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Abstract

We present novel analysis and algorithms for solving sparse phase retrieval and sparse principal
component analysis (PCA) with convex lifted matrix formulations. The key innovation is a
new mixed atomic matrix norm that, when used as regularization, promotes low-rank matrices
with sparse factors. We show that convex programs with this atomic norm as a regularizer
provide near-optimal sample complexity and error rate guarantees for sparse phase retrieval
and sparse PCA. While we do not know how to solve the convex programs exactly with an
efficient algorithm, for the phase retrieval case we carefully analyze the program and its dual and
thereby derive a practical heuristic algorithm. We show empirically that this practical algorithm
performs similarly to existing state-of-the-art algorithms.

1 Introduction

1.1 Sparsity, phase retrieval, and PCA

Consider the standard linear regression problem in which we make observations of the form
yi = 〈xi, β∗〉 + ξi, i = 1, . . . , n, where β∗ ∈ Rp is a vector we want to estimate, x1, . . . , xn ∈ Rp

are measurement vectors, and ξ1, . . . , ξn represent noise or other error. If the xi’s are chosen
randomly and independently (e.g., i.i.d. Gaussian), and the noise is zero-mean and independent
with var(ξi) ≤ σ2, it is well-known that in general, we need1 n & p measurements to estimate β∗

meaningfully, and the best possible error we can obtain is ‖β̂ − β∗‖2 . σ
√
p/n.

We can potentially do much better if we exploit sparsity in the vector β∗. If β∗ has (at most)
s nonzero entries, the standard LASSO algorithm, which requires solving an `1-regularized least-
squares optimization problem, yields an estimator β̂ satisfying ‖β̂ − β∗‖2 . σ

√
(s/n) log(p/s) as

long as the number of measurements satisfies n & s log(p/s) (see, e.g., [1, Chapter 10]). Thus by
using a convex regularized optimization problem we can exploit sparsity to reduce the number
of measurements n and the estimation error proportionally to sparsity level (i.e., the number of
nonzero entries in β∗). In this paper, we seek to extend this phenomenon to two problems: phase
retrieval and principal component analysis (PCA). To introduce our main results, we briefly describe
phase retrieval and PCA and their sparse variants. We focus on the formulations most relevant to
our results. More complete background and related literature can be found in Sections 1.2 and 1.3.
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J. Romberg and M. Davenport are with the School of Electrical and Computer Engineering, Georgia Institute of
Technology, Atlanta, Georgia, United States (e-mail: jrom@ece.gatech.edu, mdav@gatech.edu). This work was
supported, in part, by NSF grants CCF-1718771 and CCF-2107455.

1Here and throughout the paper, . and & denote, respectively, ≤ and ≥ within absolute constants.
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In phase retrieval, we seek to estimate a vector β∗ from n noisy quadratic observations of the
form yi = |〈xi, β∗〉|2 + ξi. The nonlinearity in the measurement model makes estimation and analysis
more complicated than if our measurements are linear. To get around this, a common approach is
to note that for any x, β ∈ Rp, |〈x, β〉|2 = 〈X,B〉HS, where X = x⊗ x and B = β ⊗ β are rank-1
positive semidefinite (PSD) matrices, and 〈·, ·〉HS denotes the Hilbert-Schmidt (Frobenius) matrix
inner product. We can then write our observations as the linear measurements yi = 〈Xi, B

∗〉HS + ξi,
where B∗ = β∗ ⊗ β∗ and Xi = xi ⊗ xi. This is often called a “lifted” formulation, since we are
mapping the parameter of interest from Rp to the larger space of p× p PSD matrices. If the xi’s
are randomly chosen (say, Gaussian), and we solve the semidefinite program

B̂ = arg min
B�0

1

2n

n∑
i=1

(yi − 〈Xi, B〉HS)2,

we can bound ‖B̂ −B∗‖HS . σ
√
p/n as long as n & p, where σ is the standard deviation of the ξi’s.

(As shown in [2], this implies that the leading eigenvector of B̂ is close to β∗ up to its sign.) Both
the sample complexity and the error rate are comparable to those in ordinary linear regression.

In PCA, we observe n i.i.d. random vectors {xi}ni=1, and we want to estimate the leading
eigenvector v1 of the covariance matrix Σ = E(x1⊗x1). Again, this can be solved in a lifted manner
with a semidefinite program, noting that

P1 := v1 ⊗ v1 = arg max
P∈Rp×p

〈Σ, P 〉HS s.t. ‖P‖∗ ≤ 1.

An estimator P̂ of P1 is obtained2 by replacing Σ with the empirical covariance Σ̂. Again, if n & p,
we can recover P1 within error proportional to

√
p/n (where the constants depend on the gap

between the first and second leading eigenvalues of Σ).
Sparse phase retrieval seeks to combine phase retrieval with sparse recovery. If β∗ is s-sparse,

and we observe yi = |〈xi, β∗〉|2 + ξi for i ∈ {1, . . . , n}, can we recover β∗ with a similar sample
complexity and error as in linear sparse recovery? Similarly, the question we consider in sparse
PCA is whether, if the leading eigenvector v1 is s-sparse, we can recover it with a similar sample
complexity and error as in linear recovery.

Our main contributions are the following:

• We present novel convex relaxations of the sparse phase retrieval and sparse PCA problems
that use both a lifted formulation and a sparsity-inducing regularization, and we prove that
for both problems, an estimator computed via a convex program achieves an O(s log(p/s))
sample complexity as in linear sparse recovery. Furthermore, in both problems, the estimators
achieve the optimal O(

√
(s/n) log(p/s)) error rate (with the caveat, for the sparse phase

retrieval problem with unbounded noise, that n may need to be larger than the minimum
sample complexity to obtain this optimal rate).

• Although we do not know how to compute the convex programs exactly (we suspect they may,
in fact, be computationally intractable), we present a heuristic motivated by a careful analysis
of the dual problem and the problem’s optimality conditions, and we show that in the case of
sparse phase retrieval, the resulting algorithm achieves nearly identical empirical performance
to existing state-of-the-art sparse phase retrieval algorithms.

In the following sections, we describe the sparse phase retrieval and sparse PCA problems in more
detail, and we review the related literature.

2It would be computationally suboptimal in practice to compute the leading eigenvector of Σ̂ with a semidefinite
program, but this formulation helps motivate our approach to the sparse case.
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1.2 Sparse phase retrieval

Phase retrieval in p dimensions with (sub-)Gaussian measurements is by now well-studied. If we
have n observations of the form yi ≈ |〈xi, β∗〉|2, we can solve the optimization problem

β̂ = arg min
β∈Rp

n∑
i=1

(yi − |〈xi, β∗〉|2)2. (1)

Unfortunately, this is a nonconvex problem, so there is no immediately obvious way to solve it
efficiently. (A similar optimization problem and similar nonconvexity appear if we instead write our
measurements without the square, i.e., our observations are ≈ |〈xi, β∗〉|.)

Most approaches to this algorithmic difficulty fall into one of two categories. One method is to
optimize a nonconvex loss function such as (1) directly (and iteratively) with a suitable initialization
(e.g., [3]). The other is the lifted semidefinite approach outlined in Section 1.1. For example, Candès
and Li [4] show that if the design vectors xi are Gaussian, yi = |〈xi, β∗〉|2 + ξi, and we have n & p
measurements, solving

B̂ = arg min
B�0

n∑
i=1

|yi − 〈Xi, B〉HS|

achieves ‖B̂ − B∗‖F . 1
n

∑n
i=1|ξi| with high probability. In the case of zero-mean random noise

with standard deviation σ, we can, by using a squared loss, improve this to ‖B̂ −B∗‖F . σ
√
p/n

(see [5]). Thus we can solve the phase retrieval problem with a sample complexity and susceptibility
to noise proportional to the dimension p; this is the same complexity as ordinary linear regression.

Several results have been published on how to adapt iterative nonconvex phase retrieval algorithms
to the sparse setting [6]–[11]. Some [7], [10] do indeed achieve O(σ

√
(s/n) log p) error bounds with

zero-mean noise—this is very close to the optimal rate in linear sparse recovery (the rest do not
analyze theoretically the noisy case). However, the theory in this literature requires n & s2 log p,
which, unless s is very small, is much larger than what is required in linear sparse recovery. As
Soltanolkotabi [12] points out, the key difficulty is finding a good initialization for the algorithms—
once we are close enough to β∗, we only need3 n &log s measurements to converge to a correct
estimate. In practice, the first initialization step is often to estimate the support of β∗; the best
known methods require n &log s

2 measurements. We compare several of these algorithms (in addition
to that of the purely algorithmic/empirical work [13]) to ours empirically in Section 5.3, and we see
that all of them appear empirically to have linear sample complexity in s. Another similar iterative
algorithm is given in [14]; it has similar sample complexity requirements but, interestingly, it is
derived from a more abstract compression-based algorithm that, though not practically computable,
does obtain optimal O(s) sample complexity.

We see qualitatively similar sample complexity requirements in the works [15], [16], which extend
to the sparse case the convex PhaseMax framework [17], [18]. Both results only require n &log s
measurements if we already have an “anchor” vector β0 ∈ Rp that has significant correlation with
β∗. However, it is not known how to find such a β0 (in a computationally efficient manner) without
n &log s

2 measurements.
More related to our results are methods to adapt the lifted convex phase retrieval approach

to the sparse setting. The foundational theoretical work in this area is by Li and Voroninski [19],
although some work (mostly empirical) appeared in [20], [21]. The key idea is that if β∗ ∈ Rp is
s-sparse, the lifted version B∗ = β∗ ⊗ β∗ is both rank-1 and at most s2-sparse. In the noiseless case,

3Here and hereafter, &log (.log) will denote “greater (less) than within a logarithmic factor.”
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they solve the optimization problem

B̂ = arg min
B�0

λ1 tr(B) + λ2‖B‖1,1 s.t. 〈Xi, B〉HS = yi, i = 1, . . . , n, (2)

where ‖·‖1,1 denotes the elementwise `1 norm of a matrix. The trace regularization term promotes
low rank, while the `1 norm promotes sparsity. As with the nonconvex methods, their theory
requires n & s2 log p measurements to get exact recovery. The result of [5], when specialized to
sparse phase retrieval, extends this approach to the noisy case, getting, within log factors, the same
O(s2) sample and noise complexity.

