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ABSTRACT The distributed cooperative offloading technique with wireless setting and power transmission

provides a possible solution to meet the requirements of next-generation Multi-access Edge Computation

(MEC). MEC is a model which avails cloud computing the aptitude to smoothly compute data at the edge

of a largely dense network and in nearness to smart communicating devices (SCDs). This paper presents a

cooperative offloading technique based on the Lagrangian Suboptimal Convergent Computation Offloading

Algorithm (LSCCOA) for multi-access MEC in a distributed Internet of Things (IoT) network. A compu-

tational competition of the SCDs for limited resources which tends to obstructs smooth task offloading for

MEC in an IoT high demand network is considered. The proposed suboptimal computational algorithm is

implemented to perform task offloading which is optimized at the cloud edge server without relocating it to

the centralized network. These resulted in a minimized weighted sum of transmit power consumption and

outputs as a mixed-integer optimization problem. Also, the derived fast-convergent suboptimal algorithm is

implemented to resolve the non-deterministic polynomial-time (NP)-hard problem. In conclusion, simulation

results are performed to prove that the proposed algorithm substantially outperforms recent techniques

with regards to energy efficiency, energy consumption reduction, throughput, and transmission delay

performance.

INDEX TERMS Energy efficiency, MEC, NP-hard problem, SCD, cooperative offloading.

I. INTRODUCTION

In recent years, the implementation of the internet of

things (IoT) network allows smart communicating devices

(SCDs) embedded with sensors the capacity to intercon-

nect through internet infrastructures. However, the SCDs are

resource-constraint with low processing capacity and lim-

ited battery lifetime [1] to fully satisfy the demands of the

mobile users. The exponential growth of smart communicat-

ing devices requires a high demand for network bandwidth

and storage capabilities. In order to overcome the above

challenge, multi-access edge computing (MEC) has been

initiated.

The associate editor coordinating the review of this manuscript and

approving it for publication was Eklas Hossain .

The introduction and recent innovations of MEC have

provided SCDswith a systematic networkmodel which avails

the usability of cloud computing aptitudes at the radio access

network (RAN) edge. MEC is gradually changing cloud

computing services to facilitate the high performance of dis-

tributed IoT networks [2], [3]. Specifically, MEC offload-

ing can enhance the IoT smart devices by offloading high

computation tasks to the proximity of edge servers with the

priority to minimize their energy consumption.We can justify

the fact that offloading is needed regularly due to limited

computational power, low mobile device storage capacity,

and high energy consumption. Since the MEC cloud server

has a high computation capability, its deployment will signif-

icantly boost faster data processing in IoT networks [4], with-

out adding extra processing power. The MEC computation
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offloading [5] can be performed either locally or the compu-

tational task is transfer to the nearest cloud edge server for

data processing.

Cooperative allocation of the computation task among

mobile users canmitigate uneven computationworkloads dis-

tribution and computation resources. The authors in [6], [7]

stated that to achieve a reliable MEC computation offloading

in IoT networked devices remains a challenging issue. This

has resulted and formed the basis of this research.

In this paper, we propose an energy-efficient suboptimal

algorithm for cooperative offloading based on a Lagrangian

offloading algorithm for MEC computation in distributed

IoT networks. The SCDs compete for limited compu-

tation resource that impedes smooth task offloading for

multi-access MEC in high demand environments. In the pro-

posed system, task scheduler in each SCD contains dual

servers; the local central processor (LCP) which locally exe-

cutes tasks, and the wireless transmitters (i.e., LTE-A or

Wi-Fi) which offloads the task non-locally. Without relo-

cating to the central network, the offloading task will be

optimized at the cloud server. The next target will be to

minimize the total energy consumed by the SCDs. For this,

we mutually optimized the computation speed for data trans-

mission, the transmit power allocation per sub-channel, and

the offloading ratio, leading to a mixed-integer optimization

problem which is an NP-hard power problem. Using the

Lagrangian dual decomposition approach, an algorithm based

on suboptimal convergent is proposed to mitigate this prob-

lem, and to improve the data transmission throughput which

in turn minimizes the energy consumption of computational

tasks offloading.

Therefore, we summarized our contributions in this paper

as follows:

• We propose an energy-efficient cooperative offloading

algorithm for multi-access edge computing in the dis-

tributive IoT network, where the offloading task is opti-

mized at the cloud edge server.

