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Abstract

We study the design and approximation of optimal crowd-
sourcing contests. Crowdsourcing contests can be mod-
eled as all-pay auctions because entrants must exert ef-
fort up-front to enter. Unlike all-pay auctions where a
usual design objective would be to maximize revenue, in
crowdsourcing contests, the principal only benefits from
the submission with the highest quality. We give a theory
for optimal crowdsourcing contests that mirrors the the-
ory of optimal auction design: the optimal crowdsourcing
contest is a virtual valuation optimizer (the virtual valu-
ation function depends on the distribution of contestant
skills and the number of contestants). We also compare
crowdsourcing contests with more conventional means of
procurement. In this comparison, crowdsourcing contests
are relatively disadvantaged because the effort of losing
contestants is wasted. Nonetheless, we show that crowd-
sourcing contests are 2-approximations to conventional
methods for a large family of “regular” distributions, and
3.2-approximations, otherwise.

1 Introduction

Crowdsourcing contests have become increasingly impor-
tant and prevalent with the ubiquity of the Internet. For
instance, instead of hiring a research team to develop
a better collaborative filtering algorithm, Netflix issued
the “Netflix challenge” offering a million dollars to the
team that develops an algorithm that beats the Neflix al-
gorithm by 10%. More generally, Taskcn allows users to
post tasks with monetary rewards, collects submissions by
other users, and rewards the best submission; and many
Q&A sites allow users to post questions and reward the
best answer with much-coveted “points”. We address two
questions in this paper, (a) what format of crowdsourcing
competition induces the highest-quality winning contribu-
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tion, and (b) how inefficient is crowdsourcing over more
conventional means of contracting.

Crowdsourcing competitions can be modeled asall-pay
auctions. In the highest-bid-wins single-item all-pay auc-
tion, the auctioneer solicits payments (as bids), awards the
item to the agent with the highest payment, and keeps all
the agent payments. These auctions are well understood
in settings where each agent has an independent private
value for obtaining the item. In the connection to crowd-
sourcing contests, the “item” is the monetary reward, the
payments are the submissions, and the private value is the
rate at which the contestant works. However, unlike all-
pay auctions, in crowdsourcing competitions the princi-
pal usually only values the winning submission and has
no value for lesser submissions. Therefore, while the per-
formance metric for auctions is usuallyrevenuewhich is
the sum of the agent payments, in crowdsourcing con-
tests where payments are submissions, the relevant per-
formance metric is the quality of the best submission, i.e.,
the maximum agent “payment”.

Therevenue equivalenceprinciple implies that in equi-
librium the revenue of the highest-bid-wins all-pay auc-
tion is the same as that of first- and second-price auction
formats; however, in these latter auction formats only the
winner makes a payment. Since non-winners make pay-
ments in all-pay auctions, the maximum agent payment in
all-pay auctions is lower than that of first- and second-
price auctions. To connect this auction theory back to
the setting of procurement, first- and second-price auc-
tions are analogous to conventional procurement mecha-
nisms, e.g., for government contracts; where as, the all-
pay format is analogous to crowdsourcing contests. Im-
portantly, the performance of first- and second-price pro-
curement auctions is their revenue, this revenue is equal
to the revenue of the all-pay auction, but the principal in
crowdsourcing cannot attain this full revenue and there-
fore suffers a loss relative to conventional methods. Our
first result is to show that the maximum agent payment
in all-pay auctions is at least half its total revenue in ex-
pectation. Consequently the loss in crowdsourcing over
conventional procurement is at most a factor of two.

Of course, highest-bid-win auctions are not necessar-
ily revenue optimal. However, for a large class of dis-
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tributions (termedregular), auctions that award the item
to the highest bidder that meets a reservation price are
optimal [Mye81]. In these settings crowdsourcing con-
tests that require submissions to be of a minimum quality
(e.g., the Netflix challenge required submissions to beat
the Netflix algorithm by 10%) are 2-approximations. For
more general distributional settings reserve pricing gives
a e

e−1 = 1.582-approximation to the optimal auction rev-
enue [CHMS10] and crowdsourcing contests with min-
imum quality conditions are, therefore,2e

e−1 = 3.164-
approximations. Thus, this approximation result implies
a “simple versus optimal” style result, i.e., that the gains
from precisely optimizing based on the distribution are at
most a factor of3.164.

Our second result derives the optimal static crowd-
sourcing format that maximizes the quality of the best
submission. Specifically, suppose we fix the reward for
the k-th best submission to beak (where we normalize
the ak ’s to

∑n
k=1 ak = 1). What should theak ’s be?

For instance on computer programming crowdsourcing
site TopCoder.com, the best submission receives 2/3rds
and the second-best submission receives 1/3rd of the total
reward. Is this a better format than awarding the entire
amount to the best submission in terms of the quality of
that submission? We prove that it is not:a1 = 1 and
ak = 0 for k > 1, or winner-takes-all, is the optimal
choice over all such static contests.

Of course in some settings it may be better to adjust the
number of rewards and their distribution across the par-
ticipants dynamically as functions of the observed sub-
mission qualities. Our third result derives the format of
crowdsourcing contests that dynamically optimizes the
quality of the best submission. We give a complete char-
acterization of optimal crowdsourcing contests. In what
would be a familiar result to auction theorists, the optimal
crowdsourcing contests are “ironed virtual value optimiz-
ers” in that the reward is divided evenly among all contes-
tants whose submissions are tied under a weakly mono-
tone transformation (via the ironed virtual value function)
of the submission quality. Importantly, the number of
contestants who share the reward is determined dynam-
ically and each contestant’s share is the same. Perhaps
surprisingly, and unlike the case of classical auction the-
ory, the transformation to ironed virtual values depends
on the number of contestants.

Optimal crowdsourcing contests require the auctioneer
to know the distribution of agents’ skills, e.g. in order to
pick an appropriate minimum submission quality. In our
fourth result we consider the loss from not knowing the
distribution. We show that under a regularity assumption
on the distributions, the auctioneer is better off recruit-

ing an extra agent and running a simple highest-bid-wins
contest than running the optimal contest without the extra
agent; This limits the benefit of knowing the skill distribu-
tion. This result is reminiscent of and based on a similar
theorem by Bulow and Klemperer [BK96] for the revenue
objective.

