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Abstract We analyze an immersed interface finite element method based on
linear polynomials on noninterface triangular elements and piecewise linear
polynomials on interface triangular elements. The flux jump condition is
weakly enforced on the smooth interface. Optimal error estimates are derived
in the broken H1-norm and L2-norm.
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1 Introduction

Second order elliptic equations with discontinuous coefficients are often used
to model problems in material sciences and fluid dynamics when two or
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more distinct materials or fluids with different conductivities or densities or
diffusions are involved. These interface problems must satisfy interface jump
conditions due to conservation laws. If the interface is smooth enough, then
the solution of the interface problem is also very smooth in individual regions
where the coefficient is smooth, but due to the jump of the coefficient across
the interface, the global regularity is usually low and has order of H1+α(�), 0 ≤
α < 1. Because of the low global regularity and the irregular geometry of the
interface, achieving accuracy is difficult with standard finite element methods,
unless the elements fit with the interface of general shape.

Babuska [1] applied the fitted finite element method for the elliptic interface
problem and under some approximation assumptions on finite element spaces,
the energy-norm estimates were obtained. Bramble and King [2] derived a
finite element method in which the smooth boundary and interface of the
problem domain are approximated by polygonal domain and interface. With
the boundary and interface data transferred in a natural way, they obtained the
optimal order error estimates using the piecewise Sobolev norm on H2(�+ ∪
�−) for linear elements on a quasi-uniform triangulation. More recently, Chen
et al. [5] demonstrated some new techniques in deriving estimates for fitted
grid finite element methods using standard finite element with special fitted
grids. However, a method using fitted grids to the interface is costly for more
complicated time dependent problems in which the interface moves with time
and repeated grid generation is called for.

Finite difference methods were applied to the interface problem quite early
and unfitted or immersed interface methods are natural in this context since
the Cartesian grid cannot match a curved interface. LeVeque and Z. Li [18]
proposed an immersed interface method for interface problems defined on
a regular domain on which a uniform rectangular grid can be used. The
finite difference methods were constructed based on the uniform grid and the
jump conditions on the interface. They subsequently applied the same ideas
to other interface problems such as the Stokes flow problem [19], the one-
dimensional moving interface problem and Hele-Shaw flow [15]. The resulting
linear systems from these methods are non-symmetric and indefinite even
when the original problem is self-adjoint and uniformly elliptic. Although
these methods were demonstrated to be very effective, convergence analysis
of related finite difference methods are extremely difficult and are still open.

On the other hand, for finite element methods, Z. Li, T. Lin and X. Wu
[25] recently proposed an immersed finite element method using uniform
Cartesian triangular grids and their numerical examples demonstrated an
optimal order of the errors. Once again, it is not easy to analyze this method.
The best one can do is to derive the approximation ability of the interpolation
finite element space. Indeed, we quote from Remark 8.1 of Li and Ito [23].
“Although we have the error estimate for the interpolation functions for the
nonconforming finite element method in terms of piecewise C2(�) space, the
convergence analysis for FE solution is not straight. Our result indicates that
the nonconforming IFE space has approximation capability similar to that of
the standard conforming linear finite space based on body–fitting partitions.”
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In view of the fact that the element introduced in [13, 24, 25] seems to be the
simplest possible immersed interface element and practically more efficient
than other similar methods, it is desirable to know whether this method has
the optimal convergence.

Indeed, in this paper we derive optimal H1 and L2-error estimates for this
interesting scheme and show that the method actually converges. An optimal
H1 convergence is shown in Theorem 4.8 and the L2 convergence shown in
Theorem 5.1.

2 Preliminaries

Let � be a convex polygonal domain in R
2 which is separated into two

subdomains �+ and �− by a C2 interface � = ∂�− ⊂ �, with �+ = � \ �−
as in Fig. 1. We consider the following elliptic interface problem

− ∇ · (β∇u) = f in �, (2.1)

u = 0 on ∂�

with the jump conditions on the interface

[u] = 0,

[
β

∂u
∂n

]
= 0 across �, (2.2)

where f ∈ L2(�) and u ∈ H1
0(�). We assume that the coefficient β is positive

and piecewise constant, that is,

β(x) = β− for x ∈ �−; β(x) = β+ for x ∈ �+.

We take as usual the weak formulation of the interface problem: Find u ∈
H1

0(�) such that ∫
�

β∇u · ∇vdx =
∫

�

fvdx, ∀v ∈ H1
0(�). (2.3)

For the analysis, we introduce the space

H̃2(�) := {u ∈ H1(�) : u ∈ H2
(
�s) , s = +, −}

Fig. 1 Sketch of the domain
� for the interface problem
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equipped with the norm

‖u‖2
H̃2(�)

:= ‖u‖2
H2(�+) + ‖u‖2

H2(�−), ∀ u ∈ H̃2(�),

where Hm(�s) = Wm
2 (�s) is the usual Sobolev space of order m.

Then we have the following regularity theorem for the weak solution u of
the variational problem (2.3); see [2, 28] and [17].

