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ABSTRACT

When a controller is implemented in a digital computer, with A/D and D/A conversion,
the numerical errors of the computation can drastically affect the performance of the control
system. There exists realizations of a given conwroller transfer function yielding arbitrarily large
effects from computational errors. Since, in general, there is no upper bound, it is important to
have a systematic way of reducing these effects. Optimum controller designs are developed
which take account of the digital round-off errors in the controller implementation and in the
A/D and D/A converters. These results provide a natural extension to the LQG theory since they
reduce to the standard LQG controller when infinite precision computation is used. But for finite

precision the separation principle does not hold.



L. INTRODUCTION

LQG controllers are normally designed under the assumption that computer implemention
will be perfect (this is the infinite wordlength assumption for state variable computation).
However, real control systems are subject to the effects of finite wordlength computation. These
round-off errors should not be ignored in the design of the controller. The influence of these
errors on the control system and the optimum controller design considering their effects are the
subjects of this paper.

We consider the problems that arise with fixed-point arithmetic and the finite word length
of digital computers. This paper was motivated by the work of Kladiman and Williamson
[1989]. Mullis and Roberts [1976] and Hwang [1977] in the field of signal processing first
revealed the fact that the influence of round-off errors on digital filter performance depends on
the realization chosen for the filter implementation. To minimize round-off errors these papers
suggest a special coordinate transformation T prior to filter (or controller) synthesis.

This is in stark contrast to frequency domain approaches to control, which regard as
irrelevant (and hence is completely ignored) the state space realization of the controller transfer
function.

The idea of applying a coordinate transformation prior to controller synthesis has been
applied to Kalman filter and LQG controller design problems, Williamson [1985], Kladiman and
Williamson [1989]. One may select the wordlength of the computer to insure that the resulting
degradation in the performance from round-off error is less than a certain percentage of the ideal
behavior of the standard Kalman filter or LQG controller without round-off error. This approach
was adapted by Sripad [1981] in the design of Kalman filters, and later by Moroney, et. al [1983]
for LQG controller design. In these papers the standard Riccati equations are solved, followed
by a coordinate transformation to reduce the effects of round-off errors. We shall call these
controllers LQGr to indicate a standard LQG controller followed by an "optimal" coordinate
transformation T. This transformation depends on the control gains, hence, we put the word

optimal above in quotes, because the standard LQG gain is not the optimal gain for the round-off
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error problem. The optimum solution is to design the controller which directly takes into
account the round-off errors associated with a finite word length implementation, rather than
merely performing a coordinate transformation T on the LQG controller after it is designed. The
optimal state estimation problem was solved by Williamson [1985]. This leads to a modified
Kalman filter. The problem of optimum LQG controller design in the presence of round-off
error was studied by Kadiman and Williamson [1989]. This paper worked with upper bounds
and numerical results showed improvement over earlier work, but their algorithm does not
provide the necessary conditions for an optimal solution. This paper provides the necessary
conditions and a controller design algorithm for the solution of this problem. We shall call this
controller LQGgw .

With a fixed point implementation, the states of the LQGgw controller are properly scaled
to reduce the possibility of overflow. There are many scaling criteria available. The method we
shall use is the variance oriented procedure, l,-norm scaling [Hwang 1977]. We assume round-
off errors are additive. This tends to be supported by the literature on state quantization, whereas
quantization of coefficients leads to multiplicative errors [Williamson 1985].

The organization of the paper is as follows. In Section 2, the problem of LQG controller
design in the presence of round-off errors is formulated. The importance of the coordinates of
the controller will be discussed in Section 3. Section 3 summarizes the needed results from
[Kadiman and Williamson 1989], and our new results on upperbounds of finite wordlength
effects. It is shown that the portion of the LQG cost contributed by these errors will range from
arbitrarily large to an achievable lower bound with the variation of the realization of the
controller (variation of the choice of coordinates). The coordinate achieving the lower bound is
described. In Section 4, the optimization problem is discussed in terms of chosing both the
controller parameter matrices and the realization coordinate simultaneously. The necessary
conditions are derived for the optimization problem. An algorithm is then presented for the
designs of the optimal LQGgw controller. The standard LQG and the LQGpw controller are

compared in Section 5. Some conclusions appear in Section 6.
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I1. Round-Off Error and LQG Controller Design Problem

In this section, we formulate the LQG controller design problem when round-off errors are
present. The formulation procedure follows the original ideas of Mullis [1976], Hwang [1977]
and the ideas of Williamson [1985], Kadiman and Williamson [1989]. Let us assume, for the
study of round-off error, the discrete controller is designed from a discrete model of the plant to
be controlled. We then introduce a model for finite wordlength effects into the discrete design
problem.

Considering the following discrete-time model of a time-invariant plant:

xp(k +1) = Apx, (k) + Bpu(k) + Dyw, (k)
zp(K) Mpxp (k) + vy (k) (1)
pd) = Cxp(k)

where x, is the state np—vector, u, yp and z, are the control n,—vector, output ny—Vvector,
measurement n,—vector, v, and wy, are assumed to be mutually independent, zero mean, discrete
white Gaussian noises with covariance matrices Vp and W, respectively.

The controller that one might desire to implement is described by following equations:

()

Xe(k+1) = Acxo(k) + Bezp (k)
uk) = Coxe(k)+Dezp(k)

where x. is the controller state n.—vector, u and z, are the control and measurement vectors
described in the plant model. In a finite wordlength digital computer, the controller state x. and
measurement variable z, will be quantized at each time of computation. Considering the
quantization process, computation (1) and (2) cannot be accomplished. Instead the computation

1s described by
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xp(k + 1) = Apx; (k) + B,Qu(k)] + Dyw, (k)
2, (k) = Mpx, (k) + v (k) (3a)
yp(k) = Cpxp(k)

{xc (k + 1) = AcQ[x (k)] + B; Q[z,(k)] b

uk) = CcQ[xc (k)] + D Q[z;(k)]

where Q[-] stands for the quantization process. Assuming an additive property of the round-off

error, we can model the quantization process by:

Qu(®)] = uk) + ey (k) D/A (4a)
Qlxc (k)] = xc(k) + ex (k) control computer (4b)
Qlz, ()] =z, (k) + e, (k) A/D (4c)

where e, is the round-off error resulting from D/A conversion, e, (k) is the error resulting from
quantization and e, (k) is the error resulting from A/D conversion. We do not claim that this
assumption is always justified, but we invoke this common assumption in this paper, since one
cannot oprimize with respect to coefficient errors directly. One can only evaluate designs with
respect to coefficient errors. There are many such evaluations in filter theory, and we shall add
our own numerical evaluation in this paper. All such evidence points to a conclusion that
controller structures that are good with respect to state quantization tend to also be good with
respect to coefficient quantization.