• With the aim of minimizing the total transmission and

computational power consumed by the SCDs, our tech-

niques mutually optimized the computation of data

transmission speed, offloading ratio, and transmit power

allocation per sub-channel and the outcome becomes a

problem of mixed-integer optimization. The challenge

inner- and inter-coupling that influences each transmit-

ting SCDs is tackled by joint optimization of the compu-

tational speed through Dynamic Voltage Scaling (DVS)

technique, subchannel distribution, subchannel transmit

power, amount of data transmitted per subchannel, and

the subchannel offloading ratio.

• We propose a suboptimal convergent algorithm by

applying the Lagrangian dual decomposition technique,

to improve the NP-hard problem and enhance latency

requirements so as to minimize the energy consumed in

the computation of SCDs tasks.

• Finally, our proposed technique is validated and the

simulation results show a significant out-performance

of existing techniques as regards data throughput and

energy consumption.

The rest of this paper is arranged as follows: Section II

contains related works while the systemmodel is contained in

Section III. The research problem is formulated in Section IV.

Section V describes the Multi-access computation offloading

scheme analysis, and the Simulation results for the system

performances are presented in Section VI while the Conclu-

sion is stated in Section VII.

II. RELATED WORKS

The advent of MEC has formed a novel computing model to

enhance data processing in proximity to SCDs and connected

things at the network edge [8]. Many recent works surveyed

for cooperative SCDs are aimed to improve the performance

of IoT networks, subject resource-intensive constraints such

as network bandwidth capacity [9], computation offloading,

and energy consumption budgets [10]. In [11], a distribution

of computation load for smart mobile devices was studied by

employing both computations offloading and radio resource

constraints. [12] proposed a clustering algorithm for load

balancing in heterogeneous networks to minimize energy

consumption while sustaining and satisfying users’ demands.

The effective computation offloading among the energy-

constrained MEC is important to avoid huge computation

latency in order to achieve a high QoS in the network.

The overall MEC systems performance solely depends on

offloading technique design, which has a close relationship

with the type of applications SCDs run. While multiple SCDs

simultaneously transmit similar or different highly intensive

computation tasks [13], because of parallel local and cloud

execution, the ideal system performances do not only assume

inner-coupling for each transmitting SCD, but is correspond-

ingly inter-coupled amid SCDs because of the competition for

limited transmission resource. The inner- and inter-coupling

also affects each other, and therefore complicates multiple

SCDs offloading technique and strategy [11].

Recent researches have broadly studied the offloading

technique and strategy formultiuserMEC schemes [14]–[16].

Most recent studies have jointly investigated the computation

offloading, not just with resource allocation constraints, but

coupled with caching techniques [17]. In [18], an energy-

efficient autonomic offloading (EEAO) technique that jointly

applies the physical layer design and latency for application

running was designed. The energy consumption was mod-

eled for computation task for identical mobile consumptions

in MEC environment. Thus, the computation offloading

by mobile SCDs is randomly derived as a partly Markov

decision approach to reduce the cost of MEC systems,

consisting of the offloading execution time and the energy

consumption [19]. In [20], the optimal energy efficiency

performance in mobile-edge computing was investigated.

The computation offloading technique was observed to have

achieved reduced energy consumption for each mobile user

in allocated time slot. The authors in [21] studied an energy

efficient task offloading (EETO) in 5G MEC based on a
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two-tier small-cell network setting. By jointly examining

the energy cost in offloading task for backhaul communi-

cation links, the minimized energy consumption problem

was formulated. An algorithm is designed to improve the

computation offloading task in order to realize global conver-

gence. Therefore, a joint optimized transmit power, required

number of data transmission throughput and the CPU cycles

for mobile devices achieved a low energy consumption,

however, the systems latency was not greatly improved as

expected [22], [23].

Moreover, due to the high demands for SCDs in a computa-

tion system, the energy-efficient offloading is critical target in

the construction of an effective computation offloading sys-

tem in MEC networks. In [24], the authors considered some

energy-efficient offloading strategies in task computational

transcoding for edge-cloud mechanism. An algorithm based

on online offloading was proposed with a focus of achieving

a minimized energy consumption while reaching low latency.

To enhance energy efficiency in MEC, a multiuser-based

computation offloading problem was investigated by [25],

and [26] used a game theoretic technique to design a distribu-

tive algorithm for a wireless network based on multi-channel.