Finally, we note that although we are primarily concerned with generic measurement vectors
xi (e.g., sub-Gaussian), one can obtain better theoretically guaranteed sample complexity with
practical algorithms if we have complete control over how the measurements are chosen; see, for
example, [22], [23].

1.3 Sparse PCA

PCA is a well-established technique with which, given points x1, . . . , xn ∈ Rp, we try to find a
low-dimensional linear (or affine) subspace that contains most of the energy in the data. If x1, . . . , xn
have zero empirical mean (e.g., after centering), the closest r-dimensional subspace to the points (in
mean square `2 distance) is the space spanned by the top r eigenvectors of the empirical covariance
matrix Σ̂ = 1

n

∑n
i=1 xi ⊗ xi.

For simplicity, take r = 1. Suppose the xi’s are i.i.d. copies of a random variable x with true
covariance Σ with eigenvalue decomposition Σ =

∑
` σ`v` ⊗ v`, where σ1 > σ2 ≥ · · · ≥ σp. If x is

Gaussian, and σ2 &
σ1
p−1 , then, with high probability [24],

‖Σ̂− Σ‖2 .
√
σ1
σ1 + (p− 1)σ2

n
.

√
σ1σ2

p

n
.

Then, if v̂1 is the leading eigenvector of Σ̂, the Davis-Kahan sin Θ theorem gives

‖v̂1 ⊗ v̂1 − v1 ⊗ v1‖2 .
√
σ1σ2

σ1 − σ2

√
p

n
.

This rate is minimax-optimal over general covariance matrices with the given σ1, σ2 (see [25]).
When p is large compared to n, we need to impose more structure on Σ to recover the leading

eigenvector(s) accurately. In sparse PCA, we consider the case in which the eigenvector(s) of interest
are sparse. This problem has been extensively studied in the past decade: see [26] for a recent
review.

In the single-eigenvector recovery case (r = 1), Cai, Ma, and Wu [27] show that if the leading
eigenvector v1 is s-sparse, the minimax rate for all estimators v̂1 of v1 over the simple class
{Σ = σ2Ip + (σ1 − σ2)v1 ⊗ v1 : v1 s-sparse, ‖v1‖2 = 1} is

‖v̂1 ⊗ v̂1 − v1 ⊗ v1‖2 ≈
√
σ1σ2

σ1 − σ2

√
s log(p/s)

n
.

While this theoretical result is clean and achieves our desire to bring sparse-recovery sample
complexity and error to the PCA problem, one practical problem remains: how do we compute an
estimator v̂1 that achieves these theoretical properties? The optimal estimator proposed in [27] is,
to quote that paper “computationally intensive.” As with sparse phase retrieval, the best theoretical
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results for computationally efficient algorithms require n &log s
2 to guarantee accurate recovery (see,

e.g., [27], [28]). Once again, proper initialization (often by estimating the support of v1) is the key
difficulty.

There is strong evidence to suggest that this s2 barrier may be inescapable for computationally
efficient algorithms. Recent results suggest that any statistically optimal estimator that requires
fewer measurements must be NP-hard to compute. Berthet and Rigollet [29] showed that if a
certain testing problem in random graph theory (the planted clique problem) is NP-hard to compute
in certain regimes (which is widely believed although so-far unproved in standard computational
models), then accurately testing for the existence of a sparse leading eigenvector when n .log s

2 is
NP-hard. Wang, Berthet, and Samworth [30] and Gao, Ma, and Zhou [31] further refine this by
showing that, under a similar assumption, there is no efficiently computable consistent estimator of
v1 when n .log s

2.

2 Key tool: A sparsity-and-low-rank–inducing atomic norm

To motivate our approach, consider the optimization problem (2) from [19] for sparse phase retrieval
or its least-squares version

B̂ = arg min
B�0

1

2n

n∑
i=1

(yi − 〈Xi, B〉HS)2 + λ1 tr(B) + λ2‖B‖1,1. (3)

It turns out that quadratic (in sparsity) O(s2) complexity is a fundamental performance bound for
this class of methods. Our target matrix B∗ has two kinds of structure: it is rank-1 and s2-sparse.
The trace regularization in our estimator encourages low rank, while the `1 regularization encourages
sparsity. However, recent work [32], [33] has shown it is impossible to take advantage of both
kinds of structure simultaneously with a regularizer that is merely a convex combination of the two
structure-inducing regularizers; the best we can do is exploit either the low rank as in non-sparse
phase retrieval, in which case we get O(p) complexity, or the s2-sparsity, in which case we get O(s2)
complexity.

To see intuitively why we have this problem, note that the nuclear norm and elementwise `1
norm are both examples of projective tensor norms [34]. For matrix A of any size,

‖A‖∗ = inf
{∑

‖uk‖2‖vk‖2 : A =
∑

uk ⊗ vk
}

and
‖A‖1,1 = inf

{∑
‖uk‖1‖vk‖1 : A =

∑
uk ⊗ vk

}
Equivalently, these norms are atomic norms [35] where the atoms are rank-1 matrices with unit
`2 or `1 norms. For a PSD matrix, the trace is the nuclear norm, so the regularizer in (3) can be
expressed as

λ1 tr(B) + λ2‖B‖1,1 = λ1 inf
{∑

‖uk‖2‖vk‖2 : B =
∑

uk ⊗ vk
}

+ λ2 inf
{∑

‖wk‖1‖zk‖1 : B =
∑

wk ⊗ zk
}
.

(4)

A key feature of B∗ = β∗⊗ β∗ is that the factors of its rank-1 decomposition have a certain `2 norm
and are sparse. Because the two infima in (4) are separate, the regularizer promotes matrices with
two separate atomic decompositions of low `2 and `1 norm respectively. It does not encourage a
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decomposition into low-rank matrices with factors that have simultaneously low `2 norm and low `1
norm.

Inspired by the framework of Haeffele and Vidal [36], we propose the following regularizer:

‖B‖∗,s := inf
{∑

θs(uk, vk) : B =
∑

uk ⊗ vk
}
, (5)

where

θs(u, v) =

(
‖u‖2 +

1√
s
‖u‖1

)(
‖v‖2 +

1√
s
‖v‖1

)
,

and s > 0 is a parameter that represents the sparsity (or an approximation thereof) of the vector
we are interested in recovering. For some intuition on this choice of regularizer, note that

{A : ‖A‖∗,s ≤ 1} ≈ conv{u⊗ v : ‖u‖2 = ‖v‖2 = 1, u, v are s-sparse},

by which we mean that either is contained within a modest scaled version of the other. One direction
is a simple consequence of the fact that for an s-sparse vector u, ‖u‖1 ≤

√
s‖u‖2. The other direction

is provided by Lemma 6 in Appendix A. Thus ‖·‖∗,s is (equivalent to) an atomic norm whose atoms
are precisely the type of matrix we expect B∗ to be.4 Similar notions of atomic norms that promote
simultaneous low rank and sparsity have appeared in [33], [37].

We will show in the next section that using ‖·‖∗,s as a regularizer in lifted formulations of sparse
phase retrieval and PCA gives sample complexity and error bounds nearly identical to the linear
regression case.

3 Theoretical guarantees for atomic-norm regularized estimators

In this section, we state precisely our main problems, assumptions, abstract convex optimization
algorithm, and theoretical guarantees.

3.1 Sparse phase retrieval

Suppose β∗ ∈ Rp is an s-sparse vector. Let x be a random vector in Rp. We observe n i.i.d. copies
(x1, y1), . . . , (xn, yn) of the random couple (x, y), where y is a real random variable whose distribution
conditioned on x depends only on 〈x, β∗〉2 (i.e., y ∼ py(y | 〈x, β∗〉2)). Let ξ := y − 〈x, β∗〉2 denote
the “noise.” We make the following assumptions:

Assumption 1 (Sub-Gaussian measurements). The entries (x(1), . . . , x(p)) of x are i.i.d. real random
variables with Ex(`) = 0, E(x(`))2 = 1, E(x(`))4 > 1, and sub-Gaussian norm ‖x(`)‖ψ2 ≤ K for some
K > 0.

Note that the fourth-moment assumption excludes Rademacher random variables. In what
follows, for simplicity of presentation, all dependence on K and the difference E(x(`))4 − 1 will be
subsumed into unspecified constants.

Assumption 2 (Zero-mean, bounded-moment noise). E[ξ |x] = 0 almost surely, and, for all u ∈ Rp

such that ‖u‖2 ≤ 1,
E ξ2〈x, u〉4 ≤ σ2(β∗),

4If we “guess wrongly” the sparsity of β∗, we can still get similar results with different constants of equivalence.
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where σ2(β∗) is a quantity that possibly depends on the vector β∗, the distribution of x, and the
conditional distribution of y. Furthermore, there are M,η ≥ 0 such that

‖ξ〈x, u〉2‖α ≤Mαη+1

for α ≥ 3 and all u ∈ Rp such that ‖u‖2 ≤ 1 (where ‖Z‖α := (E|Z|α)1/α for any random variable
Z).

Our two working examples are the following:

• Independent additive noise: ξ is independent of all other quantities, in which case we can take
σ2(β) ≈ var(ξ), and M and η depend on the moments of ξ.

