
Chapter 1

Optimal control theory and the linear Bellman Equation

Hilbert J. Kappen1

1.1 Introduction

Optimizing a sequence of actions to attain some future goal is the general topic of
control theory Stengel (1993); Fleming and Soner (1992). It views an agent as an
automaton that seeks to maximize expected reward (or minimize cost) over some
future time period. Two typical examples that illustrate this are motor control
and foraging for food. As an example of a motor control task, consider a human
throwing a spear to kill an animal. Throwing a spear requires the execution of a
motor program that is such that at the moment that the spear releases the hand, it
has the correct speed and direction such that it will hit the desired target. A motor
program is a sequence of actions, and this sequence can be assigned a cost that
consists generally of two terms: a path cost, that specifies the energy consumption
to contract the muscles in order to execute the motor program; and an end cost, that
specifies whether the spear will kill the animal, just hurt it, or misses it altogether.
The optimal control solution is a sequence of motor commands that results in killing
the animal by throwing the spear with minimal physical effort. If x denotes the
state space (the positions and velocities of the muscles), the optimal control solution
is a function u(x, t) that depends both on the actual state of the system at each
time and also depends explicitly on time.

When an animal forages for food, it explores the environment with the objective
to find as much food as possible in a short time window. At each time t, the animal
considers the food it expects to encounter in the period [t, t+ T ]. Unlike the motor
control example, the time horizon recedes into the future with the current time and
the cost consists now only of a path contribution and no end-cost. Therefore, at
each time the animal faces the same task, but possibly from a different location
of the animal in the environment. The optimal control solution u(x) is now time-
independent and specifies for each location in the environment x the direction u in
which the animal should move.

The general stochastic control problem is intractable to solve and requires an
exponential amount of memory and computation time. The reason is that the
state space needs to be discretized and thus becomes exponentially large in the
number of dimensions. Computing the expectation values means that all states
need to be visited and requires the summation of exponentially large sums. The
same intractabilities are encountered in reinforcement learning.
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In this tutorial, we aim to give a pedagogical introduction to control theory. For
simplicity, we will first consider in section 1.2 the case of discrete time and discuss
the dynamic programming solution. This gives us the basic intuition about the Bell-
man equations in continuous time that are considered later on. In section 1.3 we
consider continuous time control problems. In this case, the optimal control prob-
lem can be solved in two ways: using the Hamilton-Jacobi-Bellman (HJB) equation
which is a partial differential equation Bellman and Kalaba (1964) and is the contin-
uous time analogue of the dynamic programming method, or using the Pontryagin
Minimum Principle (PMP) Pontryagin et al. (1962) which is a variational argument
and results in a pair of ordinary differential equations. We illustrate the methods
with the example of a mass on a spring.

In section 1.4 we generalize the control formulation to the stochastic dynamics.
In the presence of noise, the PMP formalism has no obvious generalization (see
however Yong and Zhou (1999)). In contrast, the inclusion of noise in the HJB
framework is mathematically quite straight-forward. However, the numerical solu-
tion of either the deterministic or stochastic HJB equation is in general difficult due
to the curse of dimensionality.

There are some stochastic control problems that can be solved efficiently. When
the system dynamics is linear and the cost is quadratic (LQ control), the solution is
given in terms of a number of coupled ordinary differential (Ricatti) equations that
can be solved efficiently Stengel (1993). LQ control is useful to maintain a system
such as for instance a chemical plant, operated around a desired point in state space
and is therefore widely applied in engineering. However, it is a linear theory and too
restricted to model the complexities of intelligent behavior encountered in agents
or robots.

The simplest control formulation assumes that all model components (the dy-
namics, the environment, the costs) are known and that the state is fully observed.
Often, this is not the case. Formulated in a Bayesian way, one may only know a
probability distribution of the current state, or over the parameters of the dynamics
or the costs. This leads us to the problem of partial observability or the problem
of joint inference and control. We discuss two different approaches to learning:
adaptive control and dual control. Whereas in the adaptive control approach the
learning dynamics is exterior to the control problem, in the dual control approach it
is recognized that learning and control are interrelated and the optimal solution for
combined learning and control problem is computed. We illustrate the complexity
of joint inference and control with a simple example. We discuss the concept of cer-
tainty equivalence, which states that for certain linear quadratic control problems
the inference and control problems disentangle and can be solved separately. We
will discuss these issues in section 1.5.

Recently, we have discovered a class of continuous non-linear stochastic control
problems that can be solved more efficiently than the general case Kappen (2005a,b).
These are control problems with a finite time horizon, where the control acts additive
on the dynamics and is in some sense proportional to the noise. The cost of the
control is quadratic in the control variables. Otherwise, the path cost and end cost
and the intrinsic dynamics of the system are arbitrary. These control problems
can have both time-dependent and time-independent solutions of the type that we
encountered in the examples above. For these problems, the Bellman equation
becomes a linear equation in the exponentiated cost-to-go (value function). The
solution is formally written as a path integral. We discuss the path integral control
method in section 1.6.

The path integral can be interpreted as a free energy, or as the normalization
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of a probabilistic time-series model (Kalman filter, Hidden Markov Model). One
can therefore consider various well-known methods from the machine learning com-
munity to approximate this path integral, such as the Laplace approximation and
Monte Carlo sampling Kappen (2005b), variational approximations or belief prop-
agation Broek et al. (2008a). In section 1.7.2 we show an example of an n joint
arm where we compute the optimal control using the variational approximation for
large n.

Non-linear stochastic control problems display features not shared by determin-
istic control problems nor by linear stochastic control. In deterministic control, only
the globally optimal solution is relevant. In stochastic control, the optimal solution
is typically a weighted mixture of suboptimal solutions. The weighting depends in
a non-trivial way on the features of the problem, such as the noise and the hori-
zon time and on the cost of each solution. This multi-modality leads to surprising
behavior in stochastic optimal control. For instance, the optimal control can be
qualitatively very different for high and low noise levels Kappen (2005a), where it
was shown that in a stochastic environment, the optimal timing of the choice to
move to one of two targets should be delayed in time. The decision is formally
accomplished by a dynamical symmetry breaking of the cost-to-go function.

1.2 Discrete time control

We start by discussing the most simple control case, which is the finite horizon dis-
crete time deterministic control problem. In this case the optimal control explicitly
depends on time. See also Weber (2006) for further discussion.

Consider the control of a discrete time dynamical system:

xt+1 = xt + f(t, xt, ut), t = 0, 1, . . . , T − 1 (1.1)

xt is an n-dimensional vector describing the state of the system and ut is an m-
dimensional vector that specifies the control or action at time t. Note, that Eq. 1.1
describes a noiseless dynamics. If we specify x at t = 0 as x0 and we specify a
sequence of controls u0:T−1 = u0, u1, . . . , uT−1, we can compute future states of the
system x1:T recursively from Eq.1.1.

Define a cost function that assigns a cost to each sequence of controls:

C(x0, u0:T−1) = φ(xT ) +

T−1
∑

t=0

R(t, xt, ut) (1.2)

R(t, x, u) is the cost that is associated with taking action u at time t in state x, and
φ(xT ) is the cost associated with ending up in state xT at time T . The problem of
optimal control is to find the sequence u0:T−1 that minimizes C(x0, u0:T−1).

The problem has a standard solution, which is known as dynamic programming.
Introduce the optimal cost to go:

J(t, xt) = min
ut:T−1

(

φ(xT ) +

T−1
∑

s=t

R(s, xs, us)

)

(1.3)

which solves the optimal control problem from an intermediate time t until the fixed
end time T , starting at an arbitrary location xt. The minimum of Eq. 1.2 is given
by J(0, x0).



4

One can recursively compute J(t, x) from J(t + 1, x) for all x in the following
way:

J(T, x) = φ(x)

J(t, xt) = min
ut:T−1

(

φ(xT ) +

T−1
∑

s=t

R(s, xs, us)

)

= min
ut

(

R(t, xt, ut) + min
ut+1:T−1

[

φ(xT ) +

T−1
∑

s=t+1

R(s, xs, us)

])

= min
ut

(R(t, xt, ut) + J(t+ 1, xt+1))

= min
ut

(R(t, xt, ut) + J(t+ 1, xt + f(t, xt, ut))) (1.4)

Note, that the minimization over the whole path u0:T−1 has reduced to a sequence
of minimizations over ut. This simplification is due to the Markovian nature of the
problem: the future depends on the past and vise versa only through the present.
Also note, that in the last line the minimization is done for each xt separately.

