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Optimal Cooperative Driving at Signal-Free
Intersections with Polynomial-Time Complexity

Huaxin Pei, Yuxiao Zhang, Yi Zhang, Shuo Feng

Abstract—Cooperative driving at signal-free intersections,
which aims to improve driving safety and efficiency for connected
and automated vehicles, has attracted increasing interest in
recent years. However, existing cooperative driving strategies
either suffer from computational complexity or cannot guarantee
global optimality. To fill this research gap, this paper proposes
an optimal and computationally efficient cooperative driving
strategy with the polynomial-time complexity. By modeling the
conflict relations among the vehicles, the solution space of the
cooperative driving problem is completely represented by a
newly designed small-size state space. Then, based on dynamic
programming, the globally optimal solution can be searched
inside the state space efficiently. It is proved that the proposed
strategy can reduce the time complexity of computation from
exponential to a small-degree polynomial. Simulation results
further demonstrate that the proposed strategy can obtain the
globally optimal solution within a limited computation time under
various traffic demand settings.

Index Terms—Connected and Automated vehicles (CAVs),
cooperative driving, signal-free intersection, dynamic program-
ming.

I. INTRODUCTION

ITH the help of vehicle-to-everything (V2X) technolo-
nges, connected and automated vehicles (CAVs) can
share the driving states with the adjacent vehicles. In such
case, cooperative driving for CAVs emerges as a promising
way to improve traffic safety and efficiency [1]-[7]. It has been
pointed out in [2], [8] that the key problem of cooperative
driving is to determine the optimal sequence of vehicles
passing through the conflict areas that mainly include on-ramp
and signal-free intersection areas.

Cooperative driving at on-ramps has been well discussed in
recent studies [9]-[13]. However, compared with the merging
problem, there exist much more complex conflict relations
of vehicles at signal-free intersection, which leads to compli-
cated interactions between vehicles. Thus, cooperative driving
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at intersections will fail by directly applying the strategies
of merging problem, and further investigation is required.
Generally, existing studies of planning passing sequence of
vehicles at signal-free intersections can be classified into two
categories according to the optimality, i.e., optimal and sub-
optimal strategies.

The strategies aiming to find the globally optimal solution
can be regarded as the optimal strategy. One typical type of the
optimal strategies is to formulate a large-scale mixed-integer
programming (MIP) problem to resolve all conflicts between
vehicles, where each conflict introduces a binary variable to
mathematically describe the relative passing sequence [14]-
[16]. However, the computational complexity increases ex-
ponentially with the increasing number of conflicts between
vehicles, which causes the “curse of dimensionality”. Another
type of optimal strategies is adopting a string to represent
the vehicle sequence and then describe the complete solution
space. For example, Li et al. [3] formulated a spanning tree
and proposed a pruning rule to search the globally optimal
solution. However, due to the complex conflict relations be-
tween vehicles, it still suffers from the state space explosion
and thus is intractable for real-time applications.

To improve the computational efficiency, the so-called
sub-optimal strategy usually stops at a sub-optimal solution
within a limited computation time. Autonomous intersection
management (AIM) [17], [18] and reservation-based strategy
[19], [20] are the typical sub-optimal strategies utilized in
the problem of cooperative driving, where heuristic rules are
used to instruct the vehicles passing through the intersection
roughly in first-in-first-out (FIFO) manner [10]. Nevertheless,
as illustrated in [2], [21], these strategies have a poor perfor-
mance in improving traffic efficiency. In [22], the vehicles
from different directions are projected into a virtual lane
to describe and resolve the conflicts between vehicles. This
method can significantly reduce the computational complexity,
but it theoretically leads to a sub-optimal solution and thus
cannot guarantee traffic efficiency. Recently, several promising
strategies are proposed to keep a good balance between
computational complexity and traffic efficiency. In [23], [24],
Monte Carlo tree search (MCTS) method combining with
heuristic rules is first introduced to the planning problem
of vehicle sequence at a signal-free intersection. Numerical
simulation results indicate that these strategies can obtain a
near-optimal passing sequence within a limited computation
time. However, the performance of these strategies lacks a
rigorous theoretical guarantee and further analysis is necessary
for practical applications.

To overcome the limitations of these existing optimal and



sub-optimal strategies, we propose an optimal and computa-
tionally efficient cooperative driving strategy with polynomial-
time complexity in this paper. By modeling the conflict rela-
tions among the vehicles, the solution space of the cooperative
driving problem is completely represented by a newly designed
small-size state space. Then, based on dynamic programming,
the globally optimal solution can be searched inside the
state space efficiently. It can reduce the time complexity of
computation from exponential to a small-degree polynomial.

This paper significantly extends our previous work for the
on-ramp merging problem [10], where a dynamic program-
ming method was proposed to obtain the globally optimal
merging solution with polynomial-time complexity. However,
the method cannot be directly applied to signal-free intersec-
tions, because of the following challenges: First, the number
of conflicts between vehicles significantly increases, as the
interactions between vehicles become more complex. More
importantly, both the conflict and conflict-free pairs of vehicles
exist in the conflict area of an intersection, which is denoted
by the heterogeneous conflict relations in this paper, namely,
more than one vehicle may pass the conflict area at the
same time without collision. In such case, state transition
could not guarantee the Markov property and thus dynamic
programming is invalidated [25], [26].

In this paper, we rebuild the dynamic programming model
for signal-free intersections. To keep Markov property, a novel
state transition strategy is designed to model the conflict-free
pairs of vehicles, where multiple non-conflict vehicles can be
assigned with the right of way instead of dealing with only one
vehicle during a state transition. It guarantees that each state
transition explicitly represents one kind of conflicts between
vehicles so that the objective value of the current state is only
determined by its predecessor state, i.e., the state transition
satisfies Markov property. Moreover, the number of states and
state transitions of the constructed state space is restricted
as a small-degree polynomial with the number of vehicles.
Therefore, dynamic programming is reactivated at signal-free
intersections, and we can obtain the globally optimal solution
with the polynomial-time complexity of computation. It is a
significant improvement compared with most existing studies
about cooperative driving at signal-free intersections (e.g.,
[31, [23], [24]), where the size of solution space increases
exponentially with the increasing number of vehicles. It is also
worth emphasizing that the proposed strategy is universal in
most traffic scenarios where both the conflict and conflict-free
pairs of vehicles exist.

