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ABSTRACT Applications in wireless sensor networks (WSNs) are rapidly spreading out over the world.

The one critical point of WSNs is energy consumption, where the transmitted data is limited by battery

energy. Solar energy is used to handle the depletion of the battery energy via photo voltaic (PV) panels.

A solar energy harvesting WSN (SEH-WSN) node utilizes exponential decision-dynamic duty cycle

scheduling based on prospective increase in energy (ED-DSP) to save battery energy by adjusting the

duty cycle from an exponential curve and future solar energy. To estimate the prospective solar energy,

a prediction technique is applied, but does not guarantee 100% accuracy. Hence, this paper proposes a

Markov Decision Process (MDP) to schedule a duty cycle of an SEH-WSN node instead of the ED-DSP

depending on the predicted energy. We evaluate its performance via MATLAB simulations with simple

irradiance models and real annual irradiance data. The results show that the MDP policy outperforms the

ED-DSP.

INDEX TERMS Solar Energy Harvesting, Markov Decision Process, Wireless Sensor Network.

I. INTRODUCTION

C
URRENTLY, many fields have seen a dramatic increase

in sensor applications, especially in healthcare, agricul-

ture, environmental monitoring and forecasting, transporta-

tion, security, and disaster management. These sensors are

connected to various technologies such as the Internet of

Thing (IoT), cloud computing, nanotechnology, and big data.

In the future, many of these technologies may be integrated

into networks and be run and maintained by applications [1].

Modern life and work are replete with IoT. The architec-

ture of the IoT is essentially based on data links and interfaces

to make things connectable and smart. Nevertheless, in this

arrangement, a key factor remains energy consumption [2].

In big data, a large number of sensors, both mobile and

stationary WSN nodes, are deployed in the environment. The

Quality of Service (QoS) and a lifetime of WSNs can be

improved with a well-designed system [3]. Due to the limi-

tations of the WSN node battery capacity, an energy-aware

adaptive sensing technique can be applied to calculate the

sustainable sensing period based on residual battery energy

that yields an optimal data gathering process [4]. Besides

the energy consumption management within the WSN infras-

tructure, energy harvesting is another solution that is being

continuously researched.

The energy harvesting technique utilizes ambient energy,

such as solar, vibration, thermometric, wind flow, magnetic

field, and acoustic noise, which can be converted to elec-

tricity. These energies can be applied to WSNs, where these

become energy harvesting WSNs (EH-WSNs). Of all the

methods currently available, solar energy has the highest po-

tential in terms of harvesting energy (mW/cm3)(µW/cm3)

[5]. Hence, this article will only focus on an SEH-WSN

scheme.

In addition, Medium Access Control (MAC) protocol can

cause huge energy consumption in WSNs because of data

collision and idle listening. A duty-cycle MAC protocol is

initially used for non-rechargeable WSN nodes. If the MAC

protocol operates in the high duty cycle, the active time is

longer and more energy is consumed. Hence, the key to

saving energy is to reduce idle listening periods by switching
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to sleep mode, which decreases wasted energy by up to 50%

[6]. To deal with the issue of fluctuations in solar energy

during the daytime, the duty cycle has to be adjusted to

correspond to the strength of solar irradiance to yield the

proper data transfer and prevent battery depletion. With this

concept, Exponential decision MAC (ED-MAC) protocols

are proposed. These protocols performed with better results

in a high packet delivery ratio and low energy consumption

when compared to a receive initiated MAC (RI-MAC) proto-

col that is normally used in the general WSNs [7]. However,

the ED-MAC protocols are the deterministic solution for

the SEH-WSNs, which causes difficulties in guaranteeing

optimal results.

This article proposes a stochastic approach with MDP,

based on battery energy and a duty cycle of an SEH-WSN

node to provide a duty cycle that maximizes the data transfer

while preventing premature battery depletion.

The article is organized as follows: Section II describes the

background and related works, including notations. Section

III proposes a designed model. Section IV presents the pro-

posed method in detail. Section V assesses the system perfor-

mance with MATLAB simulations. Section VI discusses the

evaluated results. Finally, Section VII states the conclusion

of this article.

II. BACKGROUND AND RELATED WORKS

This section will provide the notations used in this article, fol-

lowed by a presentation of the background and related works

on MAC protocols for EH-WSNs, SEH-WSN nodes, solar

irradiance and solar charging models, and an MDP. These

subjects will initiate knowledge of our proposed method.

A. NOTATIONS

Script uppercase letters are denoted as sets. For example,

a set can be written as A . Bold lowercase and uppercase

letters are denoted as vectors and matrices. For example, a

vector and matrix can be written as a or A. Italic lowercase

and uppercase letters are denoted as scalars. For example, a

scalar can be written as a or A. Table 1 indicates the symbols

and their definitions used in this article. For probability

representation, the letter P with curly brackets as P{event}
is applied.

B. MAC PROTOCOLS FOR EH-WSNS

MAC protocol is considered to be a layer in the communi-

cation architecture for WSNs. Its function is to control the

WSN node in transmitting signals through the air. The MAC

protocol yields high throughput and fairness, but also less

energy consumption and latency.

WSN nodes are usually deployed in the environment with-

out access to a public power supply. Thus, a battery of the

WSN node has to be replaced to prolong the network. To

reduce energy consumption, a sensor MAC (S-MAC) proto-

col is used instead of a conventional wireless MAC protocol,

such as IEEE 802.11 that delivers a high data transfer rate,

but consumes a lot of energy [8].

TABLE 1. Symbols and descriptions.