The algorithm to compute the optimal control u∗0:T−1, the optimal trajectory
x∗1:T and the optimal cost is given by

1. Initialization: J(T, x) = φ(x)

2. Backwards: For t = T − 1, . . . , 0 and for all x compute

u∗t (x) = arg min
u
{R(t, x, u) + J(t+ 1, x+ f(t, x, u))}

J(t, x) = R(t, x, u∗t ) + J(t+ 1, x+ f(t, x, u∗t ))

3. Forwards: For t = 0, . . . , T − 1 compute

x∗t+1 = x∗t + f(t, x∗t , u
∗
t (x

∗
t ))

The execution of the dynamic programming algorithm is linear in the horizon time
T and linear in the size of the state and action spaces.

1.3 Continuous time control

In the absence of noise, the optimal control problem in continuous time can be
solved in two ways: using the Pontryagin Minimum Principle (PMP) Pontryagin
et al. (1962) which is a pair of ordinary differential equations or the Hamilton-
Jacobi-Bellman (HJB) equation which is a partial differential equation Bellman and
Kalaba (1964). The latter is very similar to the dynamic programming approach
that we have treated above. The HJB approach also allows for a straightforward
extension to the noisy case. We will first treat the HJB description and subsequently
the PMP description. For further reading see Stengel (1993); Jönsson et al. (2002).

1.3.1 The HJB equation

Consider the dynamical system Eq. 1.1 where we take the time increments to zero,
ie. we replace t+ 1 by t+ dt with dt→ 0:

xt+dt = xt + f(xt, ut, t)dt (1.5)
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In the continuous limit we will write xt = x(t). The initial state is fixed: x(0) = x0

and the final state is free. The problem is to find a control signal u(t), 0 < t < T ,
which we denote as u(0→ T ), such that

C(x0, u(0→ T )) = φ(xT )) +

∫ T

0

dτR(x(τ), u(τ), τ) (1.6)

is minimal. C consists of an end cost φ(x) that gives the cost of ending in a
configuration x, and a path cost that is an integral over time that depends on the
trajectories x(0→ T ) and u(0→ T ).

Eq. 1.4 becomes

J(t, x) = min
u

(R(t, x, u)dt+ J(t+ dt, x+ f(x, u, t)dt))

≈ min
u

(R(t, x, u)dt+ J(t, x) + ∂tJ(t, x)dt + ∂xJ(t, x)f(x, u, t)dt)

−∂tJ(t, x) = min
u

(R(t, x, u) + f(x, u, t)∂xJ(x, t)) (1.7)

where in the second line we have used the Taylor expansion of J(t + dt, x + dx)
around x, t to first order in dt and dx and in the third line have taken the limit
dt → 0. We use the shorthand notation ∂xJ = ∂J

∂x . Eq. 1.7 is a partial differential
equation, known as the Hamilton-Jacobi-Bellman (HJB) equation, that describes
the evolution of J as a function of x and t and must be solved with boundary
condition J(x, T ) = φ(x). ∂t and ∂x denote partial derivatives with respect to t and
x, respectively.

The optimal control at the current x, t is given by

u(x, t) = argmin
u

(R(x, u, t) + ∂xJ(t, x)f(x, u, t)) (1.8)

Note, that in order to compute the optimal control at the current state x(0) at = 0
one must compute J(x, t) for all values of x and t.

1.3.2 Example: Mass on a spring

To illustrate the optimal control principle consider a mass on a spring. The spring
is at rest at z = 0 and exerts a force proportional to F = −z towards the rest
position. Using Newton’s Law F = ma with a = z̈ the acceleration and m = 1 the
mass of the spring, the equation of motion is given by.

z̈ = −z + u

with u a unspecified control signal with −1 < u < 1. We want to solve the control
problem: Given initial position and velocity zi and żi at time 0, find the control
path u(0→ T ) such that z(T ) is maximal.

Introduce x1 = z, x2 = ż, then

ẋ = Ax+Bu, A =

(

0 1
-1 0

)

B =

(

0
1

)

and x = (x1, x2)
T . The problem is of the above type, with φ(x) = CTx, CT =

(−1, 0), R(x, u, t) = 0 and f(x, u, t) = Ax+Bu. Eq. 1.7 takes the form

−Jt = (∂xJ)TAx− |(∂xJ)TB|
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Figure 1.1: Optimal control of mass on a spring such that at t = 2π the amplitude is maximal.
x1 is position of the spring, x2 is velocity of the spring.

We try J(t, x) = ψ(t)Tx + α(t). The HJBE reduces to two ordinary differential
equations

ψ̇ = −ATψ

α̇ = |ψTB|

These equations must be solved for all t, with final boundary conditions ψ(T ) = C
and α(T ) = 0. Note, that the optimal control in Eq. 1.8 only requires ∂xJ(x, t),
which in this case is ψ(t) and thus we do not need to solve α. The solution for ψ is

ψ1(t) = − cos(t− T )

ψ2(t) = sin(t− T )

for 0 < t < T . The optimal control is

u(x, t) = −sign(ψ2(t)) = −sign(sin(t− T ))

As an example consider x1(0) = x2(0) = 0, T = 2π. Then, the optimal control is

u = −1, 0 < t < π

u = 1, π < t < 2π

The optimal trajectories are for 0 < t < π

x1(t) = cos(t)− 1, x2(t) = − sin(t)

and for π < t < 2π

x1(t) = 3 cos(t) + 1, x2(t) = −3 sin(t)

The solution is drawn in fig. 1.1. We see that in order to excite the spring to
its maximal height at T , the optimal control is to first push the spring down for
0 < t < π and then to push the spring up between π < t < 2π, taking maximally
advantage of the intrinsic dynamics of the spring.

Note, that since there is no cost associated with the control u and u is hard
limited between -1 and 1, the optimal control is always either -1 or 1. This is
known as bang-bang control.
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1.3.3 Pontryagin minimum principle

In the last section, we solved the optimal control problem as a partial differential
equation, with a boundary condition at the end time. The numerical solution
requires a discretization of space and time and is computationally expensive. The
solution is an optimal cost-to-go function J(x, t) for all x and t. From this we
compute the optimal control sequence Eq. 1.8 and the optimal trajectory.

An alternative to the HJB approach is a variational approach that directly finds
the optimal trajectory and optimal control and bypasses the expensive computation
of the cost-to-go. This approach is known as the Pontryagin Minimum Principle.
We can write the optimal control problem as a constrained optimization problem
with independent variables u(0→ T ) and x(0→ T ). We wish to minimize

min
u(0→T ),x(0→T )

φ(x(T )) +

∫ T

0

dtR(x(t), u(t), t)

subject to the constraint that u(0 → T ) and x(0 → T ) are compatible with the
dynamics

ẋ = f(x, u, t) (1.9)

and the boundary condition x(0) = x0. ẋ denotes the time derivative dx/dt.
We can solve the constraint optimization problem by introducing the Lagrange

multiplier function λ(t) that ensures the constraint Eq. 1.9 for all t:

C = φ(x(T )) +

∫ T

0

dt [R(t, x(t), u(t)) − λ(t)(f(t, x(t), u(t)) − ẋ(t))]

= φ(x(T )) +

∫ T

0

dt[−H(t, x(t), u(t), λ(t)) + λ(t)ẋ(t))]

−H(t, x, u, λ) = R(t, x, u)− λf(t, x, u) (1.10)

The solution is found by extremizing C. If we vary the action wrt to the trajec-
tory x, the control u and the Lagrange multiplier λ, we get:

δC = φx(x(T ))δx(T )

+

∫ T

0

dt[−Hxδx(t)−Huδu(t) + (−Hλ + ẋ(t))δλ(t) + λ(t)δẋ(t)]

= (φx(x(T )) + λ(T )) δx(T )

+

∫ T

0

dt
[

(−Hx − λ̇(t))δx(t) −Huδu(t) + (−Hλ + ẋ(t))δλ(t)
]

where the subscripts x, u, λ denote partial derivatives. For instance,Hx = ∂H(t,x(t),u(t),λ(t))
∂x(t) .

