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Abstract tion, and (b) how inefficient is crowdsourcing over more
conventional means of contracting.
We study the design and approximation of optimal crowd- crowdsourcing competitions can be modeledlpay
sourcing contests. Crowdsourcing contests can be mggetions. In the highest-bid-wins single-item all-pay auc-
eled as all-pay auctions because entrants must exertiigh, the auctioneer solicits payments (as bids), awards the
fort up-front to enter. Unlike all-pay auctions where fiem to the agent with the highest payment, and keeps all
usual design objective would be to maximize revenue, gfle agent payments. These auctions are well understood
crowdsourcing contests, the principal only benefits frof settings where each agent has an independent private
the submission with the highest quality. We give a theopg|ye for obtaining the item. In the connection to crowd-
for optimal crowdsourcing contests that mirrors the thgpyrcing contests, the “item” is the monetary reward, the
ory of optimal auction design: the optimal crowdsourcingayments are the submissions, and the private value is the
contest is a virtual valuation optimizer (the virtual valurate at which the contestant works. However, unlike all-
ation function depends on the distribution of contestaphy auctions, in crowdsourcing competitions the princi-
skills and the number of contestants). We also compgjg usually only values the winning submission and has
crowdsourcing contests with more conventional meansif value for lesser submissions. Therefore, while the per-
procurement. In this comparison, crowdsourcing contegégmance metric for auctions is usuatigvenuewhich is
are relatively disadvantaged because the effort of losifig sum of the agent payments, in crowdsourcing con-
contestants is wasted. Nonetheless, we show that croyudts where payments are submissions, the relevant per-

sourcing contests are 2-approximations to conventiofgimance metric is the quality of the best submission, i.e.,
methods for a large family of “regular” distributions, anghe maximum agent “payment”.

3.2-approximations, otherwise. Therevenue equivalengainciple implies that in equi-

librium the revenue of the highest-bid-wins all-pay auc-
tion is the same as that of first- and second-price auction
formats; however, in these latter auction formats only the

. . . . winner makes a payment. Since non-winners make pay-
Crowdsourcing contests have become increasingly impor- .. . . ;
tant and prevalent with the ubiquity of the Internet Forpents in all-pay auctions, the maximum agent payment in
. P! - quity j Fll-pay auctions is lower than that of first- and second-
instance, instead of hiring a research team to deve op

o2 . . ce auctions. To connect this auction theory back to
a better collaborative filtering algorithm, Netflix |ssue§]e setting of brocurement. first- and second-orice auc-
the “Netflix challenge” offering a million dollars to the gorp ' P

. ._“tions are analogous to conventional procurement mecha-
team that develops an algorithm that beats the Neflix aE g p.
Isms, e.g., for government contracts; where as, the all-

gorithm by 10%. More generally, Taskcn allows users {0 : .
. T ay format is analogous to crowdsourcing contests. Im-
post tasks with monetary rewards, collects submlssmns%ay

. rtantly, the performance of first- and second-price pro-
other users, and rewards the best submission; and mgnly y p . . . P ) p
urement auctions is their revenue, this revenue is equal

S(fs?;r:tsevie&rll\l/si\% lﬁﬁ;?]-tc(:)osgtset dq‘yi)si’z?srlsve\llzda;?jvrv:srg théoa the revenue of the all-pay auction, but the principal in

P ) . crowdsourcing cannot attain this full revenue and there-
L . . Cre suffers a loss relative to conventional methods. Our
competition induces the highest-quality winning Cont”blili'rst result is to show that the maximum agent payment
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tributions (termedegular), auctions that award the iteming an extra agent and running a simple highest-bid-wins
to the highest bidder that meets a reservation price amntest than running the optimal contest without the extra
optimal [Mye81]. In these settings crowdsourcing corgent; This limits the benefit of knowing the skill distribu-
tests that require submissions to be of a minimum qualttgn. This result is reminiscent of and based on a similar
(e.g., the Netflix challenge required submissions to béheorem by Bulow and Klemperer [BK96] for the revenue
the Netflix algorithm by 10%) are 2-approximations. Farbjective.

more general distributional settings reserve pricing gives

a -4 = 1.582-approximation to the optimal auction rev- ) )

enue [CHMS10] and crowdsourcing contests with mifRelated Work.  This paper follows the connection made
imum quality conditions are, therefore?s, = 3.164- between crowdsourcing contests and all-pay auctions
approximations. Thus, this approximation result implidéom DiPalantino and Vojnovic [DV09] and questions
a “simple versus optimal” style result, i.e., that the gaiféPm Archak and Sundararajan [AS09] and Moldovanu

from precisely optimizing based on the distribution are 8fd Sela [MS01, MS06] on optimizing the reward struc-
most a factor 08.164. ture to improve the quality of the best submissions.

. . . S09] and [MS01] compare winner-take-all crowdsourc-
Our second result derives the optimal static crowd- ; . : ; .
) g . INg contests against ones with a statically determined di-
sourcing format that maximizes the quality of the best”. .

e o ) vision of the reward among top agents, e.g., as in the Top-
submission. Specifically, suppose we fix the reward f : S .

o ) oder.com mechanism. The objective in [MS01] is the
the k-th best submission to be, (where we normalize - o
sum of the qualities of submissions (analogous to revenue

’ n = ! ?
the ax's 10 3, ax = 1). What should they's be? 5 discussion) and the Archak-Sundararajan objective

For instance on computer programming crowdsourcungthe cumulative effort from the topagents less the mon-

site TopCoder.com, the best submission receives 2/3rds ,
T . efary reward. Both papers show that when agents’ sub-
and the second-best submission receives 1/3rd of the total °. o : ; . .
. : mission qualities are linear in their effort winner-take-all
reward. Is this a better format than awarding the entire . S
o - Is; optimal over other static divisions. The Moldovanu-
amount to the best submission in terms of the quality gf

that submission? We prove that it is nat; = 1 and ela result also holds when quality is a convex funcupn
: . . of effort, but not generally for concave functions. Mi-
ar = 0 for k& > 1, or winner-takes-all, is the optimal