Symbol Description [Unit]

A Set of actions
B Set of battery energy levels
D Set of duty cycle levels
G Set of days that MDP policy transfers more data

than ED-DSP
Q Set of days that ED-DSP transfers more data than

MDP policy
S Set of States
TD Matrix of duty cycle transition probability
TB Matrix of battery energy transition probability
TP Matrix of transition probability
Pout Vector of output energy at PV panel
Pp Vector of potentially charged energy probability
R Vector of reward
As Area of a PV panel [m2]
B Battery energy [J]
Bc Critical battery energy [J]
Bth Threshold battery energy [J]
Bmax Maximum battery energy [J]
Br Residual battery energy [J]
D Duty cycle [%]
Dc Critical duty cycle [%]
DED−DSP Duty cycle of ED-DSP protocol [%]
DED−DSR Duty cycle of ED-DSR protocol [%]
Dmax Maximum duty cycle of ED-MAC protocol [%]
Dmin Minimum duty cycle of ED-MAC protocol [%]
Dth Threshold duty cycle [%]
Dtr Data transfer rate [bit/s]
C Cost function
Echarge Potentially charged energy in battery [J]
Econs Energy consumption in one duty cycle level [J]
Ee Expected energy from solar energy harvesting [J]
Esur Surplus energy from a PV panel [J]
F Cloudy sky factor
P Transition probability
Pcharge Potentially charged power in battery [W]
Pcons Power consumption during operation [W]
Pout Output power at PV panel [W]
Pp Potentially charged energy probability
I Solar irradiance [W/m2]
Iclear Solar irradiance with clear sky [W/m2]
Icloudy Solar irradiance with cloudy sky [W/m2]
Imax Maximum solar irradiance [W/m2]
IETImax

Maximum extraterrestrial irradiance [W/m2]
T Time period
Tact Active time period
Tduty Time period of duty cycle
Topt Operation time period
Ttr Time that data transferred
a Action member in action set
b Battery member in battery set
d Duty cycle member in duty cycle set
a1, a2, b1, b2, c1, c2 Cloudy sky model parameters
g Day that MDP policy transfers more data than ED-

DSP
q Day that ED-DSP transfers more data than MDP

policy
i,j,k,l,m,n,v,z Index of vector, matrix or set
s State member in state set
t Time [h]
trise Sunrise time [h]
tset Sunset time [h]
∆ Different amount of data transfer [bit]
α ED-MAC protocol constant
β Charging controller efficiency [%]
η PV panel efficiency [%]
γ ED-MAC protocol variable
φ Decision variable or randomized policy
φ∗ Optimal randomized policy
π∗ Optimal policy
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The S-MAC protocol controls data accessing the medium

by a contention-based technique with duty-cycle operation.

One cycle consists of an active period and a sleep period.

The sleep mode is used instead of an idle listening mode due

to the low amount of data transferred in WSN applications.

Therefore, the WSN node can reduce energy consumption.

According to the S-MAC protocol, Fig. 1 depicts a sce-

nario of node A sending a message to node B in one duty

cycle. In active mode, the schedules of nodes A and B first

have to be updated with SYNC packages. If nodes A and B

are on the same schedule, node A will send an RTS (Request

to send) package to node B. If node B is ready to receive

data, it will respond with a CTS (Clear to send) package to

node A. Then, node A will transmit data to node B. When

node B finishes receiving the data, it will send an ACK

(Acknowledge) package to indicate the end of the process.

After that, both nodes will enter sleep mode.

FIGURE 1. A scenario of sending the message from node A to node B in one

duty cycle by using the S-MAC protocol.

MAC protocols for WSNs are continuously being im-

proved in throughput, latency, and energy consumption, for

example, T-MAC, B-MAC, WiseMAC, X-MAC, RI-MAC,

PW-MAC, WX-MAC, SW-MAC, and DS-MAC protocol [9].

An energy harvesting technology can be applied to transmit

more data using the same battery size. In 2014, exponential

decision MAC (ED-MAC) protocols for SEH-WSNs were

proposed [7]. Their mechanism is to adjust the duty cycle

following the exponential slope depending on the battery

energy as shown in Fig. 2. There are two types of ED-

MAC protocols. One is the exponential decision-dynamic

duty cycle scheduling based on current residual energy (ED-

DSR), and the other is based on prospective increase in

energy (ED-DSP).

To prevent battery depletion, the ED-MAC protocols are

organized into 3 decision zones as shown in Fig. 2. It consists

of an axis x representing residual battery energy Br and an

axis y representing a duty cycle of the ED-MAC protocols

corresponding to the residual battery energy. The first zone is

a critical zone (red area). When the battery energy is below a

critical battery level Bc, the duty cycle is set at a critical duty

cycle level Dc. The critical duty cycle level is very low or can

be zero to save battery energy. The second zone is a threshold

zone (yellow area). When the battery energy is between the

critical battery level and a threshold battery level Bth, the

duty cycle is set at a threshold duty cycle level Dth. This duty

cycle level is higher than the critical level but not too high in

FIGURE 2. A decision graph of the ED-MAC protocol.

order to send data at a constant rate and save more energy.

The final zone is an exponential decision zone. In this zone,

the duty cycle is adjusted according to an exponential curve

depending on the types of the ED-MAC protocols. One is

the ED-DSR (dashed line in Fig. 2). The duty cycle changes

when the residual battery is low, and also gradually changes

when the residual battery is high. The other is the ED-DSP

(solid line in Fig. 2). Since the node can harvest energy,

the ED-DSP makes decisions with the residual battery plus

expected harvested energy Ee. Therefore, the exponential

curve of the ED-DSP is higher than the ED-DSR, which

means that the node is allowed to have a higher duty cycle.

As the result, the data transfer rate of the ED-DSP is higher

than the ED-DSR.

The mathematic representation of ED-DSP can be ex-

pressed as: (1).

DED−DSP = Dmin + αγe−γ (1)

where Dmax and Dmin are the maximum and minimum duty

cycle on the DED−DSP curve, α = (Dmax−Dmin)e
1, γ =

(Br+Ee)−Bth

(Bmax+Ee)−Bth
, and Br ∈ [Bth, Bmax].

If the expected harvested energy is zero, the ED-DSP

equation becomes the ED-DSR equation because it considers

only the residual energy.

Hence, the most challenge for the ED-DSP is the precise

prediction of the expected harvested energy due to the uncer-

tainty of the weather conditions. Table 2 shows the prediction

techniques used to forecast solar irradiance.

However, the prediction methods in Table 2 also have the

prediction error. Therefore, this article presents the MDP

policy which does not use the prediction in its mechanism.

To compare performance between MDP policy and ED-DSP,

we use the ideal prediction for the ED-DSP to forecast the

expected harvested energy, so that the expected harvested

energy at time t perfectly equals the charged energy at time
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TABLE 2. Prediction techniques for predicting solar irradiance.

Prediction technique Year Detail

Exponential weighted
moving-average
(EWMA)

2007 A. Kansal et al. utilized the EWMA filter
to predict solar energy used for energy
management in sensor networks [10].

Weather-conditioned
moving average
(WCMA)

2009 J. R. Piorno et al. presented the adapta-
tion of the EWMA called WCMA which
estimates the current energy from the
averge of the last harvested energy and
the average harvested energy in the past
days with the dynamic weight [11].