Theoretical analysis is proposed to justify the computational
time complexity of the proposed optimal strategy. It is proved
that the optimal strategy has the polynomial-time complexity
of computation, which has a lower bound O(N*) and an upper
bound O(N®), where N denotes the total number of vehi-
cles within consideration. It is the theoretical foundation for
overcoming the limitations of existing strategies. Furthermore,
simulation results also demonstrate that the proposed strategy
can obtain the globally optimal solution within a limited
computation time, comparing with the existing strategies under
various traffic demand settings.

The main contributions of this paper include: (a) we con-
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Fig. 1. A typical signal-free intersection scenario with five vehicles.

struct a novel state space with a much smaller size than that in
the existing studies to describe the complete solution space of
cooperative driving at signal-free intersections; (b) we realize
optimal cooperative driving at signal-free intersections, which
overcomes the limitations of the existing optimal and sub-
optimal strategies regarding global optimality and computa-
tional efficiency; (c) we give a rigorous theoretical analysis
about the computational complexity of the proposed strategy,
which is usually lacking in most existing studies.

The rest of this paper is organized as follows. Section Il
presents the typical signal-free intersection and formulates
the cooperative driving problem. Section III proposes the
optimal strategy for cooperative driving at intersections. Then,
Section IV gives theoretical analysis about the computational
complexity, and simulation results are in Section V. Finally,
the conclusion and further works are presented in Section VI.

II. PROBLEM FORMULATION
A. Scenario and Notations

In this paper, we select a typical intersection scenario to
introduce our method, as shown in Fig. 1. The red area is the
conflict area, where the vehicles from different directions may
collide. The intersection has a control area, where the vehicles
within the control area are considered into the cooperative
driving problem. Actually, traffic collisions and delays mainly
occur on the vehicles with left-turn and straight movements,
and the right-turn vehicles can usually move freely around the
intersection. Therefore, to simplify the descriptions, we only
consider the left-turn and straight vehicles in this paper, and
the scenario including right-turn vehicles can be easily tackled
in a similar way.

Several reasonable assumptions about the studied scenario
are added as follows: a) all vehicles are connected and
automated (CAVs); b) lane-change behavior of vehicles within
the control area is not allowed. Each vehicle is given a unique
identity after arriving at the control area, and C'AV; means the
i vehicle that reaches the control area. The vehicle identity
sets of lane 1, 2, 3 and 4 are denoted by N; = {1,...,71},
NQ = {1, ...,’flg}, N3 = {1, ...7’fl3} and N4 = {1, ...7’fl4}
respectively, where n1, 7, 13 and fi4 denote the total number



of vehicles on lane 1, lane 2, lane 3 and lane 4 respectively.
The main notations in this paper are shown in TABLE 1.

B. Cooperative Driving Problem

As illustrated in [2], [3], cooperative driving aims to im-
prove traffic efficiency and safety by planning the sequence of
vehicles passing through the conflict area. To reach this goal,
we formulate the objective function as

min J, (Ta)
Tassign
J = max tassion. i (1b)
iEN; UNa UN3 UN, o8h??
assign
tassign,i € T*%¢ ) (]C)

where the decision variable #.0n; denotes the arrival time
assigned to C AV, to move into the conflict area, and Trassign
is the set of the arrival time assigned for all vehicles within
the control area. Obviously, J denotes the total passing time
of all vehicles to pass through the conflict area [10], [27].

The arrival time assigned to each vehicle needs to satisfy
vehicle dynamics, i.e.,

tassigmi Z tminﬂ‘v (2)

where t,,,n,; denotes the minimal arrival time assigned to
vehicle 7, which can be easily calculated according to vehicle
dynamics [10], [23].

As for the vehicles moving on the same lane, the arrival time
assigned to each vehicle should satisfy the physical constraints
to avoid rear-end collision, i.e.,

tassign,i - tassign,j > At,la (3)

where A, ; denotes the minimal safe gap between two consec-
utive vehicles to avoid rear-end collision. In addition, vehicle
CAVj is physically ahead of C'AV;. For example, C AV and
CAVp in Fig. 1.

The vehicles from different lanes may have collisions in
the conflict area. The method to avoid these collisions is to
schedule the vehicles moving into the conflict area sequen-
tially. Thus, the binary variables are introduced to describe
the constraints of vehicle sequence, i.e.,

tassign,i - tassign,j +M- bi,j > A15,27 (4)

- tassign,i + M- (1 - bi,j) Z At,2a (5)

tassi gn,j

where A; 2 denotes the minimal safe gap to avoid collisions
between vehicles from different lanes. CAV; and CAV; are
two vehicles from different lanes and have conflicts, e.g.,
CAV, and CAVp in Fig. 1. M is a positive and sufficiently
large number. b; ; is the binary variable and we use B to denote
the set of all binary variables. Obviously, b; ; = 1 implies that
vehicle ¢ enters conflict area earlier than vehicle j.

Based on the above descriptions, the planning problem
of vehicle sequence can be mathematically formulated as a
mixed-integer programming problem (MIP), as shown in (6).
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Fig. 2.

C. Problem Challenges

Compared with the on-ramp merging problem that has been
widely investigated, there are two major challenges of solving
the cooperative driving problem at signal-free intersections:

1) Increased number of conflicts: the number of conflicts
between vehicles has increased a lot. As shown in Fig. 1,
each red dot represents one kind of conflict pairs, and each
conflict between vehicles will introduce a binary variable in
the problem (6). Thus, the size of solution space increases
exponentially with the increasing number of conflicts [14],
[28]-[30].

2) Heterogeneous conflict relations: besides the conflict
pairs of vehicles, there also exist several collision-free pairs
of vehicles shown in Fig. 2, where the corresponding vehicles
are allowed to move into the conflict area at the same time.
The heterogeneous conflict relations between vehicles further
increase the number of feasible solutions and lead to state-
space explosion for the state-based methods, e.g., [3].

To this end, it is necessary to construct a new cooperative
driving strategy to overcome the above challenges and then
guarantee computational efficiency and global optimality.

III. OPTIMAL COOPERATIVE DRIVING DESIGN

In this section, we will reformulate problem (6) based
on dynamic programming to implement optimal cooperative
driving with polynomial computational complexity. The key
idea is to construct a small-size state space to describe the
complete solution space of the large-scale planning problem
(6) and then search for the globally optimal solution by
dynamic programming. An intersection scenario with five
vehicles shown in Fig. 3(a) is taken as an example to introduce
our method.