It was shown [Sripad 1977] that, under sufficient excitation conditions, the round-off error
ex(k) can be modeled as a zero mean, white noise independent of wp(k) and vp(k), with
covariance matrix E,,

1 .-
E, =ql, qéﬁ2 ® (5a)

where B is the wordlength of the control computer. Similarly, we assume the D/A conversion

error ey (k) and the A/D conversion error e,(k) 10 be zero mean, mutually independent white
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noise and also independent of wy(k), vy (k) and e, (k) with covariance matrices E; and E,,

1 .-28,

Es=ql, q 4 '52 P (5b)
A 1 "'2Bz

E;=ql, q;= ‘17 (5¢)

where By and B, are the wordlengths of D/A and A/D converters. Substitute (4) into (3) to

obtain a closed-loop system model including finite wordlength effects,

xp(k + 1) = Apx, (k) + Byu(k) + Dpwy (k) + Bye, (k)

2 (K) = Mpxp () + v (K) (62)
¥pk) = Cpxp (k)
Xe(k + 1) = Acxc (k) + Bezp(k) + Acey (k) + Bee, (k)
(k) = Cexe0) + Dezp () + Coty () + Dee, () ©0)
We seek the controller to minimize the following cost function
I= lim E{yp()Qpyp() +u” Ru(k) ™

where u and y,, are again control and output vectors, and Qp and R are the weighting matrices.

After combining (6a) and (6b), and using the following notation for the vectors and

matrices:
] ] A 0] B, 0] | [G o0
X _xc(k)}’ya()" L(k)}’A-[ o B 0 1 =10 o
D, D, C 0 0 1] 0
D— O ’ BC Ac} ,IO_ {I OJ ’Il ) [O ,Iz— [I} ’
VI L I
10 1)’ 0 R

the closed-loop system 1s compactly described by

96



x(k + 1) = [A + BGM]x(k) + Dwy (k) + BGI, vp (k) + BGlaex (k) + BGl e, (k) + Bl e, (k)

yk)=[C+ I,GM]x(k) + 1oGL; vp(k) + IpGlye, (k) + IpGlie, (k) ©®)
and the cost function (7) may be written
I= knm E{y )Qv()} . (10)

Now, substitute (9) into (10), since ey(k), ex(k), e;(k), wp(k), and vp(k) are mutually

independent,
J = o{X[C + [;GM] Q[C + IoGM]} + tr{Vp(IoGll)'Q(IoGll)}
+ 1r(Ex(1Gl)" QloGl)) + tr{Ez (1, C1) QL. GI)) (11a)
where X is the state covariance satisfying:

X = [A + BGMJX[A + BGM]" + DW,D" + (BGI )V, (BGL})’
+ (BGL)E,(BGL)" + (BGI))E,(BGL))" + BLE,(BI})"  (11b)

We can decomposite J in eqn. (11a) into two terms:
J=Jw+1e (12a)
where

T 21{X; [C + 1oGM] QIC + 1,GM]) + t{(V, + E)(LGL )" QIoGIy)) (12b)
X, = [A + BGMIX; [A + BGM]" + DW,D" + (BGI)(V, + E,)(BGI)" + BLE,(BL})" (12¢)

and

T, 2 (X [C + L,GM]" QIC + [h)GM]) + r{Ex (1oCl2)" QloGl)) (12d)
X, = [A + BGMJX,[A + BGM]" + (BGL;)E,(BGL,)" (12¢)

where X = Xy + X.. Juv is the portion of the performance index contributed by disturbances

cu'(k), e, (k), wp(k) and vp (k). J. 1s the portion contributed solely by round-off error e, (k).
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To prevent the overflow in controller state variable computation, we must properly scale

the state variables. We use the l;-norm scaling procedure which is written as:

[X1(2, 2)]ii=s i=1, T, I (13)

where X;(2, 2) is the (2.2) subblock matrix of X; matrix (the controller subblock), and [];
stands for the ith diagonal element of the matrix. Equation (13) requires that the controller state
variables have variance equal to s when the closed-loop system is excited only by outside
disturbance and measurement noise. We call (13) the scaling constraint.

Therefore, the optimization problem is

min J=min (Jy, +J.) , (14)
G G

subject to (12-13).
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IIL. Contribution of Round-Off Error to the LQG Performance Index

In this section, we discuss the J, term in (12a) and defined by eqn. (12d) which is the
portion of the LQG cost function contributed by round-off errors. This portion of the cost
function is coordinate dependent. It is unbounded from above, (that is, it can be arbitrarily
large), but it has an achievable lower bound, which can be achieved in an optimal coordinate.
The lower bound result was obtained by [Moroney et. al. 1983] and [Kadiman and Williamson
1989]. The construction of this optimal coordinate is discussed in this section, where we assume
G is some given matrix (we shall optimize G later).

We will first present three key lemmas, which form the basis for the results of this section.
Lemma 1. [Mullis and Roberts 1976, Hwang 1977].

Given any nxn matrix M, there exist a (non-unique) unitary matrix U such that (UMU*)jj =5
for all j, if and only if t(M) = sn
O

Lemma 2. [well known]

For any two positive definite matrices P and Q, ler A; [*] denote the i® eigenvalue of marrix [].

Then,
a) MN[QP)>0 foralli

b) The A[QP] are invariant under the transformation P=TPT" and Q =T QT ! where T is
nonsingular.
Lemma 3.