Accurate solar energy
allocation (ASEA)

2011 D. K. Noh and K. Kang proposed an ad-
vanced expectation model of harvested
energy to manage the energy in each time
slot [12].

PROfile energy (Pro-
energy)

2012 A. Cammarano et al. proposed the Pro-
energy to predict the solar and wind en-
ergy for WSNs. It has better performance
than EWMA and WCMA [13].

Q-learning 2016 S. Kosunalp proposed a solar en-
ergy prediction via Q-learning. The Q-
leaning method outperforms the EWMA,
WCMA, ASEA, and Pro-energy in both
time slots and months [14].

Real-forecast weather
moving average
(RWMA)

2018 H. Ren et al. presented the RWMA im-
proved the accuracy when the weather
rapidly changes. It yields an average
daily error of only 11% while the
EWMA and WCMA have an average
daily error of 56% and 31% respectively
[15].

Autoregressive
moving-average
(ARMA)

2020 I. SANSA et al. simulate the ARMA on
a winter day. As the result, the prediction
error does not exceed 10% [16].

t + 1. The next subsection presents the examples of SEH-

WSN nodes.

C. SEH-WSN NODES

In [17], R. Belu designed and analyzed a micro-solar power

for WSNs. The SEH-WSN node is designed to harvest so-

lar energy. The node consists of a mini-PV panel, primary

buffer super-capacitors, and a secondary buffer rechargeable

battery. Consequently, Two 22F/2.5V super-capacitors can

supply the power for 10 hours with no sunlight. However,

this article will address the uncertainty of solar irradiance, a

challenge that does not possess an optimal solution, as of yet.

In [18], Hong et al. presented the design and implementa-

tion of an SEH-WSN node used for logging solar irradiance.

The designed SEH-WSN node, as shown in Fig. 3, is com-

posed of a PV panel, a solar charge controller, a battery, a

boost-buck converter, and a mote with sensors. The design is

based on a MICAz mote that needs 2.7 - 3.3 V supply voltage.

The selected PV panel has a 10cmx10cm size with 13%

efficiency. A LT3652 step-down battery charger from Liner

Technology Corporation (LTC) is used as the solar charger

controller in order to step down the voltage from the 9V PV

panel to a 3.7V 2,500mAh Li-ion battery. Then, a LTC3440

high efficiency boost-buck converter from LTC is used to step

down the voltage from the 3.7V battery to the mote.

In [19], L. J. Chen et al. experimented on a simple SEH-

WSN node, and also provided essential guidance for design-

ing an SEH-WSN node. The designed node consists of a

114.3mmx66.8mm 3.3V PV panel from the BP Solar model

MSX-005F, two AA 2.5V 750mAh NiMH batteries from

Energizer model NM15, and a MICAz mote with a board

model MDA300. a Schottky diode is used as a solar charge

controller. Its function is not to step down the voltage, but to

prevent the reverse current from the battery to the PV panel in

the event of insufficient solar irradiance to charge the battery.

TABLE 3. Advantages and disadvantages of different battery types [18], [19].

Battery types Advantage Disadvantage

Lithium-Ion
(Li-ion)

Long life cycle
Low self-discharge rate

Expensive
Small capacity
Complex charging circuit

Nickel Cadmium
(NiCd)

Deliver fill rated capacity Temporary capacity loss
Fast discharge rate

Nickel Metal
Hydride (NiMH)

High energy density Low life cycle than Li-Ion

Thin film High cell voltage
Long life cycle

Small capacity
High internal resistance

Ultra-capacitors High power density
Long life cycle

High self-discharge rate
Small capacity

The advantages and disadvantages of different battery

types are shown in Table 3. There is currently no battery type

that has all the advantages in terms of cost, energy density,

power density, life cycle, self-discharge rate, and others. For

example, Li-ion, thin film, and ultra-capacitors have a long

life cycle but have a small capacity. In contrast, NiMH has

high energy density but has a low life cycle. This article

requires a battery that has a long life cycle, small capacity,

and very low self-discharge rate which can be ignored in

a calculation. This requirement is close to the capabilities

offered by the Li-ion battery.

D. SOLAR IRRADIANCE AND SOLAR CHARGING

MODELS

In [20], a cloudy sky irradiance model was proposed. This

model was developed from the simple clear sky model ex-

pressed in (2). The clear sky model utilizes the part of a

sine function starting from the angle at 0 to π radians to

present the clear sky irradiance Iclear from sunrise time trise
to sunset time tset in an hour.

Iclear(t) = Imax sin

(

π(t− trise)

tset − trise

)

, trise < t < tset (2)

In (2), the maximum solar irradiance Imax is the multi-

plication of a cloudy sky factor F and a daily maximum ex-

traterrestrial irradiance IETImax
expressed in (3). The max-

imum extraterrestrial irradiance depends on a solar zenith

angle and is simply set as 1,362W/m2. The cloudy sky factor

has range from 0 to 1. Hence, a higher value means a clearer

sky.

Imax = FIETImax
(3)
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FIGURE 3. A structure of the SEH-WSN node [18].

The cloudy model is adapted from the simple clear sky

model by modifying the smooth half-circle by adding the

extra sinusoidal terms expressed in (4). Consequently, the

added terms affect three components: 1) the amplitude de-

pending on the parameters a, 2) the number of ripples on

the curve depending on the b, and 3) the size of the ripples

depending on the parameters c. The absolute operations are

used to prevent the negative amplitude.

Icloudy(t) =Iclear

(

1− a1

∣

∣

∣

∣

sin

(

b1
π(t− trise)

tset − trise

)
∣

∣

∣

∣

c1

− a2

∣

∣

∣

∣

sin

(

b2
π(t− trise)

tset − trise

)
∣

∣

∣

∣

c2)

, trise < t < tset

(4)

This model can generate the solar irradiance in classes 1-5,

8, and 10 following kD − POPD the classification proposed

in [21] by varying the parameters F , a, b, and c as shown in

Table 4. The kD−POPD is created base on a daily clearness

index kD and daily probability of persistence POPD to

indicate the quantity and quality of solar irradiance. On

the one hand, high quantity means a high amount of solar

irradiance obtained on the ground. On the other hand, high

quality means low fluctuation of solar irradiance.

TABLE 4. An example of cloudy model parameters with the kD − POPD

solar irradiance classification.

