according to

changes which occur in the job shop. Further, the software can be easily expanded

by adding new rules.

We first explain why, in deriving the rules, the flow rate control model is

chosen to model a job shop. Then, the methodology for finding the optimal (or
suboptimal) rules is presented, and compared with other possible choices. Based
on this analysis, the optimal rules are derived.

2 ISSUES RELATED TO THE MODEL

2.1 THE FLOW RATE CONTROL MODEL

The primarily concern of a job shop scheduling system is the high dimension

of the search space. It is well known that the scheduling problem is in general

NP-hard. Without successful decomposition to reduce the dimension, real time

production control is impossible. The scheduling approach based on flow rate

control model contains two levels [13, 9]. At the high level, the manufacturing

process is considered as a continuous flow of materials with random interruptions

such as machine failures, processing time fluctuations, insufficient raw material

supplies, random yield, and random demand. The production rate of each work

station is determined by optimal control rules. At the lower level the detailed

tracking of individual parts is considered. Taking this approach enables us to

greatly reduce the dimensionality. It also permits us to apply stochastic control

and optimization theories to the job shop scheduling problem, to obtain results

superior to other methods such as simple dispatching rules. But, this approach is

not applicable for all kinds of job shops. The general job shop scheduling problem

remains as a challenge for further research. The continuous flow model works

when there is production of sufficient volume so that a production rate makes

sense. Many job shops, however, belong in this category.

Using this methodology, the desirable controls, roughly speaking, will reduce
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Figure 1: A two-WS system

the WIP (Work-In-Process) as much as possible while closely following the target

production and observing the machine capacity constraints in a randomly perturbed

job shop environment.

In this paper, we concentrate our attention on the high level control, i.e. the
production control of work stations. In order to gain some idea about the model,

let us start from a simple job shop containing two work station, shown in Fig. 1

(see [ 22] for more detail). State equations for this system are

xi(k + 1) = xl(k) + ul(k) - u 2(k) (1)

X2(k + 1) = x 2(k) + u 2 (k) - d(k) (2)

o < i (k) (3)

o < ul(k) < al(k) (4)

0o < u2 (k) < a2(k) (5)

where ui(k) is the number of parts loaded in unit time interval at WSi (the loading

rate) at time k and d(k) is the planned (target) production rate at time k. Note

that xl(k)--the inventory after the first work station-is restricted to be non-
negative. The variable x2 is defined as the surplus-the difference between the

actual production and the target production. It can be positive, meaning there is
an inventory at the last stage, or negative meaning a backlog due to insufficient

production exists.

The objective is to minimize the discounted, infinite-horizon cost

00

min E P/kg(xl(k),x 2(k)) (6)
uEn(t) k=O

where nf(a) is a polyhedron defined by (4) and (5), g(.) is a convex function of xl

and x 2, and 3 is a discount rate between 0 and 1. We use a g(.) which has the
form as shown in Fig. 2, which can be characterized by the slopes cl, c + and c2 .
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g(x) =g(x 1)+g92(X 2 )

g l(x 1) 92(x 2 )

C2
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Figure 2: Piece-wise linear g(.) function

In this paper, we only consider the Transfer Line, where machines are connected

in series.

2.2 REASONS FOR CHOOSING A FLOW RATE MODEL

After comparing existing methodologies to obtain scheduling rules including com-

binatorial optimization, queuing network theory, heuristic dispatching rules, we

came to the conclusion that the flow rate control model was most promising for

our purpose.

Job shop scheduling is one of the oldest and hardest problems in manufacturing

and has attracted the attention of many researchers. But, due to the combina-

torial nature of the problem, it remains unsolved. Except for very few problems,

under specific conditions, the exact solution of the job shop scheduling problem

formulated as a combinatorial optimization problem is known to be computation-

ally intractable [6, 15]. There are at least three classes of methods for dealing

with this problem. The first one uses a heuristic search, such as branch and bound

[17], or constraint-directed search [8], to prune the search tree. However, heuristic

algorithms are not efficient enough to reduce the computational burden to a re-

alistic level. Furthermore, they are based on deterministic assumptions, namely,

that machine states, yield, and processing times are all deterministic. Any major

perturbations changing the present conditions require a recomputation, which is

often impractical due to the computational complexity.

