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Since it first appeared, there has been much research and critical discussion on the theory of opti-
mal data selection as an explanation of Wason’s (1966, 1968) selection task (Oaksford & Chater, 1994).
In this paper, this literature is reviewed, and the theory of optimal data selection is reevaluated in its
light. The information gain model is first located in the current theoretical debate in the psychology of
reasoning concerning dual processes in human reasoning. A model comparison exercise is then pre-
sented that compares arevised version of the model with its theoretical competitors. Tests of the novel
predictions of the model are then reviewed. This section also reviews experiments claimed not to be
consistent with optimal data selection. Finally, theoretical criticisms of optimal data selection are dis-
cussed. It is argued either that the revised model accounts for them or that they do not stand up under
analysis. It is concluded that some version of the optimal data selection model still provides the best
account of the selection task. Consequently, the conclusion of Oaksford and Chater’s (1994) original
rational analysis (Anderson, 1990), that people’s hypothesis-testing behavior on this task is rational

and well adapted to the environment, still stands.

Since its original appearance in 1994 (Oaksford &
Chater, 1994), there has been a great deal of debate and
further research on the theory of optimal data selection
as an explanation of the behavior observed on versions of
Wason’s (1966, 1968) selection task. From outside the
reasoning domain, the continued fascination with this
one task may seem perverse. However, its centrality to
the rationality debate—it is the most discussed task in
philosophical debates in this area (Cohen, 1981; Stein,
1996; Stich, 1985, 1990)—and the ability to use the par-
adigm to investigate many different forms of inference
(Fiddick, Cosmides, & Tooby, 2000) means that it is
likely to continue fascinating reasoning researchers for
some years to come. The optimal data selection, or in-
formation gain, model explains indicative and causal se-
lection tasks in which participants must select evidence
concerning the truth or falsity of a conditional, if . . .
then, that makes a factual claim about the state of the
world—for example, if you turn the key, the car starts.
Explaining people’s behavior here is of enduring interest
because of the generality of the problem: deciding which
is the best data to select in order to choose between com-
peting hypotheses. This problem is central to everyday
life and to scientific practice.
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In the indicative form of this task, participants are pre-
sented with four cards, each of which has a number on
one side and a letter on the other. They can see only one
side of each card, and the cards are arranged to reveal an
A, aK, a2, anda7. The participants are asked to indi-
cate which card or cards they want to turn over to deter-
mine whether a rule—for example, if there is an A on one
side then there is a 2 on the other side—is true or false.
According to the normative standard provided by logic,
the participants should select the cards that potentially
falsify the rule. The rule is false only if an instance can
be found that conforms to the antecedent of the rule (A)
but not to the consequent (2). By convention, the card
showing the true antecedent case (A) is labeled p, the
false antecedentcase (K) not-p, the true consequent case
(2) g, and the false consequent case (7) not-q. Thus, for
the example rule, a card with an A on one side but with-
out a 2 on the other side is a falsifying p, not-q instance.
Only the A (p) and 7 (not-q) cards are potentially of this
type, and consequently, these are the only cards that par-
ticipants should ask to be turned over. However, they typ-
ically select just the A card or the A and the 2 cards. That
is, as compared with the standard provided by formal
logic, participants’ behavior seems irrational.

The information gain model (Oaksford & Chater,
1994, 1998a) explains this behavior as rational by pro-
viding a different normative standard against which to
assess participants’ performance. This is the theory of
optimal data selection in Bayesian statistics (Fedorov,
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1972; Lindley, 1956). That such an alternative standard
was possible should perhaps have been clear from the on-
going debate in the philosophy of science between Bayes-
ians (Earman, 1992; Horwich, 1982; Howson & Urbach,
1989) and adherents of Popper’s (1959) falsificationist
methodology (e.g., Miller, 1994). We interpret partici-
pants’ failure to test hypotheses according to the logic of
attempted falsification as suggesting that people are not
reasoning logically but are using a Bayesian scheme for
hypothesistesting. As we will show in more detail below,
according to this Bayesian standard, the most frequent
card selections are rational.

As we indicated above, there has been much research
and critical discussion of the selection task since the op-
timal data selection model appeared. There are, moreover,
other well-specified models of selection task perfor-
mance (e.g., Johnson-Laird & Byrne, 1991; Rips, 1994).
However, there have been no attempts to directly assess
how well each model explains the results on the selec-
tion task. The main purpose of this paper is to present the
results of a model comparison exercise, where we fitted
the various models to the data.

Most of the criticism of the optimal data selection ap-
proach has focused on various theoretical arguments
(e.g., Evans, 1999; Evans & Over, 1996b; Green, 2000;
Laming, 1996; Oberauer, Wilhelm, & Rosas Diaz, 1999).
But some empirical results have also been reported that,
it is claimed, are inconsistent with the optimal data se-
lection model (e.g., Gebauer & Laming, 1997; Green,
2000; Hardman, 1998; Oberauer et al., 1999). Our second
purpose in this paper is to review this literature and to
reevaluate the theory of optimal data selection in its light.

Before doing this, however, we will locate the infor-
mation gain model in the current theoretical debate in
the psychology of reasoning—in particular, with respect
to the issue of dual processes in reasoning. We then will
present a revised model. The reason for doing this is to
demonstrate that many of the critical points raised can
be readily incorporated into the model and that, when
they are, more comprehensive explanations of the data
would appear to result.

DUAL PROCESSES IN HUMAN REASONING

Recent research in the psychology of reasoning has
converged on the view that there are two processing sys-
tems involvedin human reasoning. This is a familiar idea
(e.g., Evans, 1984), butit has been given new impetus by
the finding that some people do reason logically some of
the time (Braine & O’Brien, 1998; Stanovich & West,
2000) and that they tend to have higher IQs (Stanovich &
West, 2000). This observation has been interpreted as
supporting a dual-process view (Evans & Over, 1996a;
Stanovich & West, 2000). System 1 processes are auto-
matic, unconscious, and based on implicitly acquired
world knowledge. System 2 processes are controlled, an-
alytic, and based on explicitly acquired formal rules. The
information gain model is part of a larger program that

adopts a probabilistic approach to human reasoning
(Chater & Oaksford, 1999b, 2001; Oaksford & Chater,
1998a,2001). This approach was inspired by the inabil-
ity of logic-based approaches, both in artificial intelli-
gence and in psychology, to deal with knowledge-richin-
ferential processes (Chater & Oaksford, 1990; Oaksford
& Chater, 1991, 1993, 1995, 1998a). In the probabilistic
approach, models such as the information gain model
provide computational-level theories of System 1 pro-
cesses in which the probabilities involved are considered
as summary statistics computed over world knowledge
(Chater & Oaksford, 2001; Oaksford & Chater, 1998a,
2001). On this view, most reasoning involves only Sys-
tem 1 processes. However, people, especially the more
intelligent, may acquire explicit logical rules, either cul-
turally or by explicit tuition. This is consistent with the
probabilistic approach, where the possibility has already
been raised that some people might use System 2 pro-
cesses to test conclusions generated by System 1 (Chater
& Oaksford, 1999b).

The critical question is the balance of System 1 versus
System 2 processes in human reasoning. Most contem-
porary theorizing is about System 2 processes (e.g.,
Johnson-Laird & Byrne, 1991; Rips, 1994). However, re-
sults from the selection task (Stanovich & West, 1998)
suggest that, at most, 10% of university students are ca-
pable of engaging System 2 processes when reasoning.
If, as this result suggests, most reasoning invokes only
System 1 processes, surely this is where reasoning re-
searchers should be looking. A probabilistic approach to
these processes explains people’s performance in the
laboratory as a rational attempt to make sense of the
tasks they are set by applying strategies adapted for cop-
ing with the uncertainty of the everyday world.

A further goal of this paper, therefore, was to investi-
gate the balance of System 1 versus System 2 processes
in human reasoning on the selection task. We achieved
this in the model-fitting exercise by comparing System 2
type models, such as mental logics (e.g., Rips, 1994) and
mental models (Johnson-Laird & Byrne, 1991), with the
System 1 information gain model. We will argue that al-
though these System 2 theories would appear to need to
invoke some System 1 processing to explain the data, the
converse is not true. That is, the System 1 information
gain model can explain the data without needing to in-
voke System 2 processes. We now present the revised in-
formation gain model.

MODEL COMPARISON

In this section, we will compare a revised information
gain model with its main theoretical competition from
mental models (e.g., Johnson-Laird & Byrne, 1991) and
mental logic (e.g., Rips, 1994) theories. We will briefly
outline the information gain model, highlighting the re-
visions made since it first appeared in Oaksford and
Chater (1994). We then will outline the mental models
and mental logic theories and propose an implementa-



tion in a processing tree model (Batchelder & Riefer,
1999). We then will report the fits of these models to the
data on the standard selection task and the negations par-
adigm selection task (Evans & Lynch, 1973), in which
negations are systematically varied in the antecedents
and consequents of the task rule.

The Information Gain Model

Oaksford and Chater (1994) characterized a partici-
pant’s job in the selection task as selecting data to dis-
criminate between two hypotheses. In one of the hy-
potheses, there is a dependency between the antecedent
p and the consequent g of a conditional rule, if p then g.
For example, the rule might be, if you turn the key, the
car starts. This hypothesis, which we call the depen-
dence model (Mp,), is represented by the contingency
table in the upper half of Table 1. In this table, a is the
probability of the antecedent (e.g., the probability that
someone turns the key) and b is the probability of the
consequent(e.g., the probability that the car starts). This
model includes an exceptions parameter, €, which cor-
responds to the probability of finding not-g given p
[P(not-q | p)]—that is, the probability that the car does
not start even though the key has been turned. This
means that we allow for the possibility that the depen-
dency that participants are testing is not considered to be
perfect. This modification was first proposed by Oaks-
ford and Chater (1998b).

The precise form of the dependence model shown in
Table 1 was first used to explain biases in conditional in-
ference (Oaksford, Chater, & Larkin, 2000; Hattori,
2002, has also used this model in the selection task).
This model is a slight modification of that originally pre-
sented in Oaksford and Chater (1994), in that the mar-
ginal values remain the same for both hypotheses. In the
original model, P(q) varied between models. This mod-
ification was motivated by various criticisms made in the
literature (Evans & Over, 1996b; Green & Over, 1998)
that we will discuss later on.

The other hypothesis, against which My, is compared,
is called the independence model (M;) where p and g are
independent (see the bottom half of Table 1)—that is,

Table 1
Contingency Tables for the Dependence Model (M) for a
Conditional Rule, If p Then q, That May Admit Exceptions (€)
and for the Independence Model (M)

q not-q
Dependence Model
p a(l —¢) ag a
not-p b—a(l —g) (I —b)— ae 1—a
b 1-b
Independence Model
P ab a(l —b) a
not-p b(l — a) (I —=b)I —a) l—a
b 1-b

Note: a =P(p),b =P(q), and ¢ = P(not-q|p).

OPTIMAL DATA SELECTION 291

turning the key has no effect on the probability of the car’s
starting. This hypothesis is represented by a contingency
table similar to that for My, but in which the cell values
are simply the products of the corresponding marginal
probabilities.

What participants want to know is which hypothesis
truly describes the disposition of letters and numbers on
the cards, and their task is to select the data that will pro-
vide the most information about making this discrimi-
nation. The most informative data are those that produce
the greatest reduction in the uncertainty about which hy-
pothesis is true. This goal first requires calculating how
uncertain someone is about which hypothesisis true be-
fore he or she selects any data. Intuitively, to quantify un-
certainty, a measure is needed that is at a maximum when
someone does not know which hypothesis to believe—
that is, it is at a maximum when the subjective probabil-
ity of each hypothesis being true is .5. It should be 0
when he or she is certain that one hypothesis or the other
is true. Shannon—Wiener (Shannon & Weaver, 1949;
Wiener, 1948) information has exactly these properties,
which is why it was used in Oaksford and Chater’s
(1994) original model:

I(MD,MI):zP(M,.)logz(P(llvl_)j. (1

In Equation 1, P(M,) indicates the prior probability that
Mp, or M; truly describes the relationship between the
letters and numbers on the cards. Someone’s uncertainty
before selecting any data will be at a maximum of 1 bit
when the prior probabilities of the dependence and the
independencemodels are the same—thatis, when P(Mp) =
P(M;) = .5. Moreover, his or her uncertainty will be 0
when either it is known for certain that the dependence
model is true [P(M;) = 0] or it is known for certain that
the independence hypothesis is true [P(M;) = 1]. Thus,
Shannon—Wiener information captures our intuitions
about a measure of uncertainty.

To determine the amount of information someone
gains by turning over a card requires working out how
uncertain he or she is after selecting some data. The dif-
ference between this uncertainty and the prior uncer-
tainty, calculated in the last paragraph, indicates the gain
in information provided by a piece of data (i.e., what is
on the other side of a card). Calculating the new uncer-
tainty requires calculating the probability of each model,
given some data—that is, P(M; |D)—and these values
can be calculated using Bayes’ theorem:

P(D|M;)P(M;)
ZP(D|MJ)P(MJ-) '
J

P(M; |D)= 2)

To use Equation 2, the likelihoods of the data given each
hypothesis, P(D |M,), are needed [we already have P(Mp) =
P(M;) =.5], and these can all be calculated directly from
the contingency tables in Table 1. For example, take the
rule, if there is an A on one side then there is a 2 on the
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other side. Now suppose someone is contemplating turn-
ing the A card (p) because he or she thinks there may be
a2 (q) on the back. The probability of finding this piece
of data—that is, the 2 on the back of the A card—given
the dependence model, P(¢|p, Mp), is 1 — &. In the in-
dependence model, the probability P(q|p, M;) =
P(q|M;) = b. Putting these values into Bayes’ theorem
(Equation 2) means that the probability that the depen-
dence model is true, given that someone finds a 2 on the
back of the A card, PMp|q, p),is (1 — &)/(1 — &+ b).
And of course, P(M;|q, p) =1 — P(Mp]|q, p). To deter-
mine how uncertain someone is after finding a 2 on the
back of the A card requires using these posterior proba-
bilities in Equation 1. We can then calculate the infor-
mation gain (/,) associated with turning the A card to
finda 2 ( py):

ly(py)=1(Mp, M)~ I(Mp, M |p,) (3)

However, in the selection task, participants never ac-
tually get to turn over the cards to see what is on the other
side—that is, they never actually get to see the data. Con-
sequently, they must make their decision on whether to
turn a card on the information gain they might expect to
find by turning a card. This requires calculating the pos-
terior information for both possibilities. For example, for
the A card (p), the posterior information must be calcu-
lated not only for when a 2 (¢q) is found, but also for when
a 7 (not-q) is found. The latter is calculated in exactly
the same way as we have already outlined. To calculate
the gain in information we can expect from turning the
A (p) card means that these two posterior information
values must be weighted by the probability of finding ei-
ther a2 (gq) or a 7 (not-q). These probabilities are the ex-
pected values of either P(q|p) or P(not-q|p) calculated
over both models—for example,

P(q|p)=P(Mp)P(q|p,Mp)+P(M)P(q|p.M). (4)

The expected uncertainty associated with turning the p
card [EI( p)] is then

El(p):P(q|p)1g(pq)+P(_(’Z|p)1g(pm)t—q)v (5)

and the expected information gain associated with turn-
ing the p card is

El,(p)=1(Mp,My) =~ EI(p). (6)

Similar calculations can be performed for the other three
cards.

Card choice in the selection task is competitive. So the
information gains associated with each card were scaled
by the total information available—that is, the informa-
tion gain summed over the four cards (see Oaksford &
Chater, 1998b). So the scaled expected information gain
associated with card x is defined as

Elg(x)

SEI (x)= : (7)
g

zx,.e{p,nm-p,q,not-q] EIg ('xi )

Hattori (1999) derived a selection tendency function

(STF) that maps scaled expected information gain onto

the predicted probability that a card will be selected.