• Poisson noise: y ∼ Poisson(〈x, β∗〉2) conditioned on x. In this case, under Assumption 1, we
can take σ2(β∗) ≈ ‖β∗‖22, M ≈ ‖β∗‖2 + 1, and η = 1 (we prove this in Appendix D).

As before, we lift the problem into the space of PSD matrices by setting B∗ = β∗ ⊗ β∗ and
X = x ⊗ x. We then choose a regularization parameter λ ≥ 0 and compute our estimate by the
following optimization problem:

B̂ = arg min
B∈Rp×p

1

2n

n∑
i=1

(yi − 〈Xi, B〉HS)2 + λ‖B‖∗,s. (6)

We then have the following guarantee for sample complexity and error, proved in Section 4.1:

Theorem 1. Suppose Assumptions 1 and 2 hold. Suppose β∗ is s-sparse and that the number of
measurements n satisfies n & s log(ep/s). If the regularization parameter satisfies

λ &

√
s log(ep/s)

n
σ2(β∗) +

M

n1−c

(
s log

ep

s

)η+1
,

where c ≈ (s log(ep/s))−1, then, with probability at least 1 − e−bn − e−s(s/p)s (where b > 0 is a
constant), the estimator B̂ from (6) satisfies

‖B̂ −B∗‖∗ . λ.

Remark 1. For simplicity of presentation, we assume that the sparsity level s used in the regularizer
is in fact (an upper bound on) the sparsity of β∗. We could easily extend our results to the
“misspecified” case ‖β∗‖0 = s0 > s.

Remark 2. By a standard argument (found, e.g., in [2]), if β̂⊗ β̂ is the closest rank-1 approximation
to B̂, then β̂ satisfies

min{‖β̂ − β∗‖2, ‖β̂ + β∗‖2} .
λ

‖β∗‖2
.

Remark 3. The required sample complexity s log(ep/s) is precisely the optimal sample complexity
from traditional linear sparse recovery. For large n, the noise error rate (with appropriately chosen
λ) is also the optimal

√
(s/n) log(ep/s), but, if η > 0, achieving this rate may require n to be

significantly larger than s log(ep/s). More precisely, the first term containing the optimal rate will
dominate if and only if

n1−2c &
M2

σ2(β∗)

(
s log

ep

s

)1+2η
.
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If the noise ξ is bounded, we can take η = 0, and we only need n1−2c & s log ep
s to obtain the optimal

error rate. For most interesting cases (where c is very small), this is negligibly different from the
sample complexity requirement. If ξ is (conditionally) sub-Gaussian, we can take η = 1/2, in which
case we need n1−2c &log s

2. If ξ is (conditionally) sub-exponential, as in the Poisson noise case, we
need n1−2c &log s

3. The need for larger n comes (in our proof) from concentration inequalities for
sums of terms of the form ξ〈x, u〉2 for arbitrary vectors u; these terms have larger moments than
the ξ〈x, u〉 terms we would typically see in linear settings. This could perhaps be improved with
judicious truncation as in, for example, [38].

Remark 4. In the independent additive noise case, one can check that our proof gives a high-
probability bound uniform over s-sparse β∗. If var(ξ) = σ2, we get, for appropriately chosen
λ,

‖B̂ −B∗‖∗ .
√
s log(ep/s)

n
σ +

M

n1−c

(
s log

ep

s

)η+1
.

Remark 5. In the Poisson observation case, we obtain, for appropriately chosen λ,

‖B̂ −B∗‖∗ .
√
s log(ep/s)

n
‖β∗‖2 +

‖β∗‖2 + 1

n1−c

(
s log

ep

s

)2
.

When β∗ 6= 0, and n is large enough that the first error term dominates, we have, up to a sign, that

‖β̂ − β∗‖2 .
√
s log(ep/s)

n
,

where β̂ is the appropriately-scaled leading eigenvector of B̂. Thus we get an error bound does that
not depend on ‖β∗‖2.

Remark 6. If there is no noise (ξ = 0), our analysis could easily be adapted to study the problem

min
B
‖B‖∗,s s.t. 〈Xi, B〉HS = yi, i = 1, . . . , n.

To understand how to use our proof techniques, note that any solution B̂ to the above problem
satisfies

∑n
i=1〈Xi, H〉2HS = 0 and

0 ≥ ‖B̂‖∗,s − ‖B∗‖∗,s ≥ 〈WB∗ , H〉HS,

for any subgradient WB∗ ∈ ∂‖B∗‖∗,s, where H = B̂ −B.

3.2 Sparse PCA

We can apply the atomic regularizer to the sparse PCA problem via another standard lifted
formulation:

Theorem 2. Suppose we observe n i.i.d. copies of the p-dimensional vector x ∼ N (µ,Σ), where
Σ = σ1v1 ⊗ v1 + Σ2, v1 is s-sparse and unit-norm, σ1 > ‖Σ2‖ =: σ2, and Σ2v1 = 0. Choose

λ &
√
σ1σ2

√
s log(ep/s)

n

and let
P̂ = arg min

P∈Rp×p

− 〈Σ̂, P 〉HS + λ‖P‖∗,s s.t. ‖P‖∗ ≤ 1, (7)

8



where

Σ̂ =
1

n

n∑
i=1

(xi − x̄)⊗ (xi − x̄) =

(
1

n

n∑
i=1

xi ⊗ xi

)
− x̄⊗ x̄

is the empirical covariance of x1, . . . , xn (x̄ = 1
n

∑n
i=1 xi).

For t > 0, if n & max

{
s log ep

s ,
(

σ1
σ1−σ2

)2
t

}
, then, with probability at least 1− e−t − 3e−s(s/p)s,

‖P̂ − P1‖F .
λ

σ1 − σ2
,

where P1 = v1 ⊗ v1.

We prove this result fully in Appendix C. A sketch of the proof is provided in Section 4.2.

Remark 7. The assumption that x is Gaussian could easily be relaxed to x = Σ1/2z, where z is a
sub-Gaussian random vector, as in, for example, [25].

Remark 8. For properly chosen λ the resulting error rate

‖P̂ − P1‖F .
√
σ1σ2

σ1 − σ2

√
s log(ep/s)

n

matches the minimax lower bounds in [25], [27].

3.3 PSD constraints and another regularizer

For phase retrieval and PCA, it is natural to restrict our estimators to be PSD. All of our theoretical
results hold if we add a B � 0 constraint to (6) or a P � 0 constraint to (7).

Unlike the nuclear norm case (where the optimal decomposition is the singular value decoposition,
which is identical to the eigenvalue decomposition for a PSD matrix), it is not clear whether every
PSD matrix B admits a symmetric (i.e., uk = vk) optimal decomposition with regard the definition
of ‖B‖∗,s in (5). Therefore, it is natural to define as a new regularizer the following gauge
function/asymmetric norm on the space of PSD matrices: for B � 0,

Θs(B) = inf
{∑

θs(uk, uk) : B =
∑

uk ⊗ uk
}
.

All of our theoretical and computational results in Sections 3 and 5 can be easily extended to this
choice of regularizer. This choice of regularizer is computationally convenient because if we optimize
over a matrix B by optimizing over factors uk, vk such that B =

∑
k uk ⊗ vk (see Section 5.2), we

can enforce a PSD constraint simply by forcing uk = vk.

4 Proof highlights

In this section, we outline the proofs of Theorems 1 and 2. We fully prove Theorem 1 from some
technical lemmas, while we sketch the proof of Theorem 2

9



4.1 Sparse phase retrieval proof

In this section, we prove Theorem 1, which is our error bound for sparse phase retrieval. We will
use the following key technical lemmas:

Lemma 1 (Subgradients of mixed atomic norm). Suppose β ∈ Rp is s-sparse, and let B = β ⊗ β.
Then, for every matrix A ∈ Rp×p, there exists W ∈ ∂‖B‖∗,s such that

〈W,A〉HS ≥
1

10
‖A‖∗,s − 5‖A‖F .

Lemma 2 (Empirical process bound). Let G1, . . . , Gn be i.i.d. copies of a random matrix G ∈ Rp×p,
where, for all u, v ∈ Rp, 〈Gu, v〉 has zero mean,

E〈Gu, v〉2 ≤ σ2‖u‖22‖v‖22,

and
‖〈Gu, v〉‖α ≤Mαη+1‖u‖2‖v‖2

for all α ≥ 3.
Let Z = 1

n

∑n
i=1Gi. For s ≥ 1, with probability at least 1− e−s(s/p)s,

sup
‖A‖∗,s≤1

〈Z,A〉HS . σ

√
s log(ep/s)

n
+

M

n1−c

(
s log

ep

s

)η+1
,

where c ≈ 1
s log(ep/s) .

Lemma 3 (Restricted lower isometry). Let x1, . . . , xn be i.i.d. copies of a random vector x satisfying
Assumption 1, and let Xi = xi ⊗ xi. Suppose

n & s log
ep

s
,

and let C ≥ 1 be a fixed constant. With probability at least 1− e−bn (for some b > 0), the following
event holds: For all A ∈ Rp×p such that

‖A‖∗,s ≤ C‖A‖F ,

we have
1

n

n∑
i=1

〈Xi, A〉2HS & ‖A‖2F ,

where the constant in the lower bound depends on C.

Lemma 1 is proved in Appendix A. Lemmas 2 and 3 are proved in Appendix B. With these, we
can prove the sparse phase retrieval error bound:

Proof of Theorem 1. Applying Lemma 2 to the random matrices Gi = ξiXi, we can choose λ
according to the theorem statement with large enough constant so that, with probability at least
1− e−s(s/p)s,

sup
‖A‖∗,s≤1

〈
1

n

n∑
i=1

ξiXi, A

〉
HS

≤ λ

20
.