In the second line above we have used partial integration:
∫ T

0

dtλ(t)δẋ(t) =

∫ T

0

dtλ(t)
d

dt
δx(t) = −

∫ T

0

dt
d

dt
λ(t)δx(t) + λ(T )δx(T )− λ(0)δx(0)

and δx(0) = 0.
The stationary solution (δC = 0) is obtained when the coefficients of the inde-

pendent variations δx(t), δu(t), δλ(t) and δx(T ) are zero. Thus,

λ̇ = −Hx(t, x(t), u(t), λ(t))

0 = Hu((t, x(t), u(t), λ(t)) (1.11)

ẋ = Hλ(t, x, u, λ)

λ(T ) = −φx(x(T ))
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We can solve Eq. 1.11 for u and denote the solution as u∗(t, x, λ). This solution
is unique if H is convex in u. The remaining equations are

ẋ = H∗
λ(t, x, λ)

λ̇ = −H∗
x(t, x, λ) (1.12)

where we have defined H∗(t, x, λ) = H(t, x, u∗(t, x, λ), λ) and with boundary con-
ditions

x(0) = x0 λ(T ) = −φx(x(T )) (1.13)

The solution provided by Eqs. 1.12 with boundary conditions Eq. 1.13 are coupled
ordinary differential equations that describe the dynamics of x and λ over time with
a boundary condition for x at the initial time and for λ at the final time. Compared
to the HJB equation, the complexity of solving these equations is low since only
time discretization and no space discretization is required. However, due to the
mixed boundary conditions, finding a solution that satisfies these equations is not
trivial and requires sophisticated numerical methods. The most common method
for solving the PMP equations is called (multiple) shooting Fraser-Andrews (1999);
Heath (2002).

The Eqs. 1.12 are also known as the so-called Hamilton equations of motion
that arise in classical mechanics, but then with initial conditions for both x and λ
Goldstein (1980). In fact, one can view control theory as a generalization of classical
mechanics.

In classical mechanics H is called the Hamiltonian. Consider the time evolution
of H :

Ḣ = Ht +Huu̇+Hxẋ+Hλλ̇ = Ht (1.14)

where we have used the dynamical equations Eqs. 1.12 and Eq. 1.11. In particular,
when f and R in Eq. 1.10 do not explicitly depend on time, neither does H and
Ht = 0. In this case we see that H is a constant of motion: the control problem
finds a solution such that H(t = 0) = H(t = T ).

1.3.4 Again mass on a spring

We consider again the example of the mass on a spring that we introduced in
section 1.3.2 where we had

ẋ1 = x2, ẋ2 = −x1 + u

R(x, u, t) = 0 φ(x) = −x1

The Hamiltonian Eq. 1.10 becomes

H(t, x, u, λ) = λ1x2 + λ2(−x1 + u)

Using Eq. 1.11 we obtain u∗ = −sign(λ2) and

H∗(t, x, λ) = λ1x2 − λ2x1 − |λ2|
The Hamilton equations

ẋ =
∂H∗

∂λ
⇒ ẋ1 = x2, ẋ2 = −x1 − sign(λ2)

λ̇ = −∂H
∗

∂x
⇒ λ̇1 = −λ2, λ̇2 = λ1

with x(t = 0) = x0 and λ(t = T ) = 1.
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1.3.5 Comments

The HJB method gives a sufficient (and often necessary) condition for optimality.
The solution of the PDE is expensive. The PMP method provides a necessary
condition for optimal control. This means that it provides candidate solutions for
optimality.

The PMP method is computationally less complicated than the HJB method
because it does not require discretization of the state space. The PMP method can
be used when dynamic programming fails due to lack of smoothness of the optimal
cost-to-go function.

The subject of optimal control theory in continuous space and time has been well
studied in the mathematical literature and contains many complications related to
the existence, uniqueness and smoothness of the solution, particular in the absence
of noise. See Jönsson et al. (2002) for a clear discussion and further references. In
the presence of noise and in particular in the path integral framework, as we will
discuss below, it seems that many of these intricacies disappear.

1.4 Stochastic optimal control

In this section, we consider the extension of the continuous control problem to the
case that the dynamics is subject to noise and is given by a stochastic differential
equation. First, we give a very brief introduction to stochastic differential equations.

1.4.1 Stochastic differential equations

Consider the random walk on the line:

xt+1 = xt + ξt ξt = ±√ν

with x0 = 0. The increments ξt are iid random variables with mean zero,
〈

ξ2t
〉

= ν
and ν is a constant. We can write the solution for xt in closed form as

xt =

t
∑

i=1

ξi

Since xt is a sum of random variables, xt becomes Gaussian in the limit of large t.
We can compute the evolution of the mean and covariance:

〈xt〉 =

t
∑

i=1

〈ξi〉 = 0

〈

x2
t

〉

=

t
∑

i,j=1

〈ξiξj〉 =
t
∑

i=1

〈

ξ2i
〉

+

t
∑

i,j=1,j 6=i

〈ξi〉 〈ξj〉 = νt

Note, that the fluctuations σt =
√

〈x2
t 〉 =

√
νt increase with the square root of

t. This is a characteristic property of a diffusion process, such as for instance the
diffusion of ink in water or warm air in a room.

In the continuous time limit we define

dxt = xt+dt − xt = dξ (1.15)



10

with dξ an infinitesimal mean zero Gaussian variable. In order to get the right
scaling with t we must choose

〈

dξ2
〉

= νdt. Then in the limit of dt→ 0 we obtain

d

dt
〈x〉 = lim

dt→0

〈

xt+dt − xt

dt

〉

= lim
dt→0

〈dξ〉
dt

= 0, ⇒ 〈x〉 (t) = 0

d

dt

〈

x2
〉

= ν, ⇒
〈

x2
〉

(t) = νt

The conditional probability distribution of x at time t given x0 at time 0 is Gaussian
and specified by its mean and variance. Thus

ρ(x, t|x0, 0) =
1√

2πνt
exp

(

− (x− x0)
2

2νt

)

The process Eq. 1.15 is called a Wiener process.

1.4.2 Stochastic optimal control theory

Consider the stochastic differential equation which is a generalization of Eq. 1.5:

dx = f(x(t), u(t), t)dt + dξ. (1.16)

dξ is a Wiener processes with 〈dξidξj〉 = νij(t, x, u)dt and ν is a symmetric positive
definite matrix.

Because the dynamics is stochastic, it is no longer the case that when x at time
t and the full control path u(t→ T ) are given, we know the future path x(t → T ).
Therefore, we cannot minimize Eq. 1.6, but can only hope to be able to minimize
its expectation value over all possible future realizations of the Wiener process:

C(x0, u(0→ T )) =

〈

φ(x(T )) +

∫ T

0

dtR(x(t), u(t), t)

〉

x0

(1.17)

The subscript x0 on the expectation value is to remind us that the expectation is
over all stochastic trajectories that start in x0.