Such a function allows a better comparison of the mod-
el’s predictions with the actual data. The STF that Hat-
tori chose was a logistic that has also been used to map
the outputs of nodes in a neural network onto a proba-
bility of responding (e.g., Gluck & Bower, 1988). The
probability that any particular card x will be selected to
be turned over, P(T,), is
- 1

P(T) |4 o 237-906SEI () ‘ ®)
Hattori (1999) estimated the two parameters in the expo-
nent (2.37 and 9.06) directly from past data on the selec-
tion task.

To conclude, the differences between this revised in-
formation gain model and the version presented in Oaks-
ford and Chater (1994) are as follows. First, in the de-
pendence model, the probability of the consequentis now
the same as in the independence model, as in Oaksford
et al. (2000). Second, an exceptions parameter has been
introduced, as in Oaksford and Chater (1998b). Third, an
STF has been introduced, as in Hattori (1999, 2002).

We show the behavior of the revised model in Figure 1.
Each panel represents a card, using a density plot with the
probability of the antecedent [P(p)] on the x-axis and the
probability of the consequent [P(g)] on the y-axis. The
third dimension, shown by shading, corresponds to the
probability that the card should be selected, P(T,), accord-
ing to the information gain model. The lighter the shading,
the higher the probability that a card should be selected.
As in Oaksford and Chater’s (1994) original model, the
prior probabilities do not influence the order of the prob-
abilities that each card should be selected, so we set the
prior probabilities to be equal—that is, P(Mp) = P(My) =
.5. The exceptions parameter, €, was set to .1. Points in
the lower triangular region in black violate the assump-
tion of the dependence model that P(q) > P(p)(1 — &).

In modeling performance on the selection task, per-
haps the most important point to observe from these den-
sity plots is that when the probability of the antecedent,
P(p), and that of the consequent, P(g), are both small,
there is a region where the probability that the ¢ card
should be selected is greater than the probability that the
not-g card should be selected—thatis, P(T,) > P(T,,,.,).
In the selection task, the most frequent response is to se-
lect the p and the g cards only. This behavior is usually
regarded as irrational. However, according to the infor-
mation gain model, if people normally regard the prob-
abilities of the antecedent and the consequent as being
quite small, this selection of cards is the rational selec-
tion: These two cards are more informative about which
hypothesis is true, relative to the other cards.

In most tasks that use rules like if there is an A on one
side then there is a 2 on the other side, it seems clear that
the probability of the antecedent [P(p) = 1/26] and of the
consequent [P(g) = 1/10] are both small. However, in most
tasks it is never made explicit whether the domain is let-
ter types and single digits or letter tokens (all occurrences
of A, B, C, etc.) and all numbers (up to 10, 100?). Conse-
quently, it is rarely clear what these probabilities are.
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Figure 1. The probabilities with which a card should be selected, P(T, ), as a function of the
probabilities of the antecedent [P(p), x-axes] and the consequent [P(q), y-axes] according to
the revised information gain model. The lighter the region, the greater the probability that a
card should be selected. The prior probabilities [P(M;) and P(M;))] were set to .5, and the ex-
ceptions parameter (€) was set to .1. The parameters of the selection tendency function were
as set in Hattori (1999). Points in the lower triangularregion in black violate the assumptions
of the dependence model that P(q) > P(p)(1 — €).

Under these circumstances, we argue that people revert to
prior knowledge. The probabilities of the antecedent and
the consequent of a conditional are generally low because
the categories of natural language cut the world up quite
finely. So, for example, very few things are tables, cars, or
gorillas. This is because broad categories—such as, for
example, thing—that have a high probability of applying
to an object in the world are not very useful for telling us
what to expect this object to do or how to interact with it.
In contrast, knowing that an object is a chair tells us just
abouteverything we need to know. We call the assumption
that the categories that function in everyday hypotheses
about the world apply only to very small subsets of ob-
jects the rarity assumption. As we shall see, this assump-
tion seems to explain the experimental results very well.

Mental Logic and Mental Models

The principal theoretical competitors to the proba-
bilistic approach are mental logic (e.g., Rips, 1994) and
mental models (e.g., Johnson-Laird & Byrne, 1991) the-
ories. Rips (1994) argued that his PSYCOP model can
explain the selection task in the mental logic framework.
In PSYCOP, the pattern of logical “errors” is modeled
by limiting the number of logical rules and the way that
they can be applied. PSYCOP treats each card as an op-
portunity to use the task rule to draw a conditional in-
ference. There are two logically valid conditional infer-
ences. One is modus ponens: if p then q, p, therefore
q—for example, all ravens are black, Tweety is a raven,
therefore Tweety is black. The other is modus tollens: if
p then g, not-q, therefore not-p—for example, all ravens
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are black, Tweety is not black, therefore Tweety is not a
raven. So in the selection task, given the p card and the
rule if p then g, PSYCOP will infer by modus ponens that
there should be a g on the back of the card. In PSYCOP,
modus ponens is implemented by the Forward IF elimi-
nation rule. In the selection task, the lack of explicit con-
clusions (the other sides of the cards) means that PSYCOP
cannot apply backward rules that work from conclusion
to premises (as in a PROLOG interpreter; see Clocksin &
Mellish, 1984). These backward rules are required because
PSYCOP does not directly implement modus tollens.
Consequently, only the p card can be selected because
this card provides the only match to a rule. According to
Rips (1994), some participants also select the g card, be-
cause they interpret the rule as a biconditional. A bicon-
ditional entails its converse—that is, if p then q and if q
then p. For Rips (1994), succeeding on this problem re-
quires proposing assumptions about what is on the backs
of the cards, so that backward rules can also be applied.

Mental models theory (e.g., Johnson-Laird, 1983;
Johnson-Laird & Byrne, 1991) assumes that people rea-
son logically by manipulating arbitrary mental tokens
representing the meaning of the premises. This semantic
way of drawing inferences explains selection task be-
havior largely in terms of people’s preference to initially
represent only part of the meaning of if . . . then state-
ments. This leads people into error if they do not subse-
quently flesh out these representations to express the full
meaning of these sentences. So, for example, the rule if
p then g should be represented by all the instances that
make it true. However, people may represent only the
named cases—that is,

(pl ¢
)
where [ p] means that p is exhausted and, so, any other
instances must be associated with not-p and “. . .” is an

ellipsis indicating that other unrepresented models may
be relevant. Each line in this representation corresponds
to a line in the truth table representing the conditional.
Equation9 shows just the case in which the antecedent p
is true and ¢ is true. Because only the p has a value on
the other side bearing on the truth or falsity of the rule,
people turn this card but not the g card. However, if par-
ticipants believe the rule to be a biconditional, where
both if p then q and if g then p are true, represented as

[p] [4]
(10)

they will turn both cards. Moreover, if they flesh out
their model to include other cases that make the rule
true—that is,

[P] q
not-p q
not-p not-q 11)

—people will realize they must turn the not-g card as
well, for if the rule is true this card must have a not-p on
the other side.

Both theories allow only four possible response pat-
terns: If 1 is used to indicate furn and O to indicate do not
turn, then in the card order p, not-p, q, not-q, these are
1000, 1001, 1010, and 1111. If participants adopt a con-
ditional interpretation, modus ponens or the mental
model in Equation 9 licenses turning just the p card—
that is, 1000. However, if they consider what is on the
other side or flesh out, as in Equation 11, they should
turn both the p card and the not-q card—that is, 1001. If
they adopt a biconditional interpretation, modus ponens,
or the mental model in Equation 10 indicates that they
should turn the p card and the ¢ card—that is, 1010.
However, if they consider what is on the other side or
flesh out, they should turn all four cards—that is, 1111.
Thus, both theories make identical predictions. They
simply disagree on the precise processes by which peo-
ple arrive at these different interpretations. However,
they both involve two choice points in processing this in-
formation. The first is whether a conditional or a bicon-
ditional interpretation is adopted; the second is whether
the representation is fleshed out (mental models) or par-
ticipants consider what is on the other side of a card
(mental logic). Consequently, we can capture both ac-
counts in a simple processing tree model, shown in Fig-
ure 2 (Batchelder & Riefer, 1999).

This model parameterizes these accounts in terms of
two probabilities: the probability that people adopt a
conditional interpretation (P.) and the probability that
people flesh out their initial representation or consider
the other sides of the cards (F). In such a model, P and
Pg are assumed to be independent. This is certainly the
simplest instantiation of the model. Moreover, no one, to
our knowledge, has ever proposed that these are not in-
dependent, although investigating models where the in-
dependence assumption is not made might be of interest.

The probability that people adopt the biconditional in-
terpretationis, then, 1 — P, and the probability that they
do not flesh out or consider the other sides of the cards
is 1 — Pg. Expressions can then be easily derived for the
probability that a particular card will be chosen. First,
the p card will be chosen regardless of interpretation or
whether people flesh out their initial representation or
consider the other sides of the cards. So the probability
of selecting the p card, P( p-card), is

P(p-card) = 1. (12)

Although the mental models theory predicts that the p
card should always be chosen, we allow for the possibil-
ity of error in fitting the model to the data (see below).
Second, the not-p card will be chosen only if people
adopt the biconditional interpretation and flesh out their
initial representation or consider the other sides of the
cards. So the probability of selecting the not-p card,
P(not-p-card), is

P(not-p-card) = Pg(1 — Fy). (13)
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Figure 2. Processing tree model for the mental logic/models theory of the se-
lection task. Cond, conditional; Bicond, biconditional.

Third, the g card will be chosen when people adopt the
biconditional interpretation, regardless of whether they
flesh out their initial representation or consider the other
sides of the cards. So the probability of selecting the g
card, P(g-card), is

P(g-card)=1 — P.. (14)

Finally, the not-q card will be chosen when people flesh
out theirinitial representation or consider the other sides
of the cards, regardless of which interpretation they ini-
tially adopt. So the probability of selecting the not-g
card, P(not-g-card), is

P(not-g-card) = Fz. (15)

This model assumes that the probability of fleshing
out a conditional is the same as the probability of flesh-
ing out a biconditional. This is an assumption that could
be relaxed, but only at the expense of introducing a fur-
ther free parameter. In fitting the information gain model
to the data, only P(p) and P(q) were free to vary. In
model fitting, the greater the number of free parameters,
the greater the likelihood of obtaining a good fit. Con-
sequently, to keep the model comparison exercise fair
and to avoid making corrections for one model’s having
more free parameters than another (see, e.g., Sakamoto
& Aikake, 1978), it was decided to use model versions
that allowed the same number of free parameters.

Model Fitting I: The Standard Abstract Results

In this section, we will report the results of comparing
the performance of the revised information gain model
with that of the mental models and mental logic theories.

We first compared the fit of these models to the data that
were used in Oaksford and Chater’s (1994) meta-analysis
of the abstract data. This meta-analysis (Wolf, 1986) in-
cluded 13 studies reporting 34 standard abstract selec-
tion tasks, involving 845 participants. This model-fitting
exercise also addresses the objection that optimal data
selection accounts have provided only ordinal fits to the
data (Laming, 1996). Hattori (2002) has provided simi-
lar fits for a subset of these results. However, the main
purpose of this section is to compare the information
gain model with alternative theories of the selection task.

In fitting these models to the data, we looked for the
values of P(p) and P(g) or F. or P that maximized the
log of the likelihood (L) of the data, given either model.
Hattori (1999, 2002) adopted the same approach. Be-
cause the data will have a joint binomial distribution, L is

J(F.
L= ]‘[[ !

=i\
where J is the number of cards (i.e., 4), ]3 is the frequency
of card selections, F} is the total number of responses (i.e.,
N), and p; is the probability of selecting a card according
to the models we are comparing. To estimate best-fitting
parameter values, we maximized the log of Equation 16,
using a steepest descent search implemented in Mathe-
matica 4.0 (Wolfram, 1999). This was combined with a
grid search procedure to ensure a global maximum
(Loehle, 2000). The log-likelihood ratio test statistic G2,
which is asymptotically distributed as 2, was used to as-
sess the goodness of fit (Read & Cressie, 1988). This
statistic evaluates the model fit by comparing the pre-
dicted values with a saturated model in which all the val-

]p-}"" a-ppt 7, (16)
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ues of p; are set to the empirically observed proportions
of cards selected. As within each experiment, there are
four data points, but only two parameters were estimated
from the data; G2 was assessed against two degrees of
freedom. For model comparisons, the conventional 5%
level of significance is regarded as unreasonably large
(Read & Cressie, 1988). The level of significance for re-
jection was therefore set at the 1% level.

Before discussing the model fits, there are three points
we need to make. First, in fitting these models, if one or
more of the best-fitting parameter values is less than 0 or
greater than 1, we may also reject the model for these
data, since this makes no psychological sense. To avoid
this happening, the models were always fitted to the data
with the constraint that the parameter values must fall in
the 0—1 probability interval. Second, we are fitting these
models to pooled data, which might be misleading. How-
ever, given the nature of the data, there was little choice
in this. Third, even though both models have the same
number of free parameters, one could be more flexible
than the other (Myung & Pitt, 1997)—that is, it can fit
almost any data of this type. Since we are proposing that
the information gain model is to be preferred, the onus
is on us to show that the information gain model does not
win just by being more flexible. As an illustration, we
looked at the situation in which all cards are selected.
This situation is trivial for the mental models theory to
model: A perfect fit is obtained when P =0 and Py = 1.
However, the best fit that the information gain model can
achieveis when P(p)=P(q)=.5(Mp=.5ande=.1, as
in all the model fits below). When this is the case,
G2(2) =135.65,p <.0001. That is, the model can be un-
equivocally rejected. So there are possible results that,
although consistent with the mental models theory, can-
not be modeled by the information gain theory. Conse-
quently, should the information gain theory provide bet-
ter fits, this is not simply because it is more flexible, but
because people do not tend to behave in ways that are in-
consistent with it.

Information gain. In fitting the revised model to
these data, we always kept prior probabilities the same at
.S5—thatis, P(Mp) = P(M;) =.5 and & = .1. Similarly, the
parameters of the selection tendency function were kept
at the values estimated by Hattori (1999). Indeed, these
values were kept fixed in modeling all the results we re-
port in this paper. The results are shown in Table Al in
the Appendix. For 33 out of the 34 experiments reported
by Oaksford and Chater (1994), the model could not be
rejected—that is, the saturated model did not provide a
significantly better fit. For these 34 studies, the average
G2(2) =2.60 (SD = 2.55), p > .20. Moreover, overall—
that is, across all 34 experiments—the model could not
be rejected even if the conventional, but unreasonably
large (Read & Cressie, 1988), 5% level of significance
is adhered to for the goodness-of-fit test [G2(68) =
88.37].

Across all 34 studies, the mean value of the probabil-
ity of the p card, P(p), was .22 (SE=.019), and the mean
value of the probability of the g card, P(g), was .27 (SE =

.022). P(p) was significantly lower than P(q) [t(32) =
6.61, p < .0001]. It is worth noting that these values are
very close to the expected prior probability of a cause
(.25) and of an effect (.27) found by Anderson (1990)
when modeling causal estimation tasks (Schustack &
Sternberg, 1981). It would seem that participants bring
very similar prior expectationsto bear in both tasks. This
suggests that in the selection task, people by default
adopt values for the probability of the antecedent and
consequent that are analogous to their knowledge of
causes and effects. This is unsurprising when it is con-
sidered that, in linguistics, the conditional construction
is often assumed to have been introduced into human
languages to describe causal structure (Comrie, 1986).
In sum, the model can provide quite accurate fits to the
data.

Mental logic and mental models. We first note that
on any interpretation, the p card should be chosen. There-
fore, the probability of selecting this card should be 1.
We assessed whether this was the case in the data re-
ported in Oaksford and Chater’s (1994) meta-analysis.
For each study, we performed a binomial test with p; set
to .99, which provided the probability of the data, as-
suming that the probability of selecting this card was
closeto 1 (Siegel & Castellan, 1988). We then combined
these probabilities across studies using Fisher’s com-
bined test (Wolf, 1986), which yields a y?2 statistic with
2N degrees of freedom, where N = the number of stud-
ies. Across the 34 studies, the data differed significantly
from what would be expected assuming that the proba-
bility of selecting the p card is close to 1 [x2(68) =422.52,
p <.0001]. Therefore, this prediction of the mental logic
and mental models theories fails.