Different from these studies, our focus is on improved

MEC which does not only minimize energy consumption

but also improves throughput and latency between transmit-

ting mobile SCDs. Hence, we propose an optimal cooper-

ative offloading technique to enhance energy efficiency in

dynamic IoT networks of the cloud computing system. How-

ever, recent works did not give much consideration to the

influence terminal execution technique has on multi-access

computation which results in highly deteriorated network

performance [27]–[31]. This also contributes to the focus of

our research.

III. SYSTEM MODEL

The system model consisting of the network, communication

and computation models of proposed techniques is analyzed

in this section.

A. NETWORK MODEL

As described in Figure 1, a MEC-based cooperative compu-

tation offloading setting in IoT Network is considered. In the

network, the numbers of SCDs are alternatively enclosed by a

base station (BS), a nearby small cell (SC) transmitters, such

asWi-Fi AP or an LTE-A, coupledwith awireless relay (WR).

With the aim of availing all transmitting SCDs the MEC ser-

vices, either a single ormultipleMEC servers is linked to both

the (BS) and (SC) through the fiber links. Hence, SCDs tasks

computations is either offloaded at the (BS) via the connected

MEC server, the (SC) connected MEC server, or indirectly

to the (BS) through the (WR) and the wireless transmitters

(WT ). The fiber links is used in connecting the (SCs) and

the (BS) to the central network. With the aim of achieving an

efficient spectrum reuse, the same frequency band is shared

between the (WR) and the (BS) during computation and task

transmission.

FIGURE 1. MEC cooperative computation offloading in IoT network.

The rate at which the task arrives at the SCD i’s scheduler

is given as δSCDi . The decision of the SCD i task scheduler

is implemented according to the offloading probability αi,

rate. This represents the probability of offloading an inbound

task is to the MEC server. The tasks computed are presumed

to be indivisible, therefore it is impossible to further break

them down into sub-tasks. The system further assumes a task

scheduler is incorporated in all theMEC servers, which either

selects to compute an inbound task or to offload the task to

the remote cloud. For the SCDs, the inbound task through

the MEC server S will either be offloaded remotely to the

cloud with a probability βj or can be locally executed with

probability (1 − βj).

In this MEC scenario, assuming SCDs in unit cell will

function as [26]. During data processing, the SCDs send

SC a request. Using the information gathered the SC fashion

out a strategy for computation task offloading and updating

independent SCD.

Considering a group of SCDs represented by R =

{1, 2, . . . ,R} is presented. It is assumed that only one com-

putation task Ci is available to be executed on SCD i during

the period of computation offloading. Recall that all the com-

putation tasks are indivisible. Therefore, there are two terms

that may clearly define the computation task Ci i.e., Ci =

(si, pi), where Si represents the size of input data of task Ci,

while pi represents the amount of LCP sequences required in

achieving Ci. We assume that there are M uplink channels

connected to the BS and represented as M = {1, 2, . . . ,M},

and N uplink channels connected to the SC and characterized

as N = {1, 2, . . . ,N }.

Considering the SCDs features and their tasks, for example

the density of workload, the computing capacity, the energy

consumption, and the data size of the task, the SCD users are

categorized into two. Let λi ∈ {0, 1} denote the offloading

result of task Ci, where λi(0) implies that Ci is intended to be

accomplished locally at SCD i’s LPC, and λi(1) implies that
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Ci will be offloaded either locally or to theMEC server that is

indirectly connected to the k through theWR and the wireless

transmitter. This kind of offloading decision is dependent of

the quality of communication and the channel.

B. COMMUNICATION MODEL

An identical bandwidth B in the subchannels is solely allo-

cated without channel interference among the SCDs [12],

[13]. Assuming Pr,m, er,m and σ 2 indicate the transmit power

of SCD r on subchannel m, Gaussian noise, and the coef-

ficient of uplink channel fading from SCD r to subchannel

m respectively. Thus, the rate of transmission of SCD r on

subchannel m is given by

LT = Blog2

(
1 +

Pr,md
−k
l

∣∣er,m
∣∣2

σ 2

)
(1)

C. COMPUTATION MODEL

This section describes the computation offloading technique

in two scenarios, where Ui and Vi indicates size of the input

data and the latency requirements:

• Local computing: Power consumed P by CPU is

P = τS3, where τ is the coefficient subject to chip

design and S is the computational speed of CPU based

on dynamic voltage scaling technique that improves

energy management scheme. Assuming the computa-

tional speed of SCD is Sui and the task execution time

tui . Therefore, the task execution time is given by

tui =
αiUi.γi

Sui
(2)