Related Work. This paper follows the connection made
between crowdsourcing contests and all-pay auctions
from DiPalantino and Vojnovic [DV09] and questions
from Archak and Sundararajan [AS09] and Moldovanu
and Sela [MS01, MS06] on optimizing the reward struc-
ture to improve the quality of the best submissions.
[AS09] and [MS01] compare winner-take-all crowdsourc-
ing contests against ones with a statically determined di-
vision of the reward among top agents, e.g., as in the Top-
Coder.com mechanism. The objective in [MS01] is the
sum of the qualities of submissions (analogous to revenue
in our discussion) and the Archak-Sundararajan objective
is the cumulative effort from the topk agents less the mon-
etary reward. Both papers show that when agents’ sub-
mission qualities are linear in their effort winner-take-all
is optimal over other static divisions. The Moldovanu-
Sela result also holds when quality is a convex function
of effort, but not generally for concave functions. Mi-
nor [Min11] studies a generalization of the problem of
Moldovanu and Sela, and derives the optimal crowdsourc-
ing contest via a Myersonian ironing approach (again, to
maximize the sum of qualities).

Moldovanu and Sela [MS06] study both the highest
quality submission objective and the revenue (sum of all
submission qualities) objective. They compare the perfor-
mance of two-stage contests against one-stage contests.
Among one-stage contests they consider both a single
grand contest, as well as many sub-contests in parallel,
with the winner of each sub-contest receiving a prize.
In two-stage contests, the winners of the first stage sub-
contests compete in a final round. These are all static
contests in the sense that the division of reward among
winners of different sub-contests is predetermined. For
the sum-of-qualities objective, [MS06] prove that a sin-
gle grand contest is best among these contest formats. For
the highest quality objective, if there are sufficiently many
competitors then it is optimal to split the competitors in
two divisions and to have a final among the two divisional
winners. Further, as the number of competitors tends to
infinity, [MS06] show that the optimal highest quality
objective is at least half of the optimal sum-of-qualities
objective — this is a result we generalize in this paper by
proving that this factor two ratio holds for any number of
competitors.
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In this paper our goal is to optimize the quality of the
best submission (unlike [MS01, Min11] which consider
total quality) with a total reward normalized to one (un-
like [AS09] which optimizes the quality of the best sub-
missions less the monetary reward). We study optimal
crowdsourcing contests over all single-stage all-pay for-
mats, unlike [MS06] which limits the format of one-stage
contests but also studies two-stage contests. Our main re-
sults are to show that the wasted effort is not large and
to characterize optimal crowdsourcing contests that can
potentially divide the award between agents dynamically
depending on the qualities of submissions. We also show
that our model is consistent with that of [MS01, AS09] in
that the optimal static allocation of the award is winner-
take-all1.

The following other results relating to crowdsourcing
contests are technically unrelated to ours. DiPalantino
and Vojnovic [DV09] study crowdsourcing websites as a
matching market. They discuss equilibria where contes-
tants first choose which contest to participate in and then
their level of effort. Yang et al. [YAA08] and DiPalantino
and Vojnovic [DV09] empirically study bidder behavior
from crowdsourcing website Taskcn and conclude that
experienced contestants strategize better than others and
their strategizes match the BNE predictions fairly well.

There have been a number of studies of all-pay auc-
tions in complete information settings (e.g., Baye et
al. [BKdV96]), but these works are also technically un-
related to ours.

2 Preliminaries

Auction Theory. Consider the standard auction-
theoretic problem of selling a single item ton agents.
Each agenti has a private valuevi for receiving the object
and is risk-neutral with linear utilityui = vixi−pi for re-
ceiving the item with probabilityxi and making payment
pi. An auctionA solicits bids and determines the out-
come which consists of an allocationx = (x1, . . . , xn)
and paymentsp = (p1, . . . , pn).

Suppose that the agents values are drawn i.i.d. from
continuous distributionF (that is, having no point-
masses) with distribution functionF (z) = Pr[vi ≤ z] and
density functionf(z). A Bayes-Nash equilibrium (BNE)
in auctionA is a profile of strategies for mapping values
to bids in the auction that are a mutual best response, i.e.,
when the values are drawn fromF and other agents fol-
low their equilibrum strategies then each agent (weakly)
prefers to also follow the prescribed strategy over taking

1Moldovanu and Sela in [MS06] also state that this should be true
but do not provide a reference or a proof.

any other action. On valuation profilev = (v1, . . . , vn),
denote the composition of an auction and a strategy profile
by allocation rulex(v) and payment rulep(v).

When agenti is bidding in the auction she knows her
own value vi and assumes the other agent values are
drawn from the distributionF . Denote herinterim allo-
cation and payment rules asxi(vi) = Ev[xi(v) | vi] and
pi(vi) = Ev[pi(v) | vi], respectively. Bayes-Nash equi-
librium requires thatvixi(vi)− pi(vi) ≥ vixi(z)− pi(z)
for all z and from this constraint is derived the standard
characterization of BNE.

Theorem 1 [Mye81] Allocation and payment rulesx(·)
andp(·) are in BNE if and only if for alli

1. xi(vi) is monotone non-decreasing invi and

2. pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz + pi(0)

where usuallypi(0) = 0.

A simple consequence of this characterization is therev-
enue equivalenceprinciple which states that two mecha-
nisms with the same equilibrium allocation have the same
equilibrium revenue—in fact each agent’s expected in-
terim payment is the same.

There are three standard formats for highest-bid-wins
single-item auctions: first-price, second-price, and all-
pay. In the first-price variant the highest bidder wins and
pays her bid, in the second-price variant (a.k.a. Vick-
rey auction) the highest bidder wins and pays the second
highest bid, and in the all-pay variant the highest bidder
wins and all bidders pay their bids. These auction formats
all have BNE in which the agent with the highest valu-
ation wins2; Therefore, revenue equivalence implies that
they have the same expected revenue (sum of payments)
in equilibrium.