Let a scalar J be defined by
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18 u({TT"P) (15a)
where the n, X n, nonsingular matrix T is constrained by
(T T ™) =s foralli (15b)

and P is a positive definite matrix. Then over the set of all nonsingular matrices T constrained

by (15b),
a) Jis not bounded from above.,

b) Jis bounded from below (J 2 J) by

18 L by (16a)
Snp

where
P=VP VP (16b)
and \/1; is symmetric.
¢) Jin(16a) is achievable by the matrix T:
T=TA&y,IL,V] (17a)

where U,, V, are unitary, I, diagonal, satisfying

sn, P

UI;%2u; = (17b)
tr(\fP_)

[V.II72V ] =s foralli . (17¢)

O

JOO



Statements b) and ¢) are minor modifications of the results obtained by [Mullis and
Roberts 1976] and [Hwang, 1977]. The proof of a) appears in Appendix A. An algorithm for

solving (17b), (17¢) is given in Appendix B.
The contribution of finite wordlength error in the cost function is described by equations
(12d) and (12¢). This J, term can also be written as:

J, = r{Ke(BGI,)Ex (BGI,)" } + tr{Ex (IsGlz) Q(IGly)) (182)
K, =[A + BGM] K. [A + BGM] + [C + [;GM] ' Q[C + [,GM] . (18b)

Since E, = ql, we then have:
Je = qir{(BGL) K. (BGL,) + (I,GL) Qo GL)) . (19)

We can easily check that the (2, 2)th subblock matrix of K, (the controller subblock K, (2, 2))

satisfies:
K. (2, 2) = BGL) K. (BGL) + (IGI2)" QUoGly) - (20)
Substituting (20) into (19) reduces (19) to
Je =qu{K(2, 2)] .
Hence, the minimization of J, reduces to the problem:
min Je, Je =qu{Ke(2, 2)) 21
subject to (18b), (13) and (12¢). From the singular value decompositions

X1(2, 2) = UL Uy (22a)
UK (2, Uy S = UL Uy (22b)

then U,, Uy are unitary, £, Z; are diagonal and
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5, Sdiag (... M K2, X2, 2)] ... ) . (22¢)
Suppose we begin our study with the closed-loop coordinate transformation T as:

I 0

T=lo uizsu;

. (23)

Then, after this coordinate transformation as suggested by Kadiman and Williamson [1989]:

X102, 2)= (UsZ2U) X (2, 2)(URZ 20" =1 (24)
Ke(2, 2)= (UsZ2U) Ko (2, URZLAUR) = 5 . (25)

If we take one more controller coordinate transformation T, the index J. and its constraint

equations, (after we substitute (24) and (25) into (13) and (21)), become

Je= qn‘[TcT:Zk] (26a)
[T Tl =s, i=1, -+, n.. (26b)

Since, from Lemma 2, Zy in (22c) is coordinate independent, we may ignore the K, and X,
calculations (18b) and (12¢) and concentrate on T, in (26). Then, by applying Lemma 3 on
equation (26), we have following theorem.

Theorem 1. The round-off error term I, in the LOG performance index (12d) and (12e), and
constrained by the scaling constraint eqn. (12¢), (13), is controller coordinate dependent. It is

unbounded from above when the realization coordinate varies arbitrarily. It is

bounded from below by the following lower bound:

=L 3, (27)

J
™ sn,

The lower bound is achieved by the following controller coordinate transformation:

T =U S UKU LV, (28a)

where Uy, Uy, Uy, Vi are unitary matrices, I, II, are diagonal matrices, subject to the
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constrainis:

X (2, 2) = UsZUx
AU, Ke(2, 2)UZs = U S Uy

2y1* s Ek
Ulnt2U1 = trCZk
VII2Vil=s, i=1, ",

(28b)
(28¢)

(28d)

(28e)

To find the optimal coordinate transformation IC in (28a), we must solve (28d), (28¢) to

obtain Uy, I1;, V,. The equations (28d), (286) are, however, special cases of (17b), (17¢), where

P is the diagonal matrix Z,. An algorithm is given in Appendix B to compute the U, I, V,

needed for (28a).

The conclusion of this section is that the problem min J. is solved by the coordinate
T

<

transformation given by (28a).
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IV. LQG Controlier Design in the Presence of Round-Off Errors

As discussed in Section II, when round-off error is present, the LQG performance index
can be decomposed into two terms. One term contains the influence of disturbance and
measurement noise, the other term is contributed by round-off errors. Although the first term is
not influenced by the coordinate of the controller, the second term is critically dependent on the
coordinate. An optimal coordinate transformation is given by (28a). With the scaling
requirement of the controller state variables to prevent overflow, we have a different
optimization problem now for controller design comparing to the original optimal control design
problem without round-off errors. In this section, we will discuss the controller design.

Let us first present a useful result.

n
Lemma 4. Suppose Iy, 4 ) \jl;[K(i, 1)X(, j)] where K(i, i) and X(j, j) are the (i, i)th subblock
I=1

of K and (j, j)th subblock of X respectively. Define

A O A ©
Vi & ‘éijkx v Vi E ﬁjkx
then:
a) Vidu(.Q=0 whenp=iorq=i (29a)
n [E7NA, )l imerow [EG, )] necot X0
Ve (p) = %Z Dl (i, N} it X§, 1) when p=1iand q=i (29b)
i=1 VAIKG, DXG, §)]
b) ViJu®. 99=0 whenpzjor q#j (29¢)
n K@, DIE™ G )] inrow [EG, 17
Vo @)= o Do B8 DUl en pmjandq= 90)
i=1 VMIKG, DXG, )]

where V\Ji, (p, Q) and V, I, (p, q) are the (p, @th subblock of Vi Iy, and V,Jy,, E, ) is the

eigenvector matrix of matrix K(i, )X(j, j)

] O4 -



The proof of the lemma is given in Appendix A.