The solution of the control problem proceeds very similar as in the determin-
istic case, with the only difference that we must add the expectation value over
trajectories. Eq. 1.4 becomes

J(t, xt) = min
ut

R(t, xt, ut)dt+ 〈J(t+ dt, xt+dt)〉xt

We must again make a Taylor expansion of J in dt and dx. However, since
〈

dx2
〉

is of order dt because of the Wiener process, we must expand up to order dx2:

〈J(t+ dt, xt+dt)〉 =

∫

dxt+dtN (xt+dt|xt, νdt)J(t+ dt, xt+dt)

= J(t, xt) + dt∂tJ(t, xt) + 〈dx〉 ∂xJ(t, xt) +
1

2

〈

dx2
〉

∂2
xJ(t, xt)

〈dx〉 = f(x, u, t)dt
〈

dx2
〉

= ν(t, x, u)dt

Thus, we obtain

−∂tJ(t, x) = min
u

(

R(t, x, u) + f(x, u, t)∂xJ(x, t) +
1

2
ν(t, x, u)∂2

xJ(x, t)

)

(1.18)

which is the Stochastic Hamilton-Jacobi-Bellman Equation with boundary condition
J(x, T ) = φ(x). Eq. 1.18 reduces to the deterministic HJB equation Eq.1.7 in the
limit ν → 0.
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1.4.3 Linear quadratic control

In the case that the dynamics is linear and the cost is quadratic one can show that
the optimal cost to go J is also a quadratic form and one can solve the stochastic
HJB equation in terms of ’sufficient statistics’ that describe J .

x is n-dimensional and u is p dimensional. The dynamics is linear

dx = [A(t)x +B(t)u+ b(t)]dt+

m
∑

j=1

(Cj(t)x+Dj(t)u + σj(t))dξj (1.19)

with dimensions: A = n×n,B = n×p, b = n×1, Cj = n×n,Dj = n×p, σj = n×1
and 〈dξjdξj′ 〉 = δjj′dt. The cost function is quadratic

φ(x) =
1

2
xTGx (1.20)

f0(x, u, t) =
1

2
xTQ(t)x+ uTS(t)x+

1

2
uTR(t)u (1.21)

with G = n× n,Q = n× n, S = p× n,R = p× p.
We parametrize the optimal cost to go function as

J(t, x) =
1

2
xTP (t)x + αT (t)x + β(t) (1.22)

which should satisfy the stochastic HJB equation eq. 1.18 with P (T ) = G and
α(T ) = β(T ) = 0. P (t) is an n×n matrix, α(t) is an n-dimensional vector and β(t)
is a scalar. Substituting this form of J in Eq. 1.18, this equation contains terms
quadratic, linear and constant in x and u. We can thus do the minimization with
respect to u exactly and the result is

u(t) = −Ψ(t)x(t)− ψ(t)

with

R̂ = R+

m
∑

j=1

DT
j PDj , (p× p)

Ŝ = BTP + S +

m
∑

j=1

DT
j PCj , (p× n)

Ψ = R̂−1Ŝ, (p× n)

ψ = R̂−1(BTα+

m
∑

j=1

DT
j Pσj), (p× 1)

The stochastic HJB equation then decouples as three ordinary differential equations

−Ṗ = PA+ATP +

m
∑

j=1

CT
j PCj +Q− ŜT R̂−1Ŝ (1.23)

−α̇ = [A−BR̂−1Ŝ]Tα+

m
∑

j=1

[Cj −DjR̂
−1Ŝ]TPσj + Pb (1.24)

β̇ =
1

2

∣

∣

∣

√

R̂ψ
∣

∣

∣

2

− αT b− 1

2

m
∑

j=1

σT
j Pσj (1.25)
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Figure 1.2: Stochastic optimal control in the case of a linear system with quadratic cost. T = 10,
time discretization dt = 0.1, ν = 0.05. The optimal control is to steer towards the origin with
−P (t)x, where P is roughly constant until T ≈ 8. Afterward control weakens because the expected
diffusion is proportional to the time-to-go.

The way to solve these equations is to first solve eq. 1.23 for P (t) with end
condition P (T ) = G. Use this solution in eq. 1.24 to compute the solution for α(t)
with end condition α(T ) = 0. Finally,

β(s) = −
∫ T

s

dtβ̇dt

can be computed from eq. 1.25.

1.4.4 Example of LQ control

Find the optimal control for the dynamics

dx = (x + u)dt+ dξ,
〈

dξ2
〉

= νdt

with end cost φ(x) = 0 and path cost R(x, u) = 1
2 (x2 + u2).

The Ricatti equations reduce to

−Ṗ = 2P + 1− P 2

−α̇ = 0

β̇ = −1

2
νP

with P (T ) = α(T ) = β(T ) = 0 and

u(x, t) = −P (t)x

We compute the solution for P and β by numerical integration. The result is shown
in figure 1.2. The optimal control is to steer towards the origin with −P (t)x, where
P is roughly constant until T ≈ 8. Afterward control weakens because the total
future state cost reduces to zero when t approaches the end time.

Note, that in this example the optimal control is independent of ν. It can be
verified from the Ricatti equations that this is true in general for ’non-multiplicative’
noise (Cj = Dj = 0).
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Figure 1.3: When life is finite and is executed only one time, we should first learn and then act.

1.5 Learning

So far, we have assumed that all aspects that define the control problem are known.
But in many instances this is not the case. What happens if (part of) the state is
not observed? For instance, as a result of measurement error we do not know xt

but only know a probability distribution p(xt|y0:t) given some previous observations
y0:t. Or, we observe xt, but do not know the parameters of the dynamical equation
Eq. 1.16. Or, we do not know the cost/rewards functions that appear in Eq. 1.17.

Using a Bayesian point of view, the agent can represent the uncertainty as beliefs,
ie. probability distributions over the hidden states, parameters or rewards. The
optimal behaviour is then a trade-off between two objectives: choosing actions that
optimize the expected future reward given the current beliefs and choosing actions
that improve the accuracy of the beliefs. In other words, the agent faces the problem
of finding the right compromise between learning and control, a problem which is
known in control theory as dual control and was originally introduced by Feldbaum
(1960) (see Filatov and Unbehauen (2004) for a recent review). In addition to
the observed state variables x, there are an additional number of variables θ that
specify the belief distributions. The dual control solution is the ordinary control
solution in this extended (x, θ) state space. The value function becomes a function of
the extended state space and the Bellman equation describes the evolution in this
extended state space. Some approaches to partially observed MDPs (POMDPs)
Sondik (1971); Kaelbling et al. (1998); Poupart and Vlassis (2008) are an example
of dual control problems.

A typical solution to the dual control problem for a finite time horizon problem
is a control strategy that first chooses actions that explore the state space in order to
learn a good model and use it at later times to maximize reward. In other words, the
dual control problem solves the exploration exploitation problem by making explicit
assumptions about the belief distributions. This is very reminiscent of our own life.
Our life is finite and we have only one life. Our aim is to maximize accumulated
reward during our lifetime, but in order to do so we have to allocate some resources
to learning as well. It requires that we plan our learning and the learning problem
becomes an integral part of the control problem. At t = 0, there is no knowledge of
the world and thus making optimal control actions is impossible. t = T , learning
has become useless, because we will have no more opportunity to make use of it.
So we should learn early in life and act later in life, as is schematically shown in
fig. 1.3. See Bertsekas (2000) for a further discussion. We discuss a simple example
in section 1.5.1.

Note, that reinforcement learning is typically defined as an adaptive control
problem rather than a dual control problem. These approaches use beliefs that
are specified in terms of hyper parameters θ, but the optimal cost to go is still a
function of the original state x only. The Bellman equation is an evolution equation
for J(x) where unobserved quantities are given in terms of their expected values
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that depend on θ. This control problem is then in priciple solved for fixed θ (al-
though in reinforcement learning often a sample based approach is taken and no
strict convergence is enforced). θ is adapted as a result of the samples that are
collected. In this formulation, the exploration exploitation dilemma arises since the
control computation will propose actions that are only directed towards exploita-
tion assuming the wrong θ (its optimal value still needs to be found). As a result,
the state space is not fully explored and the updates for θ thus obtained are bi-
ased. The common heuristic to improve the learning is to mix these actions with
’exploratory actions’ that explore the state space in directions that are not dictated
by exploitation. Well-known examples of this appraoch are Bayesian reinforcement
learning Dearden et al. (1999) and some older methods that are reviewd in Thrun
(1992). Nevertheless, the principled solution is to explore all space, for instance by
using a dedicated exploration strategy such as proposed in the E3 algorithm Kearns
and Singh (2002).