. ; nor [Min11] studies a generalization of the problem of
choice over all such static contests. M : .
oldovanu and Sela, and derives the optimal crowdsourc-
Of course in some settings it may be better to adjust tigy contest via a Myersonian ironing approach (again, to
number of rewards and their distribution across the pagaximize the sum of qualities).
ticipants dynamically as functions of the observed sub-y1qidovanu and Sela [MS06] study both the highest
mission qualities. Our third result derives the format @fajity submission objective and the revenue (sum of all
crowdsourcing contests that dynamically optimizes tgpmission qualities) objective. They compare the perfor-
quality of the best submission. We give a complete chafiance of two-stage contests against one-stage contests.
acterization of optimal crowdsourcing contests. In Whﬁ%ong one-stage contests they consider both a single
would be a familiar result to auction theorists, the optima}and contest, as well as many sub-contests in parallel,
crowdsourcing contests are “ironed virtual value optimiggiih the winner of each sub-contest receiving a prize.
ers” in that the rewqrd_is divided_ evenly among all contef; two-stage contests, the winners of the first stage sub-
tants whose submissions are tied under a weakly moRgntests compete in a final round. These are all static
tone transformation (via the ironed virtual value functio)yntests in the sense that the division of reward among
of the submission quality. Importantly, the number Qfinners of different sub-contests is predetermined. For
_contestants who share the reward is determined dynaps sum-of-qualities objective, [MS06] prove that a sin-
ically and each contestant's share is the same. PerhgRsyrand contest is best among these contest formats. For
surprisingly, and unll|ke the_ case of. classical auction thg highest quality objective, if there are sufficiently many
ory, the transformation to ironed virtual values depengdgmpetitors then it is optimal to split the competitors in
on the number of contestants. two divisions and to have a final among the two divisional
Optimal crowdsourcing contests require the auctionaginners. Further, as the number of competitors tends to
to know the distribution of agents’ skills, e.g. in order tinfinity, [MS06] show that the optimal highest quality
pick an appropriate minimum submission quality. In owbjective is at least half of the optimal sum-of-qualities
fourth result we consider the loss from not knowing thabjective — this is a result we generalize in this paper by
distribution. We show that under a regularity assumptigmoving that this factor two ratio holds for any number of
on the distributions, the auctioneer is better off recruitompetitors.




In this paper our goal is to optimize the quality of thany other action. On valuation profie = (v1,...,v,),
best submission (unlike [MS01, Min11] which considestenote the composition of an auction and a strategy profile
total quality) with a total reward normalized to one (urby allocation rulex(v) and payment rulg(v).
like [AS09] which optimizes the quality of the best sub- When agent is bidding in the auction she knows her
missions less the monetary reward). We study optin@in valuev; and assumes the other agent values are
crowdsourcing contests over all single-stage all-pay fatrawn from the distributio”. Denote heinterim allo-
mats, unlike [MS06] which limits the format of one-stageation and payment rules as(v;) = Ey[z;(v) | v;] and
contests but also studies two-stage contests. Our mainggy;) = Ey[p;(v) | v;], respectively. Bayes-Nash equi-
sults are to show that the wasted effort is not large atiirium requires thav;z; (v;) — p; (vi) > viz;(2) — pi(2)
to characterize optimal crowdsourcing contests that dan all z and from this constraint is derived the standard
potentially divide the award between agents dynamicalijraracterization of BNE.
depending on the qualities of submissions. We also show
that our model is consistent with that of [MS01, AS09] ifheorem 1 [Mye81] Allocation and payment rules-)
that the optimal static allocation of the award is winne@ndp(-) are in BNE if and only if for alli
take-alt.

The following other results relating to crowdsourcing 1+ #i(vi) is monotone non-decreasinginand
contests are technically unrelated to ours. DiPalantin v
and Vojnovic [DV09] study crowdsourcing websites as a“ pi(vi) = vii(vi) = Jo" i(2)dz + pi(0)
matching market. They discuss equilibria where contg§gnere usually; (0) = 0.
tants first choose which contest to participate in and then
their level of effort. Yang et al. [YAAO8] and DiPalantinoA simple consequence of this characterization isréve
and Vojnovic [DV09] empirically study bidder behaviorenue equivalencprinciple which states that two mecha-
from crowdsourcing website Taskcn and conclude thaitms with the same equilibrium allocation have the same
experienced contestants strategize better than others esailibrium revenue—in fact each agent’s expected in-
their strategizes match the BNE predictions fairly well. terim payment is the same.

There have been a number of studies of all-pay auc-There are three standard formats for highest-bid-wins
tions in complete information settings (e.g., Baye eingle-item auctions: first-price, second-price, and all-
al. [BKdV96]), but these works are also technically urpay. In the first-price variant the highest bidder wins and
related to ours. pays her bid, in the second-price variant (a.k.a. Vick-
rey auction) the highest bidder wins and pays the second
highest bid, and in the all-pay variant the highest bidder
wins and all bidders pay their bids. These auction formats
all have BNE in which the agent with the highest valu-
ation wing; Therefore, revenue equivalence implies that
they have the same expected revenue (sum of payments)
in equilibrium.