Theorem 2.1 Assume that f ∈ L2(�). Then the variational problem (2.3) has a
unique solution u ∈ H̃2(�) which satisfies for some constant C > 0

‖u‖H̃2(�) ≤ C‖ f‖L2(�). (2.4)

3 The immersed interface finite element space

We describe the immersed interface finite element space introduced in [24, 25].
Let {Th} be the usual shape regular finite element triangulations of the domain
�. We call an element T ∈ Th an interface element if the interface � passes
through the interior of T, otherwise we call T a noninterface element. (If
one of the edges is part of the interface, then the element is a noninterface
element.) Let T ∗

h be the collection of all interface elements and �′ be the
union of them. We assume that the interface meets the edges of an interface
element at no more than two points. For simplicity of presentation, we assume
a rectangular domain � is partitioned into triangles obtained by cutting axis-
parallel rectangles diagonally, but our presentation holds for general regular
triangular partition Th with a mesh size h on polygonal domain �. Let DE be
the line segment connecting the intersections of the interface and the edges
of a triangle T. This line segment divides T into two parts T+ and T− with
T = T+ ∪ T− ∪ DE. Note that there is a small region in T

T∗ = T − (�+ ∩ T+)− (�− ∩ T−) . (3.1)

Since DE can be considered as an approximation of the C2 curve � ∩ T,
the interface is perturbed by a O(h2) term. From [2, 5], one can see for the
interpolation polynomial defined below, such a perturbation will only affect
interpolation error to the order of h2.

As usual, we want to construct local basis functions on each element T of
the partition Th. For a noninterface element T ∈ Th, we simply use the standard
linear shape functions on T whose degrees of freedom are functional values
on the vertices of T, and use Sh(T) to denote the linear spaces spanned by the
three nodal basis functions on T:

Sh(T) = span{φi : φi is the standard linear shape function }
This space has the following approximation property:

‖u − Ihu‖L2(T) + h‖u − Ihu‖H1(T) ≤ Ch2‖u‖H2(T), (3.2)
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where Ih : H2(T) → Sh(T) is the interpolation operator. Finally, we use Sh(�)

to denote the space of conforming piecewise linear polynomials with vanishing
boundary values.

3.1 Local basis functions on an interface element

Consider a typical interface element T whose geometric configuration is
given in Fig. 2 in which the three vertices are given by A1 = (0, h2), A2 =
(0, 0), A3 = (h1, 0), and the curve between points D and E is a part of the
interface across which the quantity β has a jump. Here we assume that the
ratio r := h1/h2 is bounded below and above by some constant κ ≥ 1, i.e.,
1/κ ≤ r ≤ κ .

Let φi denote the usual Lagrange nodal basis function associated with the
vertex Ai, i.e., φ1 = y/h2, φ2 = 1 − x/h1 − y/h2, φ3 = x/h1. For any given
linear function φ = V1φ1 + V2φ2 + V3φ3 on T, we would like to construct a
new function φ̂ which is linear on T+ and T− respectively and satisfies the same
condition as (2.2) on DE. Let the interface intersect the edges at D(0, ah2) and
E(bh1, 0), where 0 < a < 1 and 0 < b ≤ 1. Then a unit normal vector to DE

is nDE = (ah2, bh1)/

√
a2h2

2 + b 2h2
1.

The modified basis function φ̂ on an interface element T can be conveniently
described in the following form:

φ̂ =
{

φ̂− = c1φ1 + V2φ2 + c3φ3 in T−,

φ̂+ = V1φ1 + c2φ2 + V3φ3 in T+,
(3.3)

φ̂−(D) = φ̂+(D), φ̂−(E) = φ̂+(E), (3.4)

β− ∂φ̂−
∂nDE

= β+ ∂φ̂+
∂nDE

. (3.5)

Fig. 2 Typical interface
triangle T
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The point continuity condition (3.4) gives

c1a + V2(1 − a) = V1a + c2(1 − a),

V2(1 − b) + c3b = c2(1 − b) + V3b ,

while the flux continuity (3.5) becomes

ρ (c1∇φ1 + V2∇φ2 + c3∇φ3) · nDE = (V1∇φ1 + c2∇φ2 + V3∇φ3) · nDE,

where ρ = β−/β+.
In matrix form,

⎡
⎢⎣

−a 1 − a 0

0 1 − b −b
−ρν1 ν2 −ρν3

⎤
⎥⎦
⎛
⎜⎝

c1

c2

c3

⎞
⎟⎠ =
⎡
⎢⎣

−a 1 − a 0

0 1 − b −b
−ν1 ρν2 −ν3

⎤
⎥⎦
⎛
⎜⎝

V1

V2

V3

⎞
⎟⎠ , (3.6)

where νi = ∇φi · nDE, i = 1, 2, 3. Note that

ν1 = br√
a2h2

2 + b 2h2
1

, ν2 = − (a + br2
)

r
√

a2h2
2 + b 2h2

1

, ν3 = a

r
√

a2h2
2 + b 2h2

1

, (3.7)

where r = h1/h2, and
∑3

i=1 νi = 0.

Let us write the above equation in the form

MC C = MV V, (3.8)

then by (3.7) the determinant of MC is

det(MC) = (1 − a)bρν1 − abν2 + a(1 − b)ρν3 > 0.

Similarly, we have

det(MV) = (1 − a)bν1 − abρν2 + a(1 − b)ν3 > 0.

Finally, we get the following result.

Lemma 3.1 Given a linear function φ on an interface element T, the modified
function φ̂ is uniquely determined by (3.6).

Remark 3.1 The above lemma is also valid for interface elements whose
interface segment DE in Fig. 2 straddles a side and the hypotenuse.