In the case of finite time control problems the difference between the dual control
formulation and the adaptive control formulation become particularly clear. The
dual control formulation requires only one trial of the problem. It starts at t = 0
with its initial belief θ0 and initial state x0 and computes the optimal solution by
solving the Bellman equation in the extended state space for all intermediate times
until the horizon time T . The result is a single trajectory (x1:T , θ1:T ). The adaptive
control formulation requires many trials. In each trial i, the control solution is
computed by solving the Bellman equation in the ordinary state space where the
beliefs are given by θi. The result is a trajectory (x1:T , θ

i). Between trials, θ is
updated using samples from the previous trial(s). Thus, in the adaptive control
approach the learning problem is not solved as part of the control problem but
rather in an ’outer loop’. The time scale for learning is unrelated to the horizon
time T . In the dual control formulation, learning must take place in a single trial
and is thus tightly related to T .

Needless to say, the dual control formulation is more attactive than the adaptive
control formulation, but is computationally significantly more costly.

1.5.1 Inference and control

As an example Florentin (1962); Kumar (1983), consider the simple LQ control
problem

dx = αudt+ dξ (1.26)

with α unobserved and x observed. Path cost R(x, u, t) and end cost φ(x) and noise
variance ν are given.

Although α is unobserved, we have a means to observe α indirectly through the
sequence xt, ut, t = 0, . . .. Each time step we observe dx and u and we can thus
update our belief about α using the Bayes formula:

pt+dt(α|dx, u) ∝ p(dx|α, u)pt(α) (1.27)

with p(dx|α, u) a Normal distribution in dx with variance νdt and pt(α) a probability
distribution that expresses our belief at time t about the values of α. The problem
is that the future information that we receive about α depends on u: if we use a
large u, the term αudt is larger than the noise term dξ and we will get reliable
information about α. However, large u values are more costly and also may drive
us away from our target state x(T ). Thus, the optimal control is a balance between
optimal inference and minimal control cost.
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The solution is to augment the state space with parameters θt (sufficient statis-
tics) that describe pt(α) = p(α|θt) and θ0 known, which describes our initial belief
in the possible values of α. The cost that must be minimized is

C(x0, θ0, u(0→ T )) =

〈

φ(x(T )) +

∫ T

0

dtR(x, u, t)

〉

(1.28)

where the average is with respect to the noise dξ as well as the uncertainty in α.
For simplicity, consider the example that α attains only two values α = ±1.

Then pt(α|θ) = σ(αθ), with the sigmoid function σ(x) = 1
2 (1 + tanh(x)). The

update equation Eq. 1.27 implies a dynamics for θ:

dθ =
u

ν
dx =

u

ν
(αudt+ dξ) (1.29)

With zt = (xt, θt) we obtain a standard HJB Eq. 1.18:

−∂tJ(t, z)dt = min
u

(

R(t, z, u)dt+ 〈dz〉z ∂zJ(z, t) +
1

2

〈

dz2
〉

z
∂2

zJ(z, t)

)

with boundary condition J(z, T ) = φ(x). The expectation values appearing in
this equation are conditioned on (xt, θt) and are averages over p(α|θt) and the

Gaussian noise. We compute 〈dx〉x,θ = ᾱudt, 〈dθ〉x,θ = ᾱu2

ν dt,
〈

dx2
〉

x,θ
= νdt,

〈

dθ2
〉

x,θ
= u2

ν dt, 〈dxdθ〉 = udt, with ᾱ = tanh(θ) the expected value of α for a

given value θ. The result is

−∂tJ = min
u

(

f0(x, u, t) + ᾱu∂xJ +
u2ᾱ

ν
∂θJ +

1

2
ν∂2

xJ +
1

2

u2

ν
∂2

θJ + u∂x∂θJ

)

with boundary conditions J(x, θ, T ) = φ(x).
Thus, the dual control problem (joint inference on α and control problem on x)

has become an ordinary control problem in x, θ. Quoting Florentin (1962): ”It seems
that any systematic formulation of the adaptive control problem leads to a meta-
problem which is not adaptive”. Note also, that dynamics for θ is non-linear (due
to the u2 term) although the original dynamics for dx was linear. The solution to
this non-linear stochastic control problem requires the solution of this PDE and was
studied in Kappen and Tonk (2010). An example of the optimal control solution
u(x, θ, t) for x = 2 and different θ and t is given in fig. 1.4. Note, the ’probing’
solution with u much larger when α is uncertain (θ small) then when α is certain
θ = ±∞. This exploration strategy is optimal in the dual control formulation.
In Kappen and Tonk (2010) we further demonstrate that exploration is achieved
through symmetry breaking in the Bellman equation; that optimal actions can be
discontinuous in the beliefs (as in fig. 1.4); and that the optimal value function is
typically non-differentiable. This poses a challenge for the design of value function
approximations for POMDPs, which typically assumes a smooth class of functions.

1.5.2 Certainty equivalence

Although in general adaptive control is much more complex than non-adaptive
control, there exists an exception for a large class of linear quadratic problems,
such as the Kalman filter Theil (1957). Consider the dynamics

dx = (x+ u)dt+ dξ

y = x+ η
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Figure 1.4: Dual control solution with end cost φ(x) = x2 and path cost
R tf

t dt′ 1

2
u(t′)2 and

ν = 0.5. Plot shows the deviation of the control from the certain case: ut(x, θ)/ut(x, θ = ±∞) as
a function of θ for different values of t. The curves with the larger values are for larger times-to-go.

where now x is not observed, but y is observed and all other model parameters are
known.

When x is observed, we can compute the quadratic cost, which we assume of
the form

C(xt, t, ut:T ) =

〈

T
∑

τ=t

1

2
(x2

τ + u2
τ )

〉

We denote the optimal control solution by u(x, t).
When xt is not observed, we can compute p(xt|y0:t) using Kalman filtering and

the optimal control minimizes

CKF(y0:t, t, ut:T ) =

∫

dxtp(xt|y0:t)C(xt, t, ut:T )

with C as above.
Since p(xt|y0:t) = N (xt|µt, σ

2
t ) is Gaussian and

CKF(y0:t, t, ut:T ) =

∫

dxtC(xt, t, ut:T )N (xt|µt, σ
2
t ) =

T
∑

τ=t

1

2
u2

τ +
T
∑

τ=t

〈

x2
τ

〉

µt,σt

=

T
∑

τ=t

1

2
u2

τ +
1

2
(µ2

t + σ2
t ) +

1

2

∫

dxt

〈

x2
t+dt

〉

xt,νdt
N (xt|µt, σ

2
t ) + · · ·

=

T
∑

τ=t

1

2
u2

τ +
1

2
(µ2

t + σ2
t ) +

1

2

〈

x2
t+dt

〉

µt,νdt
+

1

2
σ2

t + · · ·

= C(µt, t, ut:T ) +
1

2
(T − t)σ2

t

The first term is identical to the observed case with xt → µt. The second term does
not depend on u and thus does not affect the optimal control. Thus, the optimal
control for the Kalman filter uKF(y0:t, t) computed from CKF is identical to the
optimal control function u(x, t) that is computed for the observed case C, with xt

replaced by µt:

uKF(y0:t, t) = u(µt, t)
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This property is known as Certainty Equivalence Theil (1957), and implies that for
these systems the control computation and the inference computation can be done
separately, without loss of optimality.

1.6 Path integral control

1.6.1 Introduction

As we have seen, the solution of the general stochastic optimal control problem
requires the solution of a partial differential equation. This is for may realistic
applications not an attractive option. The alternative considered often, is to ap-
proximate the problem somehow by a linear quadratic problem which can then be
solved efficiently using the Ricatti equations.

In this section, we discuss the special class of non-linear, non-quadratic control
problems for which some progress can be made Kappen (2005a,b). For this class
of problems, the non-linear Hamilton-Jacobi-Bellman equation can be transformed
into a linear equation by a log transformation of the cost-to-go. The transforma-
tion stems back to the early days of quantum mechanics and was first used by
Schrödinger to relate the Hamilton-Jacobi formalism to the Schrödinger equation
(a linear diffusion-like equation). The log transform was first used in the context of
control theory by Fleming (1978) (see also Fleming and Soner (1992)).