2 Preliminaries

Auction Theory. Consider the standard auction
theoretic problem of selling a single item to agents.
Each agent has a private value; for receiving the object
and is risk-neutral with linear utility; = v;x; — p; for re-

h . : - . The highest-bid-win auction formats do not always
ceiving the item with probability:; and making payment ield the highest expected revenue. To solve for optimal
p;. An auction A solicits bids and determines the outy 9 P ) P

) . : auctions, Myerson [Mye81] definadrtual valuations for
come which consists of an allocatien= (z1,...,z,) B 1= F (o) gnd d that th
and payments = (p1,. .. pn). revenueasé(v;) = v; — and proved that the ex-

f(vi)

Suppose that the agents values are drawn i.i.d. frf@cted payment of an ager,, [pi(vi)] is equal to her
continuous distributionF' (that is, having no point- €xpected virtual valu&,, [¢(v;)x;(v;)]. The distribution
masses) with distribution functiafi(z) = Pr[v; < z] and F is said to beregular if the.vw.tual. valuat|on. fL!n_ctlon_
density functionf(z). A Bayes-Nash equilibrium (BNE) IS monotone. .For _regglar distributions, maximizing vir-
in auctionA is a profile of strategies for mapping value&@l values point-wise is a monotone allocation rule, and
to bids in the auction that are a mutual best response, iBérefore can be implemented in BNE. This auction serves
when the values are drawn frof and other agents fol- e agent with the highest positive virtual value. By sym-
low their equilibrum strategies then each agent (weakPetry; this agent is |dent|cally the agent with the highest
prefers to also follow the prescribed strategy over takig!ue that meets a reserve pricegof! (0).

IMoldovanu and Sela in [MS06] also state that this should be true 2Furthermore, these symmetric BNE are unique in first-price auc-
but do not provide a reference or a proof. tions, as shown in [Leb06].



Theorem 2 [Mye81] When the virtual valuation functionCrowdsourcing. The following model for crowdsourc-

¢(+) is monotone, the optimal auction format is highesing contests and its connection to all-pay auctions was
bid-wins with a reservation value @f~!(0), a.k.a., the proposed in [DV09]. To outsource a task to the crowd
monopoly price a principal announces a monetary reward (hormalized to
. ... 1). Each ofn agents (the crowd) enters a submission.
It will be useful to be able to solve for the equ'“b'Agenti's skill is denoted byv; and witheffort, ¢;, she

rium strategies in all-pay auctions with reserves. Rey: S Lo .
can produce a submission witjuality p; = v;e;, i.e., her

enue equivalence makes this easy. the expected P&ii can be thought of as a rate of work and her effort the

ment of an agent with value; is the same in both all- B . X
. . amount of work. Each agent’s skill is her private infor-
pay and the second-price auction formats. Of cours

: . _%non. If z; fraction of the reward is awarded to agent
in the all-pay format the agent always pays her bid; S
. then her utility isu; = z; — e;. From her perspec-
therefore, her bich(v;) must be equal to her expecte , Lo L )
. . . ive v; IS a constant so maximizing utility is equivalent
payment in the second-price auction. Lef, denote

} ., to maximizingv;u; = v;x; — p;. Notice that this latter
the jth largest value. Agent’'s expected payment . } R :
. . . ; formulation of the agent’s objective mirrors that from the
in the second-price auction when > r, is exactly

single-item auction setting discussed previously; further-

E,_, [max(v(g),r) | v; = U(l)} Pry_, [vi = v(l)}, so her ) )
A . : more, as the agents exert effort up-front, crowdsourcing
bid in the all-pay auction must be equal to this expecta- : . .
tion contests intrensically have all-pay semantics. Because of

this connection, it will be convenient to refer interchange-

Lemma 3 In a highest-bid-wins all-pay auction withably to skills as values, submission qualities as payments,
value reserve an agent with value; bids and rewards as allocations.

b(v;) = Ey_, [maX(U@)’ r) | v = ’0(1)] Pry_, [Uz' — v(1)] . The objective for crowdsourcing contestsis to max-
imize the quality of the best submission. Because of the
if v; > r and0 otherwise. connection to all-pay auctions we refer to this objective
5 themaximum paymertbjective and denote its value
“an auction4 asMP[A] = E,[max; p;(v)]. This ob-
gctive is quite different from the standard revenue maxi-
ization objectiveReV[A] = E [}, pi(v)]

The reserve specified above is in value-space. To i
plement such a reserve in an auction, one must tra
late it to a reserve in bid-space. For first- and secor
price auctions this transformation is the identity functiof

For all—pay auctions, it can be calcglated as foIIows_. AN One aim of this paper is to quantify the loss the princi-
agent with value equal to the reservin the second price g incurs from running an all-pay auction versus a more
auction pays the reserve if she wins, i.e., her expecigshyentional means of contracting. For instance, stan-
payment isrPry_, [r = vy)] = rF(r)"~'. By revenue gard formats for procurement auctions are first- or second-
equivalence the same agent in the equivalent all-pay aggee  Importantly, in first- and second-price auctiods
tion must bid this expected payment; as this bid is thf the payment comes from the highest bidder, therefore
minimum bid that should be accepted, it is the reserve.\p[4] = Rev[.4] and the principal is able to extract qual-

Lemma 4 The highest-bid-win all-pay auction with reJty workmanship with no loss. In contrast, in all-pay auc-
serve bidrF(r)»~! implements the highest-value-win§°”5 which are revenue equivalent to first- and second-
allocation rule with a reserve value of price auctions the maximum payment is not equal to the

total revenue and thus the efforts of non-winners consti-

For irregular distributions, the optimal auction is nQyte a loss in performance. We thus quantify thiiza-
reserve-price based. Instead it selects the highest vir% ratio of an auctiond as ReVAl

value subject to monotonicity of the allocation rule. This MPLAT

optimization can be simplified by a very geneirahing  We will see that the all-pay auction that optimizes max-
technique. imum payment is not the same as the auction (all-pay or
otherwise) that maximizes revenue. We definesigrox-

Theorem 5 [Mye81, HRO8] There is afironing proce-

durethat converts any virtual valuation functiaf(-) to a imation ratio of a? e}ll-pay suctlon to qufa?]ufy Its me-
ironed virtual valuatiofiunction¢(-) thatis monotone and mum payment relative to the revenue of the optimal auc-