The rest of Section III is organized as follows. The state
space describing the complete solution space is constructed
in Section III-A, Section III-B and Section III-C. Section
III-D introduces the method to search the globally optimal
solution inside the constructed state space. In Section III-E,
state space construction process and solution searching method
are integrated into one overall optimal cooperative driving
algorithm to save the computational resources.

A. State Definition

The problem of planning vehicle sequence passing through
the conflict area is equivalent to sequentially assign the right
of way for each vehicle to move into the conflict area. Thus,
the problem (6) can be reformulated as a multi-stage decision
process, where the vehicles are sequentially added to the



TABLE I
THE NOMENCLATURE LIST

Variables Notations

CAV; The " vehicle that reaches the control area.
A1, N2, g, Na
VUmax, Umin

Gmax> Amin

The total number of vehicles on lane 1, lane 2, lane 3 and lane 4, respectively.
The maximal and minimal velocity of vehicles.
The maximal and minimal acceleration of vehicles.

Lassign, i The arrival time assigned to C' AV; to move into the control area.
b; j The binary decision variable used to formulate the collision avoidance constrains between C'AV; and C AV,
A1, Ag2 The minimal allowable safe gaps used in constraints (3)-(5).
le The length of the control area.
N1, N2, N3, Ny The vehicles identity sets of lane 1, lane 2, lane 3 and lane 4, respectively.
Tassign The set of the arrival time assigned to all vehicles.
B The binary decision variable set.
n1: The accumulated number of vehicles added to the current candidate sequence on lane 1 up to current state.
no: The accumulated number of vehicles added to the current candidate sequence on lane 2 up to current state.
Sp < Z; :Z > p3: The accumulated number of vehicles added to the current candidate sequence on lane 3 up to current state.

ng4: The accumulated number of vehicles added to the current candidate sequence on lane 4 up to current state.

r: The lane number that has been assigned with the right of way at current state.

current candidate sequence and only one vehicle is tackled
in each stage. Then, as shown in Fig. 3(b), state variable is
defined to describe the assignment of the right of way, i.e.,

o(m )

where n1, na, ns and ny denote the accumulated number of
vehicles added to current candidate sequence in lane 1, 2, 3 and
4 up to current state, respectively. r denotes the lane identity
of the vehicle which obtains the right of way at current state.
For instance, s3 (% 8) denotes that one vehicle in lane 1 and
two vehicles in lane 3 have been tackled up to current state.
In addition, the vehicle with the right of way at current state
can be exactly specified. For instance, s3 (% 8) denotes that
the second vehicle in lane 3 (r = 3, n,, = 2) has the right of
way at the current state, i.e., CAVp.

ni
ns

n2
N4

(7

B. Basic State Transition

State transition is used to describe the transition of the
right of way between vehicles. We use the lane identity as
the decision variable v (u € {1,2,3,4}) to determine which
lane has obtained the right of way at the current stage so
that one vehicle on the corresponding lane is added to the
candidate sequence. The state transition function emerges after
introducing the state variable and decision variable, i.e.,

’ !’
ny n2\ _ ny Ny
Sr (7L3 n4) =4 (ST’ (né nfk) ,’LL) )

nt nb\ .
where s, (n} n? is the predecessor state of s, (
4

(®)

: s n2). The
function g(-) denotes the state transition function, i.e., if u = i,
we have n; = n; + 1, » = ¢ and other parameters of the state
variable stay the same. For example, as shown in Fig. 3(c),
the initial state sq () connects to different successor states
according to different values of the decision variable.

A new vehicle will be assigned an arrival time to the conflict

area if it obtains the right of way during a state transition.

Thus, the objective value J varies with state transition. As
for the conflict pairs of vehicles, the arrival time assigned to
the vehicle specified by current state is always larger than
that assigned to the vehicle specified by its predecessor state,
because the vehicle specified by the predecessor state has the
priority over the vehicle specified by current state to enter
the conflict area during each state transition. Therefore, the
objective value J up to current state is exactly equal to the
time assigned to the vehicle specified by current state, i.e.,

(©))

where J(s) denotes the objective value J up to state s,
and t,4i0n,s denotes the arrival time assigned to the vehicle
specified by state s. Then, considering constraints (2)-(5), the
recurrence function of objective value J during state transition
can be summarized as

J(s)

J(S) = tassign,s7

= tassign,s
max (fmin s, tassign,s' + AT)
= max(tmin,m J (S/) + AT)’

(10)

where ¢in s denotes the minimal arrival time constrained by
vehicle dynamics of the vehicle specified by state s, and s’ is
the predecessor state of s. If the vehicles specified by s and
s’ are in the same lane, Ap = A, 1, otherwise, Ap = Ay 5.

According to Eq. (10), we can find that the objective value
J(s) is directly determined by its predecessor state s’ and
has nothing with other states before the predecessor state. In
other words, state transition satisfies Markov property when
there exist conflicts between the vehicles specified by the
corresponding two states, which is a compulsory requirement
of using dynamic programming to solve a multi-stage decision
problem [25], [26].

However, as for the conflict-free pairs of vehicles presented
in Section II-C, the objective value J up to current state
has nothing with that of its predecessor state, because they
are not conflict with each other. As shown in Fig. 3(d),



C AV specified by s1 (43) and CAVp specified by s3 ( §)
are the so called conflict-free pairs so that the arrival time
assigned to C AV is determined by that assigned to the
vehicles other than C AVp. In other words, J (51 (% 5)) is not
determined by its predecessor state s3 (8 (1)) but by the states
before s3 (9 §). Therefore, the state transition cannot satisfy
Markov property and thus invalidates dynamic programming
in this problem. To this end, it is necessary to reconstruct
state transition function to overcome the challenges from
heterogeneous conflict relations.

C. State Transition Reconstruction

In this subsection, we will reconstruct the state transition
function to keep Markov property then reactivate dynamic pro-
gramming for cooperative driving at signal-free intersections.