Due to the linear description, the usual backward integration in time of the HJB
equation can be replaced by computing expectation values under a forward diffusion
process. The computation of the expectation value requires a stochastic integration
over trajectories that can be described by a path integral. This is an integral over
all trajectories starting at x, t, weighted by exp(−S/λ), where S is the cost of the
path (also know as the Action) and λ is a constant that is proportional to the noise.

The path integral formulation is well-known in statistical physics and quantum
mechanics, and several methods exist to compute path integrals approximately. The
Laplace approximation approximates the integral by the path of minimal S. This
approximation is exact in the limit of ν → 0, and the deterministic control law is
recovered.

In general, the Laplace approximation may not be sufficiently accurate. A very
generic and powerful alternative is Monte Carlo (MC) sampling. The theory nat-
urally suggests a naive sampling procedure, but is also possible to devise more
efficient samplers, such as importance sampling.

We illustrate the control method on two tasks: a temporal decision task, where
the agent must choose between two targets at some future time; and a simple n joint
arm. The decision task illustrates the issue of spontaneous symmetry breaking and
how optimal behavior is qualitatively different for high and low noise. The n joint
arm illustrates how the efficient approximate inference methods (the variational
approximation in this case) can be used to compute optimal controls in very high
dimensional problems.

1.6.2 Path integral control

Consider the special case of Eqs. 1.16 and 1.17 where the dynamic is linear in u and
the cost is quadratic in u:

dxi = fi(x, t)dt +

p
∑

j=1

gij(x, t)(ujdt+ dξj) (1.30)

R(x, u, t) = V (x, t) +
1

2
uTRu (1.31)
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with R a non-negative matrix. fi(x, t), gij(x, t) and V (x, t) are arbitrary functions
of x and t, and 〈dξjdξj′ 〉 = νjj′dt. In other words, the system to be controlled can
be arbitrary complex and subject to arbitrary complex costs. The control instead,
is restricted to the simple linear-quadratic form when gij = 1 and in general must
act in the same subspace as the noise. We will suppress all component notation
from now on. Quantities such as f, u, x, dx are vectors and R, g, ν are matrices.

The stochastic HJB equation 1.18 becomes

−∂tJ = min
u

(

1

2
uTRu+ V + (∇J)T (f + gu) +

1

2
TrνgT∇2Jg

)

Due to the linear-quadratic appearance of u, we can minimize with respect to u
explicitly which yields:

u = −R−1gT∇J (1.32)

which defines the optimal control u for each x, t. The HJB equation becomes

−∂tJ = V + (∇J)T f +
1

2
Tr
(

−gR−1gT (∇J)(∇J)T + gνgT∇2J
)

Note, that after performing the minimization with respect to u, the HJB equa-
tion has become non-linear in J . We can, however, remove the non-linearity and
this will turn out to greatly help us to solve the HJB equation. Define ψ(x, t)
through J(x, t) = −λ logψ(x, t). We further assume that there exists a constant λ
such that the matrices R and ν satisfy2:

λR−1 = ν (1.33)

This relation basically says that directions in which control is expensive should have
low noise variance. It can also be interpreted as saying that all noise directions are
controllable (in the correct proportion). Then the HJB becomes

−∂tψ(x, t) =

(

−V
λ

+ fT∇+
1

2
Tr
(

gνgT∇2
)

)

ψ (1.34)

Eq. 1.34 must be solved backwards in time with ψ(x, T ) = exp(−φ(x)/λ).
The linearity allows us to reverse the direction of computation, replacing it by

a diffusion process, in the following way. Let ρ(y, τ |x, t) describe a diffusion process
for τ > t defined by the Fokker-Planck equation

∂τρ = −V
λ
ρ−∇T (fρ) +

1

2
Tr
(

∇2(gνgTρ)
)

(1.35)

with initial condition ρ(y, t|x, t) = δ(y − x). Note, that when V = 0, Eq. 1.35
describes the evolution of diffusion process Eq. 1.30 with u = 0.

Define A(x, t) =
∫

dyρ(y, τ |x, t)ψ(y, τ). It is easy to see by using the equations
of motion Eq. 1.34 and 1.35 that A(x, t) is independent of τ . Evaluating A(x, t)
for τ = t yields A(x, t) = ψ(x, t). Evaluating A(x, t) for τ = T yields A(x, t) =
∫

dyρ(y, T |x, t)ψ(x, T ). Thus,

ψ(x, t) =

∫

dyρ(y, T |x, t) exp(−φ(y)/λ) (1.36)

2Strictly, the weaker condition λg(x, t)R−1gT (x, t) = g(x, t)νgT (x, t) should hold.
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We arrive at the important conclusion that the optimal cost-to-go J(x, t) = −λ logψ(x, t)
can be computed either by backward integration using Eq. 1.34 or by forward in-
tegration of a diffusion process given by Eq. 1.35. The optimal control is given by
Eq. 1.32.

Both Eq. 1.34 and 1.35 are partial differential equations and, although being
linear, still suffer from the curse of dimensionality. However, the great advantage
of the forward diffusion process is that it can be simulated using standard sampling
methods which can efficiently approximate these computations. In addition, as
is discussed in Kappen (2005b), the forward diffusion process ρ(y, T |x, t) can be
written as a path integral and in fact Eq. 1.36 becomes a path integral. This path
integral can then be approximated using standard methods, such as the Laplace
approximation.

Example: linear quadratic case

The class of control problems contains both additive and multiplicative cases. We
give an example of both. Consider the control problem Eqs. 1.30 and 1.31 for the
simplest case of controlled free diffusion:

V (x, t) = 0, f(x, t) = 0, φ(x) =
1

2
αx2

In this case, the forward diffusion described by Eqs. 1.35 can be solved in closed
form and is given by a Gaussian with variance σ2 = ν(T − t):

ρ(y, T |x, t) =
1√
2πσ

exp

(

− (y − x)2
2σ2

)

(1.37)

Since the end cost is quadratic, the optimal cost-to-go Eq. 1.36 can be computed
exactly as well. The result is

J(x, t) = νR log

(

σ

σ1

)

+
1

2

σ2
1

σ2
αx2 (1.38)

with 1/σ2
1 = 1/σ2 + α/νR. The optimal control is computed from Eq. 1.32:

u = −R−1∂xJ = −R−1σ
2
1

σ2
αx = − αx

R+ α(T − t)

We see that the control attracts x to the origin with a force that increases with t
getting closer to T . Note, that the optimal control is independent of the noise ν as
we also saw in the previous LQ example in section 1.4.4.

Example: multiplicative case

Consider as a simple example of a multiplicative case, f = 0, g = x, V = 0 in one
dimension and R = 1. Then the forward diffusion process reduces to

dx = x(udt+ dξ) (1.39)

and x(ti) = x0. If we define y = log x then

dy =
dy

dx
dx+

1

2

d2y

dx2
dx2 = udt+ dξ − ν

2
dt
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Figure 1.5: Optimal control for the one-dimensional multiplicative process Eq. 1.39 with quadratic

control cost
R tf

t1
dt 1

2
u(t)2 to reach a fixed target x′ = 1, starting from an initial position x = 1.

Figure a) shows the forward diffusion solution in the absence of control Eq. 1.40 which is used to
compute the optimal control solution Eq. 1.41.

with y(ti) = log x0 and the solution in terms of y is simply a Gaussian distribution

ρ̃(y′, t|y, ti) =
1√
2πσ

exp(−(y′ − y − (u− ν/2)(t− ti))2/2σ2)

with σ2 = (t− ti)ν. In terms of x the solution becomes:

ρ(x′, t|x, ti) =
1

x′
ρ̃(log x′, t| log x, ti) (1.40)

The solution is shown in fig. 1.5a for u = 0 and tf = 0.1, 0.5 and tf = 2. For
tf = 0, 5 the solution is compared with forward simulation of Eq. 1.39. Note,
that the diffusion drifts towards the origin, which is caused by the state dependent
noise. The noise is proportional to x and therefore the conditional probability
p(xsmall|xlarge) is greater than the reverse probability p(xlarge|xsmall). This results
in a netto drift towards small x.