L . : : ) . . - OPT;
has the property that maximizing(-) subject to mono- tion, i.e., A's approximation ratio |§%. Thecost
tonicity (of the allocation rule) is equivalent to maximizof crowdsourcindover conventional procurement) is then
ing ¢(-) point-wise, with ties broken randomly. The BNEhe approximation ratio of the best all-pay auction, i.e.,

with this outcome is optimal. inf 4 %[AP]T]_



Assumptions. For the rest of this paper, the space dfv) = g(v)Pr,_, [v = v(l)]. We note thay is a weakly

valuationsV” is assumed to be an interval and the densikycreasing function, buBr,,_, [v = v(y)] = F(v)" 'isa

function f(-) is assumed to be non-zero everywher&in strictly increasing function sincg(v) # 0 forallv € V.
Now we can writeA — B as

3 Utilization and approximation ra- A-B

tios = Z / b(v)(2Pry_, [v =va)] = 1) f(v)dv
As noted previously, the maximum payment of a second- '
or first-price auction is equal to its total payment or rev- = Z/g(v)F(v)”‘l(2F(v)”‘1 —1)f(v)dv
enue. On the other hand, in all-pay auctions the payment i

/g(F_l(t))t"_l(Qt”_l —1)dt

this section we quantify this loss for a special class of all-
pay auctions, namely those that always reward the high-
est bidder subject to an anonymous reserve price. Thigere, in the third inequality, we substitutedor F(v).
further allows us to find a simple all-pay auction that afNote that sinceF'(v) is a strictly increasing function,
proximates optimal procurement. F~1(t) is well defined, and is strictly increasingn

In this section we consider highest-bidder-wins Next we note that ignoring the term, the integral is
reserve-price auctions under either second-price or albn-negative:
pay semantics. It is easy to see that under all-pay seman- L
tics these auctions induce symmetric continuous increas- L2t — 1) dt 2 L
ing bid functions at BNE and therefore their allocation 0 2n—1 n

function is identical to a second-price auction with an apa: s consider the effect of the term. The function
propriate reserve price. t"=1(2t"=1 — 1) vanishes for two values af namely0

Theorem 6 Let A be any highest-bidder-wins reserveand (1/2)7. Between these two values the function is
price all-pay auction. ThemRev[.A] < 2MP[A]. That negative, and fot > (1/2)=-7, the function is positive.
is, its utilization ratio is bounded bg. So when the function is multiplied by(F~'(¢)), a non-

) ) _ decreasing function dof, the negative portion of the inte-
Proof: Let x denote the allocation function of the auctiogra| js magnified to a smaller extent than the positive por-

and suppose that the bid function thatitinduces in BNEign, implying that the integral stays positive. This com-
given byb(v). We can write the expected revenue of thQetes the proof. n

auction as the sum of the contribution from the winning
agent (i.e. the agent with the maximum payment), and the
contribution from other agents. Call the first ternand
the second3.

made by non-winners leads to a loss in performance. In Z
%

Tightness of Theorem 6. We now exhibit an example
where the utilization ratio o? is tight. Consider a set-
ReviA] = Z /v bv)Prv_, [v = v f(v) dv+ ting with n agents, with each agent’s value distributed in-
‘ dependently according to tHg[0, 1] distribution. Con-
A sider the second-price auction with reserve price (.
Z/b(v)(l —Pry_. [U _ v(1)])f(v) dv The expected revenue of this auction can be computed
—Jo to be (n — 1)/(n + 1) — ©(1/2™). The correspond-
ing all-pay auction uses a reserve pricelgp™ and in-
duces a bid functio(v) = 0 for v < 1/2 andb(v) =
Note thatA is preciselyMP[A]. We will now show 2=tyn 4 Lyn=l 1=l 4 927n(1 — 1/n) otherwise.
that A > B, or A— B > 0. By the revenue equiv- The expected revenue of the all-pay auction is the same as
alence principlep(v) is equal to the expected paymerthat of the second-price auction, rouglily—1)/(n+ 1),
that an agent with value makes in a second-price aucwhich approache$ asn increases. On the other hand,
tion with the same allocation rule. Le{v) denote the the expected maximum payment can be computed to be
expected payment (the maximum of the second higi2n? —2n+1)/(4n% —2n) +©(1/2") which approaches
est value and the reserve price) in the second-price al2 asn increases. In Section 5 we will revisit this exam-
tion given thatv is the highest value. Then we get thatle and show that even the optimal all-pay auction (which

B



is slightly better) only achieves an expected maximuthat the Topcoder.com example mentioned in the intro-
payment approachingy/2 for this setting. duction, where the best submission receives 2/3rds and
the second-best submission receives 1/3rd of the total re-

Utilization ratio for other all-pay auctions. We note Ward, falls under this class of contests. _

that the bound on utilization ratio does not hold for arbi- !N this section we characterize the static auctions that
trary symmetric all-pay auctions. For example, the all-p&J€ optimal with respect to the maximum payment objec-
auction corresponding to a revenue-optimal auction tii€- Note that the class of static auctions is symmetric,
requires ironing over large intervals of values induces-§~ @ Permutation of bids results in the same permuta-
bidding function that is constant over those intervals. THigN of the allocation and payments. Since agents’ private
results in many agents being tied for the reward, all mayalues are identically distributed, any such symmetric al-

ing the same (low) payments but only one contributing {8cation rule induces a symmetric equilibrium in which
the maximum payment. all agents use an identical bidding function. This in turn

implies that the allocation as a function of agents’ values

L . ... __is also symmetric across agents. The following theorem
Approximation ratio.  Recall thatotg(_al_ approximationgy, s that in fact it is optimal over all static contests to
ratio of an all-pay auctiond is *§57), where OPT ajocate the entire reward to the best submission. (See the
is the revenue optimal auction. We now use the bougg@pendix for a proof.)
on utilization ratio to prove that all-pay auctions achieve
good approximation ratios. In particular, we use the fatheorem 9 When the bidders’ valuations are drawn
that for regular distributions highest-bidder-wins reservik.d., the optimal static all-pay auction is a highest-bid-
price auctions are revenue-optimal (Theorem 2) wheregifis auction.
for irregular distributions they are within a factor of

< = 1.582 of optimal [CHMS10]. The following corol- . .

