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Abstract

In an iterated non-cooperative game, if all the players act to maximize their individual accumulated payoff, the system as a
whole usually converges to a Nash equilibrium that poorly benefits any player. Here we show that such an undesirable
destiny is avoidable in an iterated Rock-Paper-Scissors (RPS) game involving two rational players, X and Y. Player X has the
option of proactively adopting a cooperation-trap strategy, which enforces complete cooperation from the rational player Y
and leads to a highly beneficial and maximally fair situation to both players. That maximal degree of cooperation is
achievable in such a competitive system with cyclic dominance of actions may stimulate further theoretical and empirical
studies on how to resolve conflicts and enhance cooperation in human societies.
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Introduction

The solution concept of Nash equilibrium (NE) plays a

fundamental role both in classic game theory and in evolutionary

game theory [1–4]. This concept is developed under the

assumption that the players of a game system are sufficiently

rational, so that they are able to learn accurately the strategies of

the competing players and to optimize their own strategy

accordingly. A Nash equilibrium is then a point in the strategy

space of the game system such that any single player is unable to

achieve better performance by changing her/his own strategy in

any arbitrary way.

Many non-cooperative games have only a unique NE. When

such a game is played by highly rational players who act to

maximize their individual accumulated payoff, it is unavoidable

that the system will sooner or later converge to this unique

equilibrium situation. Unfortunately, however, it is usually the case

that the NE of a non-cooperative game is an unfavorable or even

miserable destiny for all the players. Let’s consider the two-player

Prisoner’s Dilemma (PD) game as a simple example. The

cooperative situation of both players choosing not to confess is

much better than the defection situation of both players choosing

to confess, but the latter is the unique NE of this game while the

former is not [5]. The Nash equilibrium theory therefore predicts

that cooperation is unlikely to sustain when rational players face

the conflict between self-interest and group benefit. Yet cooper-

ation is actually a ubiquitous phenomenon of human society at all

levels, and it is also widely observed in various biological systems.

Researchers have been puzzled by these facts very much for many

years, and they have proposed a long list of microscopic

mechanisms trying to explain the promotion and maintenance of

cooperation [6–8].

In this paper we study the issue of cooperation in the itererated

two-player Rock-Paper-Scissors (RPS) game, which is a funda-

mental non-cooperative game with cyclic dominance among its

action choices (namely Rock beats Scissors, Scissors beats Paper,

and Paper in turn beats Rock), see Fig. 1. This game has been

widely used to study competition phenomena in society and

biology, especially species diversity and pattern formation (see, for

example, references [9–12]). While the NE theoretical framework

assumes that the rational players of such a game behave passively
in the sense that they try to maximize individual gains by making

best responses to the inferred/experienced strategy of the

opponent, we assume that one of the players might act more

proactively. An intelligent and rational player may ask the

following question: how should I design my own strategy so that

my rational opponent(s), in best response to me, for sure will adopt

certain strategy that is most beneficial to me? In later discussions

we refer to such a strategy as a cooperation-trap (CT) strategy, as it

has the effect of trapping an opponent in a cooperation state.

When optimized, such a CT strategy offers high and maximally

fair accumulated payoffs to both players.

In a literature search for related studies, we found that an early

paper of Grofman and Pool [13] investigated cooperation in the

PD game from the same angle of intelligent design. In this pioneer

but largely forgotten paper, the authors proved that a partial Tit-

for-Tat strategy [14] has the potential of enforcing cooperation in

the two-player iterated PD game. The Win-stay, Lose-shift

strategy [15,16] can also be analyzed in a similar way.

The present effort can be regarded as an extension of the

Grofman-Pool theory to the iterated RPS game, which has the
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additional difficulty of having more than two action choices that

are related by a rotation symmetry (see Fig. 1B). This same

theoretical framework may also be applicable to many other two-

player iterated non-cooperative games, and it may serve as a

guiding principle of designing fair solutions or strategies for the

purpose of resolving conflicts and enhancing cooperation in

human societies.

Results

The Rock-Paper-Scissors game
Consider two players X and Y playing the RPS game for an

indefinite number of rounds. At every game round each player can

choose one action among three candidate actions R (rock), P
(paper) and S (scissors). This game has only a single parameter, the

payoff a (aw1) of the winning action (see Fig. 1A). For example, if

the player X chooses action R in one game round and her

opponent Y chooses action S, then X wins with payoff a and Y

loses and gets zero payoff; if the competition is a tie with both

players choosing the same action, each player gets unit payoff.