From Eq. 1.40, we can compute the optimal control. Consider the control task
to steer to a fixed end point x′ from an arbitrary initial point x. Then,

ψ(x, t) = ρ(x′, tf |x, t) =
1√

2πνT

1

x′
exp

(

−(log(x′)− log(x) + νT/2)2/2νT
)

J(x, t) = −ν logψ(x, t) = ν log
√

2πνT + ν log x′ + (log(x′)− log(x) + νT/2)2/2T

u(x, t) = −xdJ(x, t)

dx
=

1

T
log

(

x′

x

)

+ ν/2 (1.41)

with T = tf − t. The first term attracts x to x′ with strength increasing in 1/T as
usual. The second term is a constant positive drift, to counter the tendency of the
uncontrolled process to drift towards the origin. An example of the solution for a
task to steer from x = 1 at t = 0 to x = 1 at t = 1 is shown in fig. 1.5b,c.

1.6.3 The diffusion process as a path integral

The diffusion equation Eq. 1.35 contains three terms. The second and third terms
describe drift f(x, t)dt and diffusion g(x, t)dξ as in Eq. 1.30 with u = 0. The first
term describes a process that kills a sample trajectory with a rate V (x, t)dt/λ. This
term does not conserve the probability mass. Thus, the solution of Eq. 1.35 can be
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obtained by sampling the following process

dx = f(x, t)dt+ g(x, t)dξ

x = x+ dx, with probability 1− V (x, t)dt/λ

xi = †, with probability V (x, t)dt/λ (1.42)

We can thus obtain a sampling estimate of

Ψ(x, t) =

∫

dyρ(y, T |x, t) exp(−φ(y)/λ)

≈ 1

N

∑

i∈alive

exp(−φ(xi(T ))/λ) (1.43)

by computing N trajectories xi(t → T ), i = 1, . . . , N . Each trajectory starts at
the same value x and is sampled using the dynamics Eq. 1.43. ’Alive’ denotes the
subset of trajectories that do not get killed along the way by the † operation.

The diffusion process can formally be ’solved’ as a path integral. We restrict
ourselves to the simplest case gij(x, t) = δij . The general case can also be written
as a path integral, but is somewhat more involved. The argument follows simply by
splitting the time interval [t, T ] is a large number n of infinitesimal intervals [t, t+dt].
For each small interval, ρ(y, t+ dt|x, t) is a product of a Gaussian distribution due
to the drift f and diffusion gdξ, and the annihilation process exp(−V (x, t)dt/λ):
ρ(y, t+dt|x, t) = N (y|x+f(x, t)dt, ν). We can then compute ρ(y, T |x, t) by multiply-
ing all these infinitesimal transition probabilities and integrating the intermediate
variables y. The result is

ρ(y, T |x, t) =

∫

[dx]yx exp

(

− 1

λ
Spath(x(t→ T ))

)

Spath(x(t→ T )) =

∫ T

t

dτ
1

2
(ẋ(τ)− f(x(τ), τ))TR(ẋ(τ) − f(x(τ), τ))

+

∫ T

t

dτV (x(τ), τ) (1.44)

Combining Eq. 1.44 and Eq. 1.36, we obtain the cost-to-go as

Ψ(x, t) =

∫

[dx]x exp

(

− 1

λ
S(x(t→ T ))

)

S(x(t→ T )) = Spath(x(t→ T )) + φ(x(T )) (1.45)

Note, that Ψ has the general form of a partition sum. S is the energy of a path and
λ the temperature. The corresponding probability distribution is

p(x(t→ T )|x, t) =
1

Ψ(x, t)
exp

(

−1

ν
S(x(t→ T ))

)

J = −λ log Ψ can be interpreted as a free energy. See Kappen (2005b) for details.
Although we have solved the optimal control problem formally as a path integral,

we are still left with the problem of computing the path integral. Here one can
resort to various standard methods such as Monte Carlo sampling Kappen (2005b)
of which the naive forward sampling Eq. 1.42 is an example. One can however,
improve on this naive scheme using importance sampling where one changes the
drift term such as to minimize the annihilation of the diffusion by the −V (x, t)dt/λ
term.
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A particularly cheap approximation is the Laplace approximation, that finds the
trajectory that minimizes S in Eq. 1.45. This approximation is exact in the limit
of λ→ 0 which is the noiseless limit. The Laplace approximation gives the classical
path. On particular effective forward importance sampling method is to use the
classical path as a drift term. We will give an example of the naive and importance
forward sampling scheme below for the double slit problem.

One can also use a variational approximation to approximate the path integral
using the variational approach for diffusion processes Archambeau et al. (2008), or
use the EP approximation Mensink et al. (2010). An illustration of the variational
approximation to a particular simple n joint arm is presented in section 1.7.2.

1.7 Approximate inference methods for control

1.7.1 MC sampling

In this section, we illustrate the path integral control method for the simple example
of a double slit. The example is sufficiently simple that we can compute the optimal
control solution in closed form. We use this example to compare the Monte Carlo
and Laplace approximations to the exact result.

Consider a stochastic particle that moves with constant velocity from t to T in
the horizontal direction and where there is deflecting noise in the x direction:

dx = udt+ dξ (1.46)

The cost is given by Eq. 1.31 with φ(x) = 1
2x

2 and V (x, t1) implements a slit at an
intermediate time t1, t < t1 < T :

V (x, t1) = 0, a < x < b, c < x < d

= ∞, else

The problem is illustrated in Fig. 1.6a where the constant motion is in the t (hori-
zontal) direction and the noise and control is in the x (vertical) direction.

The cost to go can be solved in closed form. The result for t > t1 is a simple
linear quadratic control problem for which the solution is given by Eq. 1.38 and for
t < t1 is Kappen (2005b):

J(x, t) = νR log

(

σ

σ1

)

+
1

2

σ2
1

σ2
x2

− νR log
1

2
(F (b, x)− F (a, x) + F (d, x)− F (c, x)) (1.47)

F (x0, x) = Erf

(

√

A

2ν
(x0 −

B(x)

A
)

)

A =
1

t1 − t
+

1

R+ T − t1
B(x) =

x

t1 − t
The solution Eq. 1.47 is shown for t = 0 in fig. 1.6b. We can compute the optimal
control from Eq. 1.32.

We assess the quality of the naive MC sampling scheme, as given by Eqs. 1.42
and 1.43 in fig. 1.6b,c. Fig. 1.6b shows the sampling trajectories of the naive MC
sampling procedure for one particular value of x. Note, the inefficiency of the
sampler because most of the trajectories are killed at the infinite potential at t = t1.
Fig. 1.6c shows the accuracy of the naive MC sampling estimate of J(x, 0) for all
x between −10 and 10 using N = 100000 trajectories. We note, that the number
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Figure 1.6: Double slit experiment. (a) Set-up of the experiment. Particles travel from t = 0 to
t = 2 under dynamics Eq. 1.46. A slit is placed at time t = t1, blocking all particles by annihilation.
Two trajectories are shown under optimal control. (b) Naive Monte Carlo sampling trajectories to
compute J(x = −1, t = 0) through Eq. 1.43. Only trajectories that pass through a slit contribute
to the estimate. (c) Comparison of naive MC estimates with N = 100000 trajectories and exact
result for J(x, t = 0) for all x. (d) Comparison of Laplace approximation (dotted line) and Monte
Carlo importance sampling (solid jagged line) of J(x, t = 0) with exact result Eq. 1.47 (solid
smooth line). The importance sampler used N = 100 trajectories for each x.
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of trajectories that are required to obtain accurate results, strongly depends on the
initial value of x due to the annihilation at t = t1. As a result, low values of the
cost-to-go are more easy to sample accurately than high values.

In addition, the efficiency of the sampling procedures depends strongly on the
noise level. For small noise, the trajectories spread less by themselves and it is
harder to generate trajectories that do not get annihilated. In other words, sampling
becomes more accurate for high noise, which is a well-known general feature of
sampling.

The sampling is of course particularly difficult in this example because of the
infinite potential that annihilates most of the trajectories. However, similar effects
will be observed in general due to the multi-modality of the Action.