Ieariles then follow from Theorem 6 upon applying the re\5 Opt|ma| crowdsourcmg contests

enue equivalence principle.

In this section, we characterize symmetric all-pay auc-

Corollary 7 When agents’ value distributions are regulions that are optimal with respect to the maximum pay-
lar, there exists am such that the highest-bid-wins all-ment objective. As discussed in Section 4, a symmet-

pay auction with reserve bid achieves an approximationtic auction induces a symmetric equilibrium which makes
ratio at most2. the allocation as a function of agents’ values symmetric

acCross agents.
Corollary 8 For all i.i.d. value distributions, there exists We first present a characterizati_on of the expect_ed
an a such that the highest-bid-wins all-pay auction witiaximum payment of any symmetric all-pay auction in

reserve bida achieves an approximation ratio at mosterms of an appropriately defined virtual value function.
3.164. This characterization immediately implies that the opti-

mal mechanism is a virtual value maximizer.
These corollaries imply that the cost of crowdsourcing
is always small — no more thah164. The above ex- Definition 1 For a given distribution/” with density func-
ample with uniform distributions shows that the approxiion f and an integem, we define thevirtual value for
mation factor in Corollary 7 is tight. An extension of thénaximum payment),,(z) as
same example in Section 5 shows that the worst-case n
of crowdsourcingcan be no smaller thah Yn(2) = 2F(2)" " — ﬂ

nf(z)

; ; ; Lemma 10 Consider a setting witlh agents and values
4 Optlmal static crowdsourcmg distributed i.i.d. according to distributior¥’. Let A be

contests a symmetric all-pay auction implementing the allocation
functionx. ThenMP [A] = E[ ", (V)1 (vi)].
Consider the class of static contests that predetermine
the division of the reward inta, ...a,, with 3. a; = Proof: Suppose that the allocation functianinduces a
1. Agents are ordered by their submission qualities asgmmetric bid functiorb(-) on the agents. Recall that by
awarded the corresponding fraction of reward, i.e.;the the revenue equivalence principlgy) is equal to the ex-
best submission gets an fraction of the reward. Note pected payment that an agent with valuenakes under



x(-). From Theorem 1 we get the following expressioBefinition 2 A distributionF is said to be-regular with
for b(v) wherez; is the expected allocation to agenh respect to maximum paymeifit),, () is @ monotone non-

expectation ovev _;. decreasing function. The distribution is said to teg-
v ular w.r.t. maximum paymerit v, (-) is monotone non-
b(v;) = viwi(v;) — / 2i(2) dz decreasing for all positive integers
z=0

G , For distributions that are regular w.r.t. maximum pay-
Because the equilibrium is symmetric, one of the agenis + ajiocating to the agent with the highest non-negative

With the highest bid is the _agent with thg highest Vé]uevirtual value is monotone and therefore can be imple-
Le., withv; = v(;). We attribute the maximum payment,enied in BNE. Since agents have i.i.d. values, this out-
received by the mechanism to this agent. We can now 3, corresponds to allocating to the agent with the high-
the above formulation of the bid function to calculate th@st value, who is in turn the agent with the highest bid.
expec;ed contribution of agento the maximum paymemTherefore, the optimal mechanism is a highest-bid-wins
objective. reserve-price mechanism. The reserve value for the mech-
anism is given by),, 1 (0) and the reserve bid can be com-

MP;[A X )

A] puted by applying Lemma 4 to this value. We note that

= / b(v;)Pry_, [vi = U(l)] f(vy) du; generally the reserve price is a functiomodnd decreases
Ju; ' with n, even for distributions that are regular for all

2/ [Uz@“i(vi) —/ zi(z) dz] F(v;)" ' fi(vi) dvi  Theorem 11 Let F be a distribution that isn-regular
i #=0 w.r.t. maximum payment. Then the optimal all-pay auc-
In order to simplify the second term in the integral we irtion for n agents with values distributed independently
terchange the order of integration oveandv;, integrate according toF' is a highest-bid-wins auction with a re-

overv;, and then renameaswv;. We get: serve price.

MP;|A - .

A] Two examples. We now revisit the example with
= [ wizi(v)F ()"  fi(vg) du; agents and values distributed according’{0, 1] that was

v discussed in Section 3. The following expression defines

1— F(uv)"™ the virtual value for maximum payment in this case:
— .%‘1(1}1) T d’l}i
) L 1—=F(v)" Un(z) =2"(1+1/n) —1/n forz € [0,1]

= / l‘L(UL) {UiF(Ui)n — } fi(’Uz') de, o . . .

v nf(vi) This is an increasing function for all. Therefore, the

U[0, 1] distribution is regular. The optimal reserve value

is given by 1(0) = (n + 1)~/", and the optimal re-

. o serve bid is1/(n + 1). Therefore, the optimal all-pay

Summing over implies the lemma. B juction serves the highest bidder subject to her bid being
at leastl/(n + 1). The expected maximum payment of

. _ _ this auction can be calculated to 9&’;—1)

Optimal allocation rules and regularity. The charac-  Next consider a setting with two agents and values dis-

terization of Lemma 10 immediately implies that in ofyjphyted i.i.d. according to the exponential distribution.