The second class of methods is based solely on heuristics [5]. The results

are generally tested by simulation under some specific conditions. Although some

heuristic rules are dynamic, most only take local information, such as the inventory
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at each machine into account. They are also ad hoc.

The third class uses queuing theory. Queuing network theory is generally used

to model a system, but not to control the system.

Since a complete and exact solution (an optimal solution which takes every

detail into account) is difficult, a natural compromise is to try to ignore some

information of secondary importance so that the search space can be reduced and

the issues of primary concern can be taken care of. Since the flow rate control

model groups together part types at the high level, one only worries about the

production rate of each part type not the location of individual part. The part

dispatching is carried out at the lower level. This hierarchical structure greatly

reduces the computation burden by distributing computation to each level. Using

this model, one can use stochastic control theory to achieve a feedback control law

that responds to random interruptions.

2.3 WHAT IS NEW IN OUR MODEL

The flow rate control model has been used in [13, 1 and 9], where a work station

with negligible delay and internal inventories was considered. In this work, the

state is the surplus of the work station. A feedback law then determines the

production rate of each part, taking the current machine states into account. This

paper extends the flow rate model to job shops with multiple work stations with

significant internal inventories'.

The major difference between our work and earlier application of flow rate

model is that we allow internal buffers. Without internal buffers, there must be

a unique production rate throughout the whole system. There are many systems,

however, where a single production rate is not desirable. For example, consider

several machines connected in series with buffers between successive machines. If

one machine in this chain of machines is down, it may not be necessary in general

to stop other machines (if they are not starved, i.e. the previous machine cannot

provide parts, or blocked, i.e. the immediate down stream machine is not working

). Indeed, internal buffers are used primarily to prevent the whole line being

stopped when only a few machines are down.

A system with buffers was considered in [11] where a discrete time system model

with a linear control rule was established. In our model, instead of analyzing some

specific control rule, we try to determine the optimal one. Also, the capacity

constraints (the maximum machine loading rates) and the random machine states
are taken into account.

Similar models can also be seen in queuing network literature where the re-

search purpose is to estimate the parameters of a given system under a given

1The system with significant delays were addressed in a separate paper [19].
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control rule. However, our model is used to derive the optimal control rules, not

to simply model a system. A system similar to that proposed in this paper has

been analyzed in [14]. The major difference is that in our model, the Surplus-the

difference between the real and the target productions (it can be negative if the

real production is behind schedule) at the last work station, is observed while in

[ 14] only the number of parts in the last buffer is considered. As we will see
shortly, this difference is essential.

Furthermore, the optimal control derived in this paper is presented as simple

rules, which are easy to understand and implement.

In the next section, we describe our solution approach.

3 SOLUTION APPROACH

Although the flow rate control model greatly reduces the dimension of a problem,

the direct solution of any problem of practical importance is still formidable. The

computation for this dynamic program is still NP-hard. In [2, 4] the closed form

solution for a one-machine one-part system is given. Although the results pro-

vide great insight into the problem, extensions to more complex problems appear

difficult.

The results in [13, 1] show that control regions are divided by surfaces. Com-

puting the regions requires knowing the optimal cost to go functional, J*(x).

But knowing J*(x) is equivalent to having solved the problem. A quadratic ap-

proximation of J*(x) [11 reduces this burden somewhat, getting a good quadratic

J* is still a very difficult task. Also, the J* may differ from quadratic drastically

(as we show below).

Therefore, instead of searching for a formulation to solve a complex problem in

one step, we first find exact and optimal solutions (infinite horizon, steady state)

for a series of small problems using numerical solution techniques (see [3], [7] and

[12]). We then derive several control rules out of these results, which can be applied

to a general job shop. This Rule-Driven approach satisfies the criteria proposed

in Section 1: Rules are clearly defined, easy to understand, simple to implement,

and easy to expand in the future. The control of each WS governed by these rules

is based on the observation of the states of the entire system and are robust.

