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The situation is considered in which a total score
on a test is used for classifying examinees into two
categories: "accepted (with scores above a cutting
score on the test) and "not accepted" (with scores
below the cutting score). A value on the latent
variable is fixed in advance; examinees above this
value are "suitable" and those below are "not suit-

able." Using a linear loss function, a procedure is
described for computing a cutting score that mini-
mizes the risk for the decision rule. The procedure
is demonstrated with a criterion-referenced achieve-
ment test of elementary statistics administered to
167 students.

In this article the situation is considered in which (1) a latent variable can be dichotomized into
the categories &dquo;suitable&dquo; and &dquo;not suitable&dquo;; (2) the latent variable is measured by an instrument
composed of items that are scored either 0 or 1; (3) the total score on the measurement instrument is
the unweighted sum of the item scores; (4) examinees are &dquo;accepted&dquo; if their total score is higher than
a cutting score; otherwise, they are &dquo;not accepted.&dquo;

Examples of such situations include mastery decisions in criterion-referenced measurement. A
decision-theoretic approach of criterion-referenced measurement has been proposed by Hambleton
and Novick (1973). More recently, Meskauskas (1976) has given an overview of the available models
for setting cutting scores. The general decision framework for this situation has been described by
Huyhn (1976). Beside mastery decisions in educational testing, other examples are acceptance-rejec-
tion decisions for job applicants or for special treatments such as psychotherapy.

An optimal decision is formulated using a linear loss function. The following notation will be
used:

n = number of items in the measurement instrument;
x; = observed total score of examinee i (x; = 0, 1, ... n);
Ti = true proportion of items answered correctly by examinee i (0 < Ti ~ 1);
h~) - probability density ofx;
k(T, x) = joint probability density of x and T;
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P(TIX) = probability density of T, given x;
c = cutting score on the measurement instrument (c = 0, 1, ... n);
d = cutting score on the latent variable (0 ~ d < 1);
E(Tlx) = regression function of T on x;
ax = variance of x; 

.

p~ 
= mean ofx;

exx, 
= reliability coefficient of x.

Optimal Cutting Scores

In order to compute an optimal cutting score on the measurement instrument, a loss function
should be specified. The decision situation can be represented as in Figure 1.
The general form of the loss function is:

In this formula, .Q a,(i, j = 0, 1 ) is a function of T. The risk is the expected loss (Ferguson, 1967, p. 7):

Figure 1

Twofold Table for Dichotomous Decisions
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An optimal cutting score on the measurement instrument is that value of c that minimizes the risk.
Huyhn (1976) and Melienbergh, Koppelaar, and van der Linden (1976) have considered the fol-

lowing loss function:

Assuming that the probability density of x, given T, is binomial and that the regression of T on x is lin-
ear, these authors have described methods for obtaining the cutting score that minimizes the risk.

An obvious disadvantage of the loss function given in Equation 3 is that the loss is constant. For
instance, a not-accepted examinee with a latent score just above the cutting score gives the same loss
as a not-accepted examinee with a latent score far above the cutting score. This constant loss can be
eliminated by using a linear loss function:

The condition (bo + bi) > 0 is needed for the mathematical derivations given below; this condition is
not really restrictive in its applications.

Specifying a loss function of the type given in Equation 4, it should be noted that both parts of
Equation 4 contain two different components and, hence, two different kinds of parameters:
1. The parameters ao and a, represent amounts of loss, independent of the scores on the latent

variable. These are constants and are used when the classification of examinees as either ac-

cepted or not accepted is to be made;
2. both bo(T - d) and b,(d - T) represent amounts of loss dependent upon the latent variable T. These

are proportional to the difference between the latent score T and the cutting score d. The values of
the parameters bo and bl are constants of proportionality.

The values for ao and al should be chosen relative to each other and to bo(T - d) and b,(d - T), in such
a manner that the resulting loss function represents the psychological, social, and economic conse-
quences of both possible decisions.

Substituting Equation 4 into Equation 2 gives:
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Using

it follows that

This is equivalent to

Remembering (bo + b,) > 0 and eliminating the constant term of Equation 10, R is minimal for the
cutting score, c~, that maximizes

The density h(x) is equal to or greater than zero for all values of x. Therefore, if E(TIX) is a mono-
tonically increasing function, R is maximal for c’ =x for which

is positive for the first time. Using this fact, the optimal cutting score can be found if the regression
function is specified.