Class
Description Cloudy Model Parameter

Quantity Quality F a1 b1 c1 a2 b2 c2
1 High High 1 0.25 5 3 0 0 0
2 Medium High 1 0.5 5 3 0 0 3
3 Low High 0.25 0.5 5 3 0 0 3
4 High Medium 1 0.5 5 50 0 0 3
5 Medium Medium 0.9 1 5 3 0 0 3
6 Low Medium - - - - - - -
7 High Low - - - - - - -
8 Medium Low 1 0.5 13 3 0 0 3
9 Low Low - - - - - - -
10 - Very Low 1 0.5 50 3 0 0 3

Fig. 4 shows hourly solar irradiance graph in classes 1-5, 8,

and 10. These solar irradiance are computed with maximum

extraterrestrial irradiance equal to 1,362W/m2, sunrise time

at 6 AM, sunset time at 6 PM, and other parameters in Table

4.

FIGURE 4. Hourly solar irradiance in classes 1, 2, 3, 4, 5, 8, and 10 with the

maximum extraterrestrial irradiance at 1,632W/m2.

A simple model of converting solar irradiance to battery

energy is depicted in Fig. 5. There are two processes in this

model. First, solar energy is converted to electrical energy by

the PV panel. Second, the electrical energy is charged into

the battery by a solar charge controller.

FIGURE 5. A simple model of converting solar irradiance to battery energy.

When sunlight reaches the PV panel with size As and

efficiency η, the solar irradiance I is converted to electrical

power Pout. This process can be expressed in (5). In [22],

there is a wide range of efficiency from 7.1% to 47.1%

depending on PV types.

VOLUME 4, 2016 5
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Pout(t) = ηAsI(t) (5)

After the electrical power Pout is produced by the PV

panel, it will pass through the solar charge controller with

efficiency β to charge the battery. Hence, the potential power

charged into the battery can be expressed as (6). In [23],

the efficiency of the charging circuit normally is 80% and

can increase to 89% by using a supercapacitor instead of a

conventional capacitor.

Pcharge(t) = βPout(t) (6)

Therefore, the potential power charged into the battery at

time t can be expressed as (7).

Pcharge(t) = βηAsI(t) (7)

In addition, the potentially charged energy in the entire day

can be expressed as (8).

Echargeday
= 3, 600βηAs

∫ tset

trise

I(t)dt (8)

Table 5 presents the amount of the potentially charged

energy in the entire day calculated by the same parameters in

Fig. 4. Class 1 and 2 (high quantity) irradiance models have

higher energy than others, but the irradiance class 1 (high

quality) has a smoother curve than the class 4 (medium qual-

ity). The irradiance class 3 (low quantity) has the minimum

energy. The irradiance class 10 (very low quality) has many

ripples on the irradiance curve.

TABLE 5. Potentially charged energy in the entire day and the different

irradiance classes.

Class Energy [J]

1 14,501
2 12,757
3 3,189
4 15,318
5 8,343
8 12,792
10 12,797

E. MARKOV DECISION PROCESS

MDP is a discrete-time stochastic process and is applied from

a Markov chain. It can be used to solve the optimization

problem. The Markov chain is a diagram consisting of states

s, arrow lines (from one state at the current timestep t to

another state at the next timestep t + 1), and probability P
corresponding to the arrow line as shown in Fig. 6.

The two-state Markov chain, in Fig. 6, consists of states

s1 and s2. The states s1 and s2 at time t can remain in

the same state or move to another state at time t + 1.

The transitions of the states can be indicated by the arrow

lines corresponding to the transition probability P{st+1|st}.

Therefore, the summation of P{st+1
1 |st1} and P{st+1

2 |st1}

FIGURE 6. Two-state Markov chain.

and the summation of P{st+1
2 |st2} and P{st+1

1 |st2} are equal

to one. The transitions of these states are considered only two

timesteps: one is the current time step and two is the next

timestep.

To link the Markov chain and the MDP, an action param-

eter a and a reward function R(st+1|st, a) are added in the

diagram as shown in Fig. 7.

FIGURE 7. Two-state Markov chain with action parameter in reward function.

Although the MDP was discovered many decades ago, its

applications remain useful in many fields of study such as

optimal service auction for sensor-as-a-service [24], network

selection in 5G [25], optimization of uplink outage prob-

ability and throughput of cellular IoT networks [26], and

optimization of video streaming [27]. This article applies the

MDP to optimize data transfer and prevent battery depletion

for an SEH-WSN node. The proposed system model and

method are described in the next section.

III. SYSTEM MODEL

The SEH-WSN model used in this article, as shown in Fig. 8,

consists of a base station and SEH-WSN nodes. The SEH-

WSN nodes directly communicate to the base station in a

single hop fashion.

FIGURE 8. A system model.

The SEH-WSN node consists of a primary power supply,

a secondary power supply, a lossless switching control, and

6 VOLUME 4, 2016
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a mote with sensors, as shown in Fig. 9. The power supply is

separated into 2 sections for use in the daytime and nighttime

because the MDP policy is applied only in the daytime. In

the nighttime, a constant duty cycle was set since no solar

energy harvesting takes place. Thus, the secondary battery

has a fixed consumption rate. To switch the power sources

between the primary and secondary, the switching controller

is used. It will switch to the second power source by sensing

the charging rate into the battery. If it notices that there is no

charging, the mote will be supplied by the secondary power

source.

FIGURE 9. An SEH-WSN structure.

In the daytime, the SEH-WSN node is programmed with

an MDP policy to decide an action according to the current

state of the SEH-WSN node as shown in Fig. 10. The process

initially checks the state of the SEH-WSN node referring

to a battery level and a duty cycle level. Subsequently, the

node will map the current state to the action in the MDP

policy programmed in the node’s memory. Then, the node

will adjust the duty cycle according to the policy. There are

3 actions designed into this model: 1) decreasing the duty

cycle, 2) maintaining the current duty cycle, and 3) increasing

the duty cycle. After that, the node will repeat the process.

FIGURE 10. A process of adjusting a duty cycle.

Using the MDP policy contained in the node’s memory

can save computing energy in a processor because it only

operates the mapping process to make the optimal decision.

The next section proposes a method to compute an MDP

policy.

IV. PROPOSED METHOD

The MDP policy, meaning and mathematical model of a state

set, an action set, transition probability matrices, and reward

vectors can be computed as follows:

A. STATE SET

State set is a set of all the possible statuses of the SEH-WSN

node. The status is a pair of a battery energy level and a duty

cycle level. The state set can be written as (9)

S = {B,D} (9)

where B is a set of battery energy level that has M levels.