We then fitted the model to the data. One might argue
that the proportion of participants adopting each inter-
pretation is available in the data we are modeling. Con-
sequently, there is no need to estimate these proportions
from the card selection frequencies. However, the analy-
sis for the p card that we just reported indicates that peo-
ple adopt more than the four interpretations counte-
nanced by the mental logic and mental models theories.
These theories must regard these interpretations as er-
rors. By fitting the model to the data, we obtain an index
of how important these errors are. If good fits can be ob-
tained while maintaining just these four interpretations,
the errors are not significant.

However, given the fact that the p card is less than uni-
versally accepted, contrary to the prediction of the men-
tal models and mental logic theories, good fits to the data
seem unlikely. Indeed, if these theories are fitted to the
data with P(p-card) = .99, they can be rejected for 33 of
the 34 studies in Oaksford and Chater’s (1994) meta-
analysis. We therefore sought a fairer comparison. One
possibility was to allow the probability of the p card to
vary. However, varying the probability of the p card
would involve introducing another free parameter, which
would violate the constraint that both models should
have the same number of free parameters. Another pos-
sibility was to allow P(p-card) to be semi-free—that is,



it could be fixed for all 34 data sets at the value that pro-
vides the optimal fit. There are two justifications for
doing this. First, the information gain model has param-
eters that have been set globally, although P(Mp) and ¢
were not optimized in any way. Second, it may be unrea-
sonable to expect people to display so little error (1% in
the above analysis) in their selections of the p card. Be-
cause this parameter applies only to p card selections, the
maximum likelihood estimate is given by the mean value
of the proportion of these cards selected over the 34 stud-
ies in the meta-analysis. We therefore computed the fits
with the probability of the p card, P(p-card), set to this
value—thatis, .8884. It is these fits that are shown in the
Appendix, Table Al. As for the information gain model,
G2 was evaluated against two degrees of freedom.

As for the information gain model, across all 34 stud-
ies, the mental models and mental logic theories could be
rejected for only one experiment. The average G2(2)
across all studies was 3.26 (SD = 2.79), p > .01. How-
ever, across all 34 experiments, the mental model and
mental logic theories could be rejected [G2(68) = 110.99,
p < .001]—that is, overall, the saturated model still pro-
vided a significantly better fit. In sum, it would appear
that, even after relaxing some strong assumptions, the
mental models and mental logic theories cannot provide
as good fits to the data as the information gain theory.

Discussion. This attempt to fit the mental logic and
mental models theories to the selection task data also
raises some important theoretical issues. There is no the-
oretical justification within either mental models theory
or mental logic theory for allowing the level of error that
we have had to introduce to account for the less than uni-
versal selection of the p card. According to both theo-
ries, the p card should always be selected. There are three
possible explanations for this level of error. First, the
error arises because of response biases: Some partici-
pants, some of the time, do not attend to the task de-
mands. Consequently, these participants may simply
guess (see Rips, 1994, for a similar explanationof errors
in syllogisticreasoning). Second, mental models or men-
tal logic representations must be implemented in neu-
rones that are inherently noisy, and this may lead all par-
ticipants to make some errors some of the time. Third, a
perhaps more theoretically motivated explanationis that
the mental representations underlying deductive infer-
ence in both mental logic and mental models depend on
prior knowledge (Oaksford, 1989; Oaksford & Chater,
1991, 1993, 1995; Schroyens, Schaeken, Fias, & d’ Yde-
walle, 2000). That is, they rely on System 1 processes.
This seems more consistent with the fact that the effects
for the p card were systematic—that is, selections were
significantly less than 100%, rather than random. We
concentrate on recent proposals within the mental mod-
els framework to illustrate this possibility, but similar
considerations may apply to mental logic.

One reason why the p card may not be universally se-
lected is that everyday conditionals are affected by prior
knowledge. For example, take the rule if I turn the key,
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the car starts. Someone is less likely to infer that the car
starts, knowing that the key has been turned, if they also
suspect that there is no fuel in the tank. Such knowledge
is known to reduce inferences by modus ponens and by
modus tollens (e.g., Byrne, 1989; Cummins, Lubart, Alk-
snis, & Rist, 1991). Moreover, Schroyens et al. (2000)
have recently argued that even abstract materials seem
prone to these effects. And Feeney and Handley (2000)
have introduced similar manipulations into the selection
task and have shown marked effects on card selection. In
mental models theory, this additional information is rep-
resented by a conjunctive antecedent—that is, the further
condition that the fuel tank must not be empty is also
represented in the mental model. If we assume that even
abstract materials must allow such exceptions to a rule,
this may explain the nonuniversal acceptance of the
p card.

However, there is a problem. According to this ac-
count there should be similar changes in not-g card se-
lections. But there is no correlation in the 34 studies an-
alyzed above between p card and not-g card selections
[r(32)=.16, p = .38]. Moreover, this fact points to a the-
oretical problem that also applies to the first two ac-
counts of why the p card is not universally selected: ran-
dom error and noisy neural representations. All these
accounts must predict similar effects on the other three
cards. However, at the moment, the best fit we can obtain
is one in which the frequencies of not-p, g, and not-q
card selections are almost perfectly explained by differ-
ent proportions of participants’ adopting the four inter-
pretations allowed by the mental logic and mental models
theories. Only the p card is affected by these other fac-
tors. This is theoretically incoherent. At least prima
facie, it seems that the factors we have discussed must
influence all card selections, not just the p card. More-
over, the work of Schroyens et al. (2000) and Feeney and
Handley (2000) seem to indicate that these factors are
systematic and nonrandom and can be brought under ex-
perimental control. Consequently, the first two options
can be discounted: The effects for the p card are best re-
garded as revealing the systematic effects of prior world
knowledge—that s, of System 1 processes—on people’s
data selection behavior.

A question that naturally arises is, does such an ac-
count need to be mediated by System 2—that is, analytic
or rule-governed—processes of the type suggested by
mental models and mental logic theories? We have con-
sistently argued that the probabilities in our probabilis-
tic approach are derived from prior world knowledge,
perhaps implemented as activation levels in a neural net-
work (Chater & Oaksford, 2001; Oaksford & Chater,
1993, 1995, 1998a, 2001). Probabilistic accounts of the
conditional (Adams, 1966, 1975; Pearl, 1988, 2000) avoid
many of the problems of accounting for world knowl-
edge effects that confront extensions of standard logic
(see Chater & Oaksford, 2001; Oaksford & Chater,
1998a,2001). Consequently, our probabilistic approach
in the information gain model can be seen as an attempt
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to explain selection task performance by using only the
effects of prior knowledge unmediated by logical or
logic-like representations of the type postulated by men-
tal logic and mental models theories. Or in other words,
the information gain theory is a System 1 theory that
suggests that little or no System 2 processes are required
to explain the data. The model-fitting exercise reported
here seems to show that such an account can explain the
data better than the latter approaches. If mental logic and
mental models theories were supplemented with mecha-
nisms for explaining how all card selections are affected
by probabilistic world knowledge, the number of param-
eters involved can only increase. This would improve the
fit, but only at the cost of proposing a theory that is more
complicated than the data it is trying to explain. Theo-
retical parsimony argues against going down this route.

Summary. In sum, the revised information gain model
provides very good fits to the data included in Oaksford
and Chater’s (1994) meta-analysis. This theory also
compares favorably with the mental logic and mental
models theories. These approaches could not provide as
good afit as the information gain model until we allowed
the probability that the p card is selected to take on its op-
timal value. Even then, overall, the mental logic and men-
tal models approaches could be rejected. Finding a prin-
cipled reason for the nonuniversal selection of the p card
led us to consider the effects of prior knowledge. It was
clear that such effects should occur for all cards. If this
is allowed, the question arises as to whether mental logic
or mental models representations are really required to
explain these data. The good fits for the information gain
model, where it is assumed that the relevant probabilities
are derived directly from prior world knowledge, seems
to suggest that this level of mental representation is not
required to explain the selection task.

It could be argued that the information gain theory
does better than mental logic or mental models because
we are fitting the model to aggregate data. Given the cat-
egorical nature of the data, there is little choice about
this. However, it could be argued that the mental models
and mental logic accounts at least give an idea of what
processes are going on in the minds of each individual
whose data makes up the aggregate in a way that the in-
formation gain account does not. That is, participants
adopt different interpretations that are consistent with
different response patterns.

This point goes to the heart of the frequently repeated
criticism of optimal data selection models, that they do
not provide a truly psychological account of the selec-
tion task (e.g., Evans & Over, 1996a). That is, they do
not provide an account of the mental processes underly-
ing people’s performance. However, they do provide an
account of what those processes must compute. And as
we have argued (see also Anderson, 1990; Marr, 1982),
this is a crucial first step in specifying the algorithms
that implement human reasoning in the mind. We have
also argued that the information gain theory could be im-
plemented in essentially stochastic algorithms such as

neural networks (Chater, 1995; McClelland, 1998) or
Bayesian networks (Pearl, 1988, 2000). According to
such an account, probabilities of responding are related
to the activation levels of nodes representing informa-
tionrelevantto card selection. Whether a card is selected
requires a statistical decision with inherently noisy neural
representations. This account makes a rather direct pre-
diction that contrasts with mental logic and mental mod-
els theories. If participants were given many data points
to assess, we would expect results within individuals
similar to those we see in the aggregate data when par-
ticipants see only one of each type of data. That is, for a
givenrule, we would expect individual participants to se-
lect a card on some trials, but not on others. The only
way the mental logic or mental models theories can make
this predictionis if they assume that people change their
interpretation of the task rule from trial to trial. This
seems rather unlikely. Later on, we will consider some
data (Green & Over, 1997; Oaksford & Wakefield, 2003)
with which this hypothesis can be tested.

Model Fitting II: The Negations Paradigm

We now turn to fitting these models to Evans’s nega-
tions paradigm in the selection task (Evans & Lynch,
1973), where negations (not) are systematically varied in
the antecedentand consequent of a conditionalrule. This
creates four further rules—if p then q, if p then not-q, if
not-p then q, and if not-p then not-g—that produce
changes in card selections more consistent with falsifi-
cation (Evans, 1983, 1984, 1989; Evans & Lynch, 1973).
This happens for rules with a negated consequent: if p
then not-q, and if not-p then not-q. For these rules, par-
ticipants select more consequent cards that can make the
rule false (i.e., false consequent, or FC, cards) than con-
sequent cards that can make it true (i.e., true consequent,
or TC, cards). For example, for the if p then not-q rule,
participants select the g card (FC). Evans (e.g., 1989) ex-
plains this finding by people matching. That is, partici-
pants ignore the negations and match the items named in
the rule to the corresponding cards. Thus, it requires no
sudden insight into logic to explain why, for example,
people select the g card for the if p then not-g rule. Be-
cause the cards that falsify or confirm vary between
rules, the conventionhas been adopted of referring to the
cards in the negations paradigm by using the labels true
antecedent (TA), false antecedent (FA), TC, and FC. For
example, for the if not-p then not-q rule, TA is the not-p
card, FA is the p card, TC is the not-q card, and FC is the
q card.

According to Oaksford and Chater (1994), the effects
in the negations paradigm can be rationally explained on
the assumption that negations define higher probability
contrast sets (Oaksford & Stenning, 1992). So for exam-
ple, the probability that you are not drinking a glass of
whiskey is far higher than the probability that you are.
This leads to the prediction that if the information gain
model is fitted to each condition in the negations para-
digm, the values of P(TA) and P(TC) should be higher



when they correspond to negated categories. Before
comparing models, we assessed this prediction by fitting
the model for each rule individually.

Information gain: Individual rule fits. We fitted the
model to the six negations paradigm experiments ana-
lyzed in Oaksford and Chater (1994). There were 4 rule
conditions in each experiment, making 24 conditions
modeled overall. We fitted the model to the data in ex-
actly the same way as for the standard abstractresults. The
results of the model-fitting exercise are shown in Table
A2 in the Appendix. The model could not be rejected for
any of the 24 conditions [mean G2(2) = 2.61, SD = 2.06,
p > .20]. Moreover, across all conditions, the model
could not be rejected [G2(48) = 62.69, p > .05]. We also
looked at the fit by rule type. The model could not be re-
jected for any rule type at the .01 level: For the if p then
grule, G2(12) =9.75, p > .20; for the if p then not-q rule,
G2%(12) = 23.16, p > .01; for the if not-p then q rule,
G2%(12) = 16.07, p > .10; and for the if not-p then not-q
rule, G2(12) = 13.68, p > .20. In sum, as for the standard
data, the model provided good fits to the negations par-
adigm data.

We also checked whether the best-fitting parameter
values behaved as predicted by the contrast set account
of negation. The means of the best-fitting values for the
probability of the antecedent, P(TA), and the probability
of the consequent, P(TC), for each rule type were the fol-
lowing: for the if p then q rule, P(TA) = .30 (SD = .04)
and P(TC) = .34 (SD = .03); for the if p then not-q rule,
P(TA) = .28 (SD = .08) and P(TC) = .60 (SD = .08); for
the if not-p then g rule, P(TA) = .37 (SD = .05) and
P(TC) = .38 (§D = .07); and for the if not-p then not-q
rule, P(TA) =.38 (SD =.09) and P(TC) = .46 (SD = .09).
When the antecedent was negative, P(TA) was signifi-
cantly higher than when it was affirmative [#(22) = 3.29,
p < .005; negative, mean P(TA) = .38, SD = .07; affir-
mative, mean P(TA) = .29, SD = .06]. When the conse-
quent was negative, P(TC) was significantly higher than
when it was affirmative [#(22) = 4.81, p < .0001; nega-
tive, mean P(TC) = .53, SD = .11; affirmative, mean
P(TC) = .36, SD = .05]. That is, consistent with the con-
trast set account of negation (Oaksford & Chater, 1994;
Oaksford & Stenning, 1992), negated constituents cor-
responded to higher probability categories.

The if not-p then g rule is anomalous. The reason is
that, if the contrast set account of negation is correct, the
set of things that are not-p (e.g., nonwhite cars) is far
larger than the set of things that are g (e.g., Fords). Con-
sequently, a hypothesis like all nonwhite cars are Fords
is known at the outset to be false, because of people’s ex-
perience of nonwhite Nissans, BMWs, Peugeots, and so
on (Oaksford, 1998; Oaksford & Chater, 1994). In the
model fits, the best-fitting parameter values for this rule
were similar to the if p then g rule. We adopt the con-
vention that rules are described using ordered pairs
<P(p), P(q)> so that, for example, LH means a low-
probability antecedent and a high-probability conse-
quentrule. So, in the selection task, the HL rule appears
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to be treated like an LL rule. We have argued that people
tend to revise the probability of the antecedent, P(p),
down for the HL rule (Oaksford & Chater, 1994, 1998b).
Later on, we will discuss some empirical evidence (Oaks-
ford & Wakefield, 2003) that suggests that we were mis-
taken and that people seem to compensate for this rule by
revising up the exceptions parameter €. However, for the
purpose of fitting the model to the data, we kept € fixed
at .1, as for the other rules, because not doing so would
amount to introducing a further free parameter.

Fitting the model to each negations paradigm experi-
ment on an individual rule basis is the same as using eight
parameters to model 16 data points—that is, a P(TA) and
P(TC) parameter for each of the four rule types in the
negations paradigm. Consequently, we will now report
model fits for which we fitted the models to all 16 data
points in each experiment by adding only a single fur-
ther parameter.