The highest-bid-win auction formats do not always
yield the highest expected revenue. To solve for optimal
auctions, Myerson [Mye81] definedvirtual valuations for
revenueasφ(vi) = vi − 1−F (vi)

f(vi)
and proved that the ex-

pected payment of an agent,Evi
[pi(vi)] is equal to her

expected virtual valueEvi [φ(vi)xi(vi)]. The distribution
F is said to beregular if the virtual valuation function
is monotone. For regular distributions, maximizing vir-
tual values point-wise is a monotone allocation rule, and
therefore can be implemented in BNE. This auction serves
the agent with the highest positive virtual value. By sym-
metry, this agent is identically the agent with the highest
value that meets a reserve price ofφ−1(0).

2Furthermore, these symmetric BNE are unique in first-price auc-
tions, as shown in [Leb06].
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Theorem 2 [Mye81] When the virtual valuation function
φ(·) is monotone, the optimal auction format is highest-
bid-wins with a reservation value ofφ−1(0), a.k.a., the
monopoly price.

It will be useful to be able to solve for the equilib-
rium strategies in all-pay auctions with reserves. Rev-
enue equivalence makes this easy: the expected pay-
ment of an agent with valuevi is the same in both all-
pay and the second-price auction formats. Of course
in the all-pay format the agent always pays her bid;
therefore, her bidb(vi) must be equal to her expected
payment in the second-price auction. Letv(j) denote
the jth largest value. Agenti’s expected payment
in the second-price auction whenvi ≥ r, is exactly
Ev−i

[
max(v(2), r) | vi = v(1)

]
Prv−i

[
vi = v(1)

]
, so her

bid in the all-pay auction must be equal to this expecta-
tion.

Lemma 3 In a highest-bid-wins all-pay auction with
value reserver an agent with valuevi bids

b(vi) = Ev−i

[
max(v(2), r) | vi = v(1)

]
Prv−i

[
vi = v(1)

]
.

if vi ≥ r and0 otherwise.

The reserve specified above is in value-space. To im-
plement such a reserve in an auction, one must trans-
late it to a reserve in bid-space. For first- and second-
price auctions this transformation is the identity function.
For all-pay auctions, it can be calculated as follows. An
agent with value equal to the reserver in the second price
auction pays the reserve if she wins, i.e., her expected
payment isrPrv−i

[
r = v(1)

]
= rF (r)n−1. By revenue

equivalence the same agent in the equivalent all-pay auc-
tion must bid this expected payment; as this bid is the
minimum bid that should be accepted, it is the reserve.

Lemma 4 The highest-bid-win all-pay auction with re-
serve bidrF (r)n−1 implements the highest-value-wins
allocation rule with a reserve value ofr.

For irregular distributions, the optimal auction is not
reserve-price based. Instead it selects the highest virtual
value subject to monotonicity of the allocation rule. This
optimization can be simplified by a very generalironing
technique.

Theorem 5 [Mye81, HR08] There is anironing proce-
durethat converts any virtual valuation functionφ(·) to a
ironed virtual valuationfunctionφ̄(·) that is monotone and
has the property that maximizingφ(·) subject to mono-
tonicity (of the allocation rule) is equivalent to maximiz-
ing φ̄(·) point-wise, with ties broken randomly. The BNE
with this outcome is optimal.

Crowdsourcing. The following model for crowdsourc-
ing contests and its connection to all-pay auctions was
proposed in [DV09]. To outsource a task to the crowd
a principal announces a monetary reward (normalized to
1). Each ofn agents (the crowd) enters a submission.
Agent i’s skill is denoted byvi and with effort, ei, she
can produce a submission withqualitypi = viei, i.e., her
skill can be thought of as a rate of work and her effort the
amount of work. Each agent’s skill is her private infor-
mation. If xi fraction of the reward is awarded to agent
i then her utility isui = xi − ei. From her perspec-
tive vi is a constant so maximizing utility is equivalent
to maximizingviui = vixi − pi. Notice that this latter
formulation of the agent’s objective mirrors that from the
single-item auction setting discussed previously; further-
more, as the agents exert effort up-front, crowdsourcing
contests intrensically have all-pay semantics. Because of
this connection, it will be convenient to refer interchange-
ably to skills as values, submission qualities as payments,
and rewards as allocations.

The objective for crowdsourcing contestsA is to max-
imize the quality of the best submission. Because of the
connection to all-pay auctions we refer to this objective
as themaximum paymentobjective and denote its value
for an auctionA asMP[A] = Ev[maxi pi(v)]. This ob-
jective is quite different from the standard revenue maxi-
mization objectiveRev[A] = Ev[

∑
i pi(v)]

One aim of this paper is to quantify the loss the princi-
pal incurs from running an all-pay auction versus a more
conventional means of contracting. For instance, stan-
dard formats for procurement auctions are first- or second-
price. Importantly, in first- and second-price auctionsA
all the payment comes from the highest bidder, therefore
MP[A] = Rev[A] and the principal is able to extract qual-
ity workmanship with no loss. In contrast, in all-pay auc-
tions which are revenue equivalent to first- and second-
price auctions the maximum payment is not equal to the
total revenue and thus the efforts of non-winners consti-
tute a loss in performance. We thus quantify theutiliza-
tion ratio of an auctionA as Rev[A]

MP[A] .

We will see that the all-pay auction that optimizes max-
imum payment is not the same as the auction (all-pay or
otherwise) that maximizes revenue. We define theapprox-
imation ratio of an all-pay auction to quantify its maxi-
mum payment relative to the revenue of the optimal auc-

tion, i.e.,A’s approximation ratio isRev[OPT]
MP[A] . Thecost

of crowdsourcing(over conventional procurement) is then
the approximation ratio of the best all-pay auction, i.e.,

infA
Rev[OPT]

MP[A] .
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Assumptions. For the rest of this paper, the space of
valuationsV is assumed to be an interval and the density
functionf(·) is assumed to be non-zero everywhere inV .

3 Utilization and approximation ra-
tios

As noted previously, the maximum payment of a second-
or first-price auction is equal to its total payment or rev-
enue. On the other hand, in all-pay auctions the payment
made by non-winners leads to a loss in performance. In
this section we quantify this loss for a special class of all-
pay auctions, namely those that always reward the high-
est bidder subject to an anonymous reserve price. This
further allows us to find a simple all-pay auction that ap-
proximates optimal procurement.

In this section we consider highest-bidder-wins
reserve-price auctions under either second-price or all-
pay semantics. It is easy to see that under all-pay seman-
tics these auctions induce symmetric continuous increas-
ing bid functions at BNE and therefore their allocation
function is identical to a second-price auction with an ap-
propriate reserve price.