10



Furthermore, by Lemma 3, for n & s log ep
s (with large enough constant), we have, with probability

at least 1− e−bn,

1

n

n∑
i=1

〈Xi, A〉2HS & ‖A‖2F

for all A satisfying ‖A‖∗,s ≤ 100‖A‖F .
The intersection of these events occurs with probability at least 1− e−s(s/p)s − e−bn. In what

follows, we assume this holds.
Let B̂ be the solution to (6). Writing F (B) as the objective function, the convexity of the

optimization problem implies that

0 ≤ 〈∇F (B̂), B∗ − B̂〉HS =
1

n

n∑
i=1

(yi − 〈Xi, B̂〉HS)〈Xi, B̂ −B∗〉HS + λ〈W
B̂
, B∗ − B̂〉HS,

for any W
B̂
∈ ∂‖B̂‖∗,s. By the monotonicity of (sub)gradients of convex functions, we have that,

for any W ∈ ∂‖B∗‖∗,s, 〈W −WB̂
, B∗ − B̂〉HS ≥ 0, and therefore

0 ≤ 1

n

n∑
i=1

(yi − 〈Xi, B̂〉HS)〈Xi, B̂ −B∗〉HS + λ〈W,B∗ − B̂〉HS.

Let H = B̂ −B∗. Using the fact that (yi − 〈Xi, B̂〉HS)〈Xi, B̂ −B∗〉HS = ξi〈Xi, H〉HS − 〈Xi, H〉2HS,
we have

1

n

n∑
i=1

〈Xi, H〉2HS ≤
1

n

n∑
i=1

ξi〈X,H〉HS − λ〈W,H〉HS ≤
λ

20
‖H‖∗,s − λ〈W,H〉HS.

By Lemma 1, there exists W ∈ ∂‖B∗‖∗,s such that

〈W,H〉HS ≥
1

10
‖H‖∗,s − 5‖H‖F .

Therefore, we have

1

n

n∑
i=1

〈Xi, H〉2HS ≤ 5λ‖H‖F −
λ

20
‖H‖∗,s.

Because the left side of this inequality is nonnegative, we have ‖H‖∗,s ≤ 100‖H‖F . Then, by
restricted lower isometry, we have

‖H‖2F . λ‖H‖F .

The result immediately follows.

4.2 Sparse PCA proof sketch

The proof of Theorem 2 is somewhat messier than the proof of Theorem 1 above, so we do not go
into all of the details here. We refer the reader to Appendix C for the full proof.

If P̂ is an optimal solution of (7), one can obtain, similarly to the proof of Theorem 1, that

〈Σ̂, H〉HS ≥ λ〈W,H〉HS

11



for any W ∈ ∂‖P1‖∗,s, where H = P̂ − P1. Choosing W according to Lemma 1, we obtain

〈Σ̂, H〉HS ≥ λ
(

1

10
‖H‖∗,s − 5‖H‖F

)
.

By analysis similar to Lemma 2, one can show that

|〈Σ̂− Σ, H〉HS| .
√
σ1σ2

s log(ep/s)

n
‖H‖∗,s + σ1

√
t

n
|〈H,P1〉HS|

with probability at least 1 − e−t − 3e−s(s/p)s when n & s log(ep/s). For λ chosen so that the
coefficient of ‖H‖∗,s above is ≤ λ/10, we get, on this event,

〈Σ, H〉HS & −λ‖H‖F − σ1
√
t

n
|〈H,P1〉HS|.

Now, note that because ‖P̂‖∗ ≤ 1, we have the following:

• |〈H,P1〉HS| = 1− 〈P̂ , P1〉HS, and

• 〈Σ, H〉HS = σ1(〈P̂ , P1〉HS − 1) + 〈Σ2, P̂ 〉HS ≤ σ1(〈P̂ , P1〉HS − 1) + σ2(1− 〈P̂ , P1〉HS).

Then, using the assumption that n & σ2
1

(σ1−σ2)2 t, we get

(σ1 − σ2)(1− 〈P̂ , P1〉HS) .

(
σ1 − σ2 − σ1

√
t

n

)
(1− 〈P̂ , P1〉HS) . λ‖H‖F .

Finally, one can show that ‖P̂‖F ≤ ‖P̂‖∗ ≤ 1 implies ‖H‖2F . 1 − 〈P̂ , P1〉HS, which immediately
gives the result.

5 Computational limitations and a practical algorithm for phase
retrieval

Although the mixed atomic norm ‖·‖∗,s is a powerful theoretical tool, it is not clear how to calculate
(let alone optimize) it for a general matrix in practice, since it is defined as an infimum over infinite
sets of possible factorizations.

A warning that computations with these atomic regularizers may be difficult in general is that
they can be used to get Olog(s) sample complexity for sparse PCA, which, as discussed in Section 1.3,
is widely believed to be impossible with efficient algorithms.

In this section, we will analyze the convex programs more carefully, with a particular focus on
phase retrieval.5 We will analyze the optimality conditions via a dual problem and thereby develop
a heuristic algorithm.

This problem was studied in greater generality in [36]. Their Corollary 1 is similar to our
Corollary 1. However, our analysis of the dual problem is quite different from their perturbation
argument, and we can much more easily apply our method to the sparse PCA optimization problem
(7) with its inequality constraint. Furthermore, we think the reader will benefit from our deriving
the optimality conditions from more elementary principles for the particular problem we are trying
to solve.

5While our algorithmic approach led to strong empirical performance for sparse phase retrieval, the approach was
less effective for sparse PCA. We leave a more thorough investigation of this phenomenon for future work.
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5.1 Factorization, duality, and optimality conditions

To move toward a practical algorithm, we consider optimizing (6) in factored form; rather than
optimizing over B directly, we optimize over the factors {uk, vk} of a factorization B =

∑
k uk ⊗ vk.

Then (6) is equivalent to

min
{uk,vk}⊂Rp

1

2n

n∑
i=1

(
yi −

〈
Xi,
∑
k

uk ⊗ vk

〉
HS

)2

+ λ
∑
k

θs(uk, vk). (8)

The obvious drawback to this form is that the optimization problem is no longer convex; therefore,
it is not clear whether finding a global minimum is computationally feasible.

To determine how well a factored algorithm works (e.g., to certify optimality), we examine a dual
problem to (6). We formulate the dual via a trick found in [39]: note that b2/2 = maxa ab− a2/2
(achieved if and only if a = b), and therefore

min
B∈Rp×p

1

2n

n∑
i=1

(yi − 〈Xi, B〉HS)2 + λ‖B‖∗,s

= min
B∈Rp×p

1

2n

n∑
i=1

max
αi

(
2αi(yi − 〈Xi, B〉HS)− α2

i

)
+ λ‖B‖∗,s

≥ max
α∈Rn

[
1

n

n∑
i=1

(
αiyi −

α2
i

2

)
+ min
B∈Rp×p

(
λ‖B‖∗,s −

1

n

n∑
i=1

αi〈Xi, B〉HS

)]
,

where the inequality comes from swapping the maximum over α = (α1, . . . , αn) and the minimum
over B.

Define the dual norm ‖·‖∗∗,s by

‖Z‖∗∗,s = max
B∈Rp×p

‖B‖∗,s≤1

〈Z,B〉HS.

Because ‖·‖∗∗,s is nonnegatively homogeneous,

min
B∈Rp×p

(
λ‖B‖∗,s −

〈
1

n

n∑
i=1

αiXi, B

〉
HS

)
=

{
0 if

∥∥ 1
n

∑n
i=1 αiXi

∥∥∗
∗,s ≤ λ

−∞ otherwise.

Therefore, a dual formulation of (6) is the convex problem

max
α∈Rn

(
1

n

n∑
i=1

αiyi −
α2
i

2

)
s.t.

∥∥∥∥∥ 1

n

n∑
i=1

αiXi

∥∥∥∥∥
∗

∗,s

≤ λ. (9)

Before we go further, note that,

‖Z‖∗∗,s = max
u,v∈Rp

θs(u,v)≤1

〈Zu, v〉.

13



To see this, note that

‖Z‖∗∗,s = sup

{
〈Z,B〉HS : B ∈ Rp×p, {uk, vk} ⊂ Rp, B =

∑
k

uk ⊗ vk,
∑
k

θs(uk, vk) ≤ 1

}

= sup

{∑
k

〈Zuk, vk〉 : {uk, vk} ⊂ Rp,
∑
k

θs(uk, vk) ≤ 1

}

= sup

{
K∑
k=1

〈Zuk, vk〉 : K ≥ 1, {uk, vk}Kk=1 ⊂ Rp,

K∑
k=1

θs(uk, vk) ≤ 1

}
.

For any finite sequence {uk, vk}Kk=1 with
∑K

k=1 θs(uk, vk) ≤ 1, if we let k∗ = arg max1≤k≤K
〈Zuk,vk〉
θs(uk,vk)

and set ũ = uk∗√
θs(uk∗ ,vk∗ )

and ṽ = vk∗√
θs(uk∗ ,vk∗ )

, we will always have 〈Zũ, ṽ〉 ≥
∑K

k=1〈Zuk, uk〉.
Therefore,

‖Z‖∗∗,s = sup {〈Zu, v〉 : θs(u, v) ≤ 1}.

We can replace the supremum by a maximum because the objective function is continuous and the
constraint set is compact.

Returning to the optimization problem, note that a feasible point α for the dual problem gives
us a lower bound on the primal optimal value. If there exist B ∈ Rp×p, α ∈ Rn such that α is
feasible and the two objective functions are equal, then we know B is optimal for the primal problem.
More precisely, (B,α) is an optimal primal-dual pair if and only if

(a) the primal objective function at B equals the dual objective functions at α, and

(b) α is feasible, i.e.,
∥∥ 1
n

∑n
i=1 αiXi

∥∥∗
∗,s ≤ λ.