Information gain: Overall fits. Modifying the infor-
mation gain model was straightforward. We simply as-
sumed that when the antecedent or the consequent of a
conditional is negated—that is, in the if not-p then q, if p
then not-q, and if not-p then not-q rules—P(p), P(g), or
both are raised by some fixed probability, P(n). So when
negated, P(TA) = P(p) + P(n) and P(TC) = P(q) + P(n).
As for the standard abstract data, we set the prior proba-
bility that the independence model is true [P(My)] to .5
and the exceptions parameter, €, to .1. Because there
were 16 data points and only three free parameters in
each model, G2 was assessed against 13 degrees of free-
dom. The results of the model fits are shown in Table A3
in the Appendix. The model could be rejected only for
one of the six studies: Manktelow and Evans (1979, Ex-
periment 2). The average G2(13) =22.67,p > .02. How-
ever, overall the model could be rejected [G2(78) =
136.04,p < .01].

Mental logic and mental models. The mental logic
approach has not addressed results from the negations
paradigm, so in assessing the fit of these approaches we
will concentrate on proposals from mental models the-
ory only. However, as Evans and Handley (1999) have
argued, it would seem that similar proposals could be im-
plemented in a mental logic approach.

There have been a variety of proposals to account for
the effects of negation on the selection task. First, Evans
and Lynch (1973) proposed that people simply match the
items named in the rules, rather than doing any reason-
ing atall. So given a rule if A then not 2, participants still
select the A and the 2 cards. This was justified from
pragmatic considerations concerning the topic of a
negated sentence—for example, the topic of the train
was not late is still the lateness of trains. Note that ac-
cording to such an account, there is a processing benefit
for cards that match items mentioned in the rule. Such an
account could not explain all the variation in perfor-
mance, however, because p card selections still dominate
and people do select cards other than those that match.!
Evans (1983, 1984) therefore proposed that pragmatic
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heuristics supplement an analytic reasoning component,
perhaps provided by mental models. Moreover, Johnson-
Laird and Byrne (1991) suggested that this heuristic may
be implemented in mental models. When representing a
rule such as if A then not 2, they suggested that people
supplementit with a representation of the matching case:

[A] not-2 17)

2

Again, this means that there is a processing benefit for
cards that match named items.

As we have discussed above, Oaksford and Stenning
(1992) argued that the difficulty lies with constructing
contrast classes for the negated constituents in the task
rule. So there is a processing cost for recognizing that
nonmatching cards need to be selected. More recently,
Evans, Clibbens, and Rood (1996) proposed that the
problem relates to the use of implicit negations on the
cards—for example, “7” is used to indicate a card that is
“not-2.” Again, this suggests that there is a processing
cost for recognizing that nonmatching cards need to be
selected. The latter approaches are difficult to distin-
guish. Experimentally, Evans et al. (1996) have shown
that using explicit negations on the cards (i.e., “not-2”
rather than “7”’) removes matching. Moreover, Oaksford
and Stenning have shown that making contrast class con-
struction easier also removes matching. Evans prefers to
see his implicit negations account as supplementing
mental models, whereas Oaksford and Chater (1994)
used the contrast class approach to supplement their
probabilistic theory. However, either approach could
have been used to supplement mental models (see, e.g.,
Schroyens et al., 2000), and both suggest that there is a
processing cost for recognizing that nonmatching cards
need to be selected.

In sum, whichever approach is taken, there is either a
processing benefit for matching cards or a processing
cost for nonmatching cards. Of course, in terms of para-
meterization, these amount to the same thing. So we
could parameterize the introduction of negations as ei-
ther a small cost for nonmatching cards or a small bene-
fit for matching cards. We opted for the former ap-
proach, simply because it is the one we favor, butit does
not make any difference to the model-fitting exercise.
Although this cost is presumed to arise as the result of
cognitive processing, we can quantify its effects simply
as a small reductionin the probability of selecting a non-
matching card, Py. So, for example, the probability that
each card should be chosen for the if A then 2 rule can
then be calculated as follows:

P(TA-card) = 1
P(FA-card) = Pe(1 — Po) — Py
P(TC-card) = 1 — P,

P(FC-card) = Pz — Py. (18)

And for the if not-A then not-2 rule, these probabilities
can be calculated as follows:

P(TA-card) = 1 — Py

P(FA-card) = Py(1 — F)

P(TC-card) = 1 — Po — Py

P(FC-card) = P, (19)

and similarly for the other two rules. As for the infor-
mation gain model, this means that parameterizing the
mental models approach for the negations paradigm in-
volves adding only one further parameter. To solve the
problem created by the nonuniversal acceptance of the
TA card (even when it matches), rather than 1, this value
was set globally to .858, since this was the value that pro-
vided the best overall fit across all six experiments. Con-
sequently, there were three free parameters in this model.

The results of the model fits are shown in Table A3 in
the Appendix. The model could be rejected for only one
of the six studies: Evans and Lynch (1973). The average
G%(13)=22.99, p > .02. However, as for the information
gain model, overall the model could be rejected [G%(78) =
137.94,p < .01].

Discussion. Neither model avoided rejection overall.
However, there are some points that suggest that the in-
formation gain model may be in better shape. First, to
keep the playing field level, we have not attempted to
compensate for the anomalous HL rule. If the exceptions
parameter, €, were high for this rule, this could allow for
better fits. Indeed, an HL rule can make sense only if
there are many exceptions (see Chater & Oaksford,
1999a). Of course, this would involve introducing more
free parameters into the information gain model. How-
ever, at least there is an obvious and theoretically moti-
vated way to proceed to improve the fit. Other than al-
lowing the probability of selecting the TA card to vary,
which has no theoretical motivation, there seems to be no
obvious way in which to improve the fit of the mental
models approach.

Second, even without adding further free parameters,
there is a feature of these model fits that suggests that the
information gain model might be doing a better job. It
would appear that the parameters of the information gain
model are much more stable across studies. That is, to
capture the data as well as mental models, the parameters
of the information gain model show much less between-
study variation. To demonstrate this, we conducted
F ratio tests of the homogeneity of variance (F ratio = 1)
for all possible pairwise comparisons (3 X 3 =9) be-
tween the parameter values, with study as the unit of analy-
sis. The ratio was computed with the variance for the
mental models’ parameters as the denominator The mean
F ratio across the nine comparisons was F(5,5) = 0.27
(SD =0.18). That s, on average, the variance in the men-
tal models’ parameters was almost four times higher
than the variance in the information gain model’s pa-
rameters. Treating each comparison as an independent
test of homogeneity of variance and combining the prob-



abilities, using Fisher’s combined test (see above), this
difference was highly significant [¥2(18) = 39.67, p <
.005]. Thus, to explain the data in the mental models the-
ory, it must be assumed that the probabilities that a con-
ditional or a biconditional interpretation will be adopted
or that a mental model will be fleshed out vary consid-
erably between studies—certainly, much more so than
the probabilities of the antecedent and the consequentin
the information gain model. This large variation between
studies seems hard to justify theoretically within the
mental models or mental logic frameworks.

Summary. In this section, we first fitted the informa-
tion gain model to each rule in the negations paradigm
selection tasks analyzed by Oaksford and Chater (1994).
The fits were very good. However, to compare the infor-
mation gain model with the mental models theory required
fitting these models to all 16 data points in a negations
paradigm experiment. When this was done, these mod-
els appeared to provide comparable fits. However, al-
thoughit was clear what direction to go in to improve the
fit for the information gain model, it was not clear how
to achieve the same goal for the mental models theory.
Moreover, there was significantly more between-study
variation in the mental models’ parameters than in the
information gain theory’s parameters, variation that
seems hard to justify theoretically.

TESTING THE NOVEL PREDICTIONS OF
OPTIMAL DATA SELECTION

In the previous section, we concentrated on the data
for which mental models/mental logic theories and the
information gain theory all offer explanations. Our pur-
pose was to show that the information gain model pro-
vides a better explanation of these data than do these
other theories. Although explaining existing data better
than other theories is desirable in a new theory, making
novel confirmed predictions is also a desirable property.
In this respect, the main novel prediction of the infor-
mation gain model is that probability manipulations
should affect selection task performance. Indeed, ac-
cording to the contrast class account (Oaksford & Sten-
ning, 1992), using high-probability categories in the
antecedent and the consequent should produce effects
similar to the varying of negations. Neither mental mod-
els nor mental logic theories make this prediction. Con-
sequently, it makes no sense to provide detailed model
comparisons. So, although we report the results of fit-
ting the model to the data, we do not report the detailed
fits in the Appendix. In this section, we will also briefly
review work on the selection task that, although not di-
rectly testing the predictions of the information gain
model, have produced results that are claimed not to be
consistent with it.

Probabilities of Fictional Outcomes

Kirby (1994) developed a signal detection model of the
selection task that predicted that as the probability of the
antecedent, P(p), increased, so the likelihood that par-
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ticipants would select the not-g card would increase. His
model, however, failed to predict the systematic changes
in selections of the other cards that occurred in his data.
As P(p) was increased, not-p card selections increased,
and p card selections decreased (in Experiment 1, there
was some evidence that g card selections also decreased,
but this was not replicated in Experiments 2 and 3). The
revised information gain model can account for these re-
sults. In these experiments, only P(p) was manipulated.
However, it is a constraint on the information gain model
that the probability of the consequent must be greater
than the probability of the antecedent weighted by 1
minus the probability of exceptions—that is, P(g) >
P(p)(1 — €). When ¢ is low, as in these experiments, in
which participants were told that € is low (.01 or .1), this
means that P(q) = P(p). Figure 1 shows that respecting
this constraint means that increasing P(p) will increase
the probability that not-p and not-q should be selected
and will decrease the probability that p and g should be
selected. That is, the information gain model is consis-
tent with the observed pattern of effects. This is impor-
tant because, according to Kirby’s model, people are try-
ing to detect falsifying p and not-q instances. However,
these instances are not available for the not-p or the g
card, and so Kirby’s model cannot account for the pattern
of results in his data.

As for the negations paradigm, we fitted the model to
the data from each of the eight conditions in Kirby’s
(1994) Experiments 1-3. In Kirby’s Experiment 1, there
were two conditions, a small and a large P(p) condition.
In his Experiments 2 and 3, there were three conditions,
a small, a medium, and a large P(p) condition. For six
out of the eight conditions, the model could not be re-
jected [mean G2(2) = 4.36, SD = 1.29, p > .10]. Across
these six conditions, the model could also not be rejected
at the 1% level [G%(12) = 26.18]. By experiment, the
model could not be rejected for Experiment 1 [G2(4) =
7.36, p > .10] or for Experiment 3 [G2(6) = 14.26, p >
.02]. Both conditions for which the model could be re-
jected were in Experiment 2—the medium and the large
conditions. In both cases, the saturated model provided
a significantly better fit to the data.

It would be premature to reject the information gain
model on the basis of these two failures to fit the data,
for several reasons. First, we will report other results
using probabilistic manipulations that reveal good fits.
Second, later on, we will discuss the kind of probability
manipulation that would be expected to move people
away from their default rarity values. Moreover, we will
describe a recent experiment using an alternative and
much more effective manipulation. Finally, only the infor-
mation gain model or other probabilistic accounts (see
below) predict the observed pattern of effects in Kirby’s
(1994) data.

It is also important that the best-fitting parameter val-
ues follow expectation—that is, they are low when they
should be low and high when they should be high. Gen-
erally, this is the case when fitting the information gain
model. However, when probabilities are manipulated,
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the question arises as to the relationship between the ma-
nipulated probabilities (or given probabilities) and the
best-fitting parameter values. What we have found in
modeling Kirby’s (1994) data and in the other results we
report in this section is that this relationship follows
Kahneman and Tversky’s (1979) wfunctionrelating given
probabilities to subjective probabilities. Thatis, people’s
subjective probabilities (best-fitting values) overestimate
low given probabilities but underestimate high given
probabilities. We will not discuss this issue further in re-
porting the results of experiments manipulating proba-
bilities. This is because, later on, we will report the results
of an experiment that seems to confirm that the subjec-
tive probabilities used to compute information gain do
seem related to given probabilities as a 7 function.

The Reduced Array Selection Task

In the reduced array selection task (RAST), partici-
pants choose only between the g and the not-q options
(hence, “reduced array”), and moreover, they are given
the opportunity to see the data. For example, they might
be told that they must test the rule that all the circles are
blackby picking out shapes from two boxes, one labeled
“black shapes” and the other labeled “white shapes.”
Participants typically select shapes from both boxes, but
on average, they select more shapes from the box con-
taining white shapes. That is, far more falsificatory re-
sponding is observed (Johnson-Laird & Wason, 1970;
Wason & Green, 1984). Oaksford and Chater (1994) ar-
gued that this is because the RAST makes explicit that
the rule applies to a limited domain of cards and partic-
ipants are told that there are equal numbers of ¢ and

not-q instances. It follows that the probability of the con-
sequent, P(g), is .5, violating the rarity assumption. When
rarity is violated, the information gain of the not-g card
is higher than that of the g card (Figure 1), and hence, the
revised information gain model predicts more not-g card
selections than g card selections.

Oaksford, Chater, Grainger, and Larkin (1997) tested
this explanation of the RAST by systematically varying
the probability of the consequent, P(g). They used stacks
of cards depicting colored shapes on one side, rather
than boxes of colored shapes. The numbers of cards in
each stack was varied to achieve the probability manip-
ulation. By varying these probabilities, Oaksford et al.
(1997) showed that the proportions of g and not-q cards
selected varied in accordance with the information gain
model—that is, as P(q) fell, g card selections rose, and
not-q card selections fell.

Figure 3 shows the results of Oaksford et al.’s (1997)
Experiment 1. As can be seen, trends for the ¢ and the
not-q cards as the probability of the consequent, P(q),
rose were in line with the predictions of the information
gain model. As P(q) rose, there was a significant in-
crease in the proportion of not-q cards selected, and
there was a significant decrease in the proportion of g
cards selected.

A possible alternative explanation for these effects is
that the participants were selecting cards from the small-
est stack or were selecting cards at random. In the low
P(g) condition, the smallest stack corresponded to the g
card, and in the high P(g) condition, the smallest stack
corresponded to the not-q card. Consequently, a small
stack bias could explain the pattern of selections in Oaks-
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Figure 3. The results of Oaksford, Chater, Grainger, and Larkin’s (1997) Ex-
periment 1. The white bars indicate the mean proportion of g cards selected in
each condition, and the black bars indicate the mean proportion of not-q cards
selected in each condition. The error bars show a single standard deviation.



ford et al.’s (1997) Experiment 1. Oaksford et al. (1997,
Experiment 3) therefore repeated that experiment, but
now the participants selected cards from equal-sized
stacks of cards. This was achieved by having the experi-
menter deal 10 cards from different sized packs, so al-
though the probability information was available, the
stack sizes were the same. The results of this experiment
replicated their Experiment 1, confirming that the ef-
fects were indeed due to the probability manipulation.

Probabilities and the Standard Selection Task

Oaksford, Chater, and Grainger (1999) conducted a
series of four experiments on the original four-card task,
systematically varying the probabilities of the ante-
cedent and the consequent of the conditional rule. Ac-
cording to the information gain model, if high- and low-
probability categories are varied systematically between
the antecedent and the consequent, the high-probability
categories should produce results very similar to nega-
tions in the negations paradigm (see the Model Fitting II:
The Negations Paradigm section). This is exactly what
they observed.

We fitted the revised information gain model to each
of Oaksford et al.’s (1999) experiments. In their Experi-
ments 1 and 2, participants’ belief in the rule [P(Mp),
high or low] was also manipulated. In Experiment 3 an
effects manipulation (high or low) was included. Cogni-
tive effects manipulations were proposed by Sperber,
Cara, & Girotto (1995) to overcome habitual responses
in the selection task by emphasizing the falsificatory p,
not-q cases. Given these additional manipulations, there
were 8 conditions in each of Oaksford et al.’s (1999) Ex-
periments 1-3. There were 4 in Experiment 4. The model
could not be rejected for any of the 28 conditionsin these
experiments [mean G2(2) =3.15,8D =2.31,p > .20]. To
assess the model across all the conditions, the 4 high-
effects conditionsin Experiment 3 were removed because
Oaksford et al. (1999) argued that these were better ex-
plained by other probabilistic models that make explicit
appeal to utilities (see below). Overall, the model could
also not be rejected [G2(48) = 65.45, p > .02]. By exper-
iment, the model could not be rejected for Experiment 1
[G2(16) = 24.84, p > .05], for Experiment 2 [G2(16) =
22.67, p > .10], for Experiment 3 [G2(8) = 11.35,p >
.10], or for Experiment 4 [G%(8) = 6.69, p > .20]. In sum,
the model provided good fits to these data.