Theorem 6 Let A be any highest-bidder-wins reserve-
price all-pay auction. ThenRev[A] ≤ 2MP[A]. That
is, its utilization ratio is bounded by2.

Proof: Let x denote the allocation function of the auction
and suppose that the bid function that it induces in BNE is
given byb(v). We can write the expected revenue of the
auction as the sum of the contribution from the winning
agent (i.e. the agent with the maximum payment), and the
contribution from other agents. Call the first termA and
the secondB.

Rev[A] =
∑

i

∫
v

b(v)Prv−i

[
v = v(1)

]
f(v) dv︸ ︷︷ ︸

A

+

∑
i

∫
v

b(v)(1− Prv−i

[
v = v(1)

]
)f(v) dv︸ ︷︷ ︸

B

Note thatA is preciselyMP[A]. We will now show
that A ≥ B, or A − B ≥ 0. By the revenue equiv-
alence principle,b(v) is equal to the expected payment
that an agent with valuev makes in a second-price auc-
tion with the same allocation rule. Letg(v) denote the
expected payment (the maximum of the second high-
est value and the reserve price) in the second-price auc-
tion given thatv is the highest value. Then we get that

b(v) = g(v)Prv−i

[
v = v(1)

]
. We note thatg is a weakly

increasing function, but,Prv−i

[
v = v(1)

]
= F (v)n−1 is a

strictly increasing function sincef(v) 6= 0 for all v ∈ V .
Now we can writeA−B as

A−B

=
∑

i

∫
v

b(v)(2Prv−i

[
v = v(1)

]
− 1)f(v) dv

=
∑

i

∫
v

g(v)F (v)n−1(2F (v)n−1 − 1)f(v) dv

=
∑

i

∫
v

g(F−1(t))tn−1(2tn−1 − 1) dt

where, in the third inequality, we substitutedt for F (v).
Note that sinceF (v) is a strictly increasing function,
F−1(t) is well defined, and is strictly increasing int.

Next we note that ignoring theg term, the integral is
non-negative:∫ 1

0

tn−1(2tn−1 − 1) dt =
2

2n− 1
− 1
n
> 0

Let us consider the effect of theg term. The function
tn−1(2tn−1 − 1) vanishes for two values oft namely0
and(1/2)

1
n−1 . Between these two values the function is

negative, and fort > (1/2)
1

n−1 , the function is positive.
So when the function is multiplied byg(F−1(t)), a non-
decreasing function oft, the negative portion of the inte-
gral is magnified to a smaller extent than the positive por-
tion, implying that the integral stays positive. This com-
pletes the proof.

Tightness of Theorem 6. We now exhibit an example
where the utilization ratio of2 is tight. Consider a set-
ting with n agents, with each agent’s value distributed in-
dependently according to theU [0, 1] distribution. Con-
sider the second-price auction with reserve price of1/2.
The expected revenue of this auction can be computed
to be (n − 1)/(n + 1) − Θ(1/2n). The correspond-
ing all-pay auction uses a reserve price of1/2n and in-
duces a bid functionb(v) = 0 for v < 1/2 andb(v) =
n−1

n vn + 1
2nv

n−1 − n−1
n2n−1 v + 2−n(1 − 1/n) otherwise.

The expected revenue of the all-pay auction is the same as
that of the second-price auction, roughly(n−1)/(n+1),
which approaches1 asn increases. On the other hand,
the expected maximum payment can be computed to be
(2n2−2n+1)/(4n2−2n)+Θ(1/2n) which approaches
1/2 asn increases. In Section 5 we will revisit this exam-
ple and show that even the optimal all-pay auction (which
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is slightly better) only achieves an expected maximum
payment approaching1/2 for this setting.

Utilization ratio for other all-pay auctions. We note
that the bound on utilization ratio does not hold for arbi-
trary symmetric all-pay auctions. For example, the all-pay
auction corresponding to a revenue-optimal auction that
requires ironing over large intervals of values induces a
bidding function that is constant over those intervals. This
results in many agents being tied for the reward, all mak-
ing the same (low) payments but only one contributing to
the maximum payment.

Approximation ratio. Recall that the approximation

ratio of an all-pay auctionA is Rev[OPT]
MP[A] , where OPT

is the revenue optimal auction. We now use the bound
on utilization ratio to prove that all-pay auctions achieve
good approximation ratios. In particular, we use the fact
that for regular distributions highest-bidder-wins reserve-
price auctions are revenue-optimal (Theorem 2) whereas
for irregular distributions they are within a factor of

e
e−1 = 1.582 of optimal [CHMS10]. The following corol-
laries then follow from Theorem 6 upon applying the rev-
enue equivalence principle.

Corollary 7 When agents’ value distributions are regu-
lar, there exists anα such that the highest-bid-wins all-
pay auction with reserve bidα achieves an approximation
ratio at most2.

Corollary 8 For all i.i.d. value distributions, there exists
an α such that the highest-bid-wins all-pay auction with
reserve bidα achieves an approximation ratio at most
3.164.

These corollaries imply that the cost of crowdsourcing
is always small — no more than3.164. The above ex-
ample with uniform distributions shows that the approxi-
mation factor in Corollary 7 is tight. An extension of the
same example in Section 5 shows that the worst-casecost
of crowdsourcingcan be no smaller than2.

4 Optimal static crowdsourcing
contests

Consider the class of static contests that predetermine
the division of the reward intoa1, . . . an, with

∑
i ai =

1. Agents are ordered by their submission qualities and
awarded the corresponding fraction of reward, i.e., theith
best submission gets anai fraction of the reward. Note

that the Topcoder.com example mentioned in the intro-
duction, where the best submission receives 2/3rds and
the second-best submission receives 1/3rd of the total re-
ward, falls under this class of contests.

In this section we characterize the static auctions that
are optimal with respect to the maximum payment objec-
tive. Note that the class of static auctions is symmetric,
i.e., a permutation of bids results in the same permuta-
tion of the allocation and payments. Since agents’ private
values are identically distributed, any such symmetric al-
location rule induces a symmetric equilibrium in which
all agents use an identical bidding function. This in turn
implies that the allocation as a function of agents’ values
is also symmetric across agents. The following theorem
shows that in fact it is optimal over all static contests to
allocate the entire reward to the best submission. (See the
appendix for a proof.)