Lemma 3.2 The matrix norm ‖M−1
V MC‖ is bounded below and above by

constants depending on the jump of β but independent of the mesh size h and
the location of the interface.
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Proof Some tedious calculation shows that M−1
V MC is given by

1

D′

⎡
⎢⎣

a2+ρ(br)2+(ρ−1)a2b −(ρ−1)(1−a)b(a+br2) −(ρ−1)(1−a)ab

(ρ−1)a(br)2 a2+(br)2 (ρ−1)a2b

−(ρ−1)a(1−b)br2 −(ρ−1)a(1−b)(a+br2) ρa2+(br)2+(ρ−1)a(br)2

⎤
⎥⎦,

(3.9)

where D′ = a2 + (br)2 + (ρ − 1)ab(a + br2).
Since any matrix norms are equivalent, it is enough to show that the infinite

norm of M−1
V MC is bounded below and above independent of a, b and r.

Without loss of generality, we may assume that r = h1/h2 ≥ 1. First, if ρ ≥ 1,
then a2 + (br)2 ≤ D′ ≤ ρ(a2 + (br)2) since 0 < a, b ≤ 1. Let Si, i = 1, 2, 3 de-
note the l1-norm of ith row of the above matrix without D′ factor, then

S1 = a2 + ρ(br)2 + (ρ − 1)
{
a2b + (1 − a)b

(
a + br2

)+ (1 − a)ab
}

≤ ρ
(
a2 + (br)2

)+ (ρ − 1)
(
b
(
a + br2

)+ ab
)

≤ ρ
(
a2 + (br)2

)+ (ρ − 1) {br(a + br) + a(a + br)}
≤ ρ
(
a2 + (br)2

)+ (ρ − 1)(a + br)2

≤ (3ρ − 2)
(
a2 + (br)2

)
,

where we used the inequality (a + br)2 ≤ 2(a2 + (br)2), and

S1 ≥ a2 + (br)2.

Hence we have 1/ρ ≤ S1/D′ ≤ 3ρ − 2. By the assumption r ≤ κ ,

S3 = ρa2 + (br)2 + (ρ − 1)
{
a(br)2 + a(1 − b)

(
a + br2

)+ a(1 − b)br2
}

≤ ρ
(
a2 + (br)2

)+ (ρ − 1)
(
a
(
a + br2

)+ abr2
)

≤ ρ
(
a2 + (br)2

)+ κ(ρ − 1) {a(a + br) + (a + br)br}
≤ ρ
(
a2 + (br)2)+ κ(ρ − 1)(a + br)2

≤ κ(3ρ − 2)
(
a2 + (br)2)

and the lower bound is the same as S1. So we have 1/ρ ≤ S3/D′ ≤ κ(3ρ − 2).
Now since

S2 = a2 + (br)2 + (ρ − 1)ab
(
a + br2) ,

we have S2/D′ = 1. Hence we obtain that 1 ≤ ‖M−1
V MC‖∞ ≤ κ(3ρ − 2) when

ρ ≥ 1.
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Now if 0 < ρ < 1, then ρ(a2 + (br)2) ≤ D′ ≤ a2 + (br)2 since D′ ≥ a2 +
(br)2 − (1 − ρ)(a2 + (br)2) = ρ(a2 + (br)2). Noting that ρ − 1 ≤ 0 and the first
entry in the first row is positive, we see

S1 = a2 + ρ(br)2 − (1 − ρ)a2b + (1 − ρ)(1 − a)b
(
a + br2

)+ (1 − ρ)(1 − a)ab

≤ a2 + (br)2 + (1 − ρ)
{
b
(
a + br2)+ ab

}
≤ a2 + (br)2 + (1 − ρ)(a + br)2 ≤ (3 − 2ρ)

(
a2 + (br)2

)
and

S1 = a2 + ρ(br)2 − 2(1 − ρ)a2b + (1 − ρ)
{
2ab + (br)2 − ab

(
a + br2

)}
= a2 + ρ(br)2 + 2(1 − ρ)ab(1 − a) + (1 − ρ)

{
(br)2 − ab

(
a + br2

)}
≥ a2 + ρ(br)2 + (1 − ρ)(br)2 − (1 − ρ)ab

(
a + br2

)
= a2 + (br)2 + (ρ − 1)ab

(
a + br2

)
.

Hence we have 1 ≤ S1/D′ ≤ 3/ρ − 2. We also see that

S3 = ρa2+(br)2−(1−ρ)a(br)2+(1−ρ)a(1−b)
(
a+br2

)+(1−ρ)a(1−b)br2

≤ a2 + (br)2 + (1 − ρ)
{
a
(
a + br2

)+ abr2
}

≤ κ(3 − 2ρ)
(
a2 + (br)2

)
and the lower bound is the same as S1. So we have 1 ≤ S3/D′ ≤ κ(3/ρ − 2).
Now since

a2 + (br)2 ≤ S2 = a2 + (br)2 + (1 − ρ)ab
(
a + br2

) ≤ (2 − ρ)
(
a2 + (br)2

)
,

we have 1≤ S2/D′ ≤2/ρ−1. By the above results, we obtain 1≤‖M−1
V MC‖∞ ≤

κ(3/ρ − 2) when 0 < ρ < 1.
Finally, we obtain 1 ≤ ‖M−1

V MC‖∞ ≤ κ · max{3ρ − 2, 3/ρ − 2}, and this
completes the proof. ��

We denote by Ŝh(T) the finite element space on the interface element T
whose basis functions φ̂i, i = 1, 2, 3 are defined by above construction. Fur-
thermore, we define the immersed interface finite element space Ŝh(�). Given a
function φ in Sh(�), we use its nodal values and the above local construction to
generate a new function φ̂. Ŝh(�) is the collection of such functions. Hence its
member is linear on each noninterface element and belongs to Ŝh(T) on each
interface element T ∈ Th. We note that a function in Ŝh(�) is in general not
continuous across an edge common to interface elements. We also note that a
function in Ŝh(�) vanishes on the boundary edges.