To keep Markov property, the non-conflict transitions (i.e.,
the transitions which connect the states that are not in conflict
with each other) should be removed from the state space.
To guarantee global optimality, we need to build new tran-
sitions for the corresponding states to completely describe
the assignment of the right of way. Firstly, we need to
find the non-conflict transitions in state space and then, for
each non-conflict state transition, we need to remove it and
connect current state with all predecessor states of its original
predecessor state. Repeat the above steps until there is no non-
conflict transition in state space. The reconstruction strategy
guarantees that each state transition represents one kind of
conflict between vehicles and all possible assignments of the
right of way are presented in state space.

Here we illustrate our key idea in Fig. 3(d) and will elab-
orate the implementation algorithm in Section III-E. Firstly,
we find that the transition between state s3 (9 §) and sy (1 8)
is the so called non-conflict transition as CAVp and CAVe
can enter the conflict area at the same time, and thus we
need to remove this transition and establish new transitions
for sy (% (1)) Secondly, the non-conflict transition between
s3(9%) and s; (3§) is removed, and s; (13) connects to
the predecessor states of s3 (9 3), i.e., s3(93) and sz (93).
Thirdly, we find that one of the reproduced transitions is
still the non-conflict transition, i.e., the transition between
s3(94) and s1 (18). Finally, the non-conflict transition be-
tween s3 ({ §) and s; (3 §) is removed, and s; (3 ) connects
to the predecessor state of s3 (9 3), i.e., sz (). Obviously,
the non-conflict transition between sz (9§) and s; (3§) is
modified to guarantee Markov property and global optimality.
Compared with the basic state transition in Section III-B, the
reconstruction strategy have following new properties.

Property 1: The state transition is not just between the
adjacent stages. Thus, one state transition does not necessarily
represent only one vehicle that obtains the right of way while
it may represent a group of vehicles in which there is no
conflict of different directions. As shown in Fig. 3(d) step 4,
the transition between s (9 §) and s1 (33) represents that
CAVy, CAVp and C AV are assigned with the right of way
during current state transition.

Property 2: Removing one state transition may reproduce
multiple transitions. It increases the number of transitions in

the reconstructed state space, and theoretical analysis about
this change will be presented in Section 1V.

By Property 1, the recurrence function of objective value J
needs to be modified based on the reconstructed transitions.
The objective value J up to current state should consider
the assigned arrival time of a group of vehicles specified by
the corresponding transition rather than only one vehicle. We
assume that state s’ is the predecessor state of s and use G to
denote the set of vehicle identity of a group of vehicles that
are assigned the right of way during the transition from s’ to
s. For each vehicle in G, the method to assign arrival time is

tassign,k = max(tmin,ka J(Sl) + Arp, tassign,k’ + At,l)» (11a)

kK G, (11b)

where C' AV} is physically ahead of C' AV}, in the same lane.
If the vehicles specified by s and s’ are in the same lane,
A7 = Ay, otherwise, Ap = A, 2. Then, we can obtain the
objective value J up to current state, i.e.,

J(S) = rl?ea(é( Tassign, k- (12)
Based on (11a), (11b) and (12), we can find that J(s) is deter-
mined by its predecessor state s’ and has nothing with other
states before state s’, i.e., the reconstructed state transition
guarantee Markov property. For example, as shown in Fig.
3(d), the state transition between s () and state sy (1 8)
represents that CAV4, CAVp and C AV are assigned with

the arrival time at this time, i.e.,

tassign, A = MaX (tmin, 4, J (s2 (§5)) + Av2) (13)

tassign, D = MAX(tmin, D, tassign, A + A1), (14)
tassign,c = Max (tmin,c, J (52 (§§)) + Ar2), (15)
J (s1(33)) = max(tassign, A tassign, D Lassien,C)- (16)

According to (13)-(16), it can be found that J (s1 (1)) is
determined by J (s2 () ¢)) and has nothing with other states
before s; ().

Based on the aforementioned descriptions, the constructed
state space has following properties.

Property 3: There are many phenomena that different ve-
hicle sequences reach the same state in the state space by
determining the accumulated assigned number of vehicles in
the specific lane, which leads to that the size of the state space
is much smaller compared with those methods in which the
vehicle sequence is directly used as the state [3], [23].

Property 4: By determining the accumulated assigned num-
ber of vehicles in the specific lane, vehicles in the same lane
always comply with the physical constraints (3) during each
state transition, which leads to that the infeasible sequences
that violate the physical constraints are directly eliminated
and the state space contains only all feasible solutions.

Property 3 and Property 4 make it possible to describe the
complete solution space of the large-scale planning problem
(6) utilizing a small-size state space. Theoretical analysis about
the size of the state space will be presented in Section IV.
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Fig. 3. Optimal cooperative driving strategy applied to a simple signal-free intersection scenario with five vehicles. Fig. 3(a) presents the studied scenario.
Fig. 3(b) gives the definition of state variable. Fig. 3(c) presents a part of state space under basic state transition, and many states and state transitions are
omitted for simplicity. Fig. 3(d) illustrates how to reconstruct the state transitions. Fig. 3(e) is the decision-making process.

D. Decision-Making Process

In this subsection, we will introduce the method to search
the globally optimal solution in the constructed state space.

As described in Section I1I-C, state transition satisfy Markov
property in the state space. Thus, the principle of optimality
can be adopted to search the globally optimal solution.
Lemma 1(the principle of optimality): if the optimal path of
states passes through a particular state S in the state space,
the partial path from the initial state to state S must also be
the optimal path from the initial state to state S [25].

According to Eq. (11a)-(12) and Fig. 3(e), the objective
value is updated and the corresponding vehicles can get the
assigned arrival time during each state transition. If there
is only one predecessor state of current state, the objective
value of current state is determined by that of the unique
predecessor state. However, if there are multiple predecessor
states, we need to find the optimal objective value of current
state according to Lemma 1, i.e.,

J* =min J*,

€S’ an

where S’ denotes the set of all predecessor states of current
state. J* denotes the candidate objective value of current state
determined by its i*" predecessor state, and J* is the optimal
objective value of current state. According to Eq. (17), we
can get the optimal objective value and record the optimal
predecessor state of each state.

Based on the above descriptions, it can be easily concluded
that the minimal objective value among all terminal states in
the last stage is the globally optimal objective value of the
problem (6). Then, the optimal sequence can be obtained via a
backtracking search from the optimal terminal state according
to the recorded optimal predecessor state of each state.