Theorem 9 When the bidders’ valuations are drawn
i.i.d., the optimal static all-pay auction is a highest-bid-
wins auction.

5 Optimal crowdsourcing contests

In this section, we characterize symmetric all-pay auc-
tions that are optimal with respect to the maximum pay-
ment objective. As discussed in Section 4, a symmet-
ric auction induces a symmetric equilibrium which makes
the allocation as a function of agents’ values symmetric
across agents.

We first present a characterization of the expected
maximum payment of any symmetric all-pay auction in
terms of an appropriately defined virtual value function.
This characterization immediately implies that the opti-
mal mechanism is a virtual value maximizer.

Definition 1 For a given distributionF with density func-
tion f and an integern, we define thevirtual value for
maximum payment, ψn(z) as

ψn(z) = zF (z)n−1 − 1− F (z)n

nf(z)

Lemma 10 Consider a setting withn agents and values
distributed i.i.d. according to distributionF . Let A be
a symmetric all-pay auction implementing the allocation
functionx. ThenMP[A] = E[

∑
i xi(v)ψn(vi)].

Proof: Suppose that the allocation functionx induces a
symmetric bid functionb(·) on the agents. Recall that by
the revenue equivalence principle,b(v) is equal to the ex-
pected payment that an agent with valuev makes under
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x(·). From Theorem 1 we get the following expression
for b(v) wherexi is the expected allocation to agenti in
expectation overv−i.

b(vi) = vixi(vi)−
∫ vi

z=0

xi(z) dz

Because the equilibrium is symmetric, one of the agents
with the highest bid is the agent with the highest value3,
i.e., with vi = v(1). We attribute the maximum payment
received by the mechanism to this agent. We can now use
the above formulation of the bid function to calculate the
expected contribution of agenti to the maximum payment
objective.

MPi[A]

=
∫

vi

b(vi)Prv−i

[
vi = v(1)

]
f(vi) dvi

=
∫

vi

[
vixi(vi)−

∫ vi

z=0

xi(z) dz
]
F (vi)n−1fi(vi) dvi

In order to simplify the second term in the integral we in-
terchange the order of integration overz andvi, integrate
overvi, and then renamez asvi. We get:

MPi[A]

=
∫

vi

vixi(vi)F (vi)n−1fi(vi) dvi

−
∫

vi

xi(vi)
(

1− F (vi)n

n

)
dvi

=
∫

vi

xi(vi)
{
viF (vi)n−1 − 1− F (vi)n

nf(vi)

}
fi(vi) dvi

=
∫

vi

xi(vi)ψn(vi)fi(vi) dvi = Ev[xi(v)ψn(vi)]

Summing overi implies the lemma.

Optimal allocation rules and regularity. The charac-
terization of Lemma 10 immediately implies that in or-
der to maximize the expected maximum payment, we
should maximize the virtual surplus of the mechanism
for maximum payment. In other words, we should al-
locate the entire reward to the agent that has the max-
imum virtual valueψn(vi) (subject to this value being
non-negative). However, this results in a monotone allo-
cation function only if the virtual value function is mono-
tone non-decreasing. To this end, we define regularity for
maximum payment as follows.

3Note that the bid function need only be weakly increasing, so there
may be ties for the highest bid.

Definition 2 A distributionF is said to ben-regular with
respect to maximum paymentif ψn(·) is a monotone non-
decreasing function. The distribution is said to bereg-
ular w.r.t. maximum paymentif ψn(·) is monotone non-
decreasing for all positive integersn.

For distributions that are regular w.r.t. maximum pay-
ment, allocating to the agent with the highest non-negative
virtual value is monotone and therefore can be imple-
mented in BNE. Since agents have i.i.d. values, this out-
come corresponds to allocating to the agent with the high-
est value, who is in turn the agent with the highest bid.
Therefore, the optimal mechanism is a highest-bid-wins
reserve-price mechanism. The reserve value for the mech-
anism is given byψ−1

n (0) and the reserve bid can be com-
puted by applying Lemma 4 to this value. We note that
generally the reserve price is a function ofn and decreases
with n, even for distributions that are regular for alln.

Theorem 11 Let F be a distribution that isn-regular
w.r.t. maximum payment. Then the optimal all-pay auc-
tion for n agents with values distributed independently
according toF is a highest-bid-wins auction with a re-
serve price.

Two examples. We now revisit the example withn
agents and values distributed according toU [0, 1] that was
discussed in Section 3. The following expression defines
the virtual value for maximum payment in this case:

ψn(z) = zn(1 + 1/n)− 1/n for z ∈ [0, 1]

This is an increasing function for alln. Therefore, the
U [0, 1] distribution is regular. The optimal reserve value
is given byψ−1

n (0) = (n + 1)−1/n, and the optimal re-
serve bid is1/(n + 1). Therefore, the optimal all-pay
auction serves the highest bidder subject to her bid being
at least1/(n + 1). The expected maximum payment of
this auction can be calculated to ben

2(n+1) .
Next consider a setting with two agents and values dis-

tributed i.i.d. according to the exponential distribution.
That is,F (v) = 1− e−v for v ≥ 0. We can calculate the
virtual value function asψ2(z) = (z−1)+e−z(1/2−z).
This function is negative below1.21 and positive there-
after. Furthermore, it is non-decreasing above0.24, par-
ticularly throughout the range where it is non-negative. So
although the exponential distribution is not regular w.r.t.
maximum payment, the optimal all-pay auction still turns
out to be a highest-bid-wins auction with a reserve price
of 1.21 and a corresponding reserve bid of0.85.

An interesting point to note about the above example
is that distributions that are regular with respect to the
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usual notion of virtual value for revenue, are not neces-
sarily regular with respect to maximum payment even for
n = 2. However, for a large subset of such distributions,
namely those that satisfy the monotone hazard rate con-
dition (Definition 3 below), the optimal all-pay auction
continues to have the simple form given in Theorem 11.

Regularity and MHR. A frequently used assumption
in mechanism design literature is that value distributions
satisfy themonotone hazard rate(MHR) condition de-
fined below. Many common distributions such as the uni-
form, Gaussian, and exponential distributions satisfy this
property. Distributions that satisfy MHR are regular and
therefore do not require ironing in the context of revenue
maximization. As our example above shows, MHR distri-
butions are not necessarily regular with respect to maxi-
mum payment.