Remark 3.2 Note that if φ(Ai) = 0, i = 1, 2, 3 for some φ ∈ Sh(T), then by
(3.6) φ̂ ≡ 0 on T. Moreover if φ(Ai) = C, i = 1, 2, 3 for some constant C, then
φ̂ ≡ C on T.
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3.2 Approximation property of the immersed interface space Ŝh(T)

For analysis, we introduce the following spaces: For any T ⊂ �,

W̃m
p (T) :=

{
u : u|T∩�s ∈ Wm

p (T ∩ �s), s = +, −
}

, p ≥ 1, m ≥ 0 ,

H̃2
int(T) :=

{
u ∈ H1(T) : u|Ts ∈ H2(T ∩ �s), s = +, −,

[
β

∂u
∂n

]
=0 on � ∩ T

}

and for any u ∈ W̃m
p (T),

‖u‖2
m,p,T := ‖u‖2

m,p,T∩�+ + ‖u‖2
m,p,T∩�− , |u|2m,p,T := |u|2m,p,T∩�+ + |u|2m,p,T∩�− ,

where ‖ · ‖m,p,Ts is the norm of Wm
p (T ∩ �s), s = +, −. When p = 2, we define

H̃m(T) = W̃m
p (T) as usual and denote its norm by ‖u‖m,T . Furthermore, we

define H1/2(e) as the trace space on an edge e of T of all functions in H1(T)

with the norm (see [12] and [11])

‖v‖1/2,e := inf
u∈H1(T)

u|e=v

‖u‖1,T (3.10)

and H−1/2(e) as the dual space of H1/2(e), where the norm is given by

‖u‖−1/2,e := sup
v∈H1/2(e)

< u, v >e

‖v‖1/2,e
. (3.11)

Here < ·, · >e is the duality pairing.
Although for functions in Ŝh(T) the flux jump condition is enforced on line

segments DE, they actually satisfy a weak flux jump condition on the interface
�. This is stated in the following lemma [24]. For completeness, we give the
proof by a simple application of the divergence theorem.

Lemma 3.3 For an interface triangle T, every function φ̂ ∈ Ŝh(T) satisfies the
flux jump condition on � ∩ T in the following weak sense:∫

�∩T

(
β−∇φ̂− − β+∇φ̂+

)
· n�ds = 0.

Proof Let φ̂ be any function in Ŝh(T). By the divergence theorem, we have∫
�∩T

(
β−∇φ̂− − β+∇φ̂+

)
· n�ds +

∫
DE

(
β−∇φ̂− − β+∇φ̂+

)
· nDEds

=
∫

T∗
∇ ·
(
β−∇φ̂− − β+∇φ̂+

)
ds = 0.

By the flux continuity of φ̂ on DE,∫
DE

(
β−∇φ̂− − β+∇φ̂+

)
· nDEds = 0,

which completes the proof. ��
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For any u ∈ H̃2
int(T), we let Ihu ∈ Ŝh(T) be such that

Ihu(Ai) = u(Ai), i = 1, 2, 3

where Ai, i = 1, 2, 3 are the vertices of T and we call Ihu the interpolant of u
in Ŝh(T). We can naturally extend the interpolant Ih such that Ih : H̃2

int(�) →
Ŝh(�) and (Ihu)|T = Ihu|T .

Then we have an estimate of the interpolant given in the following theorem;
see Z. Li et al. [24].

Theorem 3.4 Let T be an interface element. Then there exists a constant C > 0
such that the interpolation operator Ih : H̃2

int(T) → Ŝh(T) satisfies

‖u − Ihu‖m,T ≤ Ch2−m‖u‖2,T , m = 0, 1 (3.12)

for any u ∈ H̃2
int(T).

4 Immersed interface finite element method and its convergence analysis

We now consider the immersed interface finite element problem: Find ûh ∈
Ŝh(�) such that

ah

(
ûh, φ̂
)

=
(

f, φ̂
)

, ∀ φ̂ ∈ Ŝh(�), (4.1)

where

ah(u, v) =
∑
T∈Th

∫
T

β∇u · ∇vdx, ∀ u, v ∈ Hh(�),

Hh(�) := H1
0(�) + Ŝh(�)

and Hh(�) is endowed with the broken H1-seminorm as ‖v‖2
1,h :=∑T∈Th

|v|21,T .
Note that the bilinear operator ah(·, ·) is clearly bounded.

We now show the coercivity of the bilinear form ah(·, ·) on Ŝh(T). To this
end, we introduce a transfer operator γ : Ŝh(T) → Sh(T) as follows: For any
φ̂ ∈ Ŝh(T), define γ φ̂ = φ ∈ Sh(T) such that

φ(Ai) = φ̂(Ai) at vertices Ai, i = 1, 2, 3.

We can naturally extend it to the whole of Ŝh(�) by (γ φ̂)|T = γ φ̂|T .