The LQG controller design problem, when finite wordlength effects are taking into
account, are described by the equations (12-14). This is denoted as the LQGgw controller.
However, the scaling constraint (13) can be always satisfied by properly choosing the
coordinates of the controller, so the problem breaks up into two parts: Finding G and finding its
optimal coordinate transformation T, to satisfy (12), (13) and (14). On the strength of Section 3,

we can therefore write the optimization problem as

inJ=min Ju. + J.) = mi in (Jgw + 171
guTn rGI?}rf:(wv e) rrgn[n%xcn(wv )]

since J, is constant in terms of the variation of T, we have

min J =min [Jy» + min J.] (30)
G.T, G T,

Assume _J_e A=\n_1rin Je is given by (27), from Theorem 1. Hence, the equivalent LQGgw design

problem becomes

minfluy +1] , (30a)
subject to (12¢) and (18b) where
T = X1 (C + IpGM) Q(C + I,GM) + tr(V,, + E,)(1oGI;)" QUoGI,) (30b)
L= oo G (30¢)

where I, is defined by (22c), and the transformation T, which yields le is given by the

algorithm in Appendix B, and may be computed only after the optimal G is obtained from (30).
The following theorem states the necessary conditions of the optimization problem (30).
Theorem 2:

Necessary conditions for G to be the solution of the optimal controller design problem (30) are:
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[A + BGMJX; [A + BGM]" + DW,D" + (BGL)(V, + E,)BGI;)" + BLE,(BI;)" -~ X; =0 (31a)

[A + BGM] K.[A + BGM] + [C + [)GM] Q[C + ,GM] - K. =0 (31b)
[A + BGM]"K;[A + BGM] + [C + ,GM] Q[C + [)GM] - K + V, =0 (31c)
[A + BGMJK3[A + BGM] — K3 + Vy =0 (31d)
(15Qlp + B'K;B)YGMX; M™ +1;(V, + E)I}) + (5QL + B'K.BYGMK: M +

+ B (K,AX; + K. AK3)M™ =0 (31e)

where V, has 4 subblocks as
Vi, =0 i#2orj=#2

—1%*

q e Ke(2, 2)(E 15w Elical
tr Zk

Shc =1 Zk

V,(2,2)=

i

and Vy also has 4 subblocks as

Vi, j)=0 i#2 or j#2

a ne [E7 fow [Elia X1(2, 2)
V2, 2)= 4t {%
Sh¢ =1 Ek,_

i

where E is the matrix of eigenvectors of the marrix K¢(2,2) X;(2,2).

The proof of theorem 2 is given in Appendix A.

Remark 1: The only terms in (31) which are affected by q are the two terms in (31c) and (31d)
denoted by V,, Vi. Hence setting p =0 gives =0, V, =0, V, =0, K3 =0, K; = K.. Hence,
egs. (31) reduce to the standard LQG design by setting B =eo. In this case, the 11 block of (31a)

reduces to the Kalman filter Riccati equation, and the 22 block of (31c) reduces to the control

Riccati equation. } O 6



Remark 2: We shall denote the controller satisfying (31) as the LQGgw controller to indicate

that the LQGFw controller requires an additional step; the computation of T from Appendix B.

Now, we have following LQGgw controller design algorithm:

The LQGgw Algorithm

Step 1:

Step 2:

Step 3:

Solve G from equations (31a)-(31e). This gives the LQGgw controller.

Compute T_ =UsE2UL ULV, by solving Uy, Z,, Uy, U, IT, V, from (28b)-(28e),

using the G obtained in Step 1.

R
G= G
0 I

I 0

0 T is the optimal LQGgw controller for implementation.
-c

Remark: A natural algorithm to suggest in Step 1 is as follows. Suppose one desires to design a

LQGpgw controller for 10 bit arithmetic.

@

(i)

(1i1)

Solve (31a)-(31e) for B; = =, (hence, the standard LQG controller).

On the next iteration set B; = 32 (or whatever gives a reasonably small number for

Vi, Vi

Iterate by indexing B;. Change B; by no more than one bit on each iteration. This gives
an "answer" in 32-10 = 22 iterations (but this manner of choosing step sizes in not

guaranteed to be sufficient to yield the optimal answer).

This is a "natural” homotopy method, since B is a natural choice for a homotopy parameter.
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V. Computation Examples

We consider an Euler Bernoulli beam modeled by its first 5 bending modes with 2 inputs
and 2 outputs. The modal frequencies appear in TABLE 1. In discrete controller design, the
discrete model is represented by the matrices {Ap,Bp,C,,Dp, My, Wy, V) in equation (1).

These matrices are given in Appendix C for a uniform sample time At = 0.018 sec. The LQG

cost function is given by equation (7) with

Q, = 0.991

The wordlength of the control computer is assumed to be 4 bits. Since the effects of D/A and
A/D conversion errors on the control systemn simply modify the effects of system disturbance

and measurement noise, we ignore these errors in the example. Both the standard LQG

R=0.01I .

controller and the LQGgw controller are computed for the system.

Frequency | Damping Factor
Mode 1 | 3.4987e+00 9.9994e-03
Mode 2 | 1.3995¢+01 2.1301e-02
Mode 3 | 3.1488e+01 4.5600e-02
Mode 4 | 5.5979e+01 8.0400e-02
Mode 5 | 8.7468e+01 1.2530e-01

TABLE 1. Frequencies and Damping Factors of the

Euler-Bernoulli Beam Example
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The standard LQG controller of course was designed without consideration of round-off
errors (B =eo) and is labeled controller "LQG" in the TABLES. Controllers denoted "LQGr;"
i=1, -+, 4 are the same as the LQG, but for a coordinate transformation on the controller after
G is computed. The matrices (Ac,B..Cc,D.} associated with the LQGr; controller are shown
in Appendix C. In different coordinates T;, TABLE 2 shows the finite wordlength contribution
J. in the closed-loop system cost, using the standard LQG controller. In the optimal coordinate
T, (controller LQGr;) the cost J is about 500 times smaller than the cost in the original

coordinate design (controller LQG). This improvement is equivalent to increasing the
wordlength of the control computer by about 5 bits (5 = % log,500). The effect of

computational errors J, in two commonly used coordinates, Normalized Observable Hessenberg
Coordinates [Skelton 1988] and Phase Variable Coordinates, are also given in TABLE 2. The
fact that Phase Variable Coordinates are bad for computation is consistent with other findings in
filter synthesis [Williamson 1990). The extreme high costs of the controller in a particular
coordinate (LQGT4) in TABLE 2 serves only to demonstrate that the cost J. can become
unbounded for some coordinates. The choice of coordinate T4 was rather arbitrary and will not

be described or discussed further.