And the energy consumed Eui is

Eui = αiUi.γi.τS
3 (3)

• Computation Offloading to Central network: Let

(1 − γi)Ui denotes the bits offloaded to the MEC cloud

server at uplink data ψ(1− γi)Ui, where ψ is the uplink

transmission overhead. Let ur,m represents the size of

the data offloaded to subchannel m. Thus, we expressed

transmission time as

lci = max

{
ui,m

LT
,∀m

}
(4)

And the energy consumed for transmitting data to the

MEC cloud server as

Eci =

M∑

m=1

[
µ(βr,mPr,mui,m)

LT

]
(5)

where µ denotes the reverse efficiency of power amplifier.

It is assumed that cloud task computation capacity is infinite.

Thus, we can ignore the cloud computing time. In addition,

the downlink transmission cost could be ignored due to less

data received compared to the large downlink transmission

rate [4], [31]. Table 1 presents a description of all mathemat-

ical parameters and their derivations.

TABLE 1. Network parameters and derivations.

For the λi(3) category of SCDs whose task offload-

ing is directed either locally or to the transmitting MEC

server which is indirectly connected to base station (k),

we set different offloading priorities for them and is defined

as

̟i =
gi,kPr,m√

Eci
(6)

where gi,k is set as the systems channel gain. Algorithm 1

illustrates a comprehensive SCD user offloading priority

selection.

D. COMPUTATION PROBLEM FORMULATION

TheMulti-access computational offloading (MCO) problems

P1 . . .P3 are formulated in this section.

P1 : min
gl ,B,P,L,λ

R∑

r=1

xrEr (glr , br ,m,Pr,m, lr,m, λr )

s.t.D1 : max{tlr , tar } ≤ Lr , ∀r,

D2 : 0 ≤ gl r ≤ Flr , ∀r,

D3 :

M∑

m=1

br,mPr,m ≤ PTr , ∀r,

D4 : Pr,m ≥ 0, ∀m, r,

D5 :

M∑

m=1

br,mkr,m ≥ β(1 − λr )Jr , ∀r,

D6 : lr,m ≥ 0, ∀m, r,

D7 :

R∑

r=1

br,m ≤ 1, ∀m,

D8 : br,m ∈ {0, 1}, ∀m, r,

D9 : 0 ≤ λr ≤ 1, ∀r,
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Algorithm 1 Priority Selection Algorithm in Offloading

Process
Initialize:

Smart Communicating Devices: R = {1, 2, . . . ,R};

Wireless uplink channels:N = {1, 2, . . . ,N };

SCD Computation task: Ci = (si, pi);

SCD Transmission power: Pr,m, i ∈ R;

SCD category: λi(0) = λi(1) = φ;

Selection priority:̟ = φ;

1: for SCD i = 1toR do.

2: for transmission channel j = 1toN do.

3: compute the channel data execution rate tui of each

SCDs as stated in (2), and the energy consumption

Eui represented in (3);

4: for transmission channel j = 1toN do

5: if Er ≤ Eui then;

6: i ⇒ λi(0);

7: else

8: i ⇒ λi(1);

9: ̟i = gl,rPr,m/
√
Eci;

10: end if

11: end for

12: Output:

13: Selected SCD category: λi(0), λi(1);

14: Selection priority of SCD:̟ = {̟i}, i ∈ λi(1).

where Er (glr , br ,m,Pr,m, lr,m, λr ) denotes the energy con-

sumption (EC) of SCDs r , and can be represented as

Er (glr , br ,m,Pr,m, lr,m, λr ) = Elr + Eir . Furthermore,

xr ,Lr,,Glr , and PTr are respectively considered as the

weighting measure, computational latency, optimal velocity

for computation, and optimal transit power allocation (of

SCDs r).

Our objective in P1 is to lessen the weighted amount

of power consumed by communicating devices subject to

D1 − D9. In this regard, the weighted sum is considered as the

tradeoff of power consumed by the SCDs. The weighting sum

value measures relatively in reflection to the importance of

SCDs. Technically, SCDs with less residual energy could be

assigned greater weighting measures. We therefore explains

the constraints as follows; D1 ensures a guaranteed response

time of communicating SCDs; D2, D3 and D4 represents the

maximum computational velocity and the maximum transit

power allocation assigned to individual SCD; D5 and D6

ensures that all are task offloaded and transmitted over an

allocated sub-channel; D7 and D8 guarantees the assignment

of maximum of one SCD for each sub-channel for uplink

communication. Considering that br,m assumes an integer

state, P1 is a non-deterministic polynomial-time hardness

(NP-harder).