E. Algorithm for Implementation

In the above subsections, we introduce our method in
three steps for easier understanding, i.e., basic state transition,
state transition reconstruction and decision-making process. As
commonly used in dynamic programming, these three steps
can be integrated into one overall algorithm when imple-
menting optimal cooperative driving to save computational
resources. Specifically, instead of constructing the state space
under basic state transition and then reconstructing the non-
conflict transitions, we can directly construct the feasible state
transitions by combining the basic state transition function and
reconstruction strategy. At the same time, the currently optimal
objective value of each state can be updated during each state
transition. It avoids repeated computation, and the integrated
algorithm is shown in Algorithm 1, where V; ; denotes the
4" vehicle in lane i. N denotes the total number of vehicles
within the control area. The driving intention refers to whether
the vehicle is going straight or turning left.

In Algorithm 1, for each state s, (Z§ Zj) in the state space,
we need to find all possible predecessor states and then obtain



Algorithm 1 Optimal Cooperative Driving Algorithm

Input: The driving states of all vehicles within control area.

Output: The optimal arrival time assigned to each vehicle.
1: for each i € [1, N] do

2: for each state s; (Z; Zi) in stage ¢ do

3: Ny =1, N3 =0;

4: j=mn1;

5: while V7 ;_; has the same intention as V7 ,,, do
6: J=j—-L N =N+1

7: end while

8: J =ns;

9: while V3 ; has the same intention as V; ,, do
10: j=47—1, N3=N3+1;

11: end while

12: Connect s1 (Z; Zj) with sq ("}lgl Zi)

13: for each 713 € [1, N3] do

14: Connect s (Z; Zi) with 51 (22:% Zi),

15: end for

16: for each 717 € [1, V1] do

17: Connect s1 (13 n2) with s3 (Z;:Elg Zi),

18: end for

19: for each m; € [1, N;] and each 73 € [0, N3] do
20: Connect s1 (14 n2) with so (z;g; ")

21: Connect s1 (74 n2) with sy (Z;:%; ZZ),

22: end for
23: Update the objective value for each transition;
24: Record the optimal predecessor state;

25: end for

26: Other states can be tackled in similar way when r # 1;
27: end for

28: Obtain the optimal passing sequence via backtracking
search and assign the optimal arrival time for each vehicle.

the optimal J (sr (Z; Zi)) and the optimal predecessor state of
sr (b n2). Firstly, we need to determine the vehicles that may
obtain the right of way during the state transitions connecting
to state s, (ni n2), i.e., a continuous queue of vehicles in
lane r with the same driving intention as V;.,, starting from
Vi.n, and a continuous queue of vehicles in lane r, with the
same driving intention as V., starting from V., .., where r,
denotes the lane identity of the opposite lane of lane . There
is no conflict of different directions among these vehicles and
thus it is possible for them to get the right of way during
the same state transition. Then, all the predecessor states of
Sy (Z; Zi) can be divided into five categories according to
the lane identity of the vehicle specified by each predecessor
state. At the same time, the currently optimal J (s, (ni n?))
is updated during each state transition and we can obtain
the optimal predecessor state of s, (Z; Zj) Finally, all the
states in the state space can be tackled in the similar way and
thus the optimal passing sequence can be exported through
backtracking search.

Taking Fig. 4 as the example to illustrate how to find
all possible predecessor states of state s (E_ ﬁj). Obviously,
there are at most N; vehicles in lane 1 and N3 vehicles

in lane 3 that may obtain the right of way during the state
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Fig. 4. An illustration of how to find all predecessor states for each state in
Algorithm 1. There are five kinds of predecessor states.

transitions connecting to s; (Z; Zi) Then, there are five kinds
of predecessor states of s1 (ns n2): (D if the vehicle specified
by the predecessor state is in lane 1 and only one vehicle in
lane 1 can obtain the right of way, the predecessor state is
s1 (™51 m2). @ if the vehicle specified by the predecessor
state is in lane 1 and both the vehicles in lane 1 and lane
3 can obtain the right of way, the predecessor states can be
described as s1 (711201 "2), where mi3 € [1, N3]. @) if the
vehicle specified by the predecessor state is in lane 3, the
predecessor states can be described as s3 ( Z;:R) Zi), where
my € [1,N1]. @ if the vehicle specified by the predecessor
state is in lane 2, the predecessor states can be described as
S9 (Zi:% n?), where 7, € [1,N] and 73 € [0, N3]. @ if
the vehicle specified by the predecessor state is in lane 4, the
predecessor states can be described as s4 (172! "), where

7 € [1, Ny] and 73 € [0, N3], C

IV. ANALYSIS OF COMPUTATIONAL COMPLEXITY

In this section, both the size of the constructed state space
and the computational complexity of the proposed strategy are
proved through theoretical analysis.

A. Analysis of Number of States

The theorem is proposed for the number of states.

Theorem 1: The total number of states is O(N*), where N
denotes the total number of vehicles within control area.

Proof 4.1: See Appendix A.

By Theorem 1, the number of states is a quartic polynomial
with the number of vehicles. Thus, the size of state space
grows slowly with the increasing number of vehicles.

B. Analysis of Number of Transitions

By Property 2 in Section III-C, it can be concluded that
the number of transitions varies with the conflict relations
between vehicles within the conflict area. Thus, there exist
the lower and upper bounds on the number of state transitions:
if all the vehicles within the control area are in conflict with
each other, the number of transitions reaches the lower bound,
which is equal to that of the state space constructed under



basic state transition; if each vehicle within the control area
does not conflict with any vehicle on the opposite lane (e.g., all
vehicles within the control area are with straight movements.),
the number of transitions reaches to the upper bound, because
each state has the largest number of predecessor states in such
case. Thus, two theorems are proposed for the number of
transitions.

Theorem 2: The lower bound on the number of transitions is
O(N*%), where N denotes the total number of vehicles within
control area.

Proof 4.2: See Appendix B-A.

Theorem 3: The upper bound on the number of transitions is
O(N®), where N denotes the total number of vehicles within
control area.

Proof 4.3: See Appendix B-B.

By Theorem 2-3, both the lower and upper bounds on the
number of state transitions are polynomial with the number of
vehicles within the control area.

C. Analysis of Computational Time Complexity

The theorem is proposed for computational complexity.

Theorem 4: The proposed strategy has the polynomial-
time complexity of computation, which has a lower bound
O(N*) and an upper bound O(N®), where N denotes the
total number of vehicles within control area.