Lemma 4.1 (Discrete Poincaré inequality) There exists a constant C indepen-
dent of h and the interface � such that

C‖φ̂‖2
L2(�) ≤ ah

(
φ̂, φ̂
)

∀φ̂ ∈ Ŝh(�). (4.2)
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Proof The idea of the proof is very similar to the one in [6], but here we need
to choose the integration path more judiciously. Let φ̂ ∈ Ŝh(�) be given and we
want to define a piecewise linear path C = ∪i[xi, xi+1], a union of line segments
[xi, xi+1], such that φ̂ is continuous and piecewise differentiable on the path.
Since the function φ̂ is continuous on noninterface elements, we can choose
any line segment there. However, if C meets an interface element at a point,
say xi in Fig. 3, we choose a point x∗ := xi+1 on the interface as a next node
for the path. Then choose the vertex point on the other side of the interface as
xi+2. Here we have to choose x∗(or adjust xi also) in such a way that if one part
of the interface element is too thin, the line segment xix∗(or x∗xi+2) is close to
the shortest path reaching next node so that the area of that part of interface
element is bounded below by C|x∗xi+2|2(or C|xix∗|2).

By the above argument, for any x∈� there is a sequence of points xi, i=
0, · · · , � such that x0 ∈ ∂� with φ̂(x0) = 0, x� = x, and φ̂ is continuous along
the polygonal curve C joining xi, i = 0, · · · , �.

Then using the mean value theorem and the Cauchy-Schwarz inequality,
we have

|φ̂(x)|2 = |φ̂(x�)|2 =
∣∣∣∣∣
�−1∑
i=0

(
φ̂ (xi+1) − φ̂ (xi)

)∣∣∣∣∣
2

=
∣∣∣∣∣
�−1∑
i=0

(
∇φ̂(x̄i) (xi+1 − xi)

)∣∣∣∣∣
2

≤ �

�−1∑
i=0

|∇φ̂ (x̄i) |2h2
i

≤ C�

(
�−1∑
i=0

|∇φ̂|20,Ti

)
,

a b

Fig. 3 A path C along which φ̂ is continuous, piecewise differentiable and |Ti| ≥ Ch2
i (a, b)
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where hi = |xi+1 − xi|, x̄i is some point on [xi, xi+1] and in the last inequality we
used the fact that

|∇φ̂(x̄i)|2h2
i ≤ C|∇φ̂|20,Ti

,

which is an immediate consequence of choice of x∗ and the fact that ∇φ̂ is
constant on each Ti. Here Ti is either a noninterface element or one of the two
parts of an interface element.

Now suppose that x is in an element T, then

∫
T

|φ̂(x)|2dx ≤ C�h2
l−1∑
i=0

|∇φ̂|20,Ti

≤ CC0h
l−1∑
i=0

|∇φ̂|20,Ti
.

Here �h is bounded by some constant since the number of line segments used
above is bounded by C/h. Summing over T in such a way that the same Ti

appears at most � times and using the fact that �h ≤ C0, we conclude

C‖φ̂‖2
L2(�) ≤ ah

(
φ̂, φ̂
)

.

This completes the proof. ��

We introduce two trace spaces on an edge e of T:

Ŝh(e) :=
{
φ̂|e : φ̂ ∈ Ŝh(T)

}
, Sh(e) :=

{
φ|e : φ ∈ Sh(T)

}
. (4.3)

Now we define γe : Ŝh(e) → Sh(e) by γeφ̂|e := (γ φ̂)|e, φ̂ ∈ Ŝh(T). Note that γe

is well-defined, since (γ φ̂1)|e = (γ φ̂2)|e whenever φ̂1|e = φ̂2|e for any φ̂1, φ̂2 ∈
Ŝh(T).

Now we show a negative norm estimate of γe. For this purpose, we use a
reference element T̃ which is typical in finite element analysis. Let e be any
edge of an element T and ẽ the edge of T̃ corresponding to e. Note that given
an element T in the triangulation, there exists an affine transformation Fx̃ =
Bx̃ + b from T̃ to T.

We next prove an approximation property in a fractional norm.

Lemma 4.2 Let e be an edge of T and φ ∈ H1/2(e). Then

inf
m∈R

‖φ − m‖0,e ≤ Ch1/2|φ|1/2,e. (4.4)

Proof Let us first show that for g ∈ Hα(e), one has

|g|2α,e = h1−2α|g̃|2α,ẽ, 0 ≤ α < 1. (4.5)
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For α = 0, this is standard scaling argument for L2(e). So assume 0 < α < 1.
Let η = s/h, ξ = t/h, where h = |e|. Then using the fractional norm [4, 16],
one has

|g|2α,e =
∫

e

∫
e

|g(s) − g(t)|2
|s − t|1+2α

dsdt

= h1−2α

∫
ẽ

∫
ẽ

|g̃(η) − g̃(ξ)|2
|η − ξ |1+2α

dηdξ

= h1−2α|g̃|2α,ẽ.

Noting (4.5) and that on the reference element,

inf
m∈R

‖φ̃ − m‖0,ẽ ≤ C|φ̃|1/2,ẽ,

we obtain the result. ��

Lemma 4.3 Let e be any edge of T. Then there exists a constant C > 0 indepen-
dent of the mesh size h of T such that

inf
m∈R

‖u − m‖−1/2,e ≤ Ch|u|1,T (4.6)

for any u ∈ H1(T).