IV. MULTI-ACCESS COMPUTATIONAL OFFLOADING

SCHEME

In this section, we attempt to derive the multi-access

computational offloading, hence, in close forms, transmit

power allocation (TPA) and an optimal computation velocity

(OCV), is calculated while a suboptimal algorithm based on

Lagrangian dual decomposition (LDD) is proposed.

A. OPTIMAL COMPUTATIONAL VELOCITY AND TRANSMIT

POWER ALLOCATION

In this subsection, simplifyingP1 byminimizing the variables

over glr and first Pr,m we attempt to compute the OCV and

TPA. Hence, the optimal power glr generated for computation

is then obtained as

g∗
lr
(λr ) = αrλr Jr

Lr
(7)

While the optimal power auxiliary Pr,m derived from (1) is

given as

P∗
r,m(br,m, lr,m) =

1

fr,m

(
2
lr,m
XLr − 1

)
. (8)

Further analyses of the multi-access computational prob-

lem in P1 indicates that at every increase of the optimal power

(glr ), the power consumption of SCDs r also increases in a

monotonic form. Hence, tlr ≤ Lr is further derived and this

further results in glr ≥ αrλr Jr
Lr

.

Therefore, the optimal computational velocity prob-

lem (P2) is formulated as;

P2: min
B,L,λ

R∑

r=1

xr

[
ε(αr Jr )

3

L2r
λ3r + Eir (br,m, lr,m).

]

s.t.D10 : λr ≤
LrFlr
αr Jr

, ∀r,

D11 :

M∑

m=1

br,m
fr,m

(
2
lr,m
XLr − 1

)
≤ PTr , ∀r,

D5,D6,D7,D8,D9

B. SUBOPTIMAL LAGRANGIAN DUAL DECOMPOSITION

ALGORITHM

This subsection applies the Lagrangian dual decomposi-

tion Algorithm (LDDA) to resolve the aforementioned sim-

plified computational problem (P2). Diminishing br,m to

0 ≤ b̃r,m ≤ 1, we introduce a fresh variable sr,m = b̃r,mlr,m,

hence, the diminished problem can be stated as P3 below:

P3: min
B̃,L,λ

R∑

r=1

xr

[
ε(αr Jr )

3

L2r
λ3r + Eir (b̃r,m, sr,m)

]

s.t.D12 :

M∑

m=1

b̃r,m
fr,m

(
2

sr,m

XLr b̃r,m − 1

)
≤ PTr , ∀r,

D13 :

R∑

r=1

b̃r,m ≤ 1, ∀m,

D14 : 0 ≤ b̃r,m ≤ 1, ∀m, r,

D15 :

M∑

m=1

sr,m ≥ β(1 − λr )Jr , ∀r,

D16 : sr,m ≥ 0, ∀m, r,

D9,D10,
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where

Eir (b̃r,m, sr,m) =

M∑

m=1

ρLr

fr,m
b̃r,m

(
2

sr,m

XLr b̃r,m − 1

)
. (9)

In the expression ψ(b̃r,m, sr,m) =

(
2

sr,m

XLr b̃r,m − 1

)
, it can

be seen that ψ(b̃r,m, sr,m) is jointly convex in b̃r,m and sr,m,

since it’s a positive semi-definite Hessian matrix. Similarly,

the objective and feasible regions of (P2) are convex and (P3)

is convex as well. Therefore, obtaining the optimal solutions

by applying the LDDA by denoting: µ = (µ1...µR)0, v =

(v1...vM )0, as the respective Lagrange multipliers which are

consistent with D12,D13 and D15, hence, the (P3) LDD is

expressed as;

L(B̃, S, λ, µ, v, γ ) =

R∑

r=1

xr

[
ε(αr Jr )

3

L2r
λ3r + Eir (b̃r,m, sr,m)

]

+

R∑

r=1

µr

(
M∑

m=1

ψ(b̃r,m, sr,m)

fr,m
− PTr

)

+

R∑

r=1

γr

(
βJr (1 − λr ) −

M∑

m=1

sr,m

)

+

M∑

m=1

vm

(
R∑

r=1

b̃r,m − 1

)
. (10)

1) OPTIMIZATION VARIABLE UPDATE

The optimized LDD function can be expressed as;