/109



Controller | Controller Coordinates Cost J,

LQGTt Optimal 9.793

LQGr; | Normalized Obs. Hess. | 2.692 x 107

LQG Plant Coordinates 4.862 x 10°
LQGr: | Phase Variable 9.486 x 10°
LQGT4 Coordinate "X" 1.472 x 108

TABLE 2. Standard LQG Controller in
Different Coordinates

The LQGgw controller was designed by the LQGgw algorithm given in Section 4. The
controller matrices {A,B.,C.,D.} of this conwoller also appear in Appendix C. TABLE 3
shows the computed costs of the standard LQG controller, the transformed LQG controller
(LQGT), and the LQGgw controller (The "LQGgw with coefficient error” will be discussed
later). The costs for three different groups of excitations are computed in each case. The
applicable disturbances for J, J,, and J, include plant disturbance w, sensor noise v, and finite
wordlength error e. The applicable disturbance for I, Jey, Je, is only €, and for J,,, Jwvys Juvu
are only wp and v, (no finite wordlength effects). Hence, these sums apply to the various cost
decompositions; Jy is the output term of J (the total cost), J, is the control term in J, hence J =
Jy +Ju. Juvy is the output term of Jy, (the contribution of v, and w, in J), where Iy = Jawy + ey

and Je =Jey + Jey, J = Jun + Je. Juny is the control term of Jy and Jy = Jyvy + Joy. As we can
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Disturbances | Costs | LQG LQGT; LQGgw LQGrw
Applied Controller Controller Controller with coeff. errors

J 4.8827e+03 | 3.0589e+01 | 2.1207e+01 | 2.4695e+01
Allv, w, Jy 2.8053e+03 | 2.3458e+01 | 2.0798e+01 | 2.4232e+01
ande

I 2.0774e+03 | 7.1303e+00 | 4.0941e-01 4.631e-01

Je 4.8621e+03 | 9.9302e+00 | 2.0067e-01 1.4071e-01
e only Jey 2.7850e+03 | 3.1790e+00 | 1.3841e-01 1.0275e-01

Jeu 2.0771e+03 | 6.7512e+00 | 6.2267e-02 3.7961e-02

Jorv 2.065%e+01 | 2.065%e+01 | 2.1006e+01 | 2.4554e+01
vand w Ty 2.0279e+01 | 2.0279e+01 | 2.0659e+01 | 2.0279e+01
only

. 3.7912e-01 3.7912e-01 3.4715e-01 4.2514e-01

TABLE 3. Evaluation of LQG Controllers in Plant Coordinates, Optimal

Coordinate and of the LQGgw Controller

see in the TABLE 3, even when the standard LQG controller is in its optimal coordinate
(LQGT)), the J. portion of the cost is still about 33% of the total cost (9.9302 compared to
30.589). By using the new LQGgw controller design algorithm, we reduce the J, portion of the
cost 50 times, compared to the LQGT; controller and 24,110 tmes compared to the LQG
controller. In the latter case, this is equivalent to increasing the wordlength of the control
computer by about 7 bits, That is, controller LQGgw will give the same performance using 4 bit

arithmetic that LQG gives using 11 bits. Furthermore this improvement in output performance

is accompanied by a reduction in control effort RMS = V.40941 vs. RMS = V2077.4. To
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conclude this point, we see that if both controllers use 4 bits, the difference in RMS output

performance is an order of magnitude (\f20.798 Vs. ‘\/2805.3). This kind of improvement in
performance can mean the difference between feasibility and infeasibility of some control
missions.

With the new controller, the round-off portion J. of the cost is only 0.85% of the total cost
as opposed to 33% for LQG. Now let us discuss the cost Juy, which would be the total cost if
the closed-loop system was only excited by measurement noise v, and disturbance wp. That 1is,
suppose the LQGpw controller was designed for 4 bits, but evaluated using infinite bits. These
are the conditions of the standard LQG design, since there are no disturbances in the evaluation.
Juv Of the LQGEw controller is a little higher than that of standard LQG controlier. The output
term of the cost is also a little higher and the control term a little lower. These indicate that the
LQGgw controller is a little more conservative than the designed standard LQG controller. This
compromise in nominal performance allows robustness to computational errors. Note in
TABLE 3, that the quantities that are optimized by the theory (under the given conditions) are
shaded.

In the design of the LQGgw controller, the equations (31a) to (31e) were solved iteratively
by a gradient method. The standard LQG controller in its optimal coordinate (LQGT) was used
as the initial controller design for starting the iterative process. Figs. 1-3 illustrate the
convergence process for the LQGgw algorithm, plotting the total cost J, the wordlength cost J,
the the output J, and input J, performances, versus iteration. The optimal coordinate
transformation played a crucial role in reducing the round-off errors (reducing the error by 3-4
orders of magnitude) as shown in Fig. 2. This was expected because the transformation was
formulated in the optimization problem. The LQGgw controller was obtained after about 300
iterative computations, but note from Figs. 1-3 that after 120 iterations one might have stopped

with little loss.
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Coefficient Errors

In the introduction we promised some evaluation of the effects of coefficient errors. We
argued that even though the LQGrw controller is optimized only for state quantization it
performs well with coefficient quantization as well. To show this we introduced coefficient
errors in the controller by using 4 bit precision instead of infinite precision in the controller
coefficients. The key issue here is this. Quantization errors in the state degrades performance,
but does not destabilize, since the effect of e is just a disturbance (note that all controllers in
TABLE: 1 and 2 are stable). Coefficient errors can easily destabilize. Figure 4 shows the closed
loop pole locations using the standard LQG regulator (using infinite precision). The system is
stable as marked by the x’s. When the controller coefficients are implemented using only 4 bit
arithmatic, some poles as indicated by the o’s in Fig. 4, are outside the unit circle. Hence the
standard LQG controller is unstable using a 4 bit control computer.