Proof 4.4: See Appendix C.

By Theorem 4, the proposed optimal cooperative driving
strategy can reduce the time complexity of computation from
exponential to a small-degree polynomial.

Remark 1: In Appendix C, we get that each state transition
will produce one computation with constant time. Then, it can
be concluded that the time complexity of the proposed strategy
is close to the lower bound in most cases, since there are many
conflicts between vehicles in most cases and it is hard to satisfy
the condition that each vehicle within the control area does not
conflict with any vehicle on the opposite lane.

Remark 2: There are a limited number of vehicles around an
intersection so that the on-line computation can be realized as
long as the time complexity of computation is a small-degree
polynomial with the number of vehicles, and we do not need
to pay much attention to whether the degree of a polynomial
is 4 or 6.

TABLE II
PARAMETERS SETTING IN THE SIMULATIONS.
Parameters Simulation setting
Amax>Amin 3m/52, —5m/52
UmaxsUnmin 15m/s, Om/s
le 250m
A 1,02 1.5s, 2s

V. SIMULATION RESULTS
A. Simulation Settings

We design two kinds of simulations to verify the perfor-
mance of the proposed optimal strategy. The first simulation

aims to validate the global optimality of the proposed strategy.
The second simulation aims to further demonstrate the perfor-
mance of the proposed strategy in a continuous traffic process.
In the simulations, we select the intersection shown in Fig. 1
as the studied scenario. For the input lane of each direction,
we assume that half of the vehicles will turn left and half will
go straight.

As suggested in [10], [12], the minimal safe gaps A;; and
Ay 2 to avoid collisions in conflict areas are set as 1.5s and
2s, respectively. The length of control area [, is set as 250m.
In addition, the main parameter settings of the simulations are
presented in TABLE II, and all simulations are carried out on
the Visual Studio platform in a personal computer with an i7
CPU and a 16 GB RAM.

There are three kinds of performance indices evaluated in
the simulations: (D) fotal passing time: it refers to the total
time that all vehicles within the control area have passed the
conflict area. In fact, the total passing time is exactly equal
to the objective value of problem (6) and can be calculated
by (1b). @ traffic throughput: it refers to the total number of
vehicles that have passed the conflict area in a specified period
of time, which is utilized to evaluate the traffic efficiency in
a continuous traffic process. Q) average computation time: it
refers to the average computation time that is taken in a one-
time planning procedure to get the vehicle sequence, which is
used to evaluate the computational efficiency of strategies.

There are two strategies selected as the comparison strate-
gies in the simulations: (D) first-in-first-out (FIFO) strategy:
similar to [10], [23], [24], the typical FIFO strategy is utilized
in the simulations, where the vehicles move into the conflict
area following the sequence they enter the control area.
Obviously, the time complexity of FIFO strategy is O(N),
where N denotes the total number of vehicles within the
control area. @) enumeration-based strategy: it refers to the
strategy that can obtain the globally optimal solution through
enumerating all possible solutions, which is utilized to evaluate
the global optimality of the proposed strategy. Obviously, the
time complexity of enumeration-based strategy is O(N').

B. Global Optimality Analysis

In this simulation, we design an intersection scenario with «
vehicles (« € [5,24]) that randomly distributed in the control
area to verify the global optimality of the proposed strategy.
Three strategies are applied in this scenario, i.e., FIFO strategy,
enumeration-based strategy and the proposed strategy. The
total passing time and average computation time are utilized
as the performance indices in this simulation. For each «, we
simulate 20 times to take the average total passing time and
computation time as shown in Fig. 5 and TABLE III. It should
be pointed out that the computation time of enumeration-
based strategy becomes extremely large when a > 18. Thus,
enumeration-based strategy is only applied in the scenarios
where o < 18 in this simulation.

According to Fig. 5, we can find that the total passing
time of the proposed strategy is exactly equal to that of
the enumeration-based strategy, which can obtain the globally
optimal solution. Compared with the FIFO strategy, the total
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Fig. 5. The total passing time of different strategies with respect to the number
of vehicles.

TABLE III
AVERAGE COMPUTATION TIME OF DIFFERENT STRATEGIES.

Number of Strategies Average Computation
Vehicles Time (ms)
FIFO strategy 1
10 Enumeration-based strategy 18
Proposed strategy 3
FIFO strategy 1
14 Enumeration-based strategy 3007
Proposed strategy 6
FIFO strategy 1
18 Enumeration-based strategy 1118876
Proposed strategy 13
FIFO strategy 1
24 Enumeration-based strategy /
Proposed strategy 21

passing time of the proposed strategy is significantly decreased
especially when the traffic volume is large. Furthermore,
according to TABLE III, the average computation time of
the proposed strategy is short enough and can realize on-
line computation in cooperative driving problem. However, the
enumeration-based strategy is computationally intractable for
a real-time implementation especially when there are a large
number of vehicles within the control area.

Consequently, the proposed strategy can obtain the globally
optimal solution with a limited computation time.

C. Comparison Results in Continuous Traffic Process

In this simulation, the performance of the proposed strategy
is further validated in a continuous traffic process. Similar to
[10], [23], we assume that the vehicles arrive in a Poisson
Process at each input lane, and the average arrival rate of
vehicles is denoted by A wveh/(lane - h). In the continuous
traffic process, the planning procedure is triggered when a new
vehicle moves into the control area to reschedule the sequence
of vehicles within the control area. In addition, similar to [12],

TABLE IV
COMPARISON RESULTS OF DIFFERENT STRATEGIES.
Arrival Rate Strategies Traffic Computation
veh/(lane - h) g Throughput Time (ms)
400 FIFO strategy 230 1
Proposed strategy 231 1
450 FIFO strategy 260 1
Proposed strategy 261 2
500 FIFO strategy 259 1
Proposed strategy 328 1
550 FIFO strategy 263 1
Proposed strategy 353 8
600 FIFO strategy 258 1
Proposed strategy 382 13
400
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Fig. 6. Throughput of different strategies with respect to the arrival rate.

[23], we select the method introduced in [31] to obtain the
trajectory according to the assigned arrival time of vehicles.

Note that it is an extremely time-consuming process to
obtain the globally optimal solution using the existing opti-
mal strategies. Thus, the enumeration-based strategy is not
adopted in this simulation and we select the FIFO strategy for
comparisons. In addition, the traffic throughput and average
computation time are selected as the performance indices in
this simulation. For each parameter setting, we simulate a 10
minutes traffic process.