H (µ, v, γ ) = inf
{B̃,S,λ∈8}

L(B̃, S, λ, µ, v, γ ), (11)

as 8 is considered the area consistent with D9,D10,D14, and

D16. Combining D9 and D10 will yield

0 ≤ λr ≤ min
{
1, LrGlr

αr Jr

}
1
= λr,max . (12)

By denoting the optimal solutions of (13) as b̃∗
r,m, s

∗
r,m and

λ∗
r , giving the KKT conditions as:

ϑL(B̃, S, λ, µ, v, γ )

ϑ b̃∗
r,m





> 0, b̃∗
r,m = 0

= 0, 0 < b̃∗
r,m < 1, ∀m, r,

< 0, b̃∗
r,m = 1

(13)

ϑL(B̃, S, λ, µ, v, γ )

ϑs∗r,m

{
> 0, s∗r,m = 0

= 0, s∗r,m > 0
, ∀m, r, (14)

ϑL(B̃, S, λ, µ, v, γ )

ϑλ∗
r





> 0, λ∗
r = 0

= 0, 0 < λ∗
r < λr,max, ∀r

< 0, λ∗
r = λr,max

(15)

To minimize L(B̃, S, λ, µ, v, γ ) for given parameters

(µ, v, γ ), we solved three subproblems (Q1,Q2) and (Q3) as

follows:

(Q1): Optimal communicated bits (OCBs) on each

sub-channel:

By and differentiating L(B̃, S, λ, µ, v, γ ) for a given

parameter B̃, subject to sr,m further substituting the result

into (14), we obtained:

s∗r,m =

[
XLr b̃r,mlog2

(
γr fr,mX(
ρ+

µr
Lr

)
ln2

)]+

, (16)

since [x]+ = max{0, x}, therefore, l∗r,m is expressed as:

l∗r,m =
s∗r,m

b̃r,m
=

[
XLr log2

(
γr fr,mX(
ρ+

µr
Lr

)
ln2

)]+

, (17)

(Q2): Optimal sub-channel assignment:

Since the OCBs on each sub-channel is achieved, we there-

fore generate their optimal sub-channel assignment (OSA) as

follows:

ϑL(B̃, S, λ, µ, ν, γ )

ϑ b̃r,m
=

((
1−

sr,m1n2

XLr b̃r,m

)
2

sr,m

XLr b̃r,m −1

)

ρLr+µr
fr,m

+νm
(18)

As we substitute (16) into (18) using (13), we obtained the

equation below:

b̃∗
r,m =

{
0, vm > Dr,m

1, vm < Dr,m,
(19)

where Dr,m is expressed as

Dr,m =
ρLr + µr

fr,m

(
1 −

(
1 −

l∗r,m1n2

XLr

)
2

l∗r,m
XLr

)
. (20)

Beginning from (20), it is expected that the sub-channel will

be allocated to the transmitting SCDs with the maximalDr,m,

particularly

b∗
r,m =

{
1, r = argmax1≤r≤RDr,m

0, else,
(21)

which rounds br,m to an integer.

(Q3): Optimal offloading ratio (OOR):

In an attempt to solve the OOR, differentiating

L(B̃, S, λ, µ, v, γ ) w.r.t. λr and further substituted the result

into (15) to obtain

λ∗
r = min

{
Lr
αr Jr

√
βγr
3αrε

, λr,max

}
. (22)

2) LAGRANGE MULTIPLIERS UPDATE

It is observed that for a given µ and γ , b̃∗
r,m, l

∗
r,m and λ∗

r

can be obtained. A subgradient projection ofH−(µ, v, γ ) can

therefore be expressed as

1µr = PTr −

M∑

m=1

b̃∗
r,m


2

s∗r,m

XLr b̃∗
r,m − 1




fr,m
, (23)

1γr =

M∑

m=1

s∗r,m − βJr (1 − λ∗
r ), (24)
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FIGURE 2. Probability of SCD offloading vs System response time.

Algorithm 2 Lagrangian Suboptimal Convergent Computa-

tion Offloading Algorithm (LSCCOA)

1: Initialization

2: ζ, µ, ν, γ, t

3: while ‖ µr (t + 1)−µr (t)‖2+ ‖ γr (t + 1)− γr (t)‖2 > ζ

do

4: Calculate b∗
r,m, l

∗
r,m and λ∗

r

5: Update µ and γ

6: end while

7: Calculate g∗
lr
(λr ) and P

∗
r,m(br,m, lr,m)

8: end

Algorithm 2 shows a detailed analysis of the suboptimal

offloading performance, as ζ is set as an initial error tolerance

point.