From the derivation of the dual problem above, (a) requires αi = yi − 〈Xi, B〉HS. Making this
substitution, setting the objective functions equal, and simplifying gives one direction of the following
result:

Lemma 4. B solves (6) if and only if both of the following hold:

(a) 1
n

∑n
i=1(yi − 〈Xi, B〉HS)〈Xi, B〉HS = λ‖B‖∗,s.

(b)
∥∥ 1
n

∑n
i=1(yi − 〈Xi, B〉HS)Xi

∥∥∗
∗,s ≤ λ.

Proof. We have already shown that these conditions are sufficient for optimality. To see the
other direction (that these conditions are necessary for optimality), note that Z := 1

n

∑n
i=1(yi −

〈Xi, B〉HS)Xi is the negative gradient of the empirical loss at B. Because condition (b) is equivalent
to

〈Zu, v〉 ≤ λθs(u, v) ∀u ∈ Rp,

if (b) does not hold, there exists some ū, v̄ ∈ Rp such that 〈Zū, v̄〉 > λθs(ū, v̄), and then we can
decrease the objective function by moving to B + εū⊗ v̄ for some sufficiently small ε > 0. Thus (b)
is a necessary condition for the optimality of B.

Now suppose (b) holds, but (a) does not. Condition (b) implies that 〈Z,B〉HS ≤ λ‖B‖∗,s, so we
must have 〈Z,B〉HS < λ‖B‖∗,s.

Let B =
∑

k uk ⊗ vk be an optimal factorization with respect to the definition of ‖B‖∗,s,
that is, such that ‖B‖∗,s =

∑
k θs(uk, vk) (we assume, for clarity, that an optimal factorization

exists—if not, we could use an approximation argument). There must be some uk, vk such that
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〈Zuk, vk〉 < λθs(uk, vk). Then, modifying B by replacing (uk, vk) with ((1− ε)uk, (1− ε)vk) for some
sufficiently small ε > 0 will decrease the objective function.

Note that the proof of Lemma 4 gives us an explicit way to improve the objective function
whenever one of the optimality conditions is not satisfied.

Applying our derivation to the factored optimization problem, we get the following result:

Corollary 1. B solves (6) and B =
∑

k uk ⊗ vk is an optimal factorization with respect to ‖·‖∗,s
(equivalently, {uk, vk} solve (8)) if and only if the following hold:

(a) For all k, 1
n

∑n
i=1(yi − 〈Xi, B〉HS)〈Xiuk, vk〉 = λθs(uk, vk).

(b)
∥∥ 1
n

∑n
i=1(yi − 〈Xi, B〉HS)Xi

∥∥∗
∗,s ≤ λ; equivalently, for all u, v ∈ Rp,

1

n

n∑
i=1

(yi − 〈Xi, B〉HS)〈Xiu, v〉 ≤ λθs(u, v).

Note that we have broken out condition (a) into individual equalities (rather than equating the
sums of each side); condition (b) allows us to do this. It is even easier to find a descent direction
when one of these conditions fails to hold, since the objective function of (8) already depends
explicitly on the vectors uk, vk.

Note that condition (a) is much easier to verify than condition (b). We refer to {uk, vk} as a
first-order stationary point if it satisfies condition (a), since this is equivalent to a zero subgradient
on the (nonzero) uk’s and vk’s (cf. Proposition 2 in [36]).

Although we are not focusing on sparse PCA here, it may be interesting to compare Corollary 1
to what we get for sparse PCA, particularly as PCA may be a fundamentally more difficult problem.
A dual problem to (7) is

arg max
Z∈Rp×p

− ‖Z‖ s.t ‖Σ̂− Z‖∗∗,s ≤ λ.

The following lemma gives (redundant) optimality conditions:

Lemma 5. P solves (7) if and only if ‖P‖∗ = 1 and there exists Z ∈ Rp×p such that

1. ‖Σ̂− Z‖∗∗,s ≤ λ,

2. 〈Σ̂− Z,P 〉HS = λ‖P‖∗,s,

3. 〈Z,P 〉HS = ‖Z‖ = ‖Z‖‖P‖∗, and

4. ‖Z‖ = 〈Σ̂, P 〉HS − λ‖P‖∗,s.

In the PCA case, the semidefinite version of the problem is somewhat simpler due to the fact
that the nuclear norm becomes a trace. If we solve

P̂ = arg min
P�0

− 〈Σ̂, P 〉HS + λΘs(P ) s.t. tr(P ) ≤ 1,

we get similar theoretical error guarantees as Theorem 2. Furthermore, P =
∑

k uk ⊗ uk solves this
optimization program and {uk} is an optimal factorization with respect to Θs if and only if P is
feasible and, for all u ∈ Rp.

〈Σ̂u, u〉+

(
λ
∑
k

θs(uk, uk)− 〈Σ̂, P 〉HS

)
‖u‖22 ≤ θs(u, u).
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5.2 A first factored algorithm, a computational snag, and a heuristic

The results of the previous section give a simple abstract recipe for finding a global optimum of (6):

1. We optimize (8) over a fixed number r of rank-1 factors (i.e., vectors u1, . . . , ur, v1, . . . , vr)
until we reach a first-order stationary point (by satisfying condition (a) in Corollary 1). Note
that whenever condition (a) is not satisfied, it is easy to find a descent direction, since we
can simply rescale the vectors uk, vk in a similar manner to the second part of the proof of
Lemma 4.

2. At a first-order stationary point, if condition (b) in Corollary 1 holds, we have reached the
global minimum. Otherwise, as in the first part of the proof of Lemma 4, there exists ũ, ṽ ∈ Rp

such that 1
n

∑n
i=1(yi− 〈Xi, B〉HS)〈Xiũ, ṽ〉 > λθs(ũ, ṽ). We set (ur+1, vr+1) = (εũ, εṽ) for ε > 0

small enough to decrease the objective function and go back to step 1.

The algorithm is guaranteed to terminate with a finite r by [36, Theorem 2].
The most difficult part to implement is step 2. Checking condition (b) requires maximizing

a bilinear form on vectors u, v under a bound on θs(u, v). If we could maximize this for general
bilinear forms, we could also solve sparse PCA (see Section 5.1), so we suspect it is not possible.
However, this does not preclude positive results that exploit the particular structure of the phase
retrieval problem.

To implement a practical algorithm, we take a very simple shortcut: instead of checking condition
(b) over all vectors u, v ∈ Rp, we check it over 1-sparse vectors. We simply calculate whether any
element of 1

n

∑n
i=1(yi−〈Xi, B〉HS)Xi is greater than (1 + 1/

√
s)2λ. Although we have not yet found

a robust theoretical justification, we will see in the next section that this heuristic works reasonably
well in practice. We summarize our high-level practical algorithm in Algorithm 1.

Algorithm 1 High-level sparse phase retrieval algorithm

1: r ← 1
2: Initialize u1, v1 (e.g., some spectral algorithm)
3: while not Converged do
4: Optimize (8) over {u1, . . . ur}, {v1, . . . , vr} with first-order method until condition (a) in

Corollary 1 is satisfied
5: Z ← 1

n

∑n
i=1(yi − 〈Xi, B〉HS)Xi, where B =

∑r
k=1 uk ⊗ vk

6: if Zij > (1 + 1/
√
s)2λ for any i, j ∈ {1, . . . , p} then

7: r ← r + 1
8: ur+1 ← εej , vr+1 ← εei, where ε > 0 is sufficiently small to decrease objective function.
9: else

10: Converged ← true
11: end if
12: end while
13: return {u1, . . . , ur}, {v1, . . . , vr}

5.3 Simulation results

We implemented Algorithm 1 in MATLAB and ran a variety of simulations to illustrate its
performance with respect to both sample complexity and noise performance. The interested reader
can view our code6 to see more details, but some of the more salient features are the following:

6https://github.com/admcrae/spr2021
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(a) Our algorithm
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(b) SWF [9]
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(c) GAMP [13]
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(d) SPARTA [8]
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(e) CoPRAM [11]

Figure 1: Phase transition plots. Colors represent 80% quantile error over 20 trials (darker colors
correspond to higher error). We used p = 20,000, ‖β∗‖2 = 1, and σ = 0.05. All algorithms were run
on the same data.
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(a) Gaussian noise (‖β∗‖2 = 1, σ = 0.2)

0 5 10 15 20 25 30 35 40

s

0

0.5

1

1.5

2

2.5

E
rr

or

80% quantile error
Curve fit

(b) Poisson noise (‖β∗‖2 = 10)

Figure 2: Plot of ‖β̂ − β∗‖2 vs. s (80% quantile over 10 trials). All simulations use p = 8,000 and

n = 4,000. Blue circles are actual data; the red curves are of the form c
√
s log ep

s , where the scaling

factor c is chosen to give minimum mean absolute deviation.

• Line 5 of Algorithm 1 is implemented with alternating minimization over U = [u1 · · ·ur] ∈ Rp×r

and V = [v1 · · · vr] ∈ Rp×r.

• After each alternating minimization step, we “rebalance” U and V (i.e., rescale each uk, vk to
force θs(uk, uk) = θs(uk, vk) = θs(vk, vk)).

• Each minimization problem over U or V is convex, and we solve it with an accelerated proximal
gradient descent algorithm.

• The proximal step requires solving a convex problem of the form

arg min
y∈Rp

〈x, y〉+
1

2
‖y‖22 + a‖y‖2 + b‖y‖1

for arbitrary x ∈ Rp and a, b > 0. This can be solved in closed form by soft-thresholding x
with threshold b and then rescaling.

All of our simulations used i.i.d. Gaussian measurement vectors x ∼ N (0, Ip).