Definition 3 Thehazard rateof a distributionF with den-
sity functionf is defined ash(x) = f(x)

1−F (x) . A distribu-
tion is said to have amonotone hazard rate(MHR) if the
hazard rate function is monotone non-decreasing.

Lemma 12 Let F be a distribution satisfying the MHR
condition. Then for anyn and any interval of values
over whichψn is non-negative,ψn is monotone non-
decreasing.

Proof: We can rewrite the virtual value function in terms
of the hazard rateh(z) of the distribution as follows.

ψn(z) = zF (z)n−1 − 1
nh(z)

n−1∑
j=0

F (z)j

= F (z)n−1

z − 1
nh(z)

n−1∑
j=0

F (z)−j


The functionh(z) is a non-negative non-decreasing func-
tion. Therefore,(−1/nh(z)) is a negative non-decreasing
function. On the other hand,

∑n−1
j=0 F (z)−j is a de-

creasing function ofz. The product of a negative non-
decreasing function and a decreasing function is a non-
decreasing function. Therefore, the term within brack-
ets is a non-decreasing function ofz. The term outside
brackets,F (z)n−1, is also an always positive increasing
function. Therefore, the product of the two terms is an
increasing function over any interval where it is positive.

We obtain the following corollary.

Corollary 13 LetF be a distribution that satisfies MHR.
Then the optimal all-pay auction for values distributed in-
dependently according toF is a highest-bid-wins auction
with a reserve price.

Irregular distributions and ironing. For distributions
that are not regular according to the definition above, we
can apply an ironing procedure from Theorem 5 toψn to
obtain an ironed virtual value functioñψn. This function
is monotone non-decreasing and by Theorem 5 the BNE
that optimizes it pointwize optimizes the maximum pay-
ment objective.

The optimal mechanism in this case allocates the en-
tire reward to the agent with the maximum ironed virtual
value, in the case of ties distributing the reward equally
among the tied agents4. Since the ironed virtual value
function is a weakly increasing function, the induced bid
function is constant in the intervals where the ironed vir-
tual value is constant, and discontinuous at the ends of
those intervals. In effect, this creates intervals of bids that
are suboptimal to make at any value; call these intervals
“forbidden”. In order to implement the mechanism as an
all-pay auction, we identify the forbidden intervals; then
we round every bid in a forbidden interval down to the
closest “allowed” bid, and distribute the reward equally
among the highest bidders (subject to an appropriate re-
serve price defined bỹψ−1

n (0)). We therefore get the fol-
lowing theorem:

Theorem 14 For any setting with i.i.d. values, the opti-
mal all-pay auction is defined by a reserve price and a
subset of bids called forbidden bids, that has the following
format: the auction solicits bids and rounds them down
to the nearest non-forbidden bids; it then distributes the
reward equally among the highest bidders subject to the
bids being above the reserve price.

An example of ironing. We now present a simple ex-
ample of a distribution that is irregular w.r.t. maximum
payment, and derive its ironed virtual value and as well as
forbidden bids. There are two agents, each with a value
drawn independently fromU [1, 2] with probability 3/4
and fromU(2, 3] with probability 1/4. Figure 1 below
shows the virtual value functionψ2 and its integral with
respect toq = F (v) using thick grey lines; their ironed
counterparts are shown in thin red lines. The integral of
the virtual value function as a function ofq is given by the
expression1

2F
−1(q)(1 − q2). We iron this function by

4An equivalent way of resolving ties in the maximum ironed virtual
value is to allocate the reward to a random tied agent.
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taking its convex envelope;̃ψ2 is then the derivative with
respect toq of that convex envelope.

The ironed virtual value is constant in the interval
[1.918, 2.167]. The probability of allocation (not plotted),
and therefore the bid function, are also constant over this
interval. The corresponding bid function is plotted with
a thin black line below; there are two forbidden bid in-
tervals, namely[1.10, 1.199) and (1.199, 1.31], with the
intermediate value of1.199 being allowed. The two for-
bidden intervals correspond to the two discontinuities in
the probability of allocation at the end points of the ironed
interval.

Figure 1: The Ironing Procedure

Irregularity as a function of n. An interesting point to
note is that irregularity increases withn. Specifically, the
intervals of values that require ironing underψn increase
with n.5 This does not necessarily imply that asn in-
creases a larger and larger number of agents are tied for
the reward, for two reasons: (1) reserve value (not the re-
serve bid) increases withn, and (2), due to the form of
the virtual value function, ironing is typically necessary at
low values rather than at high values.

6 Contests without reserve prices

As we show above, optimal crowdsourcing contests de-
pend on knowing the agents’ value distribution. To what

5This happens because the intervals requiring ironing are precisely
those where the integral of the virtual value function is non-concave;
Increasingn amounts to multiplying the integral with a convex function
resulting in non-concave intervals continuing to stay non-concave.

extent is it important to know the distribution? In par-
ticular, under what conditions does the simple highest-
bidder-wins contest without any reserve bid approximate
the optimal one? We now show a result in the style of Bu-
low and Klemperer’s work [BK96] on the standard goal of
maximizing the expected revenue. Bulow and Klemperer
showed that for i.i.d. value distributions that are regular
w.r.t. revenue, it is better to run a Vickrey auction with
no reserve price onn + 1 agents than to run an optimal
auction on onlyn agents. That is, the ability to recruit an
extra agent in the auction is more profitable to the auction-
eer than knowing the distribution.

We first note that Bulow and Klemperor’s result im-
plies that for distributions that are regular w.r.t. revenue,
the highest-value-wins auction with no reserve price onn
agents is within a factor of(1−1/n) of the optimal mecha-
nism in terms of revenue. This combined with Theorem 6
gives us the following theorem.

Theorem 15 For i.i.d. distributions that are regular w.r.t.
revenue, the highest-bid-wins all-pay auction without a
reserve bid obtains an approximation ratio of2n/(n−1).

We remark that for the highest-value-wins auction
without reserve prices, the revenue converges to the op-
timal as more and more agents are added. However for
all-pay auctions adding more and more agents does not
improve the approximation ratio beyond2. Next in the
style of Bulow and Klemperer, we compare the benefit of
knowing the distribution to that of adding an extra bidder
for the maximum payment objective.