In the next section, control rules for seriesly connected work stations (the

Transfer Line) are presented. We start from Two-Work-Station case and then

continue to analyze the Three-Work-Station case.
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Figure 3: Optimal control regions for a two WS system

4 CONTROL RULES FOR A TRANSFER LINE

4.1 TWO WORK STATIONS

We start from a simple case, two work stations producing one part (see Fig. 1 and
Eq. ( 1)-( 5)). The WSs are not reliable. They can either be up or down. The
transition probabilities from up to down (due to failures) are Pfl for WS1 and Pf 2
for WS2. The transition probabilities from down to up (due to repairs) for WS 1

and WS2 are pl and Pr2 respectively. The WSs have limited capacities, i.e. when
they are up, the maximum number of parts loaded each time interval is finite
and denoted by U,l1 and U, 2 respectively 2 . In this equation, xl(k) is defined as
the number of parts, i.e. inventory, in the first buffer and x 2 (k) is the difference
between the target production and actual production. Therefore, xl(k) cannot be
negative, while x 2 (k) can either be positive, meaning an inventory at the last stage,
or negative, meaning a backlog. An optimal control should minimize both xl and
x2 so that the inventories can be kept at a low level while following the target
production as close as possible. More precisely, the objective can be described as
minimizing

min E , E/kg(x1 (k)x 2 (k)) (7)
uE(t) k=O

subject to (1)-(5). Using a Dynamic programming (value iteration) (see [3], [7]) to
solve this problem, we can calculate the optimal control law. The control regions
when both machines are up is shown in Fig. 3.

The two-dimensional half-space (xl can only be zero or positive) is divided by
two curves-S1 and S2. The second curve S2, is a straight line parallel to xl axis.

2 When the WS's are down, the capacities will be zero.
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It determines the control for the second WS. When x = [xl x 2]' lies to the right

of S2, (meaning the surplus is too big ), the second WS is stopped. Otherwise

it keeps operating at full speed (the maximum loading rate is determined by the

work station capacity and the number of parts available at the previous buffer,

i.e. xl). This implies that the control is independent of the first WS and operates

like the single hedging point control described in [2, 41.

The control for the first WS is quite interesting. When x = [xl x 2]' lies in

the region below S1, the first WS operates at full speed. Otherwise it stops. The

control can be explained as follows: When x2 is very negative, i.e. there is a

big backlog at the output), the system is far behind its schedule. The first WS,

therefore, tries to store more parts. There is, however, a limit to how much stack

is stored. When the storage is beyond this limit, the production is stopped. When

x 2 is close to zero or even positive, meaning that the system is close to or ahead of

its schedule, the optimal control tries to reduce the storage at the first WS. Closer

study [23, 22] has shown that this region of Si (B-C) can be approximated as

xl + x2 = h81. Here xl + x 2 is nothing but the SURPLUS at WS 1, the difference

between the target and the actual production after the first WS. Therefore, the

optimal control for the first WS can be approximated by two regions according to

the value of x 2. We call this strategy a TWO BOUNDARY CONTROL, because

the first part is a SIMPLE INVENTORY CONTROL policy and the second part

is a SIMPLE SURPLUS CONTROL policy.

In order to extend this approximation to the optimal control for a multiple WS

system, we next examine a three-WS system.

4.2 THREE-WS SYSTEM

Consider three WSs connected in series, producing a single part as shown in Fig. 4.

Again the WSs are unreliable. As in the previous section, they can be either up or

down. When they are up, they have certain capacity limits. The system equations

are very similar to those of the two-WS case.

The general shape of the optimal control regions when three WS's are all up,

can be seen from Fig. 5.

In this paper, we will study four different cases of 3-WS systems, see Table 4.2.