However, as Oaksford et al. (1999) conceded, their at-
tempts to manipulate probabilities were not entirely suc-
cessful. Experiments 1 and 2 used real-world contents—
for example, if a person is a politician then they are
privately educated—that were pretested for probability
of occurrence. This raised the possibility that these ma-
terials may cue other relevant prior knowledge. In Ex-
periment 1, although all the trends were in the right di-
rection, the frequency of not-q card selections never
exceeded that of g card selections. Oaksford et al. (1999)
argued that this was because these materials did not pro-
vide a sufficiently powerful manipulation to overcome
the default rarity assumption in data selection.
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In Experiment 2 the high-probability antecedent rules
reversed roles. That is, the HL rule produced results like
the HH rule, and vice versa. Following other researchers in
the area (Green & Over, 1998; Green, Over, & Pyne, 1997,
Over & Jessop, 1998), Oaksford et al. (1999) suggested
that this might be because participants were comparing
the dependence model against different foils—that is,
other than an independence model. To achieve the proba-
bility manipulation, they used rules such as ifan MP is a
Conservative then he or she votes Labour in the general
election, which was an unbelievable, high-probability
antecedent [high P(p)] and high-probability consequent
[high P(q)] rule. The rule is unbelievable because it vio-
lates the strong belief that Conservative MPs vote any-
thing but Labourin the general election. When Oaksford
et al. (1999) used the opposite to the dependence model
as a foil hypothesis instead of the independence model
(i.e., the dependency is between being a Conservative
MP and not voting Labour), they found good fits to the
data. It is the fit using this foil model in the revised in-
formation gain account that we reported above. To avoid
the effects of prior beliefs like this, Oaksford et al.
(1999) used abstract material in their Experiments 3 and
4 and found results much more in line with predictions.

Causal Selection Tasks

Further evidence consistent with the revised informa-
tion gain model has recently been presented by Green
and Over (1997, 2000; see also Over & Jessop, 1998).
Green and Over (1997) tested the Bayesian account of
data selection by having participants test the causal rela-
tion, if a person has Zav’s disease, then they have a
raised temperature. They would be asked, for example,
“how many out of 100 patients already diagnosed with
Zav’s disease do you want to take the temperature of?”
(p card selections). This manipulation provided data for
the first time on within-subjects selection tendencies.
According to mental models (Johnson-Laird & Byrne,
1991), only four selection patterns are possible (see the
Mental Logic and Mental Models section above). Recall
that if models for the conditional or the biconditional in-
terpretation are not fleshed out, participants must select
either only the p card or the p and the g cards, respec-
tively. If these models are fleshed out, then on the con-
ditional interpretation, participants should select the p
and the not-q cards, and on the biconditional interpreta-
tion, they should select all four cards. None of these in-
terpretations is consistent with Green and Over’s (1997)
results. Around 70% of the participants wanted to exam-
ine some of all four classes of patients but wanted to see
more patients that corresponded to the p and ¢ cards than
to the not-p and not-q cards. As Green and Over (1997)
observed, this finding is consistent only with Bayesian
probabilistic accounts, such as information gain.

Green and Over’s (1997) response procedure allows
participants to reveal the underlying probabilistic basis
of their selection decisions. These are continuous data,
and so we cannot really model them in the same way as we
have until now. However, we can think of each partici-
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pant’s response to each card—that is, “x out of 100”—as
aresponse frequency, as if they had experienced 100 trials.
This, of course, vastly inflates the value of N, the num-
ber of responses, which increases the probability of a
poor fit (Read & Cressie, 1988). Nonetheless, when fitted
to Green and Over’s (1997) Experiment 1, mild condi-
tion data (see below), the revised information gain model
could not be rejected at the 1% level [G2(2) =7.61,p >
.02]. If people are generating an analogue of the proba-
bilities calculated in the revised information gain model,
itis straightforward to convert these to frequencies of pa-
tients they wish to look at. It is much harder to envisage
how a consistentlogical interpretation of the conditional,
as embodied in mental logic and mental models theories,
could account for these within-subjects preferences.

Green and Over (1997) also manipulated the utility of
finding out whether a raised temperature is diagnostic of
Zav’s disease by providing information about whether
the disease is life threatening (serious condition) or not
(mild condition). The information gain model does not
incorporate utilities, so we did not attempt to model this
manipulation (see the Other Probabilistic Accounts of
Data Selection section below).

Green and Over (2000) used a scenario very similar to
thatin Green and Over (1997), but with cholera as the dis-
ease. However, the participants were asked only whether
they wanted to see, for example, “villagers already diag-
nosed as having cholera” (p card), rather than how many
they wanted to see. Consequently, the task yielded binary
response data, as in the standard selection task. The rule
used was, if you drink from the well then you will get
cholera. The main experimental manipulation involved
telling participants either that most villagers have
cholera and most drink from the well, which corresponds
to a high-probability antecedent [high P(p)] and high-
probability consequent [high P(g)] condition, or that few
villagers have cholera and few drink from the well, which
corresponds to a low P(p) and alow P(q) condition. The
fit of the revised information gain model to Green and
Over’s (2000) data (category condition) was very good:
In the few condition, G2(2) = .88, p > .20, and in the most
condition, G%(2) = .14, p > .20. In the few condition,
P(p) = .42 and P(q) = .40, and in the most condition,
P(p) = .61 and P(gq) = .59. In both cases, P(p) = P(q).
According to our model, this entails that the participants
were treating the dependence model as a biconditional
(i.e., most of the probability is located in the p,q and the
not-p, not-q cells; indeed, if P(p) = P(q) and & =0, all the
probability is located in these two cells). That is, they
were testing a model in which drinking well water was
both necessary and sufficient for catching cholera. This
may be a feature of causal selection tasks, in which the
rule describes a putative causal regularity.

The results reported in this section seem to support the
view that “no account of the selection task is sufficiently
general if it cannot take account of the set size of p and
the set size of ¢ or the probability judgments which re-
flect these” (Green & Over, 2000, p. 66). That is, any ex-

planation of the selection task must take a probabilistic
approach as embodied in the information gain model.
However, there have been some apparent failures to
replicate these probabilistic effects.

Probabilities or Coherence Bias?

Oberauer et al. (1999) carried out three experiments
that, they argued, all failed to replicate the effects we re-
viewed above. These findings led them to the conclusion
that “optimal data selection does not explain the selec-
tion task” (Oberauer et al., 1999, p. 141). Itis difficult to
interpret such failures to replicate. However, in this case,
the failure was only partial. In their Experiment 1, they
found trends that were consistent with optimal data se-
lection. Oberauer et al.’s main argument hinges on the
poor fits they obtained using the values of P(p) and P(q)
that participants were given experimentally. However, as
we mentioned in the Probabilities of Fictional Outcomes
section, it is unlikely that experimental manipulations
will affect people’s subjective probabilities so directly (see
also Evans & Over, 1996a; Hattori, 2002; McKenzie,
2000; McKenzie, Ferreira, Mikkelsen, McDermott, &
Skrable, 2001; McKenzie & Mikkelsen, 2000).

We therefore fitted the model to the data from Ober-
auer et al.’s (1999) Experiment 1 in the same way as in
the rest of this paper: by seeking the parameter values
that provided the best fit. The fit of the model to the data
was comparable, if not better, than the fits we have al-
ready reported [mean G2(2) = 0.84, p > .20], across all
four conditions [G%(8) = 3.38, p > .20]. Moreover, when
the parameters were supposed to be high (M = .44, SD =
.02), they were higher than when they were supposed to
be low [M = .28, SD = .12; ¢(5) = 2.88, p < .025]. Con-
sequently, it would seem that, contrary to Oberauer et al.,
the revised information gain model can provide very
good fits to their data.

How did Oberauer et al. (1999) explain the results of
their Experiment 1, which as we have shown, would ap-
pear to provide good evidence for the information gain
model? They suggested that the categories they used—
for example, numbers between 1 and 10 or between 10
and 1,000—lack coherence in that they do not all share
some common property. Oberauer et al. therefore sug-
gested that lacking such a coherent basis, a more coher-
ent category will be one with fewer members. They then
argued that people were demonstrating a coherence
bias—that is, they were selecting the cards that corre-
sponded to a lower prior probability. They argued that if
coherence were to be restored, the putative probability ef-
fects observed in their Experiment 1 would disappear.
They achieved this manipulation by using categories such
as vowel and consonant in their Experiment 2 and A (or
B) and 1 (or 2) in their Experiment 3. Probabilities were
manipulated by indicating that a certain number of cards
had vowels, or As, and so forth, on them. Neither experi-
ment revealed any effects of the probability manipulation.

However, Oaksford et al. (1999) used coherent real-
world categories in their Experiments 1 and 2 and co-



herent abstract materials in their Experiment 4 and ob-
served many of the probabilistic effects predicted by op-
timal data selection accounts. Consequently, coherence
bias is unlikely to be the explanation of the results of
Oberauer et al.’s (1999) Experiment 1. Moreover, there is
afactor that was present in Oberauer et al.’s Experiments
2 and 3 that was not present in their Experiment 1 or in
Oaksford et al.’s experiments. Oberauer et al.’s Experi-
ments 2 and 3 involved two sample selection phases.
First, the participants were given probability information
about a large pack of cards (1,000) from which, they
were told, a smaller sample had been selected at random
(50 or 52). Second, the four selection task cards were
then drawn from this smaller sample. Consequently, for
this manipulation to work, it must be assumed that the
participants treated the smaller random sample as repre-
sentative of the larger pack of cards from which it had
been drawn. However, the participants’ understanding of
the probability manipulation was assessed only with re-
spect to the larger pack, and not the smaller sample.
Therefore, there is no evidence that Oberauer et al.’s par-
ticipants treated the smaller sample as representative of
the larger pack. Indeed, to preserve the known probabil-
ity distribution of the larger pack in the sample, repre-
sentative, as opposed to random, sampling is required.
Because of the distribution in the larger packs, in Ober-
auer et al.’s Experiments 2 and 3, it was possible for P(p)
and P(g) (in the sample) to take on any value between 0
and 1. Given this uncertainty, we would argue that peo-
ple have simply made the default rarity assumption for
all four rules. This hypothesishas been tested recently by
Oaksford and Wakefield (2003), who used a natural sam-
pling paradigm to manipulate probabilities.

Probabilities and Natural Sampling

Recently, Oaksford and Wakefield (2003) conducted
an experiment using the same materials as those in Ober-
auer et al.’s (1999) Experiment 3, but without the second
sample selection phase. The main purpose of this exper-
iment was to test two hypotheses. First, Oaksford and
Wakefield argued that providing probability information
via natural sampling (Gigerenzer & Hoffrage, 1995)
should lead to a stronger manipulation. According to
Gigerenzer and Hoffrage, manipulating probability in-
formation experimentally is best achieved by manipula-
tions that simulate the way people normally acquire this
information in their natural environment—that is, by ex-
periencing the instances used to compute a relative fre-
quency one at a time. For example, people compute the
probability of a bird’s being black by observing individ-
ual birds and storing information about sample size and
the number of black birds. Such natural sampling was
implemented in Oaksford and Wakefield’s experiment
by showing participants 40 cards, one at a time. The pro-
portion of p, not-p, q, and not-q cards reflected the prob-
ability information the participants were given before
performing the selection task. Second, Oaksford and
Wakefield argued that obtaining probability estimates
from participants indirectly should more accurately re-
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flect the values they use in data selection. Therefore,
after the selection task, the participants were asked to
classify 50 cards “drawn” from the pack into the four
possible card types: p and g, p and not-q, not-p and g,
and not-p and not-q. The proportions of each card type
provided estimates of the four cells in the joint probabil-
ity distribution for p and ¢ (i.e., the upper half of
Table 1), from which all the parameters of the model
could be calculated.

The results (see Figure 4) showed all the probability
effects predicted by the information gain model. This
was impressive, given that the materials were identical to
those used by Oberauer et al. (1999), who failed to find
any effects from manipulating probabilities. There were
also some other interesting effects observed. First, the
indirect estimates of the parameters of the model over-
estimated the low probabilities and underestimated the
high probabilities given in the experimental set-up. This
directly mirrors a 7 function relating the experimentally
given probabilities and the best-fitting estimates (see the
Probabilities of Fictional Outcomes section). Impor-
tantly, the best-fitting parameter values were higher
when they were predicted to be high than when they were
predicted to be low [#(6) =5.10, p <.0025], and they were
highly significantly correlated with the given probabili-
ties [7(6) = .89, p < .005].

Second, when the indirect estimates of the parameter
values were weighted for prior knowledge of rarity (by
averaging with the indirect estimates for the LL rule),
they provided good fits to the data. When these values
were used, the model could not be rejected for any con-
dition [mean G2(4) = 7.18, p > .10], and it could not be
rejected across conditions [G2(16) = 28.70, p > .02].
Oaksford and Wakefield (2003) also showed that the in-
formation gain model provided better fits than a post hoc
model of probability effects proposed by Oberauer et al.
(1999) to explain the results of their Experiment 1. That
is, contrary to Oberauer et al., experimentally derived
values of the parameters of the information gain model
can show good fits to the data. However, indirect esti-
mates (reflecting a 7 function) corrected for the effects
of prior knowledge must be used. Consequently, con-
trary to Oberauer et al.’s conclusion, optimal data selec-
tion does explain the selection task.

Results Not Consistent With the Information
Gain Model

We now will review some results on data selection
that, it is claimed, are not consistent with the information
gain model. Most of these results involve facilitating the
logical response without manipulating probabilities.

Group reasoning. In a single experiment, Moshman
and Geil (1998) showed that solving the task in groups
leads to higher solution rates. This result is very inter-
esting but stands in need of replication and further study.
An aspect of the results that is interesting is that, in
nearly all the groups, at least one person initially chose
the not-g card. Consequently, there was always someone
who needed to account for why they had done this. The
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Figure 4. The mean proportion of cards selected in each condition in Oaksford and
Wakefield (2003), with error bars showing standard error. LL, low-probability ante-
cedent, low-probability consequent; LH, low-probability antecedent, high-probability
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question is what changes people’s minds. One answer is
that they develop true logical insight into the falsifica-
tionist nature of hypothesis testing (Moshman & Geil,
1998). As we have argued elsewhere (Oaksford & Chater,
1994), since it is philosophically debatable whether hy-
pothesis testing is best regarded as logical (e.g., Howson
& Urbach, 1989), this is a dubious argument. It seems
more likely that people come to adopt an interpretation
of the rule in which p, not-g instances definitely make
the rule false and prior knowledge is irrelevant. The for-
mer happens even in our probabilistic model when & = 0.
The latter occurs when people realize that the rule ap-
plies only to the four cards. Under this interpretation,
prior knowledge, which affects the probabilities of the
antecedent and the consequent, is irrelevant. What would
be interesting is to probe the participants’ understanding
of the rule before and after the group discussion, rather
than indexing such changes simply on the basis of
changes in response patterns on the selection task.
Getting the right interpretation. Gebauer and Lam-
ing (1997; see also Osman & Laming, 2001) argued that
performance in their experiments was logical when par-
ticipants’ interpretations of the task rule were taken into
account. In their Experiment 1, although most partici-
pants failed to give the logical response, it seemed that
this was because they misinterpreted the rule. For exam-
ple, one side . . . other side may be conflated with front
... back. When these interpretations were taken into ac-
count, performance could be interpreted as logical. This
interesting result it is not consistent with the attempts to
encourage a logical interpretation in the early literature
on the selection task, which focused on exactly the same
possible misinterpretations (Wason & Johnson-Laird,

consequent.