Then, the set of battery energy level can be expressed as B =
{b1 = 0J, b2, b3, ..., bm, ..., bM = Bmax}. D is a set of duty

cycle level that has N levels. Then, the set of duty cycle level

can be expressed as D = {d1 = 0%, d2, d3, ..., dn, ..., dN =
100%}.

In (9), the number of all possible states equals to M x N =

Z. Moreover, the state set can be expressed in (10).

S = {s1, s2, s3, ..., sz, ..., sZ} (10)

where sz is an zth state that has a pair of the battery and duty

cycle level (bm, dn).

The relation between battery energy level M and duty

cycle level N is simply set by Condition 4.1 that one level

of duty cycle consumes one level of the battery energy.

Condition 4.1: Battery energy in one level is equal to energy

consumption due to one level of duty cycle.

The energy consumption occurs due to mote calculation

and transmission in each duty cycle D. The consumed energy

can be written as a function of a duty cycle by considering

the power consumption in active mode Pactive and sleep

mode Psleep. Then, we can express the maximum energy

consumption in one operation period Topt in (11).

Econs(D) =
[DPactive − (100−D)Psleep]Topt

100
(11)

Thus, the maximum energy consumption occurs at the duty

cycle equal to 100% and can be expressed as (12).

Econsmax
= PactiveTopt (12)

B. ACTION SET

The amount of data transfer depends on a duty cycle. When

the duty cycle increases, there is more chance for transmitting

data. In addition, the high duty cycle can cause battery

depletion. Hence, in this model, an action set A is designed

to control the duty cycle to maximize the chance of data

transfer and also prevent the depletion of the battery. The

action set consists of an action parameter a to control the

duty cycle and is expressed as (13).
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A = {a | a is an integer parameter} (13)

The parameter a is the action variable that presents the

change of duty cycle in 3 actions as shown in (14).

a =











−1 , decreasing the duty cycle

0 , remaining the duty cycle

1 , increasing the duty cycle

(14)

C. TRANSITION PROBABILITY MATRICES

The transition probability matrix denoted by TP (a) is the

probability that indicates a change from the ith current state

si to the jth next state s′j by taking an action a. Therefore,

the transition probability matrix can be expressed as a square

matrix that shows the probability of change from the current

states assigned as the ith row mapping to the next states

assigned as the jth column shown in (15).

TP (a) =










P{s′1|s1, a} P{s′2|s1, a} · · · P{s′J |s1, a}
P{s′1|s2, a} P{s′2|s2, a} · · · P{s′J |s2, a}

...
...

. . .
...

P{s′1|sI , a} P{s′2|sI , a} · · · P{s′J |sI , a}











I×J

(15)

In this model, the change of state depends on two factors.

One is the change of the duty cycle in each action, and

the other is the probability of solar irradiance. Therefore, to

model the transition probability matrices, building duty cycle

transition probability matrices with the action a is initiated.

Next is building battery energy transition probability matri-

ces. Finally, the completed transition probability matrices are

constructed by combining the duty cycle transition proba-

bility matrices with the battery energy transition probability

matrices.

1) Duty Cycle Transition Probability Matrices

The duty cycle transition probability matrices denoted by

TD(a) present the probability of change from the current

duty cycle at nth row (dn) to the next duty cycle at uth

column (d′u) when the node implements the decision a.

Hence, it can be classified into 3 cases: a equals to -1, 0

and 1. When the node decides to decrease or increase the

duty cycle, the duty cycle is only changed in one duty cycle

level. Hence, the duty cycle transition probability matrices

becomes or similar to the identity matrix shown in (16).

TD(a) =



















1 when u = n+ a, ∀a

1 when u = n = 1, a = −1

1 when u = n = N, a = 1

0 otherwise

(16)

Case 1: Decrease duty cycle (a = −1)

In this case, the duty cycle is decreased by one level, so that

the probability mapping from dn to d′u equals to one only in

the case u = n− 1 and the other cases are zero. The TD can

be expressed in (17).

TD(−1) =















1
1

1
. . .

1















N×U

(17)

Case 2: Stay in the same duty cycle (a = 0)

In this case, the duty cycle remains in the same duty cycle,

so that the probability mapping from dn to d′u equals to one

only in the case u = n and the other cases are zero. The TD

becomes the identity matrix shown in (18).

TD(0) =















1
1

1
. . .

1















N×U

(18)

Case 3: Increase duty cycle (a = 1)

In this case, the duty cycle is increased by one level, so that

the probability mapping from dn to d′u equals to one only in

the case u = n+ 1 and the other cases are zero. The TD can

be expressed in (19).

TD(1) =















1
. . .

1
1
1















N×U

(19)

2) Battery Energy Transition Probability Matrix

The battery energy transition probability matrix is denoted

by TB . This matrix expresses the probability of changing

from the mth current battery energy bm to the vth next bat-

tery energy b′v corresponding to solar irradiance and energy

consumption. The solar irradiance yields the battery energy

remaining or increasing. In contrast, the duty cycle causes

the reduction of battery energy due to data transmission and

computation.

Solar irradiance can potentially charge the battery with a

varying amount of energy depending on the weather condi-

tions. Due to this uncertainty, a desecrate potentially charged

energy probability density is applied in the battery energy

transition probability matrix. This probability density can be

written as a vector Pp and expressed in (20).

Pp = [Pp1
, Pp2

, ..., Ppw
, ..., PpW

] (20)

where Ppw
is the potentially charged energy probability at

level w of overall W levels. According to the property of

the probability density, a summation of all members in Pp is

equal to one. The potentially charged energy probability can
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be computed by quantizing the potentially charged energy

function from (8) into W levels. Then, counting the number

of the charge energy occurring in each level. Finally, the

potentially charged energy probability is equal to the faction

of the number of occurrences over the total time samples as

shown in Table 6.

TABLE 6. Algorithm for calculation of the potentially charged energy

probability.