Theorem 16 For i.i.d. distributions that are regular w.r.t.
maximum payment, the expected maximum payment of the
highest-bidder-wins all-pay auction with no reserve bid
onn+ 1 agents is at least as large as the expected maxi-
mum payment of the optimal all-pay auction onn agents.

Proof: Consider all all-pay auction onn + 1 agents
that must always allocate the entire reward to the agents.
Lemma 10 implies that the optimal such auction allo-
cates the entire reward to the agent with the highest virtual
value, who by symmetry and regularity is the agent with
the highest value.

On the other hand, another way to always allocate the
entire reward is to run the optimal all-pay auction on the
first n agents; if the reward goes unallocated in that auc-
tion, then allocate it to then + 1st agent. Clearly, in this
mechanism, in any BNE then+ 1st agent makes a0 pay-
ment regardless of his value because his value does not ef-
fect the outcome. Therefore the expected maximum pay-
ment of the auction is precisely the expected maximum
payment of the optimal all-pay auction onn agents.
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In Section 5 we showed that distributions that satisfy
the MHR condition are essentially regular w.r.t. maxi-
mum payment in the sense that virtual values are non-
decreasing wherever they are nonnegative (and so, no
ironing is required for the optimal all-pay auction). We
remark that for the above theorem this property is not suf-
ficient and we need complete regularity, i.e. virtual values
should be non-decreasing over the entire range, in order
for the result to hold.
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A Appendix

Proof of Theorem 9.Let the agent values be distributed independently according to distribution functionF , with
density functionf . Consider the static allocation ruleA = (a1, . . . , ak, 0, . . . , 0), i.e, the agent with thei-th highest
bid getsai fraction of the reward ifi ≤ k, an 0 otherwise. We have

∑k
i=1 ai = 1. We focus on the symmetric

bid-functionb(·) induced by this allocation rule.
In a truthful auction with allocation ruleA, the expected payment made by ther-th highest bidder ispr(z) =∑k+1
j=r+1 vjr(z)(aj−1 − aj), wherevjr(z) is the expectation of thej-th highest bid (=value) given ther-th highest bid

is z.
Let g(j, n, z) denote the expectation of thej-th highest draw amongn draws fromF , given that the maximum draw

is at mostz. Then we havevjr(z) = g(j − r, n− r, z).
The contribution of bidderi to the maximum payment objective is

MPi[A] =
∫

vi

b(vi)Prv−i

[
vi = v(1)

]
f(vi) dvi

=
∫

vi

b(vi)F (vi)n−1fi(vi) dvi

Since agents values are drawn i.i.d. fromF , we haveMP[A] = nMPi[A].
Because the bid functions are symmetric, by the revenue equivalence principle,b(z) equals the expected payment

made by an agent with valuez in a truthful auction with the same allocation rule. So,

b(z) =
k∑

r=1

Prv−i

[
z = v(r)

]
· pr(z)

=
k∑

r=1

(
n− 1
r − 1

)
(1− F (z))r−1F (z)n−r ·


k+1−r∑

j=1

g(j, n− r, z)(aj+r−1 − aj+r)


We prove the theorem by showing thatdMPi[A]

dak
is negative. When we changeak we assume that all the mass is

transferred to (or drawn from)a1. This will prove that the optimal allocation rule is to put all the mass ona1, i.e.,
a1 = 1.

Using the formula forb(z), it is easy to observe that forr = 2 to r = k − 1, terms corresponding to that specificr
in dMPi[A]

dak
will be an integral with an integrand of(

n− 1
r − 1

)
(1− F (z))r−1F (z)2n−r−1 · {−g(k − r, n− r, z) + g(k − r + 1, n− r, z)}

This integrand is negative becauseg is a decreasing function in its first argument.
The term corresponding tor = 1 in dMPi[A]

dak
will be an integral with an integrand of

F (z)2n−2 · {−g(1, n− 1, z)− g(k − 1, n− 1, z) + g(k, n− 1, z)}

Note that the above integrand is negative even ifg(1, n− 1, z) term were not there.

The term corresponding tor = k in dMPi[A]
dak

will be an integral with a positive integrand of(
n− 1
k − 1

)
(1− F (z))k−1F (z)2n−k−1 · {g(1, n− k, z)}

Our proof is going to upper bounddMPi[A]
dak

by ignoring certain negative terms in it, and show that even the upper
bound is negative. In particular, we only consider terms corresponding tor = k − 1, r = k and one term ofr = 1,
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namelyF (z)2n−2 · {−g(1, n− 1, z)}. Let this upper bound be denoted byQ.

dMPi[A]
dak

≤ Q = −
∫

z

F (z)2n−2g(1, n− 1, z) dF (z)

−
(
n− 1
k − 2

)∫
z

(1− F (z))k−2F (z)2n−kg(1, n− k + 1, z) dF (z)

+
(
n− 1
k − 2

)∫
z

(1− F (z))k−2F (z)2n−kg(2, n− k + 1, z) dF (z)

+
(
n− 1
k − 1

)∫
z

(1− F (z))k−1F (z)2n−k−1g(1, n− k, z) dF (z)

We derive the expressions forg(1, n, z) andg(2, n, z) below.

g(1, n, z) = n

∫ z

0

y
f(y)
F (z)

(
F (y)
F (z)

)n−1

dy

= z −
∫ z

0
F (t)n dt

F (z)n

g(2, n, z) = n(n− 1)
∫ z

0

y
f(y)
F (z)

(
1− F (y)

F (z)

)(
F (y)
F (z)

)n−2

dy

= z −

[
n

∫ z

0
F (t)n−1 dt

F (z)n−1
− (n− 1)

∫ z

0
F (t)n dt

F (z)n

]

We susbtitute the expression forg intoQ.