They have the same structure as Fig. 4 but different parameters (such as proba-

bilities and cost coefficients).
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Figure 4: A three WS system

case 1

(2+3)

(0)
S2 3

(3)

X 2

0+2+3)] ( + )\ S

Figure 5: Optimal Control Regions for a 3-WS System when all WSs are up



cl C2 C3 C3 Pfl Pf2 Pf3 Prl Pr2 Pr3

case 1 0.5 0.7 2.0 10.0 0.1 0.1 0.1 0.2 0.5 0.2

case 2 0.5 1.0 5.0 10.0 0.1 0.1 0.1 0.2 0.5 0.2

case 3 0.5 0.3 2.0 10.0 0.1 0.1 0.1 0.2 0.5 0.2

case 4 0.5 0.7 2.0 10.0 0.18 0.1 0.1 0.2 0.5 0.2
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Instead of two curves S1 and S2 as in the two WS case, the optimal control

is determined by three surfaces S1,S2 and S3, each corresponding to the control

of one WS. In other words, the i t
h surface Si, i=1,2,3, ( called control surfaces)

divides the entire space into two parts. In one part WSi operates at full speed

(again determined by the work station capacities and the contents at the previous

buffers). In the other it stops. For example, S1 determines the control of WS,.

When x = [xl x 2 3s]' is above S1, WS1 stops. Otherwise, it operates. The operating

regions of each WS are denoted by numbers in Fig.5. For example, (1+2+3) means

all WS's should be operating.

The optimal control for different WS states (different combinations of working

and non working WSs) of the same system is shown in the next two figures. Fig. 6

shows the optimal controls when only one WS is down while Fig. 7 shows the

controls when only one WS is up.

- -- ~---- -- -~p--~ ___sl~ · i~c·)~~-11



case I

WS, is down

(2++3

S2 S3 ¢O)

case I

WS, is down

(3-

Figure 6: Optimal Control Regions for 3-WS (System when one WS is down)
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Let us discuss several important features of Fig. 5 to 7 which form a basis for

some general control rules.

1. S3 is a plane perpendicular to the X3 axis. It only has one degree of free-

dom: Namely, changing parameters like failure and repair probabilities or

capacities only shifts this plane to the left or right along the x 3 axis. S2,

whose projection on the x2 - x3 plane is a curve, see Fig. 8, has two degrees

of freedom. Finally, the S1 has three degrees of freedom.

We observed that when considering the control for WSi, only the down

stream WSs (including WSi) should be taken into account. It should

be pointed out that this does not mean that the up stream WSs have no

effect at all on the controls of the down stream WSs. The parameters of the

up stream WSs (such as probabilities and cost coefficients) have influence

on the positions of the control surfaces (the Si) of the down stream WSs.
However, the on line decisions of the down stream WSs are not affected by

the states (buffer levels, WS states) of the upstream buffers.

2. The general shapes of the control surfaces can be described as the follows: S3

again defines a simple surplus control (a control determined by comparing

the surplus value with a single threshold or hedging point). S1 defines a

Two Boundary control, as in Fig. 9. In one region, when X3 is negative, WS1

follows a simple inventory control (a control determined by comparing the

inventory of a work station with some threshold). When X3 is close to zero

or even positive, it follows a Simple Surplus Control. In the surplus region,

the operation of WS 1 is determined by the sum of xl, x2 and X3 , which is

the surplus or the difference between the actual and planned productions of

WS1. The control tries to keep a fixed surplus level.

For WS2 , we observed a Simple Surplus Control, a control determined by

X2 + X3 . Experiment with a larger x region (X3 can vary from -30 to +30)

showed a saturation of S2 as X3 went negative (Fig.8). Therefore, in general, a

Two-Boundary control is again close to optimal. It should be pointed

out that for the last WS, the Simple Inventory and Simple Surplus Controls

become the same, because optimal hedging points are always positive (see

[4]).