When aw1 the system has only a unique NE and it is mixed-

strategy in nature, namely each player chooses the three actions

with equal probability 1=3 at every game round independently of

each other and of the prior action choices [2]. In this mixed-

strategy NE the expected payoff per round (EPR) for each player is

then simply 0:(1za)=3. We refer to 0 as the NE payoff. For

1vav2 the NE payoff is less than the unit payoff value each

player would get if both players choose the same action in every

game round, and consequently the NE is evolutionarily unstable in

this parameter range. When aw2 the NE mixed strategy

outperforms the pure strategy of both players choosing the same

action, and the NE is then evolutionarily stable [3,4,17] and it is

the converging point of various dynamical learning processes [18].

Memoryless cooperation-trap strategies
We now develop CT strategies for player X, and begin with the

simplest case of memoryless strategies, namely at every game

round player X does not consider her and her opponent’s prior

actions nor the outcomes of prior plays but chooses actions R, P

and S according to the corresponding probabilities pr, pp, and ps

(:1{pr{pp), which are fixed by player X at the beginning of the

whole game. Without loss of generality we assume that pr§pp and

pr§ps, i.e., action R is a favoriate choice of X.

As player Y is sufficiently intelligent, he will figure out the

strategy of X after a small number of game repeats. Alternatively,

with the aim of promoting cooperation from player Y, player X

may also explicitly inform Y about her strategy parameters, which

are pr and pp in the present case. And since Y is sufficiently

rational, he then for sure will adopt the optimized probabilities q�r ,

q�p, and q�s (:1{q�r {q�p) of choosing the three actions R, P and S.

The EPR x of player X and the optimized EPR �
y of player Y are

x~prq
�
r zppq�pzpsq

�
s za(prq

�
s zppq�r zpsq

�
p) , ð1Þ

�
y~q�r przq�pppzq�s psza(q�r pszq�pprzq�s pp) : ð2Þ

If the strategy of player X have the following property that

pr§pswpp, then because action P is strictly the least favored

choice of player X, then player Y realizes that it is of his best

interest to choose action R in every game round

(q�r ~1,q�p~q�s ~0) if pr{ppwa(pr{ps) but to choose action P

in every game round (q�p~1,q�s ~q�r ~0) if pr{ppva(pr{ps). In

other words, player X traps player Y to stay in a pure strategy

which has maximal degree of predictability. Player X of course

should choose the strategy parameters pr and pp to maximize her

EPR x under the constraint of not destroying the nice trapping

effect of her strategy. It is not difficult to verify the following

conclusions:

(1). If the payoff parameter a[½1,(1z
ffiffiffi
3
p

)=2), the optimal CT

strategy is

p�r ~
a

2a{1
{E , p�p~0 , p�s ~

a{1

2a{1
zE : ð3Þ

(Here and in latter discussions, E?0z is an arbitrarily small

positive value.) The associated maximal EPR for player X is
�
x~a=(2a{1), while player Y is very satisfied with sticking to

action R and getting a larger EPR of �
y~a2=(2a{1). To give a

concrete example, at a~1:1 we have �
x&0:917 and �

y&1:008,

which are considerably larger than the NE payoff 0~0:7.

(2). If a[(2z
ffiffiffi
3
p

,z?), the optimal CT strategy is

p�r ~
a

2a{1
zE , p�p~0 , p�s ~

a{1

2a{1
{E , ð4Þ

The associated optimal EPR of player X is �
x~a(a{1)=

(2a{1), while player Y receives a larger EPR value of
�
y~a2=(2a{1) by sticking to action P. Notice that when a is

sufficiently large, �
x&a=2{1=4 and �

y&a=2z1=4, which

are almost 1:5 times that of the NE payoff 0.

Figure 2 gives a direct view about how the optimal EPRs of

both players and the optimal CT strategy of player X change with

a. This optimal memoryless CT strategy indeed offers both players

higher accumulated payoffs than the NE mixed strategy does.

However, the passive player Y benefits more than the proactive

player X. It is then natural for player X to feel that she has

sacrificed too much for enforcing cooperation and to declare that

such a CT strategy, although better than the NE mixed strategy, is

unfair as her opponent earns more by free riding. Furthermore,

this CT strategy is worse than the NE mixed strategy in the

parameter range of a[½1:366,3:732�.
These shortcomings of the memoryless CT strategy can be

eliminated by increasing the memory length of the CT strategy.

Figure 1. The Rock-Paper-Scissors game. (A) The payoff matrix.
Each matrix element is the payoff of the row player X’s action in
competition with the column player Y’s action. (B) The cyclic (non-
transitive) dominance relationship among the three candidate actions:
Rock (R) beats Scissors (S), S beats Paper (P), and P in turn beats R.
doi:10.1371/journal.pone.0111278.g001
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Cooperation-trap strategies with finite memory length
Recent laboratory experiments carried at Zhejiang University

[19] revealed that decision-making of human subjects has strong

memory effect, namely the payoffs of the previous game rounds

influence considerably a player’s action choices in the following

game rounds. For the RPS game, the implications of such

conditional response strategies have not yet been fully explored.