Proof By definition, we have

‖u − m‖−1/2,e = sup
v∈H1/2(e)

< u − m, v >e

‖v‖1/2,e
. (4.7)

Taking m as the average of u on e, we get for any constant c

< u − m, v >e = < u − m, v − c >e≤ ‖u − m‖0,e‖v − c‖0,e.

To estimate this, we apply the Bramble-Hilbert lemma (given in the form of
Lemma 3 of [9]) on a reference element. Consider the functional f on H1(T̃)

defined by f (ũ) := ‖ũ − (ũ)ẽ‖0,ẽ, where (ũ)ẽ is the average of ũ on ẽ, then we
have ‖ũ − (ũ)ẽ‖0,ẽ ≤ C|ũ|1,T̃ . Now scaling argument gives

‖u − m‖0,e ≤ Ch1/2|u|1,T .

On the other hand, by Lemma 4.2 we have that infc∈R ‖v−c‖0,e ≤Ch1/2‖v‖1/2,e.
Hence we obtain

< u − m, v >e ≤ Ch|u|1,T‖v‖1/2,e.

This proves (4.6). ��

Lemma 4.4 Let T be an interface element and e an edge of T. Then there
exists a constant C independent of h and interface points such that the following
inequality holds for all φ̂ ∈ Ŝh(T):

‖φ̂|e − γeφ̂|e‖−1/2,e ≤ Ch|φ̂|1,T . (4.8)
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Proof First, let us assume that

‖γe‖−1/2,e ≤ Cγ (4.9)

holds for some positive constant C independent of h and the location of the
interface.

Now with φ̂ ∈ Ŝh(T) and any constant m, we have

‖φ̂|e−γeφ̂|e‖−1/2,e =‖φ̂|e − m−γe

(
φ̂|e−m

)
‖−1/2,e ≤‖I−γe‖−1/2,e‖φ̂|e−m‖−1/2,e

≤ C‖φ̂|e − m‖−1/2,e.

Since m is an arbitrary constant, by Lemma 4.3

‖φ̂|e − γeφ̂|e‖−1/2,e ≤ Ch|φ̂|1,T .

This completes the proof of (4.8). ��

Now we show the constant Cγ is independent of the location of interface.
Notice that the interface is completely determined by the numbers a and b in
Fig. 2.

Without loss of generality, we may assume that V1 = 0 in (3.6) (This
corresponds to edge A2 A3) and assume for simplicity h = 1. Notice the basis
functions have the form φ2 = (1 − x) and φ3 = x. Since

φ̂ =
{

φ̂− = V2φ2 + c3φ3 on A2 E,

φ̂+ = c2φ2 + V3φ3 on EA3,
(4.10)

the maximum φ̂ is attained either at the vertex points or the interface point.
(φ̂(0) = V2, φ̂(b) = V2(1 − b) + c3b , φ̂(1) = V3.)

Lemma 4.5 We have∫ b

0
|φ̂|2 = b

6

(
V2

2 + 4|(V2φ2 + c3φ3)

(
b
2

)
|2 + |φ̂(b)|2

)
(4.11)

∫ 1

b
|φ̂|2 = 1 − b

6

(
|φ̂(b)|2 + 4

∣∣∣∣(c2φ2 + V3φ3)

(
1 + b

2

)∣∣∣∣
2

+ V2
3

)
(4.12)

‖φ̂‖2
1/2,e ≤ C

(
b |V2 − c3|2 + (1 − b)|c2 − V3|2 + ‖φ̂‖2

e

)
(4.13)

for some C > 0 and

‖φ̂‖−1/2,e ≥ ‖φ̂‖2
e

‖φ̂‖1/2,e

. (4.14)

Proof The first two identities are clear from Simpson’s rule. For (4.13), we first
note by a simple computation that

‖φ̂‖2
1,e =
(

b |V2 − c3|2 + (1 − b)|c2 − V3|2 + ‖φ̂‖2
e

)
.
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Hence

‖φ̂‖2
1/2,e ≤ C‖φ̂‖2

1,e ≤ C
(

b |V2 − c3|2 + (1 − b)|c2 − V3|2 + ‖φ̂‖2
e

)
.

For (4.14), we see

‖φ̂‖−1/2,e = sup
v∈H1/2(e)

< φ̂, v >e

‖v‖1/2,e

≥ sup
v∈Ŝh(e)

< φ̂, v >e

‖v‖1/2,e
≥ ‖φ̂‖2

e

‖φ̂‖1/2,e

. ��

Lemma 4.6 There are positive constants Cm and CM independent of a and b
such that

Cm
(|V2|2 + |V3|2

) ≤ ‖φ̂‖2
e ≤ CM

(
V2

2 + V2
3

)
. (4.15)

Proof For the left hand side of the above inequality, by adding (4.11) and
(4.12) and underestimating, we have

1

6

(
b V2

2 + |φ̂(b)|2 + (1 − b)V2
3

)
≤ ‖φ̂‖2

e . (4.16)

Defining f (b) :=
(

b V2
2 + |φ̂(b)|2 + (1 − b)V2

3

)
and noting that f (b) is a

quadratic(convex) function of b , we see that the tangent line approxima-
tion L( f )(t) satisfies L( f )(t) ≤ f (t), 0 ≤ t ≤ 1. Since f (0) = |V2|2 + |V3|2 and
f ′(0) = (−V2

2 − V2
3 + 2c3V2), the tangent line approximation L( f )(t) at t = 0

has the form

L( f )(t) = (V2
2 + V2

3

)+ t
(−V2

2 − V2
3 + 2c3V2

)
.