1970, 1972). These earlier attempts to remove these pos-
sible misinterpretations completely failed to improve
performance. Gebauer and Laming (1997; like Osman &
Laming, 2001) did not attempt to explain this apparent
inconsistency.

Moreover, if they are right, their findings do not just
threaten probabilistic accounts. Gebauer and Laming
(1997) argued that their misinterpretation account is
consistent with formal rule theories and mental models.
However, according to these accounts, the rules are not
misinterpreted in the way thatone side. . . other side may
be conflated with front. . . back. Rather, the rules are in-
terpreted as either conditionals or biconditionals assum-
ing the “one side . . . other side” interpretation. How-
ever, in mental models theory, people normally represent
only part of the meaning of the original conditional—
thatis, one line of the corresponding truth table. It is this
partial interpretation that explains performance, not any
misinterpretation of the rules. This is absolutely clear
from the fact that this partial interpretation is taken to
apply to all conditionals, whether they appear in selec-
tion tasks that introduce one side . . . other side ambigu-
ities or not. Consequently, psycho-logic accounts, such
as mental models and mental logic, are as much at risk if
Gebauer and Laming are correct as probabilisticaccounts.
Thus, although at present we offer no explanation of
these findings, it should be borne in mind that they po-
tentially invalidate everyone’s explanation of these data.
Much more research is therefore clearly going to be re-
quired before anyone is going to be convinced by these
results.

Facilitation without probabilities. Almor and Slo-
man (1996) presented evidence that certain conditional



rules reliably produced the logical response although
probabilities were not manipulated. However, Oaksford
and Chater (1996) argued that these rules fell into two
categories that meant that the information gain model
did not apply. First, some of the rules were analytic
truths—for example, if a large object is stored then a
large container must be used—for which evidence is ir-
relevant. It is part of the meaning of large object that if
itis stored, a large container must be used. Since this has
to be true, there is no uncertainty to be reduced. Second,
the remaining rules were deontic regulations: If a prod-
uct gets a prestigious prize then it must have a distinc-
tive quality. Oaksford and Chater (1994) dealt with de-
ontic regulations in a separate theory in which people
were argued to maximize expected utility rather than in-
formation gain. Consequently, these apparent displays of
logicality do not impugn the claim that when participants
construe their task as selecting data to test a hypothesis,
they seek to maximize information gain.

Varying the card array. Hardman (1998) introduced
an interesting manipulation in which certain cards were
removed from the four-card array and substituted by an ad-
ditional copy of one of the other cards. He argued that this
manipulation should affect the predictions of the infor-
mation gain model because card choice is competitive—
thatis, card informativeness is scaled by the total amount
of information available (see Equation 7). Thus, if a
highly informative card (e.g., p) is replaced by an unin-
formative card (e.g., not-p), the informativeness of the
two not-p cards should rise, since they now represent a
greater proportion of the information available. Hard-
man presented three experiments in which different re-
placement strategies and different rules were used, either
a standard affirmative rule (if p then q) or a negated con-
sequent rule (if p then not-q). In each experiment, he ar-
gued that his results were not consistent with the infor-
mation gain model. For example, suppose that the p card
has an information gain of .45 bits, the g card .35 bits,
the not-p card .05 bits, and the not-g card .15 bits. Then,
according to the scaling procedure with the standard <p,
not-p, q, not-g> card array, the scaled informativeness
values would be unchanged at <.45, .05, .35, .15>. But
given the array <not-p, not-p, not-p, not-g>, the scaled
informativeness values would be <.17, .17, .17, .50>,
which predicts that there should be considerable in-
creases in not-p and not-q card selections, as compared
with the standard array. Hardman did not observe these
predicted changes in card selections. For example, in his
Experiment 3, although he observed the change for the
not-q card in our example, he observed no similar
changes for the not-p cards.

As Hardman (1998) observed, this problem does not
arise if the information gains are not rescaled according
to Equation 7. We originally scaled the information gain
in this way by analogy to foraging models of food patch
selection (Myerson & Miezen, 1980; Oaksford & Chater,
1998b; Pirolli & Card, 1999), where animals disperse
their foraging activities between food patches, depend-
ing on the total food available. Of course, before decid-
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ing how to disperse its time between patches, an animal
must decide which patches it is worth dispersing its time
between. Suppose this decision is made pairwise by first
comparing the amount of food in the largest patch with
the next largest: If the ratio of the smaller to the larger
patchis greater than .5, then forage at this smaller site as
well, and so on. If we do this calculation for the infor-
mavores (Dennett, 1991) in the last paragraph, then for
the standard card array, the process will stop at the ¢
card, which is more than half as informative as the p card
but is more than twice as informative as the not-q card.
However, in the <not-p, not-p, not-p, not-g> array, the
not-q card is more than twice as informative as any indi-
vidual not-p card, so the latter are not chosen, which may
explain Hardman’s results. This process determines the
number of cards selected before rescaling to determine
the strength of conviction that the card should be turned,
as was suggested by Chater and Oaksford (1999a).

Summary

The revised information gain model provided detailed
fits to the data explained by the original model (Oaksford
& Chater, 1994). Moreover, six studies (Green & Over,
1997,2000; Oaksford et al., 1999; Oaksford et al., 1997;
Oaksford & Wakefield, 2003; Oberauer et al., 1999, Ex-
periment 1) and a total of 14 experiments have produced
results consistent with the revised information gain
model. We also showed how the revised model provided
good fits to 10 of these experiments. Showing that the
model can provide good fits to these new data sets is im-
portant because some of the parameters of the revised
model were estimated against some of the data originally
modeled by Oaksford and Chater (1994). Specifically, the
parameters of the selection tendency function (Hattori,
1999) were estimated in this way. However, to model
these new data sets, we retained the values of these pa-
rameters [and of P(M;) and €] that we used to model the
original data sets, and we still found good fits by simply
allowing P(p) and P(q) to vary. The best-fitting param-
eters were invariably interpretable in the way we argued
they should be—that is, they were high when they should
be high and low when they should be low. Moreover,
when tested indirectly, people’s subjective probability
values mirrored the best-fitting parameter values and
were related to given probabilities as a 7 function. We
have also presented arguments showing that many results
argued to be not consistent with information gain do not
discriminate against the model to anything like the de-
gree claimed.

THEORETICAL DISCUSSION

In this closing section of the paper, we will discuss al-
ternative theoretical proposals within a probabilistic
framework and will reply to a variety of theoretical ob-
jections to the information gain model that have ap-
peared in the literature. In addressing these theoretical
objections, we will concentrate solely on those that have
arisen in the literature but that we have not addressed
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elsewhere before (i.e., in Oaksford & Chater, 1996, 1998a,
1998b, Oaksford et al., 1999, or Oaksford et al., 1997).

Other Probabilistic Approaches to Data
Selection

There are now a variety of other probabilistic accounts
of the selection task (Evans & Over, 1996a, 1996b; Klauer,
1999; Nickerson, 1996; Over & Evans, 1994; Over &
Jessop, 1998). Oaksford et al. (1999) reviewed these ac-
counts, which can all be encompassed within the optimal
experimental design approach (Berger, 1985; Fedorov,
1972) and, consequently, all share the basic underlying
structure of the information gain model. The main theo-
retical difference is how each model formalizes the no-
tion of informativeness. The critical difference concerns
whether a disinterested observer or a decision-theoretic
approach is taken to inquiry (Chater, Crocker, & Picker-
ing, 1998; Chater & Oaksford, 1999a). On the disinter-
ested observer approach (Nickerson, 1996; Oaksford &
Chater, 1994), it is assumed that participants are not bi-
ased toward any particular type of evidence by their cur-
rent goals. Consequently, their data selection behavioris
influenced only by the relevant probabilities. On the
other hand, someone might be seeking evidence that, for
example, drinking water from the well makes you ill.
With this goal in mind, they will place greater value on
finding evidence of someone’s being ill after drinking
the well water. This is because the costs of erroneously
rejecting this hypothesis are very great: Many people
will continue to get ill. This is an example of a decision-
theoretic approach (Evans & Over, 1996a, 1996b; Klauer,
1999; Over & Evans, 1994; Over & Jessop, 1998). Peo-
ple are inquiring into their world with a particular deci-
sion problem in mind: Should you drink the well water
or not?? The important costs and benefits relate to ac-
cepting or rejecting a hypothesis—that is, the Type I and
Type II errors in standard hypothesis testing.

These other models point to a convergence of opinion
that a probabilistic approach is the right way to explain
the indicative and the causal selection task. However,
there is a clear disagreement about whether a disinterested
or a decision-theoretic framework should be adopted. We
think that each is equally valid but that care must be
taken about when each should be applied. It seems to us
that unless the experimental set-up can provide clear-cut
utilities for making Type I or Type Il errors, a disinter-
ested approachis clearly more appropriate. For example,
Oaksford et al. (1999) argued that Sperber et al. (1995)
effects manipulation can be explained better by decision-
theoretic approaches, such as those in Evans and Over
(1996b) and Klauer (1999). The effects manipulation in-
volved making the p, not-g instance salient by creating a
contextin which it is diagnostic of a fault—for example,
a machine that is supposed to be printing cards according
to the rule that if there is a circle then the card is blue starts
printing red circles. This manipulationcan be regarded as
raising the costs of failing to reject a hypothesis when it is
false (i.e., failing to detect a fault). A decision-theoretic

perspective may also be more appropriate for explaining
some of the results of Green and Over (1997), who also
manipulated the seriousness of an illness and, thereby,
the costs associated with failing to detect the illness.
Nonetheless, in most selection task experiments that use
abstract material or use contentful indicative rules with-
out a context introducing explicit utilities, a disinterested
approach seems more appropriate.

However, these approaches are often represented as
being in competition rather than as complementary
(Evans, 1999; Evans & Over, 1996b; Green, 2000; Klauer,
1999). That s, itis argued that the decision-theoretic ap-
proach should be seen as an alternative and descriptively
more adequate way of explaining the data. The key empir-
ical issue concerns the effect of believability, where the
disinterested and the decision-theoretic approaches di-
verge. Whereas the decision-theoretic approach predicts
that if people disbelieve the rule they should select more
not-q cards than g cards, disinterested approaches predict
no effect of believability. Klauer cites several studies that
seem to show results consistent with the decision-theoretic
approach (Fiedler & Hertel, 1994; Love & Kessler, 1995;
Pollard & Evans, 1981, 1983). However, Chater and Oaks-
ford (1999a) argued that in all these studies, only excep-
tions were manipulated—that is, the incidence of p, not-
g instances—and not believability per se. As they pointed
out, itis possible to believe strongly a rule that has many
exceptions. For example, many people believe quite
strongly that allowing children to walk home from
school increases their chance of being abducted, although
the probability of being abducted while walking home
from school is tiny. That is, the probability of exceptions
and the degree of belief in a rule can be independent.

Only two studies have explicitly manipulated believ-
ability in the selection task: Green and Over (1997) and
Oaksford et al. (1999). In their Experiment 2, Green and
Over (1997) found that an almost identical proportion of
participants turned the not-g card in the believed true
(55.3%) and in the believed false (54.9%) conditions.
Similar results were obtained in Oaksford et al.’s (1999)
Experiment 1 (high-belief condition, 29.7% not-q card
selections; low-belief condition, 25%) and in their Ex-
periment 2 (high-belief condition, 33.1%; low-belief
condition, 33.4%). Consequently, it would seem that the
best interpretation of these models is that they apply in
different situations. The challenge for proponents of the
decision-theoretic approach is to demonstrate believ-
ability effects in contexts in which the utilities are well
defined.

We have now seen that the information gain model
seems to account for the existing data better than do
other theoretical proposals. It also appears to be well
supported by data confirming its novel predictions. It is
also defendable in the light of data with which it is ap-
parently inconsistent. Finally, as we have just seen, it
provides better explanations than do closely related prob-
abilistic theories. However, despite these apparent suc-
cesses, there may be some underlying theoretical prob-



lems with the theory that still rule it out as somehow in-
coherent or unlikely to be psychologically real. The rest
of this theoretical discussion addresses a variety of the-
oretical objections that have been proposed in the litera-
ture since the model first appeared.

Model Fits

Laming (1996) argued that the original optimal data
selection model was able to provide only ordinal fits to
the data—that is, we modeled only the rank order in par-
ticipants’ card selections. However, in this paper, we
have shown that the optimal data selection model can
provide excellent fits not only to the ordinal trend in the
data, but also to the exact location.

Information Gain Versus Other Information
Measures

Some critics have been concerned that we narrowly
focused our account on only one particular measure of
information, Shannon-Wiener information (Shannon &
Weaver, 1949; Wiener, 1948), although there are other
possibilities (Evans & Over, 1996b; Klauer, 1999; Lam-
ing, 1996; Oberauer et al., 1999). The review of other
measures (see the Other Probabilistic Approaches to
Data Selection section) shows a general feature of the
optimal data selection models. That is, although they all
propose different measures of informativeness, given the
rarity assumption, they all make similar predictions
(with the exception of the believability predictions we
discussed above). That is, given the rarity assumption,
the optimal data selection approach can quite robustly
predict the main findings even under changes of the par-
ticular information measure used.

Sequential Sampling

Laming (1996) criticized our original model because
a Bayesian account should involve sequential sampling—
that is, participants should turn the most informative
card, revise their priors, reassess the informativeness of
the cards, pick the next most informative card, and so on.
Of course, this is not what happens in the selection task,
because participants never actually turn the cards over.
The main point to make here (but see also Oaksford &
Chater, 1998b) is that Klauer (1999) has modeled the se-
lection task using both sequential and nonsequential
Bayesian models. The predictions agreed with the infor-
mation gain model. Consequently, a nonsequential Bayes-
ian account not only makes sense (see Chater & Oaks-
ford, 1999a), but also makes predictions similar to those
of a sequential account.

Alternative Models

We suggested that participants compared the rule—
that is, the dependence model—with an independence
model. Various authors have criticized us for this choice
on varying grounds (Green & Over, 1997, 1998; Green
et al., 1997; Laming, 1996; Oberauer et al., 1999; Over
& Jessop, 1998). First, we have been criticized for pro-
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posing that participants are testing a particular depen-
dence model against just the possibility that there is no
dependency between p and ¢, rather than against every
other possible dependency between p and g (Laming,
1996; Oberauer et al., 1999). However, without any prior
knowledge about other possible relationships between p
and g, it seems psychologically plausible that the only
alternative considered is no relationship. Moreover, the
dependency between p and g that we always had in mind
was causal sufficiency. In most recent models of causal
judgment, the independence model is always the foil
against which the presence of a causal dependency is as-
sessed (e.g., Cheng & Novick, 1990). In these models, a
causal dependency (however weak) is taken to exist be-
tween p and ¢ if P(q| p) > P(q) (positive causal relation-
ship) or if P(q| p) < P(q) (negative causal relationship).
Thus, in attempting to construct a theory of data selec-
tion, the independence model seemed to be the most jus-
tified. The real question is the nature of the infinite num-
ber of possible causal dependencies that might exist
between p and g. However, it turns out that the nature of
the dependency between p and g and the data one should
select are relatively independent. That is, variation in
P(q| p) (1 — &) has little effect on the data people should
select. For example, it never affects the rank order of
informativeness over the four cards when P(p) and P(q)
are kept constant. Moreover, other prior knowledge con-
strains the relevant probabilities. First, the conditional
statement if p then g clearly suggests a positive causal
dependency, which indicates that € is low, which is why
we set it to .1 in all the model fits we report. Second,
causal sufficiency suggests that P(q) > P(p). Finally, the
rarity assumption indicates that P(p) and P(q) are low.

Second, other authors have pointed out that prior knowl-
edge may suggest better foil models or, indeed, more than
one such model (Green & Over, 1997, 1998; Green et al.,
1997; Over & Jessop, 1998). The information gain model
can incorporate these possibilities. Indeed, Oaksford et
al. (1999) invoked just such an alternative foil in model-
ing the results of their Experiment 2 (see above). More-
over, in contrast to the log-likelihood ratio (Evans &
Over, 1996b), the information gain measure can incor-
porate many different hypotheses.