A possible regression function is the linear regression function of classical test theory (Lord &

Novick, 1968, p. 65):
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Substituting Equation 13 into Equation 12, setting the result equal to 0, and solving for x gives

The cutting score is an integer; for the first integer smaller than x~ Equation 12 is negative and for the
first integer greater than x’ this expression is positive. Therefore, the optimal cutting score is

where the entier function replaces x’ by the first integer smaller than x’.
Obviously, choosing another test model will give rise to another regression function and, hence,

to another expression for the optimal cutting score.

A Numerical Example
The procedure was applied to a 20-item, three-choice criterion-referenced test in elementary

statistics and administered to 167 sophomores majoring in psychology. The teachers of the course
considered students as having mastered the subject matter if they could answer correctly at least 80%
of the total domain of items. Therefore, d is fixed at 0.80.

De Bruyne (1976) split the test into two parallel subtests using the method of &dquo;matched random
subtests&dquo; (Gulliksen, 1950, p. 207). The means and variances were computed for the total test score
(X) and the subtests (X, and ~2). Furthermore, the reliability was computed as the correlation coeffi-
cient between scores on the subtests corrected for double test length by the Spearman-Brown for-
mula. The results of these computations are shown in Table 1. The table shows that the subtests are
parallel in the sense that their means and variances are approximately equal.

Table 1

Statistics Subtests (X and X2) and Test (X)
&dquo;Elementary Statistics&dquo; (N = 167; n = 20)
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Table 2

Optimal Cutting Scores (c) for Different

Values of (a 0 - a1 ) / (b0 + b 1 ) 
----

The parameters M, and Qxx’ of Equation 13 were estimated by the mean and from Table 1. Us-
ing Equation 15, the optimal cutting scores were computed for the whole range of possible values of
the ratio (ao - a,)l(bo + b,); the results are shown in Table 2.

Discussion

The values of the ratio (ao - a,)I(bo + bi) in Table 2 are rather small. However, the values of ao
and at. which are in the numerator of this ratio, should be considered relative to the range of possible
values of bo(T - d) and b,(d - T). Obviously, choosing another interval of possible values for T, for
example [O,n ], will give rise to larger values for the ratio (ao - a 1)/(ho + b,) in Table 2.

Inspection of Equations 12 and 14 shows that for fixed (bo + bi) the optimal cutting score is de-
pendent upon (ao - a,). The larger the difference, the lower the optimal cutting score. This makes
sense: a larger value of ao relative to a, means a larger amount of constant loss for the decision &dquo;non-
acceptance&dquo; relative to &dquo;acceptance&dquo; and, in that case, the optimal cutting score is lower; a smaller
value of ao relative to a, gives rise to the opposite.

An interesting case is ao = at. Whenever this occurs, the difference (ao-a,) of Equation 12 can be
dropped and the ratio (ao - at)!(ho + b,) of Equation 14 disappears; this is true for every pair of values
of bo and b,. If the amounts of constant loss for both decisions are equal or if there are no constant
losses at all, there is no need to choose values for bo and b,. In such a case, the optimal cutting score is
that value of x for which [E(Tlx) - d] is positive for the first time. Or, using the linear regression func-
tion of classical test theory, the optimal cutting score is the first integer value above
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Using Equation 16, the optimal cutting score for the example is: c’ = 17.
From equations 14 and 15, it follows that the optimal cutting score, c’, is dependent upon the re-

liability coefficient Q,,,. For a positive numerator in the second term of the right-hand part of Equa-
tion 14, the effect of increasing the reliability coefficient is to lower the optimal cutting score; for a
negative numerator, the opposite occurs. In the case of Equation 16, this can be interpreted as a re-
verse regression-toward-the-mean: increasing the reliability coefficient means a shift of x’ in the
direction of J.1x.

Since the optimal cutting score is a function of the reliability coefficient in Equation 14, the ac-
curacy of the estimate of the optimal cutting score is dependent on the accuracy of the estimate of the
reliability coefficient. From the theory of estimating the reliability coefficient for normally distributed
test scores, it follows that the confidence interval of the coefficient will increase as the coefficient in
the population and the sample size decrease (Lord & Novick, 1968, p. 207). Criterion-referenced tests
are usually short, and it is possible that population reliability coefficients will be small. Therefore, for
criterion-referenced tests with low reliability coefficients the estimate of the optimal cutting score
from Equation 14 may be poor. Hence, it is suggested that Equation 14 be used with reliable tests and
large samples.
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