We can improve the sampling procedure using the importance sampling proce-
dure using the Laplace approximation (see Kappen (2005b)). The Laplace approxi-
mation in this case are the two piece-wise linear trajectories that pass through one of
the slits to the goal. The Laplace approximation and the results of the importance
sampler are given in fig. 1.6d. We see that the Laplace approximation is quite good
for this example, in particular when one takes into account that a constant shift in
J does not affect the optimal control. The MC importance sampler dramatically
improves over the naive MC results in fig. 1.6, in particular since 1000 times less
samples are used and is also significantly better than the Laplace approximation.

1.7.2 The variational method

In this example we illustrate the use of the variational approximation for optimal
control computation. We consider a particularly simple realization of an n joint
arm in two dimensions. We will demonstrate how this approximation will be useful
even for large n.

Consider an arm consisting of n joints of length 1. The location of the ith joint
in the 2d plane is

xi =

i
∑

j=1

cos θi

yi =
i
∑

j=1

sin θi

with i = 1, . . . , n. Each of the joint angles is controlled by a variable ui. The
dynamics of each joint is

dθi = uidt+ dξi, i = 1, . . . , n

with dξi independent Gaussian noise with
〈

dξ2i
〉

= νdt. Denote by ~θ the vector of
joint angles, and ~u the vector of controls. The expected cost for the control path
~ut:T is

C(~θ, t, ~ut:T ) =

〈

φ(θ(T )) +

∫ T

t

1

2
~uT (t)~u(t)

〉

φ(~θ) =
α

2

(

(xn(~θ)− xtarget)
2 + (yn(~θ)− ytarget)2

)

with xtarget, ytarget the target coordinates of the end joint.
Because the state dependent path cost V and the intrinsic dynamics of f are

zero, the solution to the diffusion process Eq. 1.42 that starts with the arm in the
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configuration ~θ0 is a Gaussian so that Eq. 1.36 becomes 3

Ψ(~θ0, t) =

∫

d~θ

(

1
√

2πν(T − t)

)n

exp

(

−
n
∑

i=1

(θi − θ0i )2/2ν(T − t)− φ(~θ)/ν

)

The control at time t for all components i is computed from Eq. 1.32 and is given
by

ui =
1

T − t
(

〈θi〉 − θ0i
)

(1.48)

where 〈θi〉 is the expectation value of θi computed wrt the probability distribution

p(~θ) =
1

Ψ(~θ0, t)
exp

(

−
n
∑

i=1

(θi − θ0i )2/2ν(T − t)− φ(~θ)/ν

)

(1.49)

Thus, the stochastic optimal control problem reduces the inference problem to
compute 〈θi〉. There are several ways to compute this. One can use a simple
importance sampling scheme, where the proposal distribution is the n dimensional

Gaussian centered on ~θ0 (first term in Eq. 1.49) and where samples are weighted

with exp(−φ(~θ)/ν). I tried this, but that does not work very well (results not
shown). One can also use a Metropolis Hastings methods with a Gaussian proposal
distribution. This works quite well (results not shown). One can also use a very
simple variational method which we will now discuss.

We compute the expectations
〈

~θ
〉

by introducing a factorized Gaussian varia-

tional distribution q(~θ) =
∏n

i=1N ((θi|µi, σi) that will serve as an approximation

to p(~θ) in Eq. 1.49. We compute µi and σi by by minimizing the KL divergence

between q(~θ) and p(~θ):

KL =

∫

dθq(θ) log
q(θ)

p(θ)

= −
n
∑

i=1

log
√

2πσ2
i + log Ψ(~θ0, t) +

1

2ν(T − t)

n
∑

i=1

(

σ2
i + (µi − θ0i )2

)

+
1

ν

〈

φ(~θ)
〉

q

where we omit irrelevant constants. Because φ is quadratic in xn and yn and these

are defined in terms of sines and cosines, the
〈

φ(~θ)
〉

can be computed in closed form.

The computation of the variational equations result from setting the derivative of
the KL with respect to µi and σ2

i equal to zero. The result is

µi ← θ0i + α(T − t)
(

sinµie
−σ2

i /2(〈xn〉 − xtarget)− cosµie
−σ2

i /2(〈yn〉 − ytarget)
)

1

σ2
i

← 1

ν

(

1

(T − t) + αe−σ2
i − α (〈xn〉 − xtarget) cosµie

−σ2
i /2 − α (〈yn〉 − ytarget) sinµie

−σ2
i /2

)

After convergence the estimate for 〈θi〉 = µi.
The problem is illustrated in fig. 1.7 Note, that the computation of 〈θi〉 solves

the coordination problem between the different joints. Once 〈θi〉 is known, each θi

is steered independently to its target value 〈θi〉 using the control law Eq. 1.48. The
computation of 〈θi〉 in the variational approximation is very efficient and can be
used to control arms with hundreds of joints.

3This is not exactly correct because θ is a periodic variable. One should use the solution to
diffusion on a circle instead. We can ignore this as long as

p

ν(T − t) is small compared to 2π.
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Figure 1.7: (a-d) Path integral control of a n = 3 joint arm. The objective is that the end
joint reaches a target location at the end time T = 2. Solid line: current joint configuration in
Cartesian coordinates (~x, ~y) corresponding to the angle state ~θ0 at time t. Dashed: expected joint

configuration computed at the horizon time T = 2 corresponding to the expected angle state
D

~θ
E

from Eq. 1.49 with ~θ0 the current joint position. Target location of the end effector is at the
origin, resulting in a triangular configuration for the arm. As time t increases, each joint moves
to its expected target location due to the control law Eq. 1.48. At the same time the expected
configuration is recomputed, resulting in a different triangular arm configuration. (e-h). Same,
with n = 100.

1.8 Discussion

In this paper, we have given a basic introduction to some notions in optimal deter-
ministic and stochastic control theory and have discussed recent work on the path
integral methods for stochastic optimal control. We would like to mention a few
additional issues.

One can extend the path integral control formalism to multiple agents that
jointly solve a task. In this case the agents need to coordinate their actions not only
through time, but also among each other to maximize a common reward function.
The approach is very similar to the n-joint problem that we studied in the last
section. The problem can be mapped on a graphical model inference problem and
the solution can be computed exactly using the junction tree algorithm Wiegerinck
et al. (2006, 2007) or approximately Broek et al. (2008b,a).

There is a relation between the path integral approach discussed and the linear
control formulation proposed in Todorov (2007). In that work the discrete space
and time case is considered and it is shown, that if the immediate cost can be
written as a KL divergence between the controlled dynamics and a passive dynamics,
the Bellman equation becomes linear in a very similar way as we derived for the
continuous case in Eq. 1.34. In Todorov (2008) it was further observed that the
linear Bellman equation can be interpreted as a backward message passing equation
in a HMM.

In Kappen et al. (2009) we have taken this analogy one step further. When
the immediate cost is a KL divergence between transition probabilities for the con-
trolled and passive dynamics, the total control cost is also a KL divergence between
probability distributions describing controlled trajectories and passive trajectories.
Therefore, the optimal control solution can be directly inferred as a Gibbs distribu-
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tion. The optimal control computation reduces to the probabilistic inference of a
marginal distribution on the first and second time slice. This problem can be solved
using efficient approximate inference methods. We also show how the path integral
control problem is obtained as a special case of this KL control formulation.

The path integral approach has recently been applied to the control of character
animation Silva et al. (2009). In this work the linearity of the Bellman equation
Eq. 1.34 and its solution Eq. 1.36 is exploited by noting that if ψ1 and ψ2 are
solutions for end costs φ1 and φ2, then ψ1 +ψ2 is a solution to the control problem
with end cost −λ log (exp(−φ1/λ) + exp(−φ2/λ)). Thus, by computing the control
solution to a limited number of archetypal tasks, one can efficiently obtain solutions
for arbitrary combinations of these tasks.

In robotics, Theodorou (2010) has shown the the path integral method has great
potential for application in robotics. They have compared the path integral method
with some state-of-the-art reinforcement learning methods, showing very significant
improvements. In addition, they have successful implemented the path integral
control method to a walking robot dog.
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