Since c3 is a linear bounded(below and above independent of a, b) function of
V ′

i s(Lemma 3.2) and V1 = 0, there exist positive constants δ and C0 such that

L( f )(t) ≥ C0
(
V2

2 + V2
3

)
for |t| ≤ δ <

1

2
. (4.17)

Clearly for δ ≤ b ≤ 1 − δ,

f (b) ≥ δ
(
V2

2 + V2
3

)
.

When b ≥ 1 − δ, we switch the role of f (0) with f (1) to get a similar inequality.
Hence (4.15) holds with Cm = 1

6 min(C0, δ) for all b . Finally, the right hand side
is trivial by Lemma 4.5 and boundedness of ci’s as functions of Vi’s. ��
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Now we proceed to derive a bound of the operator norm ‖γe‖−1/2,e indepen-
dent of a and b :

‖γ ‖−1/2,e = sup
φ̂∈Ŝh(e)

‖γeφ̂‖−1/2,e

‖φ̂‖−1/2,e

≤ sup
φ̂∈Ŝh(e)

‖γeφ̂‖−1/2,e‖φ̂‖1/2,e

‖φ̂‖2
e

≤ sup
φ̂∈Ŝh(e)

C‖γeφ̂‖e‖φ̂‖1/2,e

‖φ̂‖2
e

. (4.18)

where C > 0 is a generic constant. Note that

‖γ φ̂‖2
e = 1

3

(
V2

2 + V2V3 + V2
3

) ≤ V2
2 + V2

3 .

Thus by Lemma 4.5, Lemma 4.6, and (4.18), we have

‖γ ‖−1/2,e ≤ C sup
φ̂

‖γ φ̂‖e

(
b |V2 − c3|2 + (1 − b)|c2 − V3|2 + ‖φ̂‖2

e

)1/2

‖φ̂‖2
e

≤ C sup
φ̂

(
V2

2 + V2
3

)1/2
(√

b |V2 − c3| + √
1 − b |c2 − V3| + ‖φ̂‖e

)

‖φ̂‖2
e

≤ C sup
φ̂

(√
b |V2 − c3| + √

1 − b |c2 − V3| + ‖φ̂‖e

)

C1/2
m
(
V2

2 + V2
3

)1/2 .

Since ci’s are bounded functions of Vi’s we have shown (4.9) holds with the Cγ

independent of the location of interface.
For energy-norm error estimate of the immersed interface finite element

method, we need the well-known second Strang lemma, since the immersed
finite element space is nonconforming.

Lemma 4.7 (Second Strang lemma) Let u ∈ H̃2(�), ûh ∈ Ŝh(�) be the solu-
tions of (2.3) and (4.1) respectively. Then there exists a constant C > 0 such that

‖u−ûh‖1,h ≤C

⎧⎨
⎩ inf

v̂h∈Ŝh(�)

‖u−v̂h‖1,h+ sup
φ̂∈Ŝh(�)

| ah

(
u, φ̂
)
−
(

f, φ̂
)

|
‖φ̂‖1,h

⎫⎬
⎭ . (4.19)

Remark 4.1 The constant C in the above lemma is guaranteed by the coercivity
of ah(·, ·) on Ŝh(�), a fact that can be trivially shown through the Poincaré
inequality as in (4.2), since a function in Ŝh(�) vanishes on the boundary.

We now use the second Strang lemma to prove the following broken H1-
error estimate.



Immersed interface finite element method

Theorem 4.8 Let u ∈ H̃2(�), ûh ∈ Ŝh(�) be the solutions of (2.3) and (4.1)
respectively. Then there exists a constant C > 0 such that

‖u − ûh‖1,h ≤ Ch‖u‖H̃2(�). (4.20)

Proof The first term in the second Strang lemma is nothing but an approxima-
tion error:

inf
v̂h∈Ŝh(�)

‖u − vh‖1,h ≤ Ch‖u‖H̃2(�). (4.21)

For the consistency error estimate, we have from the definition of ah(·, ·) and
Green’s formula

ah

(
u, φ̂
)

−
(

f, φ̂
)

=
∑
T∈Th

∫
T

β∇u · ∇φ̂ dx −
∫

�

f φ̂ dx

=
∑
T∈Th

∫
T

β∇u · ∇φ̂ dx

−
⎛
⎝∑

T∈Th

∫
T

β∇u · ∇φ̂ dx −
∑
T∈Th

< β
∂u
∂n

, φ̂ >∂T

⎞
⎠

=
∑
T∈Th

< β
∂u
∂n

, φ̂ >∂T , (4.22)

where φ̂ ∈ Ŝh(�) and n is a unit outward normal vector on each ∂T. Note that
the integral

∫
e β ∂u

∂nγeφ̂ds is well defined on each edge of Th so that
∑

T∈Th
<

β ∂u
∂n , γeφ̂ >∂T= 0, then we have

∑
T∈Th

< β
∂u
∂n

, φ̂ >∂T =
∑

T∈T ∗
h

< β
∂u
∂n

, φ̂ − γeφ̂ >∂T

=
∑

T∈T ∗
h

∑
e⊂∂T

< β
∂u
∂n

, φ̂ − γeφ̂ >e

=
∑

T∈T ∗
h

∑
e⊂∂T

{
< β

∂u
∂n

, φ̂ − γeφ̂ >e+ + < β
∂u
∂n

, φ̂ − γeφ̂ >e−

}

where es = e ∩ �s, s = +, −. Since the conclusion of Lemma 4.4 holds when e
is replaced by its portion e+ or e−,