Exceptions

Evans and Over (1996b) argued that the original de-
pendence model was also incapable of explaining data
from Kirby (1994) or from Pollard and Evans (1983).
Oaksford and Chater (1998b) argued that this was be-
cause the original dependence model did not allow ex-
ceptions. Kirby told his participants that a machine print-
ing cards had made an error—that is, it produced a p,
not-q instance. Consequently, an exceptionless general-
ization was already known to be impossible, and there-
fore, the independence model had to be true. Oaksford
and Chater (1998b) conceded this problem with the orig-
inal model and so modified it, as in the upper half of
Table 1, to include an exceptions parameter. This new
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model showed good fits to most of Kirby’s data, as we
have shown.3

Parameter Alignment

The original model has been criticized (Green & Over,
1997, 1998; Green, Over, & Pyne, 1997; Laming, 1996;
McKenzie & Mikkelsen, 2000) on the grounds that the
particular form of the dependence model was used only
to explain the data. In particular, it has been argued that
this model was used simply to guarantee that the not-p
card, which is rarely selected, would be completely un-
informative (Laming, 1996). This selection of models
also had the odd consequence, noted by Green and Over
(1998), that the probability of the consequent varied be-
tween models (b in M; and a + b(1 — a) in Mp,). Green
and Over (1997) also pointed out that, contrary to the pre-
dictions of the original model, the not-p card can provide
useful information (see also McKenzie & Mikkelsen,
2000). All of these problems have been resolved in the
dependence hypothesis used in the revised information
gain model. In that model, the not-p card can be infor-
mative, the probability of the consequent is b in both
models and yet, contrary to what one might expect from
Laming’s (1996) argument, the revised model still pro-
vided good fits to the data. Moreover, the very same de-
pendence model has been shown to provide good fits to
data sets in other areas of conditional reasoning (Oaks-
ford et al., 2000).

Biconditional Interpretation

The revised model also resolves a problem raised by
Oberauer et al. (1999) for Oaksford and Chater’s (1994)
account of Kirby’s (1994) data, where probabilities were
manipulated in an abstract selection task for the first
time. To model these data, we assumed that P(p) = P(q)
(although Oaksford & Chater, 1998b, relaxed this as-
sumption and still showed good fits to the data). Ober-
auer et al. objected to this assumption on the grounds
that for the ¢ and not-q cards, the participants were al-
ways told that either a “+” or a “—” was printed on a
card. However, as Over and Evans (1994) pointed out,
Kirby did not tell the participants that these symbols
were printed at random, so this fact does not license any
particular value for the probability of finding one of
these symbols on a card. So, contrary to Oberauer et al.’s
suggestion, it is certainly not incoherent to propose that
these probabilities vary with P(p).

Oberauer et al. (1999) also argued that we should have
used a biconditional dependence model, because simply
equating the probability of the antecedent and the
consequent—that is, P(p) = P(q)—does not achieve this
interpretation in the original dependence model. They
introduced a biconditional model, where P(p, not-q) =
P(not-p, q) =0, and showed poor fits to Kirby’s (1994)
results. However, in the revised dependence model when
P(p) = P(g) and € = 0, then P(p, not-q) = P(not-p, q) =
(0—that is, in the revised model, the biconditional inter-
pretation and the assumption that P(p) = P(q) go hand in

glove (see also Hattori, 2002). Of course, it was the re-
vised dependence model that we used to model Kirby’s
data above, and we showed good fits to most of the data
without making any of the assumptions that Oberauer
et al. (1999) criticized.

Rarity Assumption

Some authors have objected to the rarity assumption
(Laming, 1996; Oberauer et al., 1999). That is, to explain
the data, it must be assumed that P(p) and P(q) are small.
Recently, however, it has been shown that rarity is the de-
fault when people are testing (Anderson & Sheu, 1995;
McKenzie & Mikkelsen, 2000) or framing (McKenzie
etal.,2001) hypotheses. McKenzie and Mikkelsen showed
that people regard rare evidence as more relevant to sup-
porting a hypothesis than common evidence. So for ex-
ample, logically, both black ravens and nonblack non-
ravens (e.g., pink flamingos) confirm the hypothesis that
ifit’s a raven then it’s black. However, people regard black
ravens as more supportive of this hypothesis (see also
Oaksford & Chater, 1996). Moreover, rare observations
were often selected even when they were not mentioned
in the hypothesis.

Perhaps people are simply matching the salient named
items (see Evans, 1989). However, McKenzie et al. (2001)
showed that hypotheses are normally phrased in terms of
rare events, so that such a matching strategy is invariably
the rational thing to do. They showed participants’ data
abouta group of students’ Scholastic Aptitude Test (SAT)
scores and whether these students were admitted to a se-
lect university. Only one student was admitted, and this
was the only student with a high SAT score. When asked
to fill in a sentence frame describing this situation, “If
____,then_ " the participants strongly preferred the
phrasing “if applicants have high SAT scores, they will
be accepted” over “if applicants have low SAT scores,
they will be rejected,” even though both are equally le-
gitimate ways to complete the statement. Crucially, when
given the information that most students were accepted
and that few applicantshad low SAT scores, this finding
was reversed—that is, they now preferred the second
phrasing. In both cases, the participants preferred to
frame a hypothesisin terms of rare, rather than common,
events. In sum, not only does the rarity assumption make
conceptual sense of the literature in the philosophy of
science (see Mackie, 1963; Oaksford & Chater, 1996), it
also is a part of people’s normal expectations about the
hypotheses they formulate and test about their everyday
world.

An important observation made by McKenzie (2000)
is that the rarity assumption “is presumed to exist be-
cause of lifelong learning that presence is rarer than ab-
sence” (p. C7). Consequently, experimental manipula-
tions that violate rarity are unlikely to totally eliminate
the tendency to select the p and ¢ cards in the selection
task (see Oaksford et al., 1999, and Oaksford et al., 1997,
for a similar argument). This is because “violations of
rarity move participants’ behavior in the appropriate di-
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rection but not by as much as the normative theory (un-
encumbered by strong priors about how the world usu-
ally works) would predict” (McKenzie, 2000, p. C7).
This argument is consistent with our findings that al-
though our probability manipulations had a large effect
on the best-fitting parameter values, calibration was not
perfect—that is, it followed a 7 function. That is, the ob-
served behavior was consistent with the probability ma-
nipulation, but the changes were not as extreme as the
model would predict if the experimentally given values
were simply plugged into the model.

Revising P(p)

Several authors (Green & Over, 1998; Oberauer et al.,
1999) have questioned the revision strategy for the if not-p
then g rule [or assuming the contrast set account of nega-
tions, the high P(p) and low P(g) rule (HL)]. Indeed,
Green and Over (1998) provide an example for which it
would be incoherent to adopt this strategy. However, the
example relies on allowing P(g) to vary between models,
which is no longer possible in the revised model (see the
Parameter Alignment section). However, when there are
exceptions—that is, € > 0—the only constraint is that
P(p)(1 — &) < P(q). Consequently, P(p) can be greater
than P(g) as long as participants are willing to counte-
nance sufficiently high values of €. So HL rules can
make sense without making any revisions to P(p) or
P(g). The question s, Do people revise down P( p) or re-
vise up €? Oaksford and Wakefield’s (2003) data ad-
dressed this issue (see the Probabilities and Natural Sam-
pling section). In the indirect estimate for the HL rule,
participants provided very high values of € of, on aver-
age, .84. This clearly suggests that our earlier proposal of
the revision strategy was an unnecessary carryover from
when we did not allow for exceptions in the original de-
pendence model, as was noted by Evans and Over (1996a,
1996b).

Mentioning the Relevance of Probabilities

Oberauer et al. (1999) took issue with the fact that in
Oaksford et al.’s (1997) experiments (see the Reduced
Array Selection Task section), participants were cued to
the relevance of frequency information for card choice.
In Oaksford et al.’s (1999) Experiments 1 and 2, one half
of the participants were cued to the relevance of proba-
bility information by being asked to assess P(p) and P(q)
prior to the selection task. The remaining participants
were not cued, because they provided this information
only after they had performed the selection task. In Oaks-
ford et al. (1999), we presented no analyses of this order
manipulation, because there were no effects that indi-
cated that it was a confounding factor. To test Oberauer
et al.’s hypothesis, we looked at each significant effect
of the probability manipulations in each subgroup of
participants.

More participants selected the not-g card when P(p)
was high than when it was low. This was significant for
the participants who performed the probability check be-
fore [y2(1, N = 64) = 4.22, p < .025; all tests were one-
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tailed] and after [y2(1, N = 64) = 4.00, p < .025] the se-
lection task. More participants selected the not-g card
when P(q) was high than when it was low. This differ-
ence was not significant for the participants who per-
formed the probability check before the selection task
[x2(1, N = 64) = 0.67, n.s.], but it was significant for
those who performed it afterward [y2(1, N = 64) = 8.33,
p < .005]. More participants selected the g card when
P(q) was low than when it was high (this was significant
only for the comparison between the LL and the LH
rules). This difference was not significant for the partic-
ipants who performed the probability check before the
selection task [¥2(1, N =32)=1.17, p = .14], but it was
significant for those who performed it afterward [y2(1,
N=32)=3.14, p <.025]. In summary, contrary to Ober-
auer et al.’s (1999) suggestion, if anything, cuing partic-
ipants to the relevance of probability manipulations
would appear to suppress, rather than facilitate, their ef-
fects on people’s card selections.

Sample From a Larger Population

A further criticism of the model is that it assumes that
people regard the four cards as a sample from a larger
population (Laming, 1996; Oberauer et al., 1999; Peter
Wason, personal communication, March 1995). How-
ever, it is only on this assumption that considerations
from the philosophy of science (e.g., Popper, 1959) bear
on the task: No meaningful scientific hypothesis has ever
been stated over a domain of only four objects. In the
summary of early work in this area (Wason & Johnson-
Laird, 1972) the selection task was introduced as bearing
on “how, psychologically, science is possible,” and it was
concluded that “one contributory cause must be a pre-
eminent ability to generalise and to test generalisations”
(p. 172). Despite the immediate inference that partici-
pants were originally intended to view the cards as a sam-
ple from a larger population, they may not. If they do not,
then whether they were seeking falsificatory or confir-
matory evidence, logically they should turn the p and the
not-q cards. Since participants conspicuously refrain
from this selection of cards, it seems reasonable to as-
sume that they do not spontaneously interpret the rule in
this way. Moreover, as Oaksford et al. (1999) pointed
out, when Legrenzi (1971) presented participants with the
four cards so that they could look at both sides, only 1 par-
ticipant out of 30 described the situation by using a con-
ditional. That is, with such a limited domain, the condi-
tional is not the most natural description of the situation.

However, some authors still have insisted that people
should interpret the rule as applying only to the four
cards. Oberauer et al. (1999), for example, argued that
conditionals can be both general and specific—for ex-
ample, if it rains tomorrow, the game will be canceled is
an example of a specific conditional claim. However, to
construct a selection task with these rules, the cards can
no longer be interpreted as instances—that is, as indi-
vidual people or objects. Rather, they must be inter-
preted as possible states of affairs concerning what hap-
pens tomorrow. Moreover, just like the corresponding
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counterfactual, if it had rained yesterday, the game
would have been canceled, whether one should believe
such a rule seems to depend on the existence of a law or
social convention that games of this kind do not take
place if it rains (Goodman, 1954). Consequently, whether
one should believe it or not depends on the evidence one
has for the generalization, if it rains then games of this
kind are canceled. And this need not involve looking at
data but may simply involve remembering the laws of the
game—for example, if the game in question is tennis,
one will be strongly inclined to believe the claim. In
sum, the mere fact that conditionals can be used to make
specific claims does not mean it would be at all natural
to interpret the rules in a selection task as specific. More-
over, even if they were so interpreted, whether one be-
lieves specific conditionals of this form may rely on the
truth or falsity of a related generalization that may be as-
sumed to be the real rule under test.

Individual Differences

Green (2000) and Evans (1999) both questioned
whether the probabilistic approach is sufficient as an ex-
planation of human reasoning performance. Both com-
mentators argued that there is clear evidence of deduc-
tive competence. For example, Green (2000) noted that
although people are sensitive to the believability of con-
clusions (see also Oaksford et al., 2000), these effects
are far stronger on invalid than on valid conclusions.
Moreover, Green (1995a, 1995b; Green & Larking, 1995)
has shown that some participants do construe the selec-
tion task logically, and Stanovich and West (1998) have
shown that a subgroup (around 10%) of participants with
high intelligence are capable of logical performance.
That is, it appears that people have some sensitivity to
the notion of logical validity.

However, as Stanovich and West’s (1998) results
show, this may be as few as 10% of students at a top rank
university (their research was conducted at the Univer-
sity of Toronto). That is, assuming that only the top 1%
of the populationever attends such institutions (and even
this is probably too liberal an estimate), logical perfor-
mance may be seen in only as few as 0.1% of the popu-
lation. Moreover, even the behavior of this elite band
does not necessarily implicate an underlying innate log-
ical competence. It could simply reflect an accumulation
of experience showing that these particular inferences
seem to work in the real world more often than do oth-
ers. Or it could reflect a learned ability acquired at school
while learning, for example, mathematics or IT, which
may account for its association with IQ as measured by
the SAT (Stanovich & West, 1998).

These results bring us back to one of the issues with
which we began: the balance of System 1 and System 2
processes in reasoning. The results of our model com-
parison appeared to showed that the System 1 informa-
tion gain model can explain more of the data than can
System 2 logic-based models. The latter may be needed
only to explain the performance of this elite band of very

high IQ participants. Of course, even here these psycho-
logic accounts are partly redundant, because they are de-
signed largely to explain errors in logical reasoning, not
successes. Logical success can be explained simply as ac-
quired logical knowledge, which need imply little for the
fundamental organization of our cognitive architecture.

CONCLUSION

In this paper, we have presented a revised version of
the information gain model and have shown that it pro-
vides good fits to the data originally modeled by Oaks-
ford and Chater (1994). We then reviewed the recent lit-
erature on the selection task and showed that the revised
model can provide good fits to the much of the data and,
moreover, addresses a wide range of theoretical criti-
cisms of the model that have been suggested since it first
appeared. We have also addressed a variety of findings
that have been claimed to be inconsistent with the model,
and we have argued in each case that the results do not
discriminate against the information gain account to
anything like the degree claimed. We believe that the in-
tense scrutiny that the information gain model has un-
dergone in the literature since it first appeared has been
extremely healthy. These criticisms not only have re-
sulted in a more coherent model, but also have led to the
development of other testable models of the data selec-
tion behavior observed in Wason’s (1966) selection task.
Even if these models are not the last word on that task,
echoing Green and Over (2000), the experimental results
we have reviewed also reveal that any account of data se-
lection is going to have to explain probabilistic effects
such as those predicted by these models.

More generally, the success of these models has some
important consequences. First, it is important to realize
that there may be more than one normative model of task
performance and that deciding which is the most appro-
priate is an empirical issue—that is, computational-level
theories must be normatively correct and descriptively
adequate. Second, the information gain model and its
variants demonstrate that the behavior observed on the
selection task is rational; there is no need to invoke per-
formance errors of the type appealed to by logical ap-
proaches to explain the data. Third, these analyses show
that the Wason selection task is better viewed as an in-
ductive task, which was how it was first introduced into
the literature. Fourth, the mounting evidence on the im-
portance of the rarity assumption shows that people’s
hypothesis-testingbehavioris well adapted to the environ-
ment. Finally, the model fits seem to show that high-level
System 2 processes may not be required to explain these
selection task results; they can all be explained by a com-
putational-level theory of lower level System 1 processes.
Following Lloyd Morgan’s (1894) canon, if some func-
tion can be explained at the lower level, that is probably
the level at which it should be explained, since there seems
little point attributing people with more high-level cog-
nitive equipment than is needed to explain their behavior.
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NOTES

1. Krauth (1982) extended the stochastic model of Evans (1977) to
explain negations paradigm data. He also provided detailed model fits.
However, these models parameterized various tendencies to verifica-
tion, falsification, and matching or degree of insight into the task. As
psychological constructs, these notions are now outdated. In mental
logic and mental models theory, these notions have been replaced by
the proposal that people adopt different interpretations of the task rule,
as we discuss in the text. Consequently, although these models may pro-
vide good fits to the data, theoretically they are no longer interesting.
In particular, the parameters refer to probabilities of, for example, being
in a verifying state, but these are not parameters that we can vary ex-
perimentally, unlike the parameters of the information gain model.