Fig. 5 shows the improvement in the LQG controller by its optimal coordinate
rransformation before synthesis. This is the LQGr; controller. The poles (0’s) are in improved
locations compared to Fig. 4, but the closed loop system is still unstable. The coordinate
transformation helped but not enough. Fig. 6 shows the LQGpw controller when controller
coefficients are implemented using only 4 bits. The system is stable, confirming for this
example improved robustness to controller coefficient errors, even though the controller has
been optimized only for errors in controller state computation. The performance degradation in
1, listed in the column "LQGgw with coefficient errors” in TABLE 3 is about 15% (compared t0
nominal performance in TABLE 3).

Finally, we consider errors in both the plant and controller coefficients (due to
quantization to 4 bits). These results are summarized in TABLE 4, where the modal damping in
all modes is multiplied by parameter p. Hence p=1 corresponds to the nominal plant in all of the
prior discussion. The range for stability using the LQGgw controller is 729 <sp< 123,
demonstrating improved robustness over standard LQG controllers in the presence of errors in

plant and controller coefficients.
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Damping Error Factor p LQG LQGr LQGgw
Controller Controller Controller

1.5242e+00 unstable unstable unstable
1.3717e+00 unstable unstable unstable
1.2346e+00 unstable unstable STABLE
1.1111e+00 unstable unstable STABLE
1.0000e+00 unstable (Fig 4) | unstable (Fig 5) | STABLE (Fig 6)
9.0000e-01 unstable unstable STABLE
8.1000e-01 unstable unstable STABLE
7.2900e-01 unstable unstable STABLE
6.5610e-01 unstable unstable unstable
5.9049%¢-01 unstable unstable unstable

TABLE 4. Robustness Controllers with respect to modal damping
(4-Bit Wordlength Controllers)
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VI. Conclusion

This paper solves the problem of designing an LQG controller to be optimal in the
presence of finite wordlength effects (modeled as white noise sources whose variances are a
function of computer wordlength). This new controller, denoted LQGgw, has two computational
steps. First the gains are optimized, and then a special coordinate transformation must be
applied to the controller. This transformation depends on the controller gains, so the
transformation cannot be performed a priori. (Hence, there is no separation theorem.) The new
LQGgw controller design algorithm reduces to the standard LQG controller when an infinite
wordlength is used for the controller synthesis, so this is a natural extension of the LQG theory.
It was shown both theoretically and by example that the choice of controlier coordinates
significantly influences the effects of computational errors on the control system and that there
exists an optimal set of coordinates in which to do these computations. Since we have not
obtained a closed form solution for the LQGgw problem, design of the LQGgw controller by this
algorithm requires significant computation. Hence, the improvement of the new controller is

achieved at the expense of extra computational effort in design.
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1.

Appendix A

Proof of Lemma 3

a)

Using the singular value decomposition of T = UtH(V:, then the constraint equation (15b)

becomes
VIIT2Vi),;=s  foralli (32)
from Lemma 1, above equation is equivalent to
r([1;2) =sn, . (33)
Now, let us study the cost yof (15a). Using the inequality

[tr(AB"))?

w(AA®) 2 g
(BB ")

we have a lower bound on y
y= {UTI2U P} = o {(LU; VP)(ILU; VP)' )

(LU VPYUS [VPT)' 2 (e(IL))?
2 * - - = 1
(U NPTHUINPTY') P

(34)
Now, to prove that ¥ is unbounded from above, we prove that for any large scalar m > 0, we
have 'y('f‘) > m for some T. Let us choose a T having the following I:It:

flt = diag (I:Ii) such that

1
=1 _2:——-——
AN

=T, = -

and
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1 _
fl, = —=® ) i, = Vmue)
'\]2rnstr(P”1) -1

where m is so chosen that

m>—1
2st(PY)

Then

-2 & 2mir(P 1) -1 1
= = —2
w1, ) E{Ez— s(n, —2) + = + ——

=snp .

Hence the chosen T satisfies the constraint (33). Now, we have:

(LY
@@ B )
2 = >

P!y (P} u(P?)

we then conclude the proof of part a). The proof of b) and c) follows next. The lower

bound and the matrix T are found by using following inequality:

(rR)? < r(QRQHT(Q"RQ™Y) (35)

the equality holds above when Q" Q = A1
Let us assume T=U,JLV;, P= UPHPU;, where I1; and Il are diagonal, U,, V,, U

are unitary matrices. Assume for the R and Q matrices in (35),

R =U; Ul UL U, (36)
Q"Q=U; U, I} U, U II2U; U, 115U, U, 37

then
Q Q! = Ul U, ;¥ U, U I 2U; U I UL U,

Hence, we have: / / 7



w(QRQ") = m(RQ'Q) = r{(U; U IIF U UN(U; U I UL UL TT2U; U, T4 US UL

= o{UpIL, U, U T12U ] = u[PTT ] = y
w(QRQ™ = u[R(Q" Q™ = ul(U Up I U UN (UL Up II; Uy U T2 U, U T4 U Uy)
=a[U, U II;2U U, ] = {1172

From equation (33), and the above equation we have the following:
w(Q"RQ™) = ufl1;?] = sn,

Now, m(R)=w(U; UpTI£U;U,) = u(T1%) = w(U,I1%US) = rVP.  Substitute the above

equalities back into inequality (35). We then have: [l:r(\/l?)]2 < snpY, that is

D)
2 L

(38)

Now, suppose the matrix T = U,I1,V, yields the equality in (38). Since the equality in (35)
holds when Q”Q = A2, then we have:

=* Yoy kT 2= Yy * TS
U Up I UG I U, U, U, O = 22T,
that 1s

"

— =2—* 1 * = =—2=* 1
UIL U, =2%U, 157U = G, U, =220, 11U; (39)

Hence

—2_ L GIFUT,
;\2

—2
Substitute this IT ~ into equation (32) to obtain

«  TI% .
— P — —

Then tr

n\fP_J

1 )
3 = sn,,, hence A2 = —-—tr(HpA) = Ltr(\JP). Now, substitute the above 2.2
A sn sn