1. Figure 1 shows phase transition diagrams of performance versus sample size n and sparsity s
for our algorithm and a variety of alternatives. Note that qualitatively, all these algorithms
have similar performance in terms of sample complexity. Interestingly, all of them appear only
to require (within a log factor) a number of samples linear in the sparsity s. This demonstrates
a gap between the empirical performance of all these algorithms and the best theoretical
guarantees that have been proved so far.

2. Figure 2 shows plots of the error versus sparsity s for both Gaussian noise and Poisson noise.
Note that in both cases, the error roughly follows the predicted

√
s log(p/s) scaling.
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6 Conclusion

We have shown that estimators for sparse phase retrieval and sparse PCA obtained by solving a
convex program ((6) for sparse phase retrieval and (7) for sparse PCA) with the abstract mixed
atomic norm (5) as a regularizer satisfy optimal statistical guarantees in terms of sample complexity
and error. For sparse phase retrieval, we have derived a practical heuristic algorithm whose
performance matches that of existing state-of-the-art algorithms.

Our work suggests new methods for analyzing these problems (and others with similar sparse
factored structure, such as sparse blind deconvolution). It also suggests interesting new research
directions in sparse recovery and in optimization. For example, it would be very useful to study
why our heuristic approach appears to work well for sparse phase retrieval as well as whether it
is possible to do even better. A related problem is to prove that sparse phase retrieval has linear
sample complexity with practical algorithms (or that it doesn’t, along with why current empirical
results seem to suggest otherwise). Similarly, the atomic matrix norm (along with other similar
norms) invites further analysis, particularly in how well we can optimize it (where this may depend
on the structure of the problem in which it is used). The interplay between statistical guarantees
and computational complexity theory (e.g., in sparse PCA) may be very interesting here.
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A Detailed analysis of mixed norm

In this section, we explore several important properties of the mixed norm ‖·‖∗,s.
First, we show that matrices with small mixed norm can be written as a convex combination of

sparse rank-1 matrices.

Lemma 6. For any matrix A, we can write A =
∑
aiui ⊗ vi, where each ui and vi has unit `2

norm and is s-sparse, and
∑
|ai| ≤ ‖A‖∗,s.

Consequently, for any matrix Z,

sup
‖A‖∗,s≤1

〈Z,A〉HS ≤ sup
‖u‖2,‖v‖2≤1
‖u‖0,‖v‖0≤s

〈Zu, v〉.

Proof. The consequence follows from the first statement immediately by the fact that any unit-
atomic-norm A is in the convex hull of rank-1 s-sparse atoms. We now prove the first statement of
the Lemma.

Because ‖·‖∗,s is defined as an atomic norm over rank-1 atoms, it suffices to prove the result for
rank-1 A. Therefore, we will show that any rank-1 matrix x⊗ y can be written as x⊗ y =

∑
ui⊗ vi,

where each ui and vi is s-sparse, and
∑
‖ui‖2‖vi‖2 ≤ θs(x, y).

Indeed, a standard result from sparsity theory (see, e.g., Exercise 10.3.7 in [1]) says that any
vector z can be written as z =

∑
zi, where each zi is s-sparse, and

∑
‖zi‖2 ≤ ‖z‖2 + 1√

s
‖z‖1.

Applying this to both x and y, we have

x⊗ y =

(∑
i

xi

)∑
j

yj

 =
∑
i,j

xi ⊗ yj ,

where each xi and yj is s-sparse, and

∑
i,j

‖xi‖2‖yj‖2 =

(∑
i

‖xi‖2

)∑
j

‖yj‖2

 ≤ (‖x‖2 +
‖x‖1√
s

)(
‖y‖2 +

‖y‖1√
s

)
= θs(x, y).

To prove Lemma 1, we need to find a suitable subgradient of ‖·‖∗,s at the point B = β ⊗ β.
Let I ⊂ {1, . . . , p} denote the indices for which the entries of β are nonzero. With some abuse
of notation, we also write I as the subspace of Rp×p whose matrices are zero except at entries
(i, j) ∈ I × I. We also denote T = {x ⊗ β + β ⊗ y : x, y ∈ Rp}. We will denote the orthogonal
projections onto these subspaces and various orthogonal complements and intersections by PI , PT ,
PT∩I⊥ , etc. We will also on occasion denote the orthogonal projection onto span{β} ⊂ Rp or its
orthogonal complement (in I) by Pβ, Pβ⊥ , Pβ⊥∩I , etc.

According to [36, Proposition 1], a matrix W ∈ ∂‖B‖∗,s if the following two properties hold:

1. 〈Wβ, β〉 = θs(β, β), and

2. 〈Wu, v〉 ≤ θs(u, v) for all u, v ∈ Rp.

It is easy to check that the matrix Wβ := wβ ⊗ wβ, where wβ := β
‖β‖2 + 1√

s
signβ, is a subgradient.

However, as with the subgradients of the ordinary nuclear norm, a much broader set of matrices
satisfies these properties:
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Lemma 7. Suppose β is s-sparse, and let B = β ⊗ β. Any matrix of the form W = Wβ +
W⊥ ∈ ∂‖B‖∗,s where W⊥ can be any matrix in one of the following three families (or any convex
combination thereof):

1. W⊥ = 1√
s
(wβ ⊗ ũ+ ṽ ⊗ wβ), where ũ, ṽ ∈ I⊥ and ‖ũ‖∞, ‖ṽ‖∞ ≤ 1.

2. W⊥ ∈ T⊥ and ‖W‖ ≤ 1.

3. W⊥ = PT⊥∩I⊥(W̃ ) for W̃ satisfying 〈W̃u, v〉 ≤ 1
5θs(u, v) for all u, v ∈ Rp.

Proof. For each case, note that 〈W⊥β, β〉 = 0, so we only need to show that 〈Wu, v〉 ≤ θs(u, v) for
all u, v ∈ Rp.

We will use the following simple fact many times: for any vector u ∈ Rp,

|〈wβ, u〉| ≤ ‖Pβ(u)‖2 +
1√
s
‖PI(u)‖1.

We prove each case separately.

Case 1: Let ũ, ṽ ∈ I⊥ with ‖ũ‖∞, ‖ṽ‖∞ ≤ 1. Let

W = wβ ⊗ wβ +
1√
s

(wβ ⊗ ũ+ ṽ ⊗ wβ).

Then, for any u, v ∈ Rp,

〈Wu, v〉 = 〈wβ, u〉〈wβ, v〉+
1√
s

(〈wβ, v〉〈ũ, u〉+ 〈ṽ, v〉〈wβ, u〉)

≤
(
‖Pβ(u)‖2 +

1√
s
‖PI(u)‖1

)(
‖Pβ(v)‖2 +

1√
s
‖PI(v)‖1

)
+

(
‖Pβ(v)‖2 +

1√
s
‖PI(v)‖1

)
‖PI⊥(u)‖1√

s

+

(
‖Pβ(u)‖2 +

1√
s
‖PI(u)‖1

)
‖PI⊥(v)‖1√

s

≤
(
‖Pβ(u)‖2 +

1√
s
‖u‖1

)(
‖Pβ(v)‖2 +

1√
s
‖v‖1

)
≤ θs(u, v),

where the penultimate inequality uses the fact that ‖z‖1 = ‖PI(z)‖1 + ‖PI⊥(z)‖1 for any vector z.

Case 2: LetW⊥ ∈ T⊥ such that ‖W‖ ≤ 1. Let u, v ∈ Rp. Note that 〈W⊥u, v〉 ≤ ‖Pβ⊥(u)‖2‖Pβ⊥(v)‖2.
Then

〈Wu, v〉 = 〈wβ, u〉〈wβ, v〉+ 〈W⊥u, v〉

≤
(
‖Pβ(u)‖2 +

1√
s
‖PI(u)‖1

)(
‖Pβ(v)‖2 +

1√
s
‖PI(v)‖1

)
+ ‖Pβ⊥(u)‖2‖Pβ⊥(v)‖2

≤ θs(u, v),

where the last inequality uses that fact that

‖Pβ(u)‖2‖Pβ(v)‖2 + ‖Pβ⊥(u)‖2‖Pβ⊥(v)‖2 ≤ ‖u‖2‖v‖2.

21



Case 3: Let W̃ ∈ Rp×p satisfy 〈W̃u, v〉 ≤ 1
5θs(u, v). Let W = Wβ + PT⊥∩I⊥(W̃ ). Then, for

u, v ∈ Rp,

〈Wu, v〉 = 〈wβ, u〉〈wβ, v〉+ 〈PT⊥∩I⊥(W̃ ), v ⊗ u〉HS

= 〈wβ, u〉〈wβ, v〉+ 〈W̃ ,PT⊥∩I⊥(v ⊗ u)〉HS

= 〈wβ, u〉〈wβ, v〉+ 〈W̃PI⊥(u),Pβ⊥∩I(v)〉+ 〈W̃Pβ⊥∩I(u),PI⊥(v)〉+ 〈W̃PI⊥(u),PI⊥(v)〉

≤
(
‖Pβ(u)‖2 +

1√
s
‖PI(u)‖1

)(
‖Pβ(v)‖2 +

1√
s
‖PI(v)‖1

)
+

1

5

(
‖PI⊥(u)‖2 +

1√
s
‖PI⊥(u)‖1

)(
‖Pβ⊥∩I(v)‖2 +

1√
s
‖Pβ⊥∩I(v)‖1

)
+

1

5

(
‖Pβ⊥∩I(u)‖2 +

1√
s
‖Pβ⊥∩I(u)‖1

)(
‖PI⊥(v)‖2 +

1√
s
‖PI⊥(v)‖1

)
+

1

5

(
‖PI⊥(u)‖2 +

1√
s
‖PI⊥(u)‖1

)(
‖PI⊥(v)‖2 +

1√
s
‖PI⊥(v)‖1

)
≤
(
‖Pβ(u)‖2 +

1√
s
‖PI(u)‖1

)(
‖Pβ(v)‖2 +

1√
s
‖PI(v)‖1

)
+

2

5

(
‖Pβ⊥(u)‖2 +

1√
s
‖PI⊥(u)‖1

)
‖Pβ⊥(v)‖2

+
2

5
‖Pβ⊥(u)‖2

(
‖Pβ⊥(v)‖2 +

1√
s
‖PI⊥(v)‖1

)
+

1

5

(
‖Pβ⊥(u)‖2 +

1√
s
‖PI⊥(u)‖1

)(
‖Pβ⊥(v)‖2 +

1√
s
‖PI⊥(v)‖1

)
≤
(
‖Pβ(u)‖2 +

1√
s
‖PI(u)‖1

)(
‖Pβ(v)‖2 +

1√
s
‖PI(v)‖1

)
+

(
‖Pβ⊥(u)‖2 +

1√
s
‖PI⊥(u)‖1

)(
‖Pβ⊥(v)‖2 +

1√
s
‖PI⊥(v)‖1

)
.