der to maximize the expected maximum payment, We gt is,F(v) = 1 — e~ for v > 0. We can calculate the

should maximize the virtual surplus of the mechanis(ityal value function agn(z) = (z—1)+e*(1/2—2).

for maximum payment. In other words, we should alrpjs function is negative below.21 and positive there-

locate the entire reward to the agent that has the ma¥er. Furthermore, it is non-decreasing about, par-

imum virtual value,,(v;) (subject to this value beingticylarly throughout the range where it is non-negative. So

non-negative). However, this results in a monotone allgithough the exponential distribution is not regular w.r.t.

cation function only if the virtual value function is MoNOmaximum payment, the optimal all-pay auction still turns

tone non-decreasing. To this end, we define regularity {gt to be a highest-bid-wins auction with a reserve price

- / 2503 (v3) i(03) dvi = By [2(v) o (1)

Vi

maximum payment as follows. of 1.21 and a corresponding reserve bidogs.
3Note that the bid function need only be weakly increasing, so the.reAn intgre_sting point to note about th_e above example
may be ties for the highest bid. is that distributions that are regular with respect to the



usual notion of virtual value for revenue, are not neceSerollary 13 Let F' be a distribution that satisfies MHR.
sarily regular with respect to maximum payment even fdihen the optimal all-pay auction for values distributed in-
n = 2. However, for a large subset of such distributiondependently according tB' is a highest-bid-wins auction
namely those that satisfy the monotone hazard rate cuaiith a reserve price.

dition (Definition 3 below), the optimal all-pay auction

continues to have the simple form given in Theorem 11 o - L
P g Irregular distributions and ironing.  For distributions

that are not regular according to the definition above, we
Regularity and MHR. A frequently used assumptioncan apply an ironing procedure from Theorem S/tpto
in mechanism design literature is that value diStl’ibUtiO%tain an ironed virtual value functiQﬁn_ This function
satisfy themonotone hazard rat¢MHR) condition de- is monotone non-decreasing and by Theorem 5 the BNE
fined below. Many common distributions such as the Uﬂha’[ optimizes it pointwize Optimizes the maximum pay-
form, Gaussian, and exponential distributions satisfy thisent objective.
property. Distributions that satisfy MHR are regular and The optimal mechanism in this case allocates the en-
therefore do not require ironing in the context of revenyge reward to the agent with the maximum ironed virtual
maximization. As our example above shows, MHR disti|ue, in the case of ties distributing the reward equally
butions are not necessarily regular with respect to maé'knong the tied agerfts Since the ironed virtual value
mum payment. function is a weakly increasing function, the induced bid
function is constant in the intervals where the ironed vir-
Definition 3 Thehazard ratef a distributionF" with den- tual value is constant, and discontinuous at the ends of
sity functionf is defined asi(z) = 11‘?&). A distribu- those intervals. In effect, this creates intervals of bids that
tion is said to have anonotone hazard ra{®HR) if the are suboptimal to make at any value; call these intervals
hazard rate function is monotone non-decreasing. “forbidden”. In order to implement the mechanism as an
all-pay auction, we identify the forbidden intervals; then
Lemma 12 Let F be a distribution satisfying the MHRwe round every bid in a forbidden interval down to the
condition. Then for any: and any interval of valuesclosest “allowed” bid, and distribute the reward equally
over whichv, is non-negatives), is monotone non- among the highest bidders (subject to an appropriate re-
decreasing. serve price defined by, *(0)). We therefore get the fol-
lowing theorem:
Proof: We can rewrite the virtual value function in terms

of the hazard raté(z) of the distribution as follows. Theorem 14 For any setting with i.i.d. values, the opti-
mal all-pay auction is defined by a reserve price and a
s , subset of bids called forbidden bids, that has the following
Yn(z) = 2F(2)" " - Th(2) > F(z) format: the auction solicits bids and rounds them down
7=0 to the nearest non-forbidden bids; it then distributes the
) 1 n-l ' reward equally among the highest bidders subject to the
— n— _ —J i i i
= F(z) z wh(D) jz:(:) F(2) bids being above the reserve price.

The functioni(z) is a non-negative non-decreasing fundX €xample of ironing. We now present a simple ex-
tion. Therefore(—1/nh(z)) is a negative non-decreasingMPle of a Cgsg“?u“‘?” that '3 |rregL|1IarIW.r.t. (rjnaxmu"m
function. On the other handy"-! F(z)-7 is a de- payment, and derive its ironed virtual value and as well as

creasing function of. The product of a negative nonJjorbidden bids. There are two agents, each with a value

decreasing function and a decreasing function is a néjr@wn independently froni/[1, 2] with probability 3/4

decreasing function. Therefore, the term within brac?—nd fromU(2, 3] with probability 1/4. Figure 1 below

ets is a non-decreasing function af The term outside shows the virtual valug func.tiomz and_ its integ_ra! with
brackets,F'(z)" "1, is also an always positive increasin espect toy = F(v) using th'?k grey'llnes; thelr ironed
function. Therefore, the product of the two terms is & unterparts are shown in thin red lines. The integral of

increasing function over any interval where it is positivé. € V|rtu_al \€a|UF1funCtI0n 6\23 a func_t|on @i_s given .by the
m expression; F'~'(¢)(1 — ¢*). We iron this function by

) ) 4An equivalent way of resolving ties in the maximum ironed virtual
We obtain the following corollary. value is to allocate the reward to a random tied agent.



taking its convex enveIopeZ;NQ is then the derivative with extent is it important to know the distribution? In par-
respect tgy of that convex envelope. ticular, under what conditions does the simple highest-

The ironed virtual value is constant in the intervdlidder-wins contest without any reserve bid approximate
[1.918,2.167]. The probability of allocation (not plotted),the optimal one? We now show a result in the style of Bu-
and therefore the bid function, are also constant over thigr and Klemperer's work [BK96] on the standard goal of
interval. The corresponding bid function is plotted witinaximizing the expected revenue. Bulow and Klemperer
a thin black line below; there are two forbidden bid inshowed that for i.i.d. value distributions that are regular
tervals, namely1.10,1.199) and (1.199, 1.31], with the w.r.t. revenue, it is better to run a Vickrey auction with
intermediate value of.199 being allowed. The two for- no reserve price on + 1 agents than to run an optimal
bidden intervals correspond to the two discontinuities @uction on onlyr agents. That is, the ability to recruit an
the probability of allocation at the end points of the ironegktra agent in the auction is more profitable to the auction-
interval. eer than knowing the distribution.