P P

/18



into (39), to obtain

1/2 »
—2 - snpUpHp Up N snp\fIFT

U0, 0, = = (40)
[ r(\VP) r(\VP)

Hence (38) yields the lower bound in (16a), and the matrix achieving this bound, shown by
(40), must satisfy (17b). (17¢) can be easily deduced from (15b). This concludes the proof.
O

2. Proof of Lemma 4

a) Proof of (29a): Since J,, does not depend on K(p,q) for p#1ior q# i, we have:

J
Vil (p, @) = ka.x =0

Proof of (29b): We need following equality (e.g. Page 444 of Skelton [1988]) to prove the

equation:
Ai[A] = [E™ inerow AlE]ih—col

where A; is the ith eigenvalue of A, and E the eigenvector matrix of A. Now, we have by

taking A = K(i, DX, )

MIKG, DXGD] = E™ Jitherow K, DXGy DIElin—col

= w{K(, DXG, DENn—col [E™ lithrow }

ooAB _

B AT we get

Hence from the differentiation rule
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o\

=ENT T .
oK@, i) [E™" )itn-row [Elitp-ea1 X )

Then, we have:

h 12 e MK, DXG. )

KLY 25 \MIKG DXG, D]

(E™" T in—row [Elfin-c01 X G J)
VUIKG DXG T

it

1}
Nlr-
F M=

The proof of part b) follows in a similar manner

3. Proof of Theorem 2: Apply Lagrangian Multipliers K,, K3, then (30a)-(30c) leads to

minimization of

T =w{QUC + 1,GMJX; [C + [,GM]" + (1oGI, )(V,, + E;)(ToGl;))])
+ r(K2([A + BGM]X, [A + BGM]" + DW,D" + (BGI;)(V, + E;)(BGL))" + (BI;)E, (BI,)"
- X))} +o{Ks([A + BGM]'K.[A + BGM] + [C + [;,GM]"Q

[C+1oGM) - Ko)) + - (wE,)?

C

Then
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2

ol [A + BGM]JX; [A + BGM]™ + DW,D" + (BGI; )(V; + E,)(BGI;)" + BLE (BI;) - X; =0

9 _ (A +BGM] K.[A + BGM] + [C + [,GM]"QIC + [,GM] ~ K, =0

K3
9 _ (C+1,GMI"QIC + 1,GM] + [A + BGM]'Ky[A + BGM] - K; + V, =0

1

aii = [A+BGMJK3[A + BGM]" - K;3 + V}, =0

€

Applying Lemma 4 on the above two equations, we can obtain V,, and Vy as stated in the

theorem. This verifies (31a)-(31d). Now

Saé' = 215QCX,M" + 2I{QI,GMX M" + 2[;QI,GL, (V, + E,)I} + 2B"Kr AX M’
+2B"K,BGMX;M" + 2B"K;BGI; (V, + E)I] + 2B K; AK3M”

+2B*K;BGMK3M" + 2I5QCK3M" + 2[5QI,GMK3M™ =0 ,
but since IgQC = 0, then,

‘% = 2[[HQLGMX; M’ + 1, (V, + E)IT) + B" (K2 AX; + K2 AKs N

+ (B"K;B + I5QIp)GMK3M" + B* K;BGIMX; M™ + 1) (V, + EIY)]
= 2[(15QL + B K,B)GMX; M” + 11 (V, + EIT) + BT (Kp AX + K AK3 )M

+ (B KB + I5QIg)GMK;M 1 =0 .

This verifies (31e).
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Appendix B

We now present an algorithm (originally developed by Hwang [1977]) for solving (17b)

and (17c) for one set of solutions of U, I, V; (The solutions for U, I1,, V, are not unique).

Let \fl; in (17b) be written in terms of its singular value decomposition
VP =U,Z,U; @1)

where Up, unitary, X, diagonal.
Algorithm (Solving U, I1;, V, in (17b) and (17c))

1. Take:
U =0, (42a)
tr
I = A [ 5 (42)
sn,
Vi=Vp1Vpao o0 Voo VoV (42c)
where Vi, i=1, --- , n-11is computed as follows:
1I. Compute Vy: Let
I, 802 =diag (- oy ) (432)

Assume O1; and Gy are two numbers such that one of them is bigger than s, the other is smaller

than s. Then take V; as:
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c1 .. 000
V=
0 10 (43b
50 . 0f 0 .. 0 )
B row — .
0
0 1
where
N4
o1 — 1
f= |—2 (43c)
O1p — 011
(toon | (43d)
&= Ci1p — 011
Compute V;: Let
S =V TV Ly I 44
i = Viel -1 Vil = | o a
Zp I

where Z; e RO-DX-D garsfies the property [Zj; Jj=s I elRO-DX=#D) 45 3 nonzero matrix,

and Z;3 can be written as

Assume G;; and O,y are numbers such that one of them is bigger than s and the other is smaller

than s. Then take V; as
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1 column o column

-

1 0 0
.0 0
irow—o [0 ... 0 0 g 0
01 0
Vi= o . - 0 (44b)
0
arow— [0 .. g0 .. 0ff .. O
0 - 0 - '
0 0 1
Compute f; and g; as:
’Ciu—l 1%
fi= | ———— (44c¢)
\0'ia-0'iiJ
( l—O'ig 1%
8= |5 —on J (44d)
O

Computation of T

T, is formed as follows: T_£ UXZ}2UXUILV;
1)  Compute the Covariance Matrix and Observability Grammian

K. = [A + BGM] K, [A + BGM] + [C + I,GM] Q[C + I,GM]
X, =[A + BGMJX;[A + BGM]" + DW,D" + (BGI, )(V,, + E,)(BGI))" + B E,BI,

Assume K.(2,2), X;(2,2) o be (2,2) the subblocks of K, and X; (the controller
subblocks).
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2)

3)

Compute U,, Z,, U,.

These three matrices are computed by applying singular value decomposition on following

matrices:
X,(2,2) = UL, U,
UK (2,U s = Ur s, U,

Compute Uy, I1,, V,.