Q = −
∫

z

F (z)n−2

[
zF (z)n −

∫
z

F (t)n dt

]
dF (z)

+
(
n− 1
k − 1

)∫
z

(1− F (z))k−1F (z)2n−k−1z dF (z)

+
(
n− 1
k − 2

)∫
z

(1− F (z))k−2F (z)n−1

(∫ z

0

F (t)n−k+1 dt

)
dF (z)

+
(
n− 1
k − 2

)
(n− k)

∫
z

(1− F (z))k−2F (z)n−1

(∫ z

0

F (t)n−k+1 dt

)
dF (z)

−
(
n− 1
k − 2

)
(n− k + 1)

∫
z

(1− F (z))k−2F (z)n

(∫ z

0

F (t)n−k dt

)
dF (z)

−
(
n− 1
k − 1

)∫
z

(1− F (z))k−1F (z)n−1

(∫ z

0

F (t)n−k dt

)
dF (z)
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We now factor the term(1− F (z))k−1 as(1− F (z))k−2 · (1− F (z)) and then group terms. We get

Q = −
∫

z

F (z)n−2

[
zF (z)n −

∫
z

F (t)n dt

]
dF (z)

−
(
n− 1
k − 1

)∫
z

(1− F (z))k−2F (z)2n−kz dF (z)

+
(
n− 1
k − 1

)∫
z

(1− F (z))k−2F (z)2n−k−1z dF (z)

+
(
n− 1
k − 2

)
(n− k + 1)

∫
z

(1− F (z))k−2F (z)n−1

(∫ z

0

F (t)n−k+1 dt

)
dF (z)

−
(
n− 1
k − 2

)[
(n− k + 1)− n− k + 1

k − 1

] ∫
z

(1− F (z))k−2F (z)n

(∫ z

0

F (t)n−k dt

)
dF (z)

−
(
n− 1
k − 1

)∫
z

(1− F (z))k−2F (z)n−1

(∫ z

0

F (t)n−k dt

)
dF (z)

We have to prove thatQ ≤ 0. This is equivalent to proving that∫
z

F (z)n−2

[
zF (z)n −

∫ z

0

F (t)n dt

]
dF (z)

+
(
n− 1
k − 1

)∫
z

(1− F (z))k−2F (z)n−1

[
zF (z)n−k+1 −

∫ z

0

F (t)n−k+1 dt

]
dF (z)

−
(
n− 1
k − 1

)∫
z

(1− F (z))k−2F (z)n−1

[
zF (z)n−k −

∫ z

0

F (t)n−k dt

]
dF (z)

≥(
n− 1
k − 1

)
(k − 2)

∫
z

(1− F (z))k−2F (z)n−1

(∫ z

0

F (t)n−k+1 dt

)
dF (z)

−
(
n− 1
k − 1

)
(k − 2)

∫
z

(1− F (z))k−2F (z)n

(∫ z

0

F (t)n−k dt

)
dF (z)

The RHS can be seen to be negative. Thus it is enough to prove that the LHS is positive. Rewriting the terms in the
square bracket via integration by parts,

n

∫
z

F (z)n−2

(∫ z

0

tF (t)n−1 dF (t)
)
dF (z)

+
(
n− 1
k − 1

)
(n− k + 1)

∫
z

(1− F (z))k−2F (z)n−1

(∫ z

0

tF (t)n−k dF (t)
)
dF (z)

−
(
n− 1
k − 1

)
(n− k)

∫
z

(1− F (z))k−2F (z)n−1

(∫ z

0

tF (t)n−k−1 dF (t)
)
dF (z)

Changing the order of integration, we have the LHS as,

∫ ∞

t=0

tF (t)n−k−1f(t)



(
n− 1
k − 1

)
(n− k + 1)

(∫ 1

F (t)

(1− F (z))k−2F (z)n−1 dF (z)

)[
F (t)− n− k

n− k + 1

]

+n

(∫ 1

F (t)

F (z)n−2 dF (z)

)
F (t)k

 dt

Applying integration by parts again, (this time takingt as one term and the rest as the differential part) we get the LHS
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as,

∫ ∞

t=0


∫ 1

F (t)

un−k−1


(
n− 1
k − 1

)
(n− k + 1)

(∫ 1

u

(1− F (z))k−2F (z)n−1 dF (z)
)[

u− n− k

n− k + 1

]
+n
(∫ 1

u

F (z)n−2 dF (z)
)
uk

 du

 dt

Rewrite the above integral as
∫∞

t=0
Hn(F (t)) dt where

Hn(x) =
∫ 1

x

un−k−1

{(
n− 1
k − 1

)
(n− k + 1)

(∫ 1

u

(1− v)k−2vn−1 dv

)[
u− n− k

n− k + 1

]
+ n

(∫ 1

u

vn−2 dv

)
uk

}
du

If we prove thatHn(x) is always non-negative forx ∈ [0, 1] we are done. We have

−H ′
n(x) = xn−k−1

{(
n− 1
k − 1

)
(n− k + 1)

(∫ 1

x

(1− v)k−2vn−1 dv

)[
x− n− k

n− k + 1

]
+ n

(∫ 1

x

vn−2 dv

)
xk

}
Observe that−H ′

n(x) is negative for small values ofx and positive for large values ofx and never becomes negative
after it has become positive. Thus,Hn(x) is first increasing and then decreasing. We know thatHn(1) = 0. If we
prove thatHn(0) ≥ 0, we would have proven thatHn(x) is always non-negative.

Hn(0) =
(
n− 1
k − 1

)
(n− k + 1)

∫ 1

0

un−k−1

(∫ 1

u

(1− v)k−2vn−1 dv

)[
u− n− k

n− k + 1

]
du+ n

∫ 1

0

(∫ 1

u

vn−2 dv

)
un−1 du

=
(
n− 1
k − 1

)
(n− k + 1)

∫ 1

0

(1− v)k−2vn−1

(∫ v

0

un−k−1

[
u− n− k

n− k + 1

]
du

)
dv + n

∫ 1

0

vn−2

(∫ v

0

un−1 du

)
dv

=
(
n− 1
k − 1

)∫ 1

0

(1− v)k−2v2n−k−1(v − 1) dv +
1

2n− 1

= −2
(
n− 1
k − 1

)∫ π/2

0

cos4n−2k−1(θ)sin2k−1(θ) dθ +
1

2n− 1

The integral
∫ π/2

0
cosm(θ)sinn(θ) dθ = Γ( m+1

2 )Γ( n+1
2 )

2Γ( m+n+2
2 )

Accordingly, we have

Hn(0) = −
(
n− 1
k − 1

)
Γ(2n− k)Γ(k)

Γ(2n)
+

1
2n− 1

> 0
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