3. Another phenomenon we observed is how the optimal control changes when

some WSs are down. In Fig. 5, 6 and 7, notice that when WSi is down, Si

disappears, but the general shapes for the remaining control surfaces remain

essentially the same. That is to say the optimal control is primarily

determined by inventories and the surpluses. The WS's states (down
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case 1
Only WS I is up

case I

Only WS 3 is up

case 1

Only WS, is up
(0)

(3)

Figure 7: Optimal Control Regions for 3-WS System when only one WS is up
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Figure 8: Optimal Control Regions for 3-WS System when xl is fixed
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Figure 9: Optimal Control Regions for 3-WS System when x2 is fixed
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or up) are of secondary importance. A close comparison of the three figures

shows that when WSi+l is down, WSi (and all upstream WSs) actually try

to reduce their inventories a little (not to increase it, as one might predict).

This is because inventories are used to supply the down stream WSs, pre-

venting them from being starved. When downstream WS's are under repair,

they consume no parts. Therefore the inventories of the upstream WS's can

actually be less.

4. The trajectory and equilibrium point.

Each control surface is attractive, meaning, the trajectory of x (the position

of x as the function of time k) hits any surface, it will stay in that surface (or

go zig-zag along the surface) until the WS states change. If there is sufficient

capacity, there is an equilibrium point when all the WSs are up. Whatever

the initial x is, if the WSs stay up long enough, the trajectory always ends

at this equilibrium point and stays there until the WS states change. That

is, this is the point at which the system will stay if WSs are up long enough.

This behavior implies that the control is stable. An example trajectory is

shown in Fig. 11.

5. The effects of the cost coefficients.

In general, the less costly the storage is (i.e. a smaller coefficient ci), the

larger the storage limit will be. In other words, the smaller the ci is, the

higher the hedging point for both inventory and surplus (see Fig. 8). Com-

bining this fact with the equilibrium point discussed above, we see that an

optimal control determines the equilibrium distribution of inven-
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equi. pt

X2x 2

Figure 11: Control trajectory

tories within the system, a phenomenon usually called Line Balancing.
By properly adjusting the coefficients, an ideal distribution can be achieved.

Usually, the storage costs of the down stream WSs are higher than that of
the up stream WS's, because the parts processed by the down stream WSs
have a higher added value. But, what if the storage cost of the i + 1 th WS is

less than or equal to that of the ith WS ? We observed that in this case there
will be no hedging points for WSi+l. Its control surface simply disappears.
The optimal control policy for WSi+l is: Operate WSi+l whenever you
can !

Fig. 13 shows a two WS system with a c2 less than cl. Fig. 14 shows a
three-WS system where c2 = 0.3 is less than cl = 0.5. In both figures, S 2

disappears. The optimal control requires WS2 to operate in the entire space
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(1+2)

X2m

Figure 13: Control region for Two WS system, c2 < c1

case 3

(2)

Figure 14: Control regions for Three-WS system, c2 < cl

(we will comment on this further below).

Comparing Fig. 13 with Fig. 11, we notice that

* S3 slightly shifts to the left, i.e. WS3 tries to reduce its inventory due

to the fact that the previous WS may store more parts.

* S 2 disappears, as pointed out above.

* S1 slightly shifts downwards, again because WS 2 stores more parts.

These results are somewhat intuitive. If the storage cost of WSi+l is less than

or equal to that of WSi, it costs less than to leave them at WSi. Therefore,

parts in WSi are always advanced if possible. The reader may wonder why,

since that there is no restriction on WSi+l, the number of parts stored in
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Figure 15: The effect of the machine reliability

WSi+,, i.e. xi+l, does not increase without bound ? The optimal control
takes care of this. Consider Fig. 13 again. Usually, x2 can not be larger that

x2m (the equilibrium point of the system) because WS 1 would be stopped

and WS2 would be starved. The same is true for the three WS case. The
optimal control for WSi automaticly restricts the inventory of WSi+l.

This result suggests that one might consider grouping several WSs together

if the storage costs among them are indifferent. One could then control only

the loading process of the first WS. For the remaining WSs in the group,

parts are processed as fast as possible.

6. The effects of the probabilities.

It is expected that the more reliable the WS is, the fewer parts it will store.

In Fig. 15, the first set of curves (dotted curves) represent a system with an
unreliable WS 1 but the same WS 2 and WS3 . This shift of curves is expected.