According to TABLE IV and Fig. 6, it is obvious that the
proposed strategy outperforms FIFO strategy in all simulations
in terms of traffic throughput, and the difference in traffic
throughput of these two strategies increases with the arrival
rate. Furthermore, the traffic throughput of FIFO strategy
reaches a saturation state as the arrival rate increases, since the
traffic becomes seriously congested and most vehicles block
in the upstream when FIFO strategy is applied in the scenario
and the arrival rate of vehicles is large. More significantly,
the average computation time of the proposed strategy is short
enough in all simulations, which can entirely guarantee on-line
computation when implementing optimal cooperative driving.



VI. CONCLUSION

In this paper, we study the problem of cooperative driving
at signal-free intersections, aiming to obtain the globally
optimal solution within an efficient computation time. Taking
advantage of the conflict relations between vehicles, we show
that the large-scale planning problem can be reformulated as
a small-size multi-stage decision problem using the idea of
dynamic programming, which can reduce the time complexity
from exponential to a small-degree polynomial. In the future,
the proposed strategy can be extended to other traffic scenarios
(e.g., multi-intersection road networks) and even for the single
machine total tardiness problem in operational research field.

APPENDIX A
PROOF OF THEOREM 1

Proof A.1: Recalling that the number of vehicles on lane
1, 2, 3 and 4 is denoted by 74, ne, fig and ny4 respectively,
and assuming that ; > 0, ny > 0, g > 0 and ngy > 0. To
simplify the descriptions, we give a symbolic function, i.e.,

0 =0
F(x){l v 20"

Then, the number of states in the solution space can be ana-
lyzed by categories. As for I'(ny)+T'(n2)+I'(n3)+I'(ng) = 0,
there is only one state satisfying condition, i.e., the initial state
in stage 0. As for I'(nq ) +T'(n2)+I'(n3)+I'(n4) = 1, there are
(1 + 2 + Rz + Ng) states satisfying condition, e.g., s1 (§ ),
S1 (3 8), So (8 (1)) As for F(nl) +F(’I’Lg) +F(n3) +F(n4) =2,
there are (2’fl1 o + 21 N3 + 2NNy + 2N9N3 + 2N07y + 2ﬁ3ﬁ4)
states satisfying condition, e.g., s1 (§4), 51 (19), s2(99).
As for T'(n1) + I'(n2) + I'(ng) + I'(n4) = 3, there are
(37}1 NN + 3N NoNy + 3N N3Ny + 3ﬁ2ﬁ3ﬁ4> states satisfying
condition, e.g., 51 (13), s1(§1), s2(93). As for I(ny) +
T'(ng) + I'(n3) + I'(ng) = 4, there are (4f17om374) states
satisfying condition, e.g., sy (11), s1 (1), s2($3). Based
on the above descriptions, we can obtain the total number of
states Ny in the state space as

Ny = 4nnongng + 3(ﬁ1ﬁ2ﬁ3 + N1fong + NiNghy
+ﬁ2’ﬁ3ﬁ4) + 2(ﬁ1fb2 + NiN3 + NNy + Nang
+ofy + Nigy) + Ry + g + g + 7ig + 1.

Assuming that the total number of vehicles in control area

is N(N > 4) andm:ﬁg:ﬁ;g:fm:%, we have

3N3  3N?
= —+ —+ N+ 1
64 * 16 + 4 T

N4

N,
It is obvious that the number of states is O(N?).

APPENDIX B
PROOF OF THEOREM 2-3

Recalling that the number of vehicles on lane 1, 2, 3 and
4 is denoted by ni, N2, N3 and ny respectively, and assuming
thatﬁl>0,ﬁ2>0,ﬁ3>0andﬁ4>0.

A. Proof of Theorem 2

Proof B.1: The number of transitions reaches the lower
bound Ntl under basic state transition. Usually, each state has
four predecessor states except the initial state, i.e.,

N

t,max

= 4(Ns - 1)7
where Ntl)max denotes the possible maximum of transitions
under basic state transition. However, there exist several in-
feasible transitions, which need to be subtracted from N} .
As for such states as s; (Zé ﬁj), there are generally four
kinds of predecessor states, i.e., s1 (”}Lgl Zi), S9 ("}gl Zi),
S3 (";lgl Zi) and sy (”;;1 Zi) We now discuss whether these
predecessor states exist in state space. () if n; = 1, state
s1 (™, m2) is infeasible, where ny € [0,72], ng € [0,7s3]
and n4 € [0, 74]. Thus, there are [(R2 + 1)(fiz + 1)(ig + 1)]
states belonging to this category. @) if no = 0, s2 ("}gl zj) is
infeasible, where ny € [1,74], ng € [0, 73] and ny € [0, Ny).
Thus, there are [f; (N3 + 1)(fig + 1)] states belonging to this
category. @ if ng = 0, s3 (", 2) is infeasible, where
ny € [1,71], na € [0,72] and ny € [0, 7y]. Thus, there are
[ (g 4+ 1)(7g + 1)] states belonging to this category. @ if
ng =0, s4 (”;Lgl Zi) is infeasible, where ny € [1,74], ny €
[0, 2] and ng € [0, ig]. Thus, there are [fiy (g + 1)(7g + 1)]
states of this category. In summary, as for such states as
51 (b n2), the number of infeasible transitions Ny, y,1 that

need to be subtracted from Ntl,max is

Ntinga = (2 + 1) (A3 + 1)(Ag + 1) + A1 (R + 1) (R4 + 1)
+n1 (2 + 1) (g + 1) + 1y (f2 + 1) (3 + 1)

Similarly, as for such states as sa (13 n2), 3 (nsn2), and

Sy (Zé Zj) , the number of transitions that need to be subtracted

from Ntl’max is

Niingo = (1 +1) (g + 1) (g + 1) + Ao (fz + 1) (g + 1)
+n2(fy + 1) (g + 1) + na(ng + 1) (Rs + 1),

Niingz = (1 + 1) (N2 + 1) (g + 1) + Aaz(fa + 1) (fg + 1)
+n3(f1 + 1) (Rg + 1) + ng(Ry + 1) (A + 1),

Niinga = (1 + 1)(g + 1) (ng + 1) + na(R2 + 1) (3 + 1)
+hg(fy + 1) (A3 + 1) + ng(Ry + 1) (R + 1).