Here we suggest that the proactive player X can adopt an

optimized version of such a strategy to enforce fair cooperation.

When the payoff parameter aw2, a play output of win-lose

brings payoff a to the group, while a tie output only brings lower

payoff 2. Therefore it is desirable for player X to discourage the

occurrence of tie output. For the simplest case of unit memory

length, the CT strategy then goes as follows: If player X wins over

or loses to player Y in the previous game round, then in the next

round she chooses action R with probability pr§1=2 and action S

with probability ps~1{pr (she avoid choosing action P, i.e.,

pp~0); but if X ties with Y in the previous game round, then in the

next round she chooses the three candidate actions with equal

probability 1=3. This strategy has only a single parameter pr. The

motivation for player X to adopt the NE mixed strategy after

experiencing a tie output is to discourage player Y from choosing

action R: although Y might get a higher expected payoff in one

game round by choosing action R rather than action P, the former

choice has a high probability of leading to a tie, which will then

reduce player Y’s expected payoff to 0 in the following one or

even more game rounds.

On the other hand, when 1vav2, a play output of tie is better

off to the group than a win-lose output. Then player X has the

option of implementing a CT strategy to discourage player Y from

either winning over or losing to her. Again for the simplest case of

unit memory length, the recipe of the CT strategy is: If player X

ties with player Y in the previous game round, then in the next

round she chooses action R with probability pr§1=2 and action S

with probability ps~1{pr; but if X either wins over or loses to Y

in the previous round, then in the next round she chooses the three

candidate actions with equal probability 1=3.

It turns out that the optimal CT strategy of unit memory length

has the following quantitative properties:

1. If a[½1,3=2�, then the optimal value p�r for the choice

probability pr is p�r ~1{E, and the optimal EPRs of player X

and player Y are equal, �
x~

�
y~1.

2. If a[(3=2,1:649), then p�r ~8a=½9a{3z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(9a{3)2{48a2

q
�{

E, and the optimal EPRs for X and Y are, respectively, �
x~

½1za(1{p�r )�=(4{3p�r ) and �
y~½1z2a(1{p�r )�=(4{3p�r ).

3. If a[(2:905,6), then p�r ~4a=½3(a{1)z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9(a{1)2z24a2

q
�zE,

and the optimal EPRs for X and Y are, respectively,
�
x~(1{p�r )a and �

y~p�r a.

4. If a[½6,z?), then p�r ~1=2zE, and the optimal EPRs for X

and Y are equal, �
x~

�
y~a=2.

Figure 3 gives a direct view of these properties. Compared with

the optimal memoryless CT strategy of Fig. 2, we notice a major

qualitative improvement is that this new optimal CT strategy

achieves fair outcomes to player X and player Y when 1ƒaƒ3=2
or a§6. However, this optimal CT strategy of unit memory length

is still not perfect, as it is not applicable for a[½1:649,2:905�, and it

is not completely fair to the proactive player X for

a[(3=2,1:649)|(2:905,6).
To completely eliminate these undesirable features, player X

can increase the memory length of her CT strategy and therefore

be more non-tolerant to defection. There are many ways of

implementing such an idea. When aw2, arguably the simplest CT

strategy of memory length m goes as follows: By default player X

adopts the mixed strategy (pr,0,1{pr) in every game round,

namely she chooses action R with probability pr§1=2 and action

S with the remaining probability ps~1{pr; however if a tie

Figure 2. Optimal memoryless CT strategy. The optimal values of both players’ expected payoff per round x and y are shown in the upper
panel (in units of NE payoff 0) for each fixed value of a, while the optimal values of the CT strategy’s choice probabilities pr , pp and ps are shown in
the lower panel. When a[½1:366,3:732� the NE mixed strategy is better for player X than the CT strategy.
doi:10.1371/journal.pone.0111278.g002
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occurs in one game round, then player X shifts to the NE mixed

strategy (1=3,1=3,1=3) in the next m game rounds and then shifts

back to the default strategy (pr,0,1{pr) in the (m+1)-th game

round. It is a simple exercise to check that, if

pr§ max (
1

2
,

2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ma2zA2
p

{DAD
) , ð5Þ

where A:1z(1za)m=3{2a, then player Y will be satisfied with

sticking to action P in every game round. If player X sets the

memory length to the smallest positive integer m� which reduces

Eq. (5) to the trivial requirement of pr§1=2, then it is optimal for

player X to set pr to the value p�r ~1=2, and the optimal EPRs for

player X and player Y are equal, �
x~

�
y~a=2. Notice that for a

approaches 2 from above with a~2zE, the required minimal

memory length diverges as m�&6=E. In other words, it is most

difficult to enforce fair cooperation when a&2, see Fig. 4.