To bound this last expression, we consider the terms that we get from multiplying everything out.
Note again that

‖Pβ(u)‖2‖Pβ(v)‖2 + ‖Pβ⊥(u)‖2‖Pβ⊥(v)‖2 ≤ ‖u‖2‖v‖2,
and also

‖PI(u))‖1‖PI(v)‖1 + ‖PI⊥(u)‖1‖PI⊥(v)‖1 ≤ ‖u‖1‖v‖1.
For the cross-terms, note that

‖Pβ(u)‖2‖PI(v)‖1 + ‖Pβ⊥(u)‖2‖PI⊥(v)‖1 ≤ min
c>0

c
‖Pβ(u)‖22 + ‖Pβ⊥(u)‖22

2
+

1

c

‖PI(v)‖21 + ‖PI⊥(v)‖21
2s

≤ min
c>0

(
c
‖u‖22

2
+

1

c

‖v‖21
2s

)
=

1√
s
‖u‖2‖v‖1.

The similar inequality holds for u and v reversed. Therefore,

〈Wu, v〉 ≤
(
‖u‖2 +

1√
s
‖u‖1

)(
‖v‖2 +

1√
s
‖v‖1

)
= θs(u, v).
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With this, we can prove Lemma 1.

Proof of Lemma 1. Let A ∈ Rp×p. We choose a subgradient W ∈ ∂‖B‖∗,s as follows: Let

W = Wβ +
1

10

(
W⊥1 + 4W⊥2 + 5W⊥3

)
,

where we choose W⊥i , i = 1, 2, 3, as follows:

1. If PT∩I⊥(A) = β ⊗ u+ v ⊗ β where u, v ∈ I⊥, choose

W⊥1 =
1√
s

(wβ ⊗ ũ+ ṽ ⊗ wβ),

where ũ, ṽ ∈ I⊥, ‖ũ‖∞, ‖ṽ‖∞ ≤ 1 and 〈ũ, u〉 = ‖u‖1, 〈ṽ, v〉 = ‖v‖1. Then

〈W⊥1 u, v〉 =

(
‖β‖2 +

‖β‖1√
s

)
‖u‖1 + ‖v‖1√

s

≥ θs(β, u) + θs(β, v)− 2‖β‖2(‖u‖2 + ‖v‖2)
≥ ‖PT∩I⊥(A)‖∗,s − 2

√
2‖PT∩I⊥(A)‖F

≥ ‖PT∩I⊥(A)‖∗,s − 2
√

2‖A‖F .

2. Choose W⊥2 ∈ T⊥∩I with ‖W⊥2 ‖ ≤ 1 such that 〈W⊥2 , A〉HS = ‖PT⊥∩I(A)‖∗ ≥ 1
4‖PT⊥∩I(A)‖∗,s.

This last norm inequality holds because every vector in I is s-sparse.

3. Choose W⊥3 according to Lemma 7 such that 〈W⊥3 , A〉HS = 1
5‖PT⊥∩I⊥(A)‖∗,s.

Then, using the fact that ‖Wβ‖F = ‖wβ‖22 ≤ 4, we have

〈W,A〉HS = 〈Wβ, A〉HS +
1

10
〈W⊥1 , A〉HS +

4

10
〈W⊥2 , A〉HS +

5

10
〈W⊥3 , A〉HS

≥ −4‖A‖F −
1

10
‖PT∩I(A)‖∗,s +

1

10
‖PT∩I(A)‖∗,s

+
1

10

(
‖PT∩I⊥(A)‖∗,s − 2

√
2‖A‖F

)
+

4

10
· 1

4
‖PT⊥∩I(A)‖∗,s +

5

10
· 1

5
‖PT⊥∩I⊥(A)‖∗,s

≥ 1

10
‖A‖∗,s −

(
4 +

√
2

5

)
‖A‖F −

1

10
‖PT∩I(A)‖∗,s

≥ 1

10
‖A‖∗,s − 5‖A‖F ,

where the last inequality uses the fact that ‖PT∩I(A)‖∗,s ≤ 4‖PT∩I(A)‖∗ ≤ 4
√

2‖A‖F .

B Empirical process and restricted lower isometry bounds

Proof of Lemma 2. By Lemma 6, it suffices to show

sup
‖u‖2=‖v‖2=1
‖u‖0,‖v‖0≤s

〈Zu, v〉 . σ

√
s log(ep/s)

n
+

M

n1−c

(
s log

ep

s

)η+1

where, again, Z = 1
n

∑
iGi.

23



We first consider the random variable 〈Zu, v〉 for fixed unit-norm u and v. We have

〈Zu, v〉 =
1

n

n∑
i=1

〈Giu, v〉.

This is the sum of independent copies of the zero-mean random variable 〈Gu, v〉. By assumption,

E〈Gu, v〉2 ≤ σ2

and, for α ≥ 3,
‖〈Gu, v〉‖α ≤Mαη+1.

Then, by [40, Theorem 3.1], for any δ > 0, with probability at least 1− δ,

〈Zu, v〉 . σ

√
log δ−1

n
+
Mαη+1

n1−1/α
δ−1/α.

We then use a covering argument similar to that in [41]. Let J1 and J2 be any two subspaces of
s-sparse vectors in Rp. The unit sphere SJi in Ji can be covered within a resolution of 1/4 by at
most 9s points ([1, Corollary 4.2.13], for example). Let NJ1 ,NJ2 be optimal 1/4-covering sets. For
each x ∈ SJi , let ni(x) be the closest point in NJi . Then

sup
u∈SJ1
v∈SJ2

〈Zu, v〉 = sup
u∈SJ1
v∈SJ2

〈Zn1(u), n2(v)〉+ 〈Z(u− n1(u)), v〉+ 〈Zn1(u), v − n2(v)〉

≤ max
u∈NJ1
v∈NJ2

〈Zu, v〉+
1

2
sup
u∈SJ1
v∈SJ2

〈Zu, v〉,

so
sup
u∈SJ1
v∈SJ2

〈Zu, v〉 ≤ 2 max
u∈NJ1
v∈NJ2

〈Zu, v〉.

Let
N =

⋃
s-sparse J1, J2

NJ1 ×NJ2 .

Clearly,

sup
‖u‖2=‖v‖2=1
‖u‖0,‖v‖0≤s

〈Zu, v〉 = sup
s-sparse J1, J2

sup
u∈SJ1
v∈SJ2

〈Zu, v〉

≤ 2 max
(u,v)∈N

〈Zu, v〉.

There are
(
p
s

)
≤
( ep
s

)s
s-sparse subspaces of Rp, so |N | ≤

(
9s
( ep
s

)s)2
.

By a union bound and substituting δ above with δ/|N |, we then have, for any δ > 0, with
probability at least 1− δ,

sup
‖u‖2=‖v‖2=1
‖u‖0,‖v‖0≤s

〈Zu, v〉 . σ

√
s log(ep/s)

n
+

log δ−1

n
+
Mαη+1

n1−1/α

(ep
s

)2s/α
δ−1/α.

24



Taking δ = e−s(s/p)s and α ≈ s log Cp
s , we get, with probability at least 1− e−s(s/p)s,

sup
‖u‖2=‖v‖2=1
‖u‖0,‖v‖0≤s

〈Zu, v〉 . σ

√
s log(ep/s)

n
+

M

n1−c

(
s log

ep

s

)η+1
.

We will need the following variant of Lemma 2 for both the sparse PCA results and our restricted
lower isometry lemma:

Lemma 8. Let G1, . . . , Gn be i.i.d. copies of a random matrix G ∈ Rp×p, where, for all u, v ∈ Rp,
〈Gu, v〉 has zero mean,

E〈Gu, v〉2 . ‖u‖22‖v‖22
and 〈Gu, v〉 is sub-exponential in the sense that ‖〈Gu, v〉‖α . α‖u‖2‖v‖2 for all α ≥ 2.

Let

Z =
1

n

n∑
i=1

Gi

For any integer s ≥ 1, with probability at least 1− e−s(s/p)s,

sup
‖A‖∗,s≤1

〈Z,A〉HS .

√
s log(ep/s)

n
+
s log(ep/s)

n
.

Furthermore, for n & s log ep
s ,

E sup
‖A‖∗,s≤1

〈Z,A〉HS .

√
s log(ep/s)

n
.

We omit the proof, as it is nearly identical to the proof of Lemma 2. We simply replace the
Fuk-Nagaev inequality with a Bernstein inequality. With this, we can prove our restricted lower
isometry lemma:

Proof of Lemma 3. If X = x⊗ x, by a straightforward calculation, for any p× p matrix A,

E〈X,A〉2HS =
∑
i 6=j

AiiAjj E(x(i))2(x(j))2 + 2
∑
i 6=j

A2
ij E(x(i))2(x(j))2 +

∑
i

A2
iiE(x(i))4.