In addition, there are four states that directly connect to
the initial state, i.e., s1 (§9), s2 (98). s3(59) and s4 (39),
which produces four special transitions. Therefore, the lower
bound is summarized as

N} = Nf’max — Niing1 — Neing2 — Niying,3 — Niinga +4
= 1671790374 + 8(N11 N2ty + MTiafiy + NyMigNy + Nafizng)
+2(N1 g + Nyftg + Ny + NioNg + Nafly + Nigfy)

—2(f1 + e + N3 + Ng) + 4.

Assuming that the total number of vehicles in control area
is N(N >4) and 7y = g = i3 = iy = %, we have
N* N3 3N?
Nj=" 4" +"— —2N +4.
TR *

Thus, the lower bound on number of transitions is O(N*).



B. Proof of Theorem 3

Proof B.2: According to Property 2 in Section IlI-C, we
know that removing one state transition may reproduce mul-
tiple transitions which do not connect the states in adjacent
stages. Thus, the total number of transitions is

l
Nt:Nt _Nt,rem+Nt,rep; (18)
where N .m denotes the number of removed transitions, and
Ny rep denotes the number of reproduced transitions.

According to Property 1 in Section III-C, the reproduced

transitions represent a group of vehicles which do not con-

flict with each other. Firstly, we aim to find the number
of the reproduced transitions that connect to a particular
n?—&-énl na
ng+5n3 ng
[nY + 1,18 + §,,,]) vehicle on lane 1 has no conflict with the
ni(nf* € [nd+1,n3+0,,]) on lane 3. Thus, there are d,,, 6,
n?+5n1 no
) ng+5n3 74
when ns, ny and r are fixed. Secondly, according to Section
IV-B, the total number of transitions reaches the upper bound
N} when each vehicle within the control area does not conflict
with any vehicle on the opposite lane. In such case, we aim

to find the total number of reproduced transitions for state

”?"'5”1 na

r n§+5n3 g

Obviously, we have d,,, € [1,71] and d,,, € [1,73]. Thus, the

total number of the reproduced transitions connecting to this
kind of states where no, n4 and r are fixed is

state s, ( ), where we assume that the nt"(nth ¢

reproduced transitions connecting to state sr(

), where §,,, and J,,, are set as different values.

UARL iy (1 + 1)ig(Rg + 1)
3 3 s, = Dl D)
Oy =1 8py=1

Then, we consider that ny, n4 and r can set as different values.
As forng € [1,72] and ng € [1,74], r € {2,4}. Asforng =0
andny € [1,74], 7 = 4. Asforny = 0 and ng € [1, 75, r = 2.

0]

6 2

matony "2), the total number
ng+0ng na

of reproduced transitions N rep 1 15

Therefore, for such states as s, (

(g + 1)ng(Rs 41
Nt,rep,1:(2n2n4—|—n2+n4) 1( 1 )43( 3 )

0
n1 Ny+0ong

Similarly, for such states as s, (ns 046,

), the total number
of reproduced transitions is

ﬁg(ﬁz + 1)ﬁ4(ﬁ4 + ].)

Nt,rep,? = (Qﬁlﬁ.‘_’) + ﬁl + ﬁg) 1

In addition, there are (271713 + 2ni2714) reproduced transitions
from the initial state to such states as s, (Z; 8) and s, (8 ZZ)
Based on above descriptions, we have

Nt,rep = Nt,rep,l + Nt,rep,Q + 2ﬁ1ﬁ3 + 27¢L2"A7f4- (19)

Furthermore, it is easy to obtain Ny rem, i.€.,

Nt rem = 201703(R2+1) (Ra+1) 4272704 (01 +1) (n3+1). (20)

Finally, according to (18), (19) and (20), we can obtain the

upper bound on the number of transitions, i.e.,

M (’ﬁl + 1)ﬁg(ﬁ3 + 1)
4

N = N} + (2h2f14 + iy + 7g)

A . na(ng + Dng(ng +1
+(2n1 13 + Ny + i3) 2(i3 )44(4 )

—Qﬁlflg(ﬁg + 1)(’&4 + 1) — 2ﬁ2ﬁ4(’ﬁ1 + 1)(ﬁ3 =+ 1).

+ 27173 + 2Nefy

Assuming that the total number of vehicles in control area
is N(N >4) and 7y = g = i3 = iy = %, we have
_ N° L 3N5 15N* n 25N3 L 3N?
© 4096 1024 256 64 4

Thus, the upper bound on number of transitions is O(N°).

—2N.

Ny

APPENDIX C
PROOF OF THEOREM 4

Proof C.1: In Algorithm 1, for each state transition, we need
to calculate and update the objective value of current state.
To further reduce the complexity, instead of using Eq. (11a)-
Eq. (12), it is easy to obtain the objective value according to
the conflict relations between vehicles. Specifically, if multiple
vehicles can obtain the right of way during current state
transition and these vehicles are divided into two continuous
queues in different lanes (e.g., Fig. 4), we just need to calculate
the arrival time assigned to the last vehicle in each queue and
then pick the maximum as the objective value, i.e.,

tassign,r,l = Inax (tassign,r,f + (N7 - I)At,la tmin,r,l) 5
tassign,o,l = max (tassign,o,f + (No - 1)At,17 tmin,o,l) )
J = max (tassignﬂ‘,h tassigmo,l) s

where lane o is the opposite lane of lane 7. t,gign,r,; and
Lassign,0,0 denote the arrival time assigned to the last vehicle
of the queue in lane r and lane o respectively. tasign,r,f and
Tassign,o0,f denote the arrival time assigned to the first vehicle
of the queue in lane r and lane o respectively. N, and N,
denote the size of the queue in lane r and laneo respectively.
tmin,r,; and tmin o, denote the minimal arrival time of the last
vehicle of the queue in lane r and lane o respectively.

Obviously, the time complexity of calculating the objective
value is a constant time for each transition, since the com-
putation time does not change with the size of the algorithm
input (i.e., the total number of vehicles). Therefore, based on
Theorem 2-3, it is obvious that the optimal cooperative driving
strategy has the polynomial-time complexity of computation,
which has a lower bound O(N*) and an upper bound O(N®),
where N denotes the number of vehicles.
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