Algorithm 1 Calculation of potentially charged energy probability
1 : Initialize solar irradiance parameters :

Imax, trise, tset, F, a1, b1, c1, a2, b2, c2,
2 : Initialize PV panel and charging control parameters : η,As, β
3 : Initialize potentially charged energy probability level : W
4 : Calculate potentially charged energy probability in each level :

Echarge(w) = (w − 1)
Echargemax

W−1
5 : Set time index t = [trise:increment:tset]
6 : Calculate potentially charged energy at time t :

Echarge(t) = βηAsToptIcloudy(t)
7 : Set count vector : count = zeros(1,W )
8 : for k = 1 : size(time index)
9 : for w = 1 : W
10 : if Echarge(k) ≤ Echarge(w)
11 : count(w) = count(w) + 1
12 : break
13 : end if
14 : end for
15 : end for

16 : Pp(w) =
count(w)

size(time index)

In this model, the relation between the number of the

potentially charged energy probability W and the number of

the duty cycle level N is set by Condition 4.2.

Condition 4.2: Charged energy in one level equals to the

energy consumption in one level.

This condition shows that the battery energy will increase

due to the charged energy from the potentially charged

energy probability, but will decrease due to the energy

consumption from the duty cycle. Thus, the battery energy

transition probability matrix can be expressed in (21).

TB(b
′

v|bm, d′u) =






























Ppw
when v = m+ w − u

∩ v 6= 1 ∩ v 6= V

1−
∑

TB(m, 2 : V ) when v = 1

1−
∑

TB(m, 1 : V − 1) when v = V

0 otherwise

(21)

where
∑

TB(m, 2 : V ) is the summation of elements in

the mth row from 2nd column to V th column, and
∑

TB(m, 1 : V − 1) is the summation of elements in the

mth row from 1st column to (V −1)th column. In Fig. 11, the

example of the battery energy transition probability matrix

with M = 7, W = 3, and u = 2 is presented.

3) Transition Probability Matrices

The complete transition probability matrices are the combi-

nation of the duty cycle transition probability matrices and

FIGURE 11. An example of the battery energy transition probability matrix.

the battery energy transition probability matrices by using

Kronecker product shown in (22).

TP (s
′

j |si, a) = TD(d′u|dn, a)⊗TB(b
′

v|bm, d′u)

=



















TB(b
′

v|bm, d′u) when u = n+ a, ∀a

TB(b
′

v|bm, d′u) when u = n = 1, a = −1

TB(b
′

v|bm, d′u) when u = n = M,a = 1

0 otherwise

(22)

One property of the transition probability matrix is the

summation of each row equal to one due to the summation

of each row in (16) and in (21) equal to one.

D. REWARD VECTORS

A reward is an amount of data transfer depending on the state

s and action a and denoted by a vector R(s, a). The number

of elements equals to L and the order of reward elements

corresponding to the order of the state set S . Hence, L
equals to MxN and the reward vectors can be written as (23).

R(s, a) = [r(1, a), r(2, a)2, r(3, a)3, ..., r(l, a), ..., r(L, a)]
(23)

where r(l, a) is a lth state of reward vectors belonging to

action a. In addition, l also represents the pair of the battery

energy level and the duty cycle level (b, d), and can be

expressed as (24).

1, 2, 3, ..., l, ...L =(b1, d1), (b2, d1), ..., (bm, d1), ..., (bM , d1),

(b1, d2), (b2, d2), ..., (bm, dn), ..., (bM , dN )
(24)

The data will be transmitted to the base station if the duty

cycle is greater than 0% and there is sufficient supply energy.

The supply energy is from the battery energy B and the
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charged energy Echarge. Hence, there are 2 cases that reward

will occur. In the first case, the supply energy is greater than

the consumed energy. In the second case, the supply energy

is less than the consumed energy, but not equal to zero.

Therefore, the reward can be expressed as (25).

R(s, a) =











DDtrTtr when n+ a > 1 ∩

(m > 1 ∪ w > 1)

0 otherwise

(25)

where D is the duty cycle, Dtr is the data transfer rate, and

Ttr is the time for transmitting data as expressed in (26).

Ttr =
B + PpPchargeTact

Pcons
(26)

where Pcharge is the charged power from the PV panel. Tact

is the active time period. Pcons is the power consumption

generally from computation and communication. Then, (25)

and (26) yield the reward equation in (27).

R = DDtr
B + PpPchargeTact

Pcons
(27)

E. OPTIMIZATION FORMULATION AND SOLUTION

The goal of solving the MDP is to obtain a policy that yields

the optimum solution. In [28], linear programming technique

is presented as a solution to solve the MDP problem. This

method is applied for Discrete Time Markov Decision Pro-

cess in an infinite horizon problem. To compute the MDP pol-

icy, the optimization problem shown in (28) is to maximize

the reward in every state and action. This solution will yield

the optimal solution of the randomized policy or decision

variable φ(si, a) defined as the probability of the ith state

with action a occurs.

max
φ(si,a)

∑

si∈S

∑

a∈A

φ(si, a)R(si, a),

s.t.
∑

a∈A

φ(s′j , a) =
∑

si∈S

∑

a∈A

φ(si, a)TP (s
′

j |si, a), s
′

j ∈ S ,

∑

si∈S

∑

a∈A

φ(si, a) = 1, φ(si, a) > 0

(28)

This problem can be solved by linear programming and the

result is the optimal randomized policy φ∗(si, a). Then, to

obtain an optimal policy π∗(si, a), each optimal randomized

policy has to be normalized by the summation of the optimal

randomized policy in the state for all actions as shown in (29).

π∗(si, a) =
φ∗(si, a)

∑

a∈A
φ∗(si, a)

(29)

Hence, the MDP policy can be computed by an algorithm

shown in Table 7. First, essential parameters are required,

such as the number of a duty cycle level, maximum energy

consumption etc. Next, the numbers of battery energy level

and potentially charged energy probability are computed by

(18) and (28) respectively. Then, the number of potentially

charged energy probability is used to compute potentially

charged energy probability by Algorithm 1. After that, tran-

sition probability matrices and reward vectors are computed

by (31) and (33) respectively. The optimization equation is

formed by the transition probability and reward, and solved

by linear programing to yield optimal decision variables in

each state and action. Finally, they are normalized to obtain

an optimal randomized policy or MDP policy.

TABLE 7. Algorithm for calculation of the MDP policy.