If the payoff parameter av2, an optimal CT strategy with

memory length m can be constructed following the same line of

reasoning as above, namely that player X adopts action R at every

game round, but if she loses to player Y in one game round, then

she shifts to the NE mixed strategy in the next m game rounds and

then shifts back to the default strategy (1,0,0) in the (mz1)-th
game round. We can easily verify that if player X sets the memory

length to be mw3(a{1)=(2{a), then it is optimal for player Y to

stick to action R in every game round, and the optimal EPRs for

both players are equal, �
x~

�
y~1.

As clearly demonstrated in Fig. 4, for each payoff parameter

a=2, an optimal CT strategy with a finite memory length m� can

be implemented to achieve maximal and fair accumulated payoff

for both players. At a~2, there is no need to adopt a CT strategy,

as the NE mixed strategy is itself optimal.

Discussion

We have demonstrated in this paper that fair cooperation can

be achieved in the two-player iterated RPS game. Such a highly

cooperative state brings maximal accumulated payoff to the group,

and it is not enforced by external authorities but by the proactive

decision of one player to adopt an optimal cooperation-trap

strategy. The basic designing principle of such optimal CT

strategies should be generally applicable to other two-player

iterated non-cooperation games.

For the optimal CT strategies to work, the passive player Y is

assumed to be considerably rational so that he adopts a best

response strategy to that of his opponent X to maximize his

accumulated payoff, while the proactive player X is assumed in

addition to be wise enough so that she does not exploit the

cooperation state of her opponent too much but is satisfied with a

fair share of the total accumulated group payoff. This latter

assumption might be a little bit too strong, but maybe it is not

strictly necessary as player Y will punish X for defection behaviors.

For the iterated RPS game, it appears to be impossible for the

proactive player X to design a CT strategy which brings higher

expected payoff per game round to herself than to her opponent.

However, this is not a general conclusion. For some other game

systems, notably the iterated PD game [13,20]), the proactive

player X has the option of optimizing her CT strategy to extort her

opponent Y. We do not recommend the adoption of such greedy

strategies, as the opponent player Y will very likely be frustrated by

the defection behaviors of player X and he may then choose not to

cooperate even such a choice hurts also himself [21].

When strategic interactions occur in biological systems [9,10],

the involved individual animals, insects, bacteria, cells,…, are of

course far from being rational or sufficiently intelligent. However

the collective decision-making of such agents at the population

level, aided by the evolutionary mechanism of mutation and

selection, may appear to be very rational. By trial and error, such

Figure 3. Optimal CT strategy of unit memory length. The optimal values of both players’ expected payoff per round x and y are shown in
the upper panel (in units of NE payoff 0) for each fixed value of a, while the optimal values of the CT strategy’s choice probabilities pr , pp and ps are
shown in the lower panel. When a[½1:649,2:905� the NE mixed strategy is better for player X than the CT strategy.
doi:10.1371/journal.pone.0111278.g003
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systems may develop certain CT-like strategies even without the

need of intelligent designing. It would be very interesting to

investigate empirically whether CT strategies are actually imple-

mented in some biological systems, such as the formation of

symbiosis relationship between two species.

Cooperation in a finite-population RPS game system with more

than two players may be much more difficult to achieve than the

case of two players. A recent theoretical investigation by one of the

present authors [19] suggested that optimized conditional response

strategies might offer higher accumulated payoffs to individual

players than the NE mixed strategy does. But it is still an open

question as to whether high degree of cooperation can also be

enforced in a multiple-player iterated RPS game by a number of

proactive players. The case of multiple players interacting through

a ring topology might serve as the simplest model system to study.

We leave such a challenging issue to future investigations.

The iterated two-player RPS game might also serve as a simple

system to quantitatively measure the degree of rationality of single

human subjects. For example, an experiment can be arranged as

follows. A human subject Y plays repeatedly with a fixed opponent

X which is actually a computer implementing an optimal CT

strategy. But Y does not know that he is playing with a computer

and assumes he is playing with another human subject. By

analyzing the evolution trajectory of player Y’s action choices, we

may quantitative measure the learning behavior of player Y and

his tendency of making rational decisions. We are discussing with

colleagues about the possibility of carrying out such an experi-

mental study.
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