2. Are the disinterested and the decision-theoretic approaches re-
lated? One mightimagine that when the costs of making different errors
are equal (or more specifically, both 0), the decision-theoretic approach
collapses into the disinterested approach. Under these circumstances (par-
ticularly when these costs are both 0; see Klauer, 1999, Appendix B), any
decision-theoretic approach may certainly be described as disinterested,
although one might argue that the cost of experimentation still needs to
be taken into account in computing a risk function (Klauer, 1999).
However, this is also the case for disinterested approaches—that is, it
explains why people do not turn all the cards with some positive informa-
tion value (Chater & Oaksford, 1999b). However, it is important to note
that, under the conditions mentioned, existing decision-theoretic ap-
proaches do not reduce formally to the existing disinterested approaches.
This is because they use different notions of informativeness (as Klauer,
1999, observed; even though Oaksford & Chater, 1996, showed that ex-
pected information gain is equivalent to expected Kullback—Leibler in-
formation, the Kullback-Leibler numbers used in the optimal Bayes’s
procedure are different again). Moreover, even if the costs of making
different errors were equal (but not both 0), they would diverge in their
predictions when people do not believe the rule (see the main text).

3. Could we have captured degrees of dependency other than by in-
troducing an exceptions parameter? McKenzie and Mikkelsen (2000)
have suggested that the phi coefficient (Siegel & Castellan, 1988) could
be used. This statistic provides a measure of the correlation between two
dichotomous variables in a 2 X 2 contingency table. One argument for
not using the phi coefficient is as follows. Looking at Table 1, if the p,
not-q cell is 0 and the other cells are equiprobable, phi = .5, whereas ¢ =
0. However, if the not-p, g cell were 0 and the other cells were equiprob-
able, again phi=.5, butnow & =.5. That is, the phi coefficient is unable to
distinguish between a case in which, for example, turning the key always
starts the car (there are no exceptions) and a case in which it is at chance
levels whether turning the key starts the car (half of all cases are excep-
tions). This seems undesirable in a measure of conditional dependency
(we thank Masasi Hattori, personal communication, June 2001, for this
point).

(Continued on next page)
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APPENDIX

Table A1
The Fits to the Abstract Selection Task Data in Oaksford and Chater’s (1994) Meta-Analysis, Showing the Observed
Probability of Selecting Each Card [Obs. P(Sel.)] and the Probability of Selecting Each Card Predicted by the
Information Gain Model [Pred. P(Sel.) IG] and the Mental Logic and Mental Models Approaches [Pred. P(Sel.) MM]

Pred. P(Sel.)

Obs. P(Sel.) Pred. P(Sel.) IG MM
Study Experiment p p q q@ p p q q P(p)Plq G2 p q q P P G
Wason (1968) 1/experimental 1.0 .17 .78 28 .92 .13 .68 .16 .18 .22 5.8* 27 .63 .16 .23 .25 4.4*
1/control 1.0 .06 .69 .12 95 .09 .76 .09 .04 .05 24* .12 .63 .07 .32 .11 3.9*
2 1.0 .12 .50 .12 98 .09 48 .10 .05 .10 [1.I* .12 .50 .12 48 .15 6.9*
Evans & Lynch
(1973) Single .88 .08 50 .33 .89 .17 .48 30 .28 .37 1.7* .17 40 26 .53 .29 1.0*%
Manktelow &
Evans (1979) 1/abstract 96 .12 62 33 91 .15 .55 .23 24 .31 2.8* 23 49 23 40 .29 2.2%
2/abstract 83 .17 67 25 .83 .18 .66 .23 .28 .31 0.1* 24 58 .17 .33 .25 0.6*
3/abstract .88 .38 56 .38 .78 .23 .53 35 .35 .40 2.6* 40 53 35 .39 45 1.3*
4/abstract .69 .00 .62 .12 .82 .18 .73 20 .26 .27 93 .07 55 .06 .39 .08 6.7*
S/abstract .88 .12 81 .06 .89 .11 .84 .11 .11 .12 0.6* .15 .79 .04 .18 .10 0.7*
Griggs & Cox
(1982) 1/Trial 1 1.0 .06 .56 .06 .97 .09 .60 .10 .06 .09 3.2* .07 .56 .06 .44 .12 3.8*
1/Trial 2 1.0 .06 .69 .06 .96 .09 .72 .09 .02 .03 2.6* .08 .67 .04 .31 .07 3.9%
3/Trial 1 70 .30 .70 40 .67 .29 .63 .31 .38 .39 1.2* 39 56 .30 .30 .41 5.2%
3/Trial 2 .65 30 .75 30 .64 .29 .72 26 .36 .35 0.3* 37 .64 21 .24 .34 8.2%
Griggs (1984) non-mem./T-F .84 .16 .52 .08 .90 .15 .61 .21 .23 28 49* .13 55 .11 44 .15 3.3*
non-mem./vio. .92 .16 .76 .16 .90 .13 .74 .15 .18 .20 0.4* 22 .69 .10 .23 .18 0.4*
Chrostowski &
Griggs (1985)  non-mem./vio. .87 .12 .77 .15 .88 .14 .77 .15 .19 .20 0.2* .18 .69 .08 .23 .15 0.3*
non-mem./T-F .97 .07 .78 .08 .95 .09 .76 .09 .04 .05 23* .11 .74 .04 22 .08 5.0%
Hoch & Tschirgi
(1985)* bachelor’s .88 24 60 40 .83 .21 .53 32 .32 .38 1.9* 31 .49 .33 .40 .40 0.02*
Valentine (1985) AA 83 .12 58 25 .86 .18 .60 .25 .28 .33 0.6* .19 50 .19 42 24 0.7*
Yachanin (1986)  2/widgit/vio. 1.0 .15 .80 .20 .94 .11 .73 .12 .12 .14 45% 23 .69 .10 .20 .19 4.7*
2/widgit/test 95 20 .70 30 .89 .16 .63 .22 .25 .29 2.5* 29 58 21 .30 .29 0.8*%
Beattie & Baron
(1988) 1/4-card, +ve 94 .06 56 .06 .98 .09 .59 .09 .02 .04 14* .06 55 .05 .44 .07 09*
2/4-card, +ve 1.0 .06 .62 .50 .92 .15 45 29 .26 .37 9.1* 24 40 .35 .46 .39 7.8%*
3/4-card, +ve 1.0 .00 .62 .12 96 .11 .64 .13 .12 .16 4.4* .07 .55 .06 .39 .08 5.8%*
Cosmides (1989) 1&2 96 21 31 44 93 .15 30 42 .28 .46 2.3* 20 32 44 .65 47 4.2%
3&4 96 23 48 52 .88 .18 .37 .42 .31 .44 9.0* 30 .39 47 .53 .51 3.1*
Girotto et al.
(1992) 1/arbitrary rule .83 .17 .58 .25 .85 .18 .60 .26 .29 .34 0.1* 22 .52 20 41 26 0.7*
2/arbitrary rule .96 .29 .54 33 88 .17 .50 .30 .29 .37 4.1* 32 51 31 42 39 2.5%
3/arbitrary rule .79 .29 42 54 .75 25 38 .51 .39 .48 0.6* 32 .38 .52 .55 .56 2.2%
4/arbitrary rule .80 .10 .60 25 .84 .18 .62 .25 .28 .33 1.4* .18 51 .17 41 .22 1.6%
Oaksford &
Stenning (1992) 2/abstract 79 25 .62 21 .79 .21 .65 26 .31 .34 0.6 27 .60 .18 .34 27 3.2%
3/colored shape .62 .29 .62 .29 .64 .31 .64 .31 .39 .39 0.1* .33 .57 25 35 35 122
3/vowel-even 96 .17 71 29 90 .15 .63 .20 .23 .27 3.0* .26 .58 .19 .30 .27 1.7*
3/control .88 .17 50 .17 91 .15 .55 24 25 .31 1.2* .17 50 .17 47 21 1.1%

Note—The best-fitting parameter values and the values of the log-likelihood ratio (G2) are also shown. For the information gain
model, P(M;) = .5 and & = .1 for all model fits. For all the mental logic/mental models fits, the predicted probability of selecting
the p card is not shown because it is always .888. For all studies using Evans’s (Evans & Lynch, 1973) negations paradigm, only the
data for the affirmative rule are included. Studies were included only where individual card selection frequencies were reported or
could be inferred from exhaustive reporting of card combinations. p, not-p card; g, not-q card; MM, mental logic and mental mod-
els theories; non-mem., no memory cuing; T, true; F, false; vio., violation condition; AA, affirmative antecedent and affirmative
consequent condition; +ve, affirmative consequent condition.

*Model cannot be rejected at the .01 level of significance.



Table A2
The Fits of the Information Gain Model to the Negations Paradigm Data in Oaksford and Chater’s (1994)

OPTIMAL DATA SELECTION

Meta-Analysis, Showing the Observed Probability of Selecting Each Card [Obs. P(Sel.)] and the Probability
of Selecting Each Card Predicted by the Information Gain Model [Pred. P(Sel.) IG]

Obs. P(Sel.) Pred. P(Sel.) IG

Study Rule p P q q p P q q PTA) PTC) G2
Evans & Lynch (1973) If p then q .88 .08 .50 .33 .89 .17 .48 30 .28 37 1.7%
If p then not-q 92 .04 .08 .58 96 .10 .12 .63 .18 .68 2.7*
If not-p then q 54 21 .71 .08 .60 .28 .82 .20 .33 .30 5.2%
If not-p then not-q 83 .13 .33 25 90 .16 .42 34 .28 40 2.9%

Manktelow & Evans (1979),
Experiment 1 Ifp then q 96 .13 .63 33 91 .15 55 23 24 31 2.8%
If p then not-q 0 .08 21 .75 95 .10 .12 .69 .19 71 4.6*
If not-p then q 58 29 .58 42 .62 34 56 38 42 43 0.6*
If not-p then not-q 54 46 29 75 49 41 28 72 52 .60 0.6*

Manktelow & Evans (1979),
Experiment 2 Ifp then q .83 .17 .67 25 83 .18 .66 .23 .28 31 0.1%
If p then not-q 96 .04 33 75 91 .13 .17 .66 .28 .60 7.7%
If not-p then q 79 29 71 .50 72 .27 .57 34 .37 40 5.1%
If not-p then not-q 83 21 .54 .67 .78 24 .37 51 .38 48 6.0%*

Oaksford & Stenning (1992),
Unpublished Control 1 Ifp then q 79 25 .63 21 .79 21 .65 26 .31 34 0.6*
If p then not-q 83 .25 .17 .67 .82 .19 22 .69 .36 .58 1.1%
If not-p then q 83 .29 .79 29 .76 21 .72 23 .30 31 2.7%
If not-p then not-q 71 .33 .38 .58 .68 30 .36 .57 43 S1 0.3*%

Oaksford & Stenning (1992),
Experiment 3, Control Ifp then q 75 21 54 29 78 23 .57 32 34 .38 0.3*%
If p then not-q J5 .13 21 46 .83 20 .30 .55 .35 S1 3.9%
If not-p then q 58 .33 .71 42 58 36 .64 32 41 40 1.5%
If not-p then not-q 88 25 54 42 82 21 49 36 .33 40 1.3

Oaksford & Stenning (1992),
Unpublished Control 2 Ifp then q g1 .17 .50 .17 .79 22 61 29 .33 .36 4.3%
If p then not-q 79 .13 .17 50 .86 .18 .26 .58 .34 53 3.2%
If not-p then q 67 21 46 46 71 28 45 45 40 46 0.9%
If not-p then not-q 83 .13 .63 42 .83 20 .55 .31 .32 37 2.5%

Note—The best-fitting parameter values and the values of the log-likelihood ratio (G2) are also shown. For the information gain
*Model cannot be rejected at the .01 level of significance.

model, P(M;) = .5 and & = .1 for all model fits. p, not-p card; g, not-q card.
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Table A3
The Fits to the Negations Paradigm Data in Oaksford and Chater’s (1994) Meta-Analysis, Showing the Probability of
Selecting Each Card Predicted by the Three-Parameter Information Gain Model [Pred. P(Sel.) IG] and the Three-

Parameter Mental Logic and Mental Models Approaches [Pred. P(Sel.) MM]

Pred. P(Sel.) MM MM Pred. P(Sel.) IG G
Study Rule p P q q Parameter G2(13) p p ¢q q Parameter G2(13)
Evans & Lynch
(1973) Ifp then g 8 .04 51 24 P=49 31.6 93 .14 47 26 P(p)=.24 263*
If p then not-q 86 .04 33 42 P;=.42 95 .13 26 .39 P(q)=.34
If not-p then q 68 22 51 24 P,=.18 60 .30 .76 .24 P(n)=.12
If not-p then not-q 68 22 33 42 81 .22 39 46
Manktelow &
Evans (1979),
Experiment 1 Ifp then g 86 .10 58 40 P =.42 13.6%* 91 .16 .35 38 P(p)=.28 22.5*%
If p then not-q 86 .10 26 .72 P;=.72 91 .14 .18 .64 P(q)=.43
If not-p then q 54 41 58 40 P,=.32 54 .40 .61 35 Pm)=.16
If not-p then not-q 54 41 26 .72 66 .28 .25 .73
Manktelow &
Evans (1979),
Experiment 2 Ifp then g 86 .17 59 40 P.=.41 24.3*% 88 .18 44 34 P(p)=.30 30.1
If p then not-q 86 .17 43 56 P;=.56 90 .16 .29 48 P(q)=.40
If not-p then q 70 33 59 40 P,=.16 67 .30 .60 .33 P(n)=.09
If not-p then not-q 70 .33 43 .56 77 .25 37 51
Oaksford &
Stenning (1992),
Unpublished
Control 1 Ifp thenq 86 .16 .62 .37 P.=.38 234% 84 20 48 35 P(p)=.32 21.9*
If p then not-q 86 .16 43 .57 P;=.57 .87 .18 31 50 P(g)=.40
If not-p then q 66 36 .62 37 P,=.20 59 35 .64 32 P(n)=.09
If not-p then not-q 66 36 43 .57 1 .28 40 51
Oaksford &
Stenning (1992),
Experiment 3,
Control Ifp then g 86 .14 58 34 P =42 204* .81 22 53 33 P(p)=.33 12.3*
If p then not-q 86 .14 45 48 P.=.48 85 .19 37 44 P(g)=.39
If not-p then q 72 28 58 34 P,=.14 62 .33 .66 31 P(n)=.06
If not-p then not-q 72 28 45 48 72 28 46 44
Oaksford &
Stenning (1992),
Unpublished
Control 2 Ifp then q .86 .12 48 34 P =52 245% 83 21 47 37 P(p)=.33 23.0%
If p then not-q 86 .12 39 43 Py=.43 .85 .20 38 43 P(g)=.41
If not-p then q 77 21 48 34 P =.09 74 26 54 36 P(n)=.04
Ifnot-p thennot-q .77 21 39 43 18 24 44 44

Note—The best-fitting parameter values and the values of the log-likelihood ratio (G2) are also shown. For the information gain
model, P(M,) = .5 and & = .1 for all model fits. p, not-p card; g, not-q card.

cance.

(Manuscriptreceived October 24, 2000;

revision accepted for publication May 17, 2002.)

*Model cannot be rejected at the .01 level of signifi-