< β
∂u
∂n

, φ̂ − γeφ̂ >es ≤ ‖β ∂u
∂n

‖1/2,es‖φ̂ − γeφ̂‖−1/2,es

≤ C‖∇u‖H1/2(es)h|φ̂|1,T

≤ Ch‖u‖H̃2(T)|φ̂|1,T .
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Finally summing over all T, we obtain

∑
T∈Th

< β
∂u
∂n

, φ̂ >∂T ≤ Ch‖u‖H̃2(�)‖φ̂‖1,h.

Thus the approximation property of Ŝh(�) and second Strang lemma give the
result. ��

5 L2-error estimate

We now apply the duality argument to obtain L2-norm estimate of the error.
For this purpose, let us consider an auxiliary problem: Given g ∈ L2(�), find
ϕ ∈ H̃2(�) such that

− ∇ · (β∇ϕ) = g in �, (5.1)

ϕ = 0 on ∂�

with jump conditions [ϕ] = 0 and [β ∂ϕ

∂n ] = 0 across �. Then by Theorem 2.1,
the solution of this problem satisfies ‖ϕ‖H̃2(�) ≤ C‖g‖L2(�).

Let ϕ̂h ∈ Ŝh(�) be the solution of the corresponding variational problem:

ah
(
v̂h, ϕ̂h
) = (v̂h, g

)
, ∀v̂h ∈ Ŝh(�). (5.2)

Then

(u − ûh, g) =
∑
T∈Th

∫
T

β∇ (u−ûh
) · ∇ϕ dx −

∑
T∈Th

∫
∂T

(
u − ûh
)
β

∂ϕ

∂n
ds

= ah
(
u − ûh, ϕ − ϕ̂h

)+ ah
(
u − ûh, ϕ̂h

)−∑
T∈Th

∫
∂T

(
u−ûh
)
β

∂ϕ

∂n
ds

= ah
(
u−ûh, ϕ−ϕ̂h

)+∑
T∈Th

∫
∂T

β
∂u
∂n

ϕ̂h ds−
∑
T∈Th

∫
∂T

(
u−ûh
)
β

∂ϕ

∂n
ds

=: I + I I − I I I.

By continuity of ah(·, ·) and H1-error estimate of ϕ − ϕ̂h,

|I| ≤ C‖u − ûh‖1,h‖ϕ − ϕ̂h‖1,h ≤ Ch‖u − ûh‖1,h‖ϕ‖H̃2(�)

≤ Ch2‖u‖H̃2(�)‖ϕ‖H̃2(�).

As for I I, we apply the analysis for the consistency error of H1-error estimate
(4.23). First, note that ϕ is the unique solution of (5.1). Now we introduce the
extended transfer operator γ : Ŝh(T) ⊕ span{ϕ} → Sh(T) ⊕ span{ϕ} defined by
γ (φ̂ + cϕ) := γ φ̂ + cϕ for φ̂ ∈ Ŝh(T), c ∈ R. Then we can formally write as γ =
γ ⊕ I, where I is the identity operator. We also define γ e as the restriction of
γ on each edge e of T by γ e(φ̂ + cϕ)|e := (γ (φ̂ + cϕ))|e. It is clear that ‖γe‖ is
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bounded above by a constant independent of h and the location of the interface
for any norm ‖ · ‖. Applying an analysis similar to Theorem 4.8,

I I =
∑
T∈Th

∫
∂T

β
∂u
∂n

ϕ̂h ds =
∑
T∈Th

∫
∂T

β
∂u
∂n

(
ϕ̂h − ϕ

)
ds

=
∑
T∈Th

∑
e⊂∂T

∫
e
β

∂u
∂n

{
ϕ̂h − ϕ − γ e

(
ϕ̂h − ϕ

)}
ds.

Hence by Lemma 4.4, we get

|I I| ≤ Ch‖u‖H̃2(�)‖ϕ̂h − ϕ‖1,h ≤ Ch2‖u‖H̃2(�)‖ϕ‖H̃2(�).

Interchanging the role of ϕ and u, we obtain

|I I I| = |
∑
T∈Th

∫
∂T

(
u − ûh
)
β

∂ϕ

∂n
ds| ≤ Ch‖u − ûh‖1,h‖ϕ‖H̃2(�)

≤ Ch2‖u‖H̃2(�)‖ϕ‖H̃2(�).

Since ‖ϕ‖H̃2(�) ≤ C‖g‖L2(�), we see

‖u − ûh‖L2(�) = sup
g∈L2(�)

(u − ûh, g)

‖g‖L2(�)

≤ Ch2‖u‖H̃2(�). (5.3)

Thus we obtain the following L2-error estimate.

Theorem 5.1 Let u ∈ H̃2(�), ûh ∈ Ŝh(�) be the solutions of (2.3) and (4.1)
respectively. Then there exists a constant C > 0 such that

‖u − ûh‖L2(�) ≤ Ch2‖u‖H̃2(�). (5.4)

Remark 5.1 The numerical results in [24, 25] support our error estimates of the
immersed interface finite element method for broken H1 and L2-norms with
first and second order convergence respectively.
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