V. SIMULATION RESULTS

Using an LTE-A network coupled with a fiber Wi-Fi network

parameter, we performed the following numerical analysis.

For our experiment, 80 smart communication devices (SCDs)

were randomly deployed within the range of 80m from each

network base station (N-BS). Additionally, six SCDs are

positioned across the area of network coverage of each access

point (AP). Channel gain of the cellular access mode is set as

gi,k, = c−σi,k amid SCD base station k and SCD i, representing

ci,k as the spatial separation between base station k and SCD

i, while σ = 6 as the factor for network path loss. We also set

αi = α(∀i = 1, 2, 3 . . .) and βs = β(∀s = 1, 2, 3 . . .).

Considering |ℜ| = 6 MEC servers, each linked to η

end-users, which are capable of controlling their task offload-

ing flexibly as their probability of computation offloading

change. Figure 2 illustrates the performance of the net-

work average response time against the system offloading

probability α of SCDs. From the illustration, the observed

SCDs experienced a reduction in their latency by configuring

their individual offloading probabilities subsequent to tech-

nique we proposed. It is important to note that the latency

FIGURE 3. Probability of MEC server offloading vs system response time.

of local computation severely rely on the competence of

computation of each SCDs, however, the reliance system

latency on the capabilities of computation is substantially

minimized in our proposed cooperative offloading scheme.

For example, assuming the clock frequency cfi (LCP pro-

cessing cycles/second) for SCD i’s increases from 200MHz

to 300MHz, the local computations average response time

will decrease from 14.5 s to 3.2s, as against 1.9s to 1.4s

performance in our proposed technique.

We further examine the relevance of the coordination

between the remote cloud and MEC servers in Figure 3. Our

observation proves that although response time is minimized

in the remote cloud-computing when compared to the edge-

only computation, however, our proposed technique signif-

icantly outperforms both techniques, as long as the MEC

servers’ offloading probability α is set accordingly.

Our proposed Lagrangian LSCCOAalgorithm is compared

against EEAO proposed in [18] and EETO in [21] for energy

efficiency for different number of SCDs in Figure 4. Consid-

ering EEAO and EETO, their objectives concentrated mainly

on minimizing energy consumed in sub-channel assignment

and the distribution of power in the system, respectively,

However, in our proposed technique, by setting the maximum

power for transmission at 40dBm and the system sum-rate

coefficient at 0.42.

It is observed that the proposed LSCCOA algorithm

outperforms the compared EEAO and EETO in terms of

energy efficiency. As the SCDs increases, the EE slightly

increase and then stabilizes as computation continues in all

the technique. Due to the co-channel interference minimized

effect, the transmitting density of all SCDs is minimized as

well. However, due to the allocation of more subchannels,

the system performance is constrained by the limited system

resources as the number of SCDs increases. A decline of EE

is also observed with the increasing requirement of minimum

data rate in the technique, because, there is need for the base

stations to optimize the subchannels transmit power in order

VOLUME 8, 2020 53937



J. H. Anajemba et al.: Optimal Cooperative Offloading Scheme for Energy Efficient Multi-Access Edge Computation

FIGURE 4. Energy efficiency computing performance under different
algorithms.

FIGURE 5. Transmit power performance under different algorithms.

to preserve the requirements of the system throughput which

negatively affects energy efficiency.

In Figure 5, relative transmission energy consumed by

different active SCDs in LSCCOA is observed to be less

than that of EEAO and EETO, this is because, our proposed

optimal computational transmit power distribution sturdily

controls the transmit power existing at the unallocated sub-

channels necessitated in minimized levels of transmit power.

With an increase of the active SCDs, all available spectrums

are coordinated at different layers, and thus, significantly

improving the interference of the co-channel. Simultane-

ously, it indicates that the energy efficiency increases along-

side the downward minimum targets rate for both LSCCOA,

EEAO and EETO, respectively, while the rate of rise declines.