Algorithm 2 Calculation of the MDP policy
1 : Initialise parameters: M,N,W,Bmax, a,Dtr

2 : Calculate the potentially charged energy probability by Algorithm 1
3 : Calculate the transition probability matrices TP by (22)
4 : Calculate reward vector : R by (25)
5 : Calculate the optimal randomized policy φ∗ via linear programming

by (28)
6 : Calculate the optimal policy π∗ by (29)

V. POLICY EVALUATION

To assess the proposed model, first, the MDP policy has to be

generated by Algorithm 2 as shown in Table 7. To form the

proper MDP model, the outcome policy should be valid for

almost all states. Thus, the number of battery energy levels

has to be larger than the number of the duty cycle and poten-

tially charged energy probability levels. Initially, the num-

bers of battery energy, duty cycle, and potentially charged

energy levels are set to 27, 5, and 5 levels, respectively. The

potentially charged energy probability is calculated from the

clear sky model with maximum solar irradiance equal to the

maximum extraterrestrial irradiance 1,362W/m2, a cloudy

factor equal to 1, sunrise time at 6 AM, and sunset time at

6 PM. The efficiency of the PV panel is set to the lowest

efficiency 7.1% which is mentioned in the SEH-WSN nodes

section. The panel size is 114.3mmx66.8mm following the

MSX-005F model. A charge controller is set to 80% effi-

ciency. Fig. 12 shows the conversion of solar irradiance into

potentially charged power calculated by (7). The maximum

solar irradiance at 1,362W/m2 can potentially charge the

battery at 0.59W.

The potentially charged energy probability is computed by

Algorithm 1. Next, the data transfer rate is set to 250kbits/s

which is from the transceiver of the MICAz mote to compute

a reward. Finally, an MDP policy is generated by Algorithm

2.

After that, the MDP policy is simulated in different solar

conditions and compared to the ED-DSP that has the ideal

prediction. Hence, the expected harvested energy Ee of the

ED-DSP is equal to the harvested energy in the next iteration.

Algorithm 3 is used for the simulation, as shown in Table 8 .

The parameters of the solar irradiance, PV panel, solar

charge controller, mote, and transceiver used for simulation

are shown in Table 9.
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FIGURE 12. Conversion graph between solar irradiance and potentially

charged power.

TABLE 8. Algorithm for simulation of the MDP policy and ED-DSP.

Algorithm 3 Simulation of the MDP policy and ED-DSP
1 : Initialise parameters: I(t), Bmax, Bth, Bc, Dth, Dc, As,

: η, β,Dtr, Topt

2 : for t = trise:increment:tset
3 : Consider the duty cycle following the battery zone

: if B(t) < Bc

: D(t) = Dc

: else if B(t) < Bth

: if D(t) < Dth

: end if
4 : Calculate the energy consumption Econs by (11)
5 : Calculate the potentially charged energy Echarge by (7)
6 : Calculate the battery energy for time t+ 1

: B(t+ 1) = B(t)− Econs + Echarge

: and 0 ≤ B(t+ 1) ≤ Bmax

7 : Make the decision via the MDP policy or ED-DSP
: to obtain D(t+ 1) and 0% ≤ D(t+ 1) ≤ 100%

8 : Calculate the amount of data transfer
9 : end for

Then, we simulate the MDP policy and ED-DSP with

the solar irradiance model parameters as shown in Table 4.

They are simulated in different battery capacities and periods

of daytime. First set of simulations, the period of daytime

is constantly equal to 12h (6 AM-6 PM), and the battery

capacity is changed from 50J to 150 and 500J. Second set of

simulations, the battery capacity is constantly equal to 150J,

and the period of daytime is changed from 10h (7 AM-5 PM)

to 12h (6 AM-6 PM) and 14h (5 AM-7 PM). This simulations

are focused on the amounts of data transfer and the behavior

of battery energy and duty cycle during operation.

Next, we simulate the the MDP policy and ED-DSP with

real solar irradiance data for the entire year from the National

Renewable Energy Laboratory (NREL) of the U.S. Depart-

ment of Energy in 4 different areas: 1) Golden, Colorado in

2019, 2) Eugene, Oregon in 2020, 3) Milford, Utah in 2012,

TABLE 9. Initial parameters for evaluating the MDP model.

Parameter Detail

Solar irradiance

Classes 1-5, 8, and 10 Fig. 4
PV panel

Dimensions 114.3mmx66.8mm
Efficiency 7.1%
Solar charge controller

Efficiency 80%
Current draw in sleep mode <15µA
Mote

Current draw in an active mode 8mA
Current draw in a sleep mode <15µA
Voltage for power supply <15µA
Threshold and critical battery energy 30J and 10J
Threshold and critical duty cycle 10% and 0%
Transceiver

Data transfer rate 250kbits/s
Current draw in active mode 19.7mA
Current draw in idle mode 20µA
Voltage for power supply 2.7-3.3V

and 4) Edinburg, Texas in 2017. The battery capacity used in

these simulations is 50J. The results of the simulations are

shown and discussed in the next section.

VI. RESULTS AND DISCUSSION

The results are presented in 3 parts. Part one is the results

of generating the MDP policy. Part two is the results of

simulating the MDP policy with the mathematical model

comparing to the ED-DSP. The last part is the results of

simulating the MDP policy with the real solar irradiance data

comparing to the ED-DSP.

A. GENERATING OF MDP POLICY

The potentially charged energy probability used to gen-

erate the MDP policy calculated by Algorithm 1 is

[0.1291 0.1332 0.1471 0.1818 0.4088]. Then, the parame-

ters stated in section V are used to generate the MDP policy

by Algorithm 2. Consequently, Fig. 13 depicts the policy of

all states. The y axis represents actions -1, 0, and 1. The

x axis represents states consisting of a battery energy level

placed on the bottom and a duty cycle placed on the top. A

circle represents the decision corresponding to the action and

the state. Moreover, some states do not have a circle due to

NaN value. The NaN occurs when the MATLAB is unable to

define the numeric result, for example, 0 divided by 0. In this

case, some states have the optimal randomized policy equal

to 0 for all actions, and then the summation of the optimal

randomized policy for all actions also equals 0. As a result,

the normalized optimal randomized policy of this state equals

NaN due to 0 divided by 0.

The policy can be completed by filling circles on the state

that has the NaN value. The circle will be placed at the action

-1 if the state is at a low battery energy level in order to save

battery energy. In contrast, the circle will be placed at action

1 if the state is at a high battery level in order to increase

data transmission. If the NaN occurs in the state that has the
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FIGURE 13. The optimal policy with Bmax = 150J , M = 27, N = 5, and

W = 5.

battery energy level in the middle range, the circle will be

placed following the previous state decision. Therefore, the

policy in Fig. 13 can be completed by filling the circle as

shown in Fig. 14.

FIGURE 14. The complete optimal policy.