5 CONTROL RULE

Based on the above discussion, we propose a control rule which represent a sub-

optimal solution for a job shop with series-connected work stations (a flow shop).
TWO BOUNDARY CONTROL FOR ALL WORK STATIONS.

For each work station, we

1. Compute its inventory xi, i.e. the number of parts in its buffer s .

3 We have noted that the delay (long processing time) issue had been addressed in [191. If that
is the case, we use, as a suboptimal solution, the total number of parts in WSi, i.e. the number

of parts in the buffer plus the number of parts being precessed as the xi. See [19, 22 and 23] for
detail.
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2. Compute its surplus si. To determine the surplus, one can calculate EI-

THER of the following two numbers.

* the difference between the actual and planned productions. That is, the

total number of parts loaded into WSi starting from some initial time-

the cumulative production minus the total parts planned to produce

since the initial time-the cumulative planned production.

* the summation of the inventories of the down stream WSs (use surplus

for the last work station), xi + xi+l + *.- + xN.

3. Compare xi and si with two predetermined numbers, inventory hedging point

hi and surplus hedging point hsi. If WSi is in the working condition, xi < hi

and si < h,i, load WSi at full speed (considering the capacity constraints

and the previous buffer contents). Otherwise do not load WSi.

This single rule actually contains all the rules we observed in the last Section.

It implies,

* Last WS follows a Simple Surplus rule. As we pointed out, the Simple

Surplus rule is the same as the Simple Inventory rule for the last WS.

* Only down stream WSs are taken into account. This is reflected in the way

we calculate the surplus.

* WIP determines the control. Machine states play a secondary role. As an

approximation, here the on line control rules are independent of the work

station states- we do not alter the hedging points hi and ht. at all when

work station states change.

6 SIMULATION RESULTS

To compare the Two-Boundary control with other production control approaches,

let us consider the following example. In this example, four work stations with

exponentially distributed down and up times are connected in series. Their pa-

rameters are shown in Table 6.

work station CLEAN PHOTO OXID TEST

Ave-down-time 5 2 40 5

Ave-up-time 200 8 80 200

Process-time 5 7 12 2

Time-between-load 1 2 12 1

capacity 4 20 50 3
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In order to model work stations in real life (the parameters of this example were
from a real VLSI wafer fabrication facility), we also considered their processing

time. The principle for treating work stations with finite processing time can be

found in [19]. Here we simply use the total number of parts being processed in
WSi plus the number of parts in its buffer as our xi. Note also, due to the different
natures of the work stations, the minimum time between successive loadings of one

work station is different from that of another. For example, Work Station 3 was

designed to model a furnace. Since no parts can be loaded into a furnace unless

it finishes a batch, the time between loadings must be larger than or equal to the
total processing time. On the other hand, other work stations in this example were

supposed to contain number of machines in series. The time between loadings is

therefore less than the total processing time.

The cost was computed according to Eq. 6 where the weighting factors are

cl = 1.0,c 2 = 1.2,c3 = 1.4, c+ = 1.6, cj = 5.0. The constant c+ is the weighting

for inventory and c¢ is the weighting for backlog at the last work station. Notice,

we penalize backlog three times more than the inventory. In this example, only

one part type is produced and the production unit is lot. The target production

has a constant rate of two lots per hour.

An Event-Driven simulator designed for job shop production simulation was

used (see [ ??]). The time horizon for each simulation run is 1,000 time units
(hours). Four different cases were simulated. Case 1 uses the Two-Boundary

control rule. It is assumed that there are infinite number of lots at the buffer

before the first work station with no storage cost. Case 2 places 200 lots of parts

in the buffer before the first work station at every 100 hours. It is similar to the

stratege being used in some companies and called Uniform-Loading in this paper.

The third and fourth cases make use of One-Boundary control. Specifically, in

Case 3 the Local-Inventory control is used. Namely, for each work station there

is a pre-calculated threshold (hedging point). If the xi is below this threshold, we
try to load parts as many as we can. Otherwise we do not load. In case 4 the

Surplus Control, which compares the surplus of each work station with certain

predetermined threshold to determine the loading, is used.