This is because when the threshold is high, more active SCDs

experience difficulty in attaining the requirements, this in

turn exhausts the transmission power required to optimize

the systems performance. Therefore, this enhanced perfor-

mance indicates how the proposed LSCCOA algorithms out-

performs the compared techniques. Figure 6 evaluates the

FIGURE 6. Comparison of average power consumption under different
algorithms with different amount of SCDs.

average power consumed by the LSCCOA algorithm. In the

evaluation, the SCDs power consumption performance with

an increase in the number of active SCDs from 60 to 1200 is

expressed, and compared against three other techniques. The

average power consumption of each SCD in the entire system

computation task is approximately 44.206J . As compared

with the local system computing technique, although the

two compared algorithms save energy to an extent, however,

in computation, optimally intended energy conservation is

achieved by the proposed LSCCOA through task offloading.

By initiating 60 SCDs in the task computation process,

all three techniques manifest an independent power con-

sumption rate of 13.341J , 13.412J , and 14.751J . When the

number of SCDs is gradually increased, at 1200 transmitting

SCDs, the average power consumed by these SCDs indepen-

dently increases to 25.002J , 26.521J , and 28.063J , respec-

tively. This is because the same wireless channel resource

is accessed concurrently by multiple SCDs for a simultane-

ous task offloading implementation. Hence, this results in

increase of system interference. This interference between

each transmitting SCD in the system as described in (13),

will result in a minimized quality of communication, and

thus, the computational offloading rates. Therefore, as SCDs

increase to 1200, several users subscribe to use the local com-

puting technique which results in an increase of the average

power consumption of SCDs. Our proposed technique can

save at least 58.6% of the power consumption.

Considering system throughput, our proposed algorithm is

compared against two other techniques (EEAO and EETO)

in the research. Figure 7 indicates that, as 60 SCDs were

initiated in the computation process, the techniques all dis-

play an average throughput of 5823.52, 6848.51, and 7038.56

(all in bit per seconds), respectively. Although the SCDs

throughput in our proposed technique is minimal at the initial

stage, but, as the amount of SCDs increased from 60 to 100,

further minimization is observed at the throughput rate slope

than the compared two techniques. Throughout the entire
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FIGURE 7. Average Throughput vs number of active SCDs under different
algorithms.

computation process, it is observed that as the amount of

SCDs increases, the throughput of SCDs with respect to

our proposed technique grew higher than that in the other

techniques. Finally, with 1200 SCDs, the techniques manifest

an average throughput of 1166.2, 860.9, and 970.2 (all in

bps), respectively.With an increase exponential in the amount

of deployed active SCDs, there will be a relative and intensive

rise in the joint interference between SCDs.

In addition, uplink data transmission rate will be decreased,

whichwill result in the intensive surge of the power consumed

by cloud computing offloading much higher the power con-

sumption of the local MEC computing. Thus, many of the

SCDs will implement their computation through the conven-

tional MEC computing, which substitutes for offloading pro-

cess. Comparing our proposed technique in this regard with

the EEAO and EETO algorithms, respectively, it is observed

that the throughput tends to go higher while the correspond-

ing decline rate is relatively slowed when measured with our

proposed technique.

Comparing the average latency of SCDs task execution in

the proposed technique with other two techniques, Figure 8

shows that the average latency of SCDs per task execution

is approximately 55.215s within the entire locally SCDs

computation technique. Deploying 60 SCDs, the latency of

these three techniques are 28.641s, 28.682s, and 32.543s.

In comparison with the system overall computation tech-

nique, a minimum of 48.90% of this latency is conserved

by the proposed technique. When 1200 SCDs are deployed,

the respective latency gained by using the four techniques

are 39.952s, 40.001s, 44.532s, and 55.215s. When compare

with the local computation method, our proposed technique

conserves about 45.41% of the computation time. This to

some extent higher thanwhat is obtainable in the performance

of the compared algorithms.

Table 2 below shows a comparison analysis for the per-

formance of all three algorithms with respect to Energy

FIGURE 8. Comparison of transmission latency under different algorithms
with different amount of SCDs.

TABLE 2. Performance comparison of different algorithms.

efficiency, average energy consumption, average throughput

performance and Latency performances different numbers of

deployed SCDs.

VI. CONCLUSION

This paper has examined and formulated multi-access coop-

erative computation offloading of SCDs in an IoT network

based on the DVS-enabled MEC system. The target is to

improve energy efficiency by minimizing the weighted sum

of energy consumed by the SCDs. The formulated NP-hard

problem was addressed via the application of our proposed

LSCCOA Algorithm. Finally, simulation results validate that

our proposed technique attains better performance in compu-

tation offloading and also optimally performs well at every

increase in the amount of SCDs.
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