We first note that Bulow and Klemperor's result im-
plies that for distributions that are regular w.r.t. revenue,
the highest-value-wins auction with no reserve priceion
agents is within a factor dfl —1 /n) of the optimal mecha-
nism in terms of revenue. This combined with Theorem 6

Fv) gives us the following theorem.

Intergal of the virtual
value function and its
convex hull

Theorem 15 For i.i.d. distributions that are regular w.r.t.
revenue, the highest-bid-wins all-pay auction without a
reserve bid obtains an approximation ratiobf/(n — 1).

Virtual value and
ironed virtual value
functions

We remark that for the highest-value-wins auction
without reserve prices, the revenue converges to the op-
timal as more and more agents are added. However for

b fonction } the two forbidden all-pay auctions adding more and more agents does not
}oidinterats improve the approximation ratio beyord Next in the
/ style of Bulow and Klemperer, we compare the benefit of
3 v knowing the distribution to that of adding an extra bidder

for the maximum payment objective.
Figure 1: The Ironing Procedure
Theorem 16 For i.i.d. distributions that are regular w.r.t.
_ ) ] _ ) maximum payment, the expected maximum payment of the
Irregularity as a function of n. An interesting point to highest-bidder-wins all-pay auction with no reserve bid
note is that irregularity increases with Specifically, the on,, 1 1 agents is at least as large as the expected maxi-

intervals of values that require ironing undey increase mym payment of the optimal all-pay auction:oagents.
with n.5 This does not necessarily imply that asin-

creases a larger and larger number of agents are tiedRavof: Consider all all-pay auction om + 1 agents
the reward, for two reasons: (1) reserve value (not the tkat must always allocate the entire reward to the agents.
serve bid) increases with, and (2), due to the form ofLemma 10 implies that the optimal such auction allo-
the virtual value function, ironing is typically necessary aiates the entire reward to the agent with the highest virtual
low values rather than at high values. value, who by symmetry and regularity is the agent with
the highest value.
] ) On the other hand, another way to always allocate the
6 Contests without reserve prices entire reward is to run the optimal all-pay auction on the
first n agents; if the reward goes unallocated in that auc-
As we show above, optimal crowdsourcing contests d&n, then allocate it to the + 1st agent. Clearly, in this
pend on knowing the agents’ value distribution. To whatechanism, in any BNE the+ 1st agent makes@pay-
ment regardless of his value because his value does not ef-

5This happens because the intervals requiring ironing are precis@bt the outcome. Therefore the expected maximum pay-
those where the integral of the virtual value function is non-concave; :

Increasing: amounts to multiplying the integral with a convex functiodnent of the auctio_n is precisely th? expected maximum
resulting in non-concave intervals continuing to stay non-concave. payment of the optimal all-pay auction aragents. B




In Section 5 we showed that distributions that satisfy
the MHR condition are essentially regular w.r.t. maxi-
mum payment in the sense that virtual values are non-
decreasing wherever they are nonnegative (and so, no
ironing is required for the optimal all-pay auction). We
remark that for the above theorem this property is not siMS01]
ficient and we need complete regularity, i.e. virtual values
should be non-decreasing over the entire range, in order
for the result to hold. [MS06]
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A Appendix

Proof of Theorem 9.Let the agent values be distributed independently according to distribution funictievith
density functionf. Consider the static allocation rué = (ay,...,ax,0,...,0), i.e, the agent with théth highest
bid getsa; fraction of the reward ifi < k, an 0 otherwise. We havgf=1 a; = 1. We focus on the symmetric
bid-functiond(-) induced by this allocation rule.

In a truthful auction with allocation ruled, the expected payment made by th¢h highest bidder i9,.(2) =
Zf*rlﬂ vir(2)(aj—1 — a;), wherev;,(z) is the expectation of thg-th highest bid (=value) given theth highest bid
is z.

Let g(j, n, ) denote the expectation of theth highest draw among draws fromF’, given that the maximum draw
is at mostz. Then we have;,(z) = g(j —r,n —r,2).

The contribution of bidder to the maximum payment objective is

MP;[A] = / b(v;)Pry_, [vi = vny] flvs) dv;

Vi

:/ b(vi) F(v;)" " f(v;) dv;

K

Since agents values are drawn i.i.d. frétnwe haveMP[A] = nMP;[A].
Because the bid functions are symmetric, by the revenue equivalence pria¢iplequals the expected payment
made by an agent with valuein a truthful auction with the same allocation rule. So,

k

= Pro_[z=vm)] pe(2)
; k+1—r

-2 <r_ 1) PR { > gGin =7, 2) (a0 —ajm}
= =

We prove the theorem by showing thﬂf— is negative. When we changg we assume that all the mass is
transferred to (or drawn fromy;. This will prove that the optimal allocation rule is to put all the mass:pni.e.,
ap = 1.