First let us see the difference between the Two-Boundary Control and the
Uniform-Loading. The costs for seven simulation runs of both cases are shown

in Table 6. The average total cost is 308.35 for the former and 690.47 for the

latter. In other words, the Two-Boundary Control performs two times better

than Uniform-Loading.

Two-Bound 289.34 280.12 295.95 290.44 336.90 291.17 374.51

Uni-Load 595.28 663.81 820.17 703.17 657.12 743.49 650.22
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It seems more convincing if we look at the sample paths, shown in Fig. 16

and 17, for these two cases with identical work station states variations (the same

sample path of work station ups and downs). In the figures, the time variations

of xi for i = 2,3,4 are shown. We see from the figures, that
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* The time horizon can approximately be divided into two periods. In the

first period (from t=0 to t=400), since the system has just started from zero

inventories and the down time of WS3 from t=110 to 200 is relatively long,

the system is behind the schedule (with a negative X4) most of the time.

In the second period, there is no major breakdowns and the system is in a

relatively stable state.

* It is evident that Case 1 overperforms Case 2 in the first period. The reason

is also quite obvious. In this period, all the work stations are having very

small or negative surpluses most of the time. Therefore for Case 1, only the

Local-Inventory thresholds are active. So that a large amount of parts are

pumped into the system, which helps the system to catch up with the target

production. On the other hand, uniformly loading parts in Case 2 results

in a part shortage, which in turn causes the long delay before the system

eventually catchs up.

* In the second period when t is greater than 400, the first case again overper-

forms the second by achieving a smoother inventory variations. (Note, the

xi is the summation of the number of parts being processed and the number

of parts in the buffer at the i th work station. Therefore some positive xi are

certainly necessary to keep a smooth production). The inventories of Case 2

in Fig. 16 present wild fluctuations. Further, the x 4 is always less than zero.

In other words, system are always having backlog. Only at every hundred

hours the production reachs its target.

Now, let us consider the differences between the Two-Boundary control and

the one boundary controls, i.e. the Local-Inventory Control in Case 3, that has

the same Inventory hedging points as in Case 1 but the infinite Surplus hedging

points and Surplus Control in Case 4, that has the same Surplus hedging points as

in Case 1 but infinite Inventory hedging points. Fig. 18 and 19 are corresponding

sample paths for those two cases (again, work stations' ups and downs follow the

same sample path as in Fig. 16 and 17). We notice from the figures:
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Figure 16: Inventory variations under Two-Boundary control
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* In period 1, the behavior of the Local-Inventory control is very similar to

that of the Two-Boundary control (Case 1, Fig. 16) when the surpluses
are very small or negative. This is because, as we have just mentioned,
in Case 1 only the local inventory hedging points are active. In Period 2
however, the Surplus hedging points become active that keep a relatively
low WIP throughout the system while in Case 3 the same Local Inventory
hedging points still maintain a higher WIP. Note, although reducing the
Local Inventory hedging points in Case 3 will lower down the WIP in period
2, it will also slow down the catching up speed in period 1 and worsen the

total behavior.

* In period 2, Case 1 and 4 behave similarly since only the Surplus hedging

points are active. The difference occur only when the system is behind its
schedule, i.e. with a negative x 4. We notice that, in period 1 of Case 4, x2

and x3 have larger peaks than that of Case 1 in the same period.

7 SUMMARY

In this paper we described the flow rate control model. Then, we computed the
optimal control for a flow job shop. We combined our results into a single rule-the
Two-Boundary-Control rule -which is sub-optimal for the flow job shop. The

detailed analysis and an algorithm to compute the hedging points are presented

in [ 23].

It should be pointed out that the control strategy and observations made in

[ 21, 16] is closely related to the results shown in this paper. More specificly, as
pointed out earlier, if the holding costs of the work stations prior to some KEY

station, such as photolithography station in their example, are equal to or less
than the cost at this key station, then they can be lumped together as a SINGLE
station and the Two-Boundary control in this case is similar to what proposed in

[21].
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