Let us replace P matrix in the algorithm of appendix B as
P& diag [A: (K (2,2)X;(2,2))]

Then we can compute U,, I1,, V, by applying the algorithm on matrix P.
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Appendix C

DESIGN EXAMPLE OF ROUND-OFF LQG CONTROLLER

Plant Model: 10th Order Euler-Bernoulli Beam

Word-Length of the Assumed Computer: 4 bits

1) The 10th Order Euler-Bernoulli Beam Model for Controller Design

0

[ BB e i BN o B o B o

[ 09980 0.0179
—0.2196 0.9968
0 0.9687 0.0177
0 -3.4620 0.9582

0

O O O O O

0
0

0

OO O O O

0 0
0 0

0

0
0 0.8469
0 —-16.4457
0 0
0 0
0 0
0 0

]26

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0.0166 0 0 0
0.7993 0 0 0
0 05594 0.0139 0
0 —43.6477 0.4340 0
0 0 0 0.1138
0 0 0 -72.4045

OO OO O OO O

0.0095
0.0937 |




[ 0.0014 0.0006 ] [ 0.0014  0.0006 ]
0.1557 0.0716 0.1557 0.0716
—0.0004 0.0011 —0.0004 0.0011
-0.0480 0.1257 ~0.0480 0.1257

5o 700012 0.0013 o [F00012  0.0013
—0.1299  0.1440 —0.1299  0.1440
0.0007 0.0012 0.0007 0.0012
00720 0.1164 00720 0.1164
0.0007  0.0007 0.0007  0.0007
0.0588  0.0588 | | 00588 0.0588 |

C= 078297 0 7.1091 0 -1.3744 0 -83569 0 -6.2128
© |0 62128 0 -8.7875 0 6.2128 0 0 0 -6.2128

v 078297 0 7.1091 0 -13744 0 83569 0}

0 6.2128 0 -8.7875 0 6.2128 0 00
g ~

W= 0 Cy= 1.0003e—-03 0
0 1 0 1.0003e~03

2) Designed Regular LQG Controller in Optimal Coordinate LQGr,
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[—0.4582
0.4144
0.0849
0.4753
0.3326
0.2946
1.5034
0.5293

—0.0468

-0.4312

[ 0.1894

—0.422
-0.0296
-0.0120
-0.0258
-0.0611
-0.2200
-0.0737

0.0252
| 00737

_|-19370

©7 | 1.6850 -3.2381 -2.7357 -2.8624 -2.7744 52406 11.5365

—0.1633 -0.0133 —0.1836 0.1574 —0.4386 —0.1054 ~0.2805 0.2304 —0.2815 |

0.6040 0.4587 -0.4122 —-0.0201 —0.0411 0.2748
~0.5217 0.5622 -0.3257 0.3373 0.2351 0.0665
—0.3503 0.2226 0.5105-0.3084 0.0821 0.4446
0.0383 —0.5299 —0.1864 0.4324 0.3391 0.3306
~0.1855 —0.0.850 —0.3095 —0.2941 —0.0605 —0.7404

—0.2726 —0.0095 —-0.2270 —0.0416 —0.4845 -1.5704 —0.3867 —0.0236 —0.4084
0.0908 —0.0359 -0.0617 —0.3343 -0.0787 -1.0273 -0.1971 -0.0491 0.4129
—0.0574 -0.0709 -0.0716 -0.0416 0.1318 0.5827 —0.9215 -0.0746 0.2806
0.1539 -0.0256 0.0559 -0.1463 0.4745 -0.0777 —0.3449 —0.9854 —0.6735

~0.2895 |
0.0230
- 0.0941
~0.0024
0.0940
0.0609
0.4919
0.2522
—0.0076
~0.0776 |

0.1059 —0.0786 0.0379
0.1975 —0.1651 0.2658
0.1978 -0.1382 —0.0456
0.2351 —0.1635 —0.1155
0.0085 0.1530 0.5389

3.8601 4.1659 3.4458 1.8923 —4.2436 -15.7358 —6.5380 3.7048 -5.3330

3) LQGgw Controller from the LQGgw Algorithm of Section 4
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[ 0.3501
—0.2004
—0.2033
-0.2973

0.0308
—0.1187

0.0089
-0.3341

0.0731
-0.1129

Ac

~0.0134
0.0812
0.0706
0.2464
0.4583
~0.5942
0.2455
0.1121
0.1013
-0.1510

| 08861

Ce= -1.4019

0.4306 —0.2223 0.3078 —0.5350 0.1231 0.1595 —0.2003 —0.1024 0.1325]
-0.2851 =0.2294 0.1810 0.6715 —0.4432 0.2756 0.1591 0.3525 -0.3974
0.2556 —0.0197 —0.8326 —0.8293 0.0885 —0.0605 0.2870 -0.0571 0.1147
~0.3621 0.6480 0.3770 —0.4095 0.4031 —0.2736 0.0125 0.0426 -0.0372
—0.2207 —0.5168 —0.3001 —-0.9847 1.1705 —1.0703 0.7456 —0.0979 0.1920
0.4836 0.0470 0.3655 0.2493 -1.0109 0.3516 0.5930 0.2744 —0.3872
—0.3363 0.0664 —0.0869 0.0085 —0.0712 —0.1936  0.113 0.3818 -0.5248
0.2935 0.1055 0.1309 0.2251 -0.3631 —0.7912 -0.5655 —0.2610 0.3180
—0.0312 —0.0788 —0.1349 —0.4369 0.2594 —0.4096 —0.3895 0.7609 0.3237
0.0070 0.0781 0.1679 0.4955 -0.3354 0.5865 0.4685 0.2460 0.6396

0.0927]
—0.1630
~0.3987
—0.6411
~1.0134 _ |-0.4486e-04  —0.1328e—04
1.0745 ©T |-0.5913e—04 —0.1567e—04
—0.2146
0.0815
—0.2475
0.3465

-1.8997 3.8592 -0.3107 5.3072 -0.7395 0.6339 -1.6517 0.9202 -1.3734
2.2532 -2.6576  0.1575 -3.3358  1.2007 -0.5179  0.2062 —0.9969  1.3884
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