Using the formula fob(z), it is easy to observe that fer= 2 tor = k — 1, terms corresponding to that specific
in %ﬁ““] will be an integral with an integrand of

(Z : i) (- F(Z))rilF(Z)%iril A=glk—r,n—r,2)+glk—r+1n—rz2)}

This integrand is negative becauses a decreasing function in its first argument.
The term corresponding to= 1 in dMP A] will be an integral with an integrand of

F(z)* 2. {—g(l,n—1,2) —glk—1,n—1,2) + g(k,n —1,2)}

Note that the above integrand is negative ever{if n — 1, z) term were not there.
The term corresponding to= k in d""%"k[““] will be an integral with a positive integrand of

(Z: i) (1= F)" F(2) - {g(1,n — k, 2)}

Our proof is going to upper bounﬂ%ﬁ“‘” by ignoring certain negative terms in it, and show that even the upper
bound is negative. In particular, we only consider terms correspondingtd: — 1, » = k and one term of = 1,

11



namelyF(z)?"=2.{—g(1,n — 1, 2)}. Let this upper bound be denoted Qy

We derive the expressions fg(1, n, z) andg(2, n, z) below.

sy =n [ (7)o

o F@)mat
N F(z)™

sy =ntn ) ["of 5 (1= 28) (55) o

Jo F@t)ntat - 1)fOZF(t)” dt
" F(z)n1 " F(z)»

=z —

We susbtitute the expression fpinto Q.

Q= f/ZF(z)”” {zF(z)” — /ZF(t)" dt} dF(z)
/(1 L PR ()R R (2)

z

/Z(1 — F(2))F2F ()" 1 (/0 F(t)n—k+l dt) dF(2)

y
.y
+(3Za)o-w fa-reyrer ([ rora) ane)
.y
(i)

(n—Fk+1) /Z(l — F(2)*2F(2)" (/0 F(t)"* dt) dF(2)
/Z(1 — F(2)FtR(z)" ! (A F(t)nk dt) dF(2)

12



We now factor the ternil — F(z))*~! as(1 — F(z))*=2 . (1 — F(z)) and then group terms. We get
Q= —/F(z)"-2 {zF(z)" — /F(t)” dt} dF(z)

/(1 — F(2))*2F(2)™ *2dF(z)

/ (1= F(2)F2F(2)2*1s dF ()

(i)
(1)

+ (Z B ;) (n—Fk+1) /(1 — F(2))F2F ()1 (/0 F(t)n—k+t dt) dF(2)
(i 2)

z

[(n —k+1)— ";fil] /2(1 — F(2)*2F(2)" (/O F(t)n* dt) dF(2)

- <Z ) 1) /z(l — F(2))"?F(2)" ! (/OZF(t)”’“ dt> dF (z)

We have to prove tha) < 0. This is equivalent to proving that

/ZF(Z)”*2 {ZF(Z)" /OZF(t)" dt} dF(z)
+ (Z:i) /Z(1 — F(2))* 2P ()" ! [zF(z)"—k“ - /OZF(t)""““dt} dF(2)
_ (Z‘ i) /z<1 — F(2))f2F(z)" ! [zF(z)"_k — /OZF(t)”_’“dt} dF(z)

>

(h20) =2 [a-rep=2rer ([ rorta) are)
- (Z: i) (k—2) /(1 — F(2))F2F ()" (/0 F(t) " dt) dF(z)

z

The RHS can be seen to be negative. Thus it is enough to prove that the LHS is positive. Rewriting the terms in the
square bracket via integration by parts,

n/ZF(z)”_2 (/OZtF(t)”_ldF(t)> dF(z)

#(p 2ok [a-rey2rer ([Cwertarn) i)

z

_ (Z_ D (n— k) / (1= F(2))F=2F ()" ( / TRl dF(t)> AP (2)

z 0

Changing the order of integration, we have the LHS as,

Z: i (n—k+1) 1 (1—F(2)F2F)"YdF(2) | |F(t) - nn_i;kl
( F(t) T

n 1 2)" 2 z k
+ ( /F | Feran >> F (1)

Applying integration by parts again, (this time takihgs one term and the rest as the differential part) we get the LHS

/Oo tF ()" L f (1) dt
t=0
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du | dt

/Oo /1 s (Z_i)(n—k—%l)(/ul(l—F( NE2F ()" dF (2 >[u n_kH]
’ F®) </ F(2)" 2 dF( )) k

Rewrite the above integral §5~, H,,(F(t)) dt where

Hy(z) = /: k-1 {(Z: i)(n k1) (/ul(l e dv) [u _ nﬁ;f‘;l] ‘o (/ul o2 dv) uk} du

If we prove thatH, () is always non-negative far € [0, 1] we are done. We have

—H! (z) = g" ! { (Z‘ i) (n—Fk+1) (/:(1 — p)h=2yn-l dv) [m - n”;iJ +n (/1 2 dv> xk}

Observe that H/, () is negative for small values afand positive for large values efand never becomes negative
after it has become positive. ThuH,,(z) is first increasing and then decreasing. We know #fiafl) = 0. If we
prove thatH,,(0) > 0, we would have proven thdf,,(x) is always non-negative.

-1 1 1 _ 1 1
H,(0) = (Z 1) (n—k+ 1)/0 T (/ (1 —v)k=2yn1 dv) [u - nnkil] du+n/0 (/ "2 dv) u" "t du
n—1 1 v n—=k 1 v
= — 1 1 —p)k2yn—1 / n—k—1 - / n—2 / n—1
(12 )o—ren [amwre ([t fue 2 ) doen o ([Coran) a

n—1\ (! 1
_ 1 — p)h—2y2n—k=1(, _ 1
(kl)/o( v)¥ %y (v )dv+2n—1

- _9 n—1 /ﬂ—/2 4n—2k—1(€> . 2k—1(9) do + 1
= k' 1 ) CcoS sin om—1

P

The integralfo"/2 cos™(0)sin™(0) df = Accordingly, we have

PIN RS
~ (n—=1\T(2n—k)['(k) 1
H(0) = (k - 1) ['(2n) T

>0
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