Using the facts that E(x(i))2 = 1 for each i and x(i) and x(j) are independent when i 6= j, we have

E〈X,A〉2HS =
∑
i,j

AiiAjj + 2
∑
i 6=j

A2
ij +

∑
i

A2
ii(E(x(i))4 − 1)

≥ (trA)2 + min{2,E(x1)4 − 1}‖A‖2F
& ‖A‖2F .

The last inequality uses the assumption that E(x(1))4 > 1.
By the Hanson-Wright inequality for sub-Gaussian vectors [42], we have

E(〈X,A〉2HS −E〈X,A〉2HS)2 . ‖A‖4F ,
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so E〈X,A〉4HS . (E〈X,A〉2HS)2. By the Paley-Zygmund inequality, we then have, for some c1, c2 > 0,

inf
A∈Rp×p

P(|〈X,A〉HS| ≥ c1‖A‖F ) ≥ c2.

The remainder of the proof is a small-ball argument ([43]; see also [44] for an excellent introduction).
Let

S = {A ∈ Rp×p : ‖A‖F = 1; ‖A‖∗,s ≤ C}.

We will prove that

inf
A∈S

1

n

n∑
i=1

〈Xi, A〉2HS ≥ c

with high probability for some constant c > 0.
By [44, Proposition 5.1], for any t > 0, we have, with probability at least 1− e−t2/2,

inf
A∈S

√√√√ 1

n

n∑
i=1

〈Xi, A〉2HS & c1c2 − 2E sup
A∈S

(
1

n

n∑
i=1

εi〈Xi, A〉HS

)
− 1√

n
c1t,

where ε1, . . . , εn are i.i.d. Rademacher random variables independent of everything else.
Set Z = 1

n

∑n
i=1 εiXi, and note that Gi = εiXi, i = 1, . . . , n, satisfy the requirements of Lemma 8.

Then

E sup
A∈S
〈Z,A〉HS . C

√
s log(ep/s)

n
.

Choosing n large enough and t =
√

2bn for small enough b > 0 completes the proof.

C Proof of sparse PCA error bound

Proof of Theorem 2. By a similar argument to that in the proof of Theorem 1 in Section 4.1, the
solution P̂ to (7) satisfies

〈Σ̂,−H〉HS ≤ λ〈W,−H〉HS

for H = P̂ − P1 and any W ∈ ∂‖P1‖∗,s. Choosing W according to Lemma 1 (as in the proof of
Theorem 1), we obtain

〈Σ̂, H〉HS ≥ λ
(

1

10
‖H‖∗,s − 5‖H‖F

)
.

We first consider the difference between 〈Σ̂, H〉HS and 〈Σ, H〉HS. Since the distribution of Σ̂ is
independent of µ, we assume, without loss of generality, that µ = 0. We write xi = Σ1/2zi, where

zi ∼ N (0, Ip), and Σ1/2 =
√
σ1P1 + Σ

1/2
2 . We therefore want to bound

〈Σ̂− Σ, H〉HS = 〈Σ1/2(Z − Ip − z̄ ⊗ z̄)Σ1/2, H〉HS,

where Z = 1
n

∑n
i=1 zi ⊗ zi and z̄ = 1

n

∑n
i=1 zi.

Let H⊥ denote the component of H orthogonal (in Hilbert-Schmidt inner product) to P1. We
have

H = 〈H,P1〉HSP1 +H⊥.
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First, for all t ≤ n, with probability at least 1− e−t,∣∣∣〈Σ̂− Σ, P1〉HS

∣∣∣ = σ1

∣∣∣∣∣ 1n
n∑
i=1

(〈zi, v1〉2 − 1)− 〈z̄, v1〉2
∣∣∣∣∣

≤ σ1

∣∣∣∣∣ 1n
n∑
i=1

(〈zi, v1〉2 − 1)

∣∣∣∣∣+ 〈z̄, v1〉2

. σ1

(√
t

n
+
t

n

)

. σ1

√
t

n
,

where the second-to-last inequality follows from applying a Bernstein inequality to the sum and an
ordinary Gaussian tail bound to the N (0, 1/n) random variable 〈z̄, v1〉.

To analyze the remainder, denote the portion of Σ̂ orthogonal to P1 as

Σ̂⊥ = Σ̂− 〈Σ̂, P1〉HSP1

=
1

n

n∑
i=1

(√
σ1〈zi, v1〉(v1 ⊗ (Σ

1/2
2 zi) + (Σ

1/2
2 zi)⊗ v1) + (Σ

1/2
2 zi)

⊗2
)
− (Σ

1/2
2 z̄)⊗2.

Note that for each i, 〈v1, zi〉 is independent of Σ
1/2
2 zi. By Lemma 8, with probability at least

1− 2e−s(s/p)s,

sup
‖A‖∗,s≤1

〈Σ̂⊥ + (Σ
1/2
2 z̄)⊗2 − Σ2, A〉HS ≤ 2 sup

‖A‖∗,s≤1

〈
1

n

n∑
i=1

√
σ1〈zi, v1〉v1 ⊗ (Σ

1/2
2 zi), A

〉
HS

+ sup
‖A‖∗,s≤1

〈
1

n

n∑
i=1

(Σ
1/2
2 zi)

⊗2 − Σ2, A

〉
HS

. (
√
σ1σ2 + σ2)

(√
s log(ep/s)

n
+
s log(ep/s)

n

)

.
√
σ1σ2

√
s log(ep/s)

n
.

Lemma 8 also gives, with probability at least 1− e−s(s/p)s,

sup
‖A‖∗,s≤1

〈(Σ1/2
2 z̄)⊗2, A〉HS ≤ sup

‖A‖∗,s≤1
〈(Σ1/2

2 z̄)⊗2 −E(Σ
1/2
2 z̄)⊗2, A〉HS + sup

‖A‖∗,s≤1
〈E(Σ

1/2
2 z̄)⊗2, A〉HS

. σ2

√
s log(ep/s)

n
.

Therefore,

sup
‖A‖∗,s≤1

〈Σ̂⊥ − Σ2, A〉HS .
√
σ1σ2

√
s log(ep/s)

n

with probability at least 1− 3e−s(s/p)s.
Let λ be chosen with a large enough constant to ensure that on this event,

sup
‖A‖∗,s≤1

〈Σ̂⊥ − Σ2, A〉HS ≤
λ

10
.
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Then

|〈Σ̂⊥ − Σ2, H〉HS| ≤
λ

10
‖H‖∗,s.

We then have

σ1〈P1, H〉HS + 〈Σ2, H〉HS = 〈Σ, H〉HS

= 〈Σ̂, H〉HS + 〈Σ− Σ̂, H〉HS

≥ λ
(

1

10
‖H‖∗,s − 5‖H‖F

)
− σ1

√
t

n
|〈H,P1〉HS| −

λ

10
‖H‖∗,s

= −5λ‖H‖F − σ1
√
t

n
|〈H,P1〉HS|.

Note that
〈H,P1〉HS = 〈P̂ , P1〉HS − 1 ≤ 0,

and 〈Σ2, H〉HS = 〈Σ2, P̂ 〉HS, so

σ1

(
1−

√
t

n

)
(〈P̂ , P1〉HS − 1) + 〈P̂ ,Σ2〉HS & −λ‖H‖F .

Note that 〈P̂ ,Σ2〉HS ≤ σ2‖PT⊥(P̂ )‖∗, where T⊥ is (similarly to before) the matrix subspace
with rows and columns orthogonal to v1. Note that 1 ≥ ‖P̂‖∗ ≥ 〈P̂ , P1〉HS + ‖PT⊥(P̂ )‖∗, so
〈P̂ ,Σ2〉HS ≤ σ2(1− 〈P̂ , P1〉HS).

Combining this with the previous inequality and requiring n &
(

σ1
σ1−σ2

)2
t, we have

(σ1 − σ2)(1− 〈P̂ , P1〉HS) .

(
σ1

(
1−

√
t

n

)
− σ2

)
(1− 〈P̂ , P1〉HS) . λ‖H‖F .

To bound ‖H‖F , note that we can write

P̂ = av1 ⊗ v1 + v1 ⊗ u+ w ⊗ v1 + PT⊥(P̂ ),

where a = 〈P̂ , P1〉HS and u,w ⊥ v1. Then

1 ≥ ‖P̂‖2∗ ≥ ‖P̂‖2F = a2 + ‖u‖22 + ‖w‖22 + ‖PT⊥(P̂ )‖2F ,

and therefore

‖H‖2F = (1− a)2 + ‖u‖22 + ‖w‖22 + ‖PT⊥(P̂ )‖2F
≤ (1− a)2 + 1− a2

= 2(1− a)

= 2(1− 〈P̂ , P1〉HS).

From this, we have (σ1 − σ2)‖H‖2F . λ‖H‖F , from which the result immediately follows.
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D Proof of Poisson variance/moment bounds

If x satisfies Assumption 1 and, conditioned on x, y ∼ Poisson(〈x, β∗〉2), then, for unit-norm u ∈ Rp,

E ξ2〈x, u〉4 = E
[
E[ξ2 | x]〈x, u〉4

]
= E〈x, β∗〉2〈x, u〉4

. ‖β∗‖22.

Also,

‖ξ〈x, u〉2‖α =
(
E
∣∣ξ〈x, u〉2∣∣α)1/α

=
(
E
[
E[|ξ|α | x]|〈x, u〉|2α

])1/α
.
√
α
(
E|〈x, β∗〉|α|〈x, u〉|2α

)1/α
+ α‖〈x, u〉2‖α

. α2(‖β∗‖2 + 1),

where the first inequality uses the standard Poisson centered moment bound

‖Z −EZ‖α .
√
αλ+ α

if Z ∼ Poisson(λ).
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