Next, the complete policy will be simulated to test the per-

formance in different solar irradiance classifications, battery

capacities, and periods of daytime. Furthermore, the MDP

policy is compared to the performance of the ED-DSP.

B. SIMULATION RESULTS WITH MATHEMATICAL

MODEL

The simulation results of the node that has a battery capacity

of 150J and operates from 6 AM to 6 PM are shown in Fig.

15 and Fig. 16.

Fig. 15 illustrates the residual battery energy during oper-

ations from 6 AM to 6 PM in the different battery capacities.

No zero battery energy appears in both the MDP policy and

ED-DSP. Therefore, both MDP policy and ED-DSP can be

applied for practical use. The battery energy of the ED-

DSP is smoother than the MDP policy because the ED-DSP

gradually adjusts the duty cycle following the residual energy

following the exponential function. According to Table 5,

the amounts of the potentially charged energy of the solar

irradiance classes 1, 2, 4, 8, and 10 are over the 10,000J,

but classes 3 and 5 are very low. Hence, the operations in

classes 1, 2, 4, 8, and 10 of the MDP policy are similar

to the ED-DSP. In contrast, in classes 3 and 5, the MDP

policy tends to consume more battery energy than the ED-

DSP. Consequently, the MDP policy can manage the battery

energy under the low solar irradiance better than the ED-DSP.

Fig. 16 illustrates the duty cycle during operations from 6

AM to 6 PM in the different battery capacities. Both MDP

and ED-DSP operate with no zero-duty cycle. On the one

hand, the MDP policy discretely changes the duty cycle in a

step of 25% due to the number of the duty cycle N equal to 5

levels. On the other hand, the ED-DSP continuously changes

the duty cycle following the residual battery energy.

Next, the simulation results of the operation with the bat-

tery capacity equal to 150J in the different daytime periods

are presented. Fig. 17 illustrates the battery energy of the

MDP policy and ED-DSP. Both MDP policy and ED-DSP

show that the shorter period of the daytime, the lower battery

energy at the end of the day. Even when the period of the

day is shrunk or expanded, the MDP policy still manages the

battery energy better than the ED-DSP.

Fig. 18 illustrates the duty cycle of the MDP policy and

ED-DSP operating in the different daytime periods. Both

MDP policy and ED-DSP can transmit data over the daytime

because the duty cycle does not reach zero. When the period

is short or long, the duty cycle looks similar to each other.

However, the longer daytime yields a lower duty cycle and

the residual energy at the end of the daytime.

The amounts of the data transfer in the daytime and dif-

ferent battery capacities and period of the daytime are shown

in Table 10 and Table 11 respectively. The amounts of data

transfer are directly proportional to the potentially charged

energy as shown in Table 5. In all cases, the MDP policy can

transmit more data than the ED-DSP.

Table 10 shows that the large battery capacity does not

always yield the maximum data transfer. In the case of the

MDP policy, the suitable size can be calculated by the rela-

tion between the energy consumption and battery capacity.

For example, this MDP model is generated by M = 27
and N = 5, and the maximum energy consumption of the

MICAz mote and transceiver in the active mode during the
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FIGURE 15. Graphs of the battery energy vs time of the MDP policy (left) and ED-DSP (right): (a) 50J, (b) 150J, and (c) 500J.
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FIGURE 16. Graphs of the duty cycle vs time of the MDP policy (left) and ED-DSP (right): (a) 50J, (b) 150J, and (c) 500J.
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FIGURE 17. Graphs of the battery energy vs time of the MDP policy (left) and ED-DSP (right): (a) 10h (7 AM-5 PM), (b) 12h (6 AM-6 PM), and (c) 14h (5 AM-7 PM).
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FIGURE 18. Graphs of the duty cycle vs time of the MDP policy (left) and ED-DSP (right): (a) 10h (7 AM-5 PM), (b) 12h (6 AM-6 PM), and (c) 14h (5 AM-7 PM).
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30s is equal to 2.742J. According to Condition 4.1, the max-

imum battery in the MDP model equal to (2.742)(27-1)/(5-

1)= 17.823J. Then, the threshold battery is 30J, so that the

suitable battery capacity should be 47.823J or approximately

50J. Hence, the amounts of the data transfer in the 500J
battery capacity are less than the 50J and 150J capacities.

In the case of the ED-DSP, the duty cycle is adjusted by

the residual energy. Even if the battery capacity is larger, the

duty cycle is still limited to 100%. If the battery capacity is

large and the initial battery energy is very low, the duty cycle

will gradually increase to 100%. In contrast, if the battery

capacity is small and the initial battery energy is very low,

the duty cycle will sharply increase to 100%. As the result,

the low battery capacity yields more amount of data transfer

than the high battery capacity.

Table 11 illustrates the amounts of the data transfer in

the different periods of the daytime. the amount of the data

transfer is directly proportional to the time, and the MDP

policy has a better performance than the ED-DSP.

In Table 10 and 11, all different amounts of data transfer

∆ are positive, so that the MDP policy can transfer data more

than the ED-DSP in all cases. Therefore, the MDP policy has

better performance than the ED-DSP both in the variety of

battery capacities and time periods.

C. SIMULATION RESULTS WITH REAL SOLAR

IRRADIANCE DATA

Table 12 shows amounts of data transfer for the entire year of

the MDP policy and ED-DSP in different areas. The MDP

policy transfers more data than the ED-DSP for all areas.

The results clearly show that the MDP policy has a better

performance than the ED-DSP.

Fig. 19 illustrates different amounts of data transfer ∆ for

a whole year. The positive difference ∆
+ (blue bar) means

the amount of data transfer of the MDP policy is higher than

the ED-DSP, and the negative difference ∆− (red bar) means

the amount of data transfer of the ED-DSP is higher than the

MDP policy. Almost all the positive differences are higher

than the negative differences.

Table 13 shows average values of the positive and negative

different amounts of data transfer (∆+
ave, ∆−

ave), and also

numbers of days that the MDP policy transfers more data

than ED-DSP (MDP >) and vice versa (ED-DSP >). The

average values of the positive and negative different amounts

of data transfer can be calculated from (30) and (31).

∆+
ave =

∑

g∈G

∆g

G
(30)

where g is the day that the MDP policy transfers more data

than the ED-DSP and G is the number of the days that the

MDP policy transfers more data than the ED-DSP.

∆−

ave =

∑

q∈Q

∆q

Q
(31)

where q is the day that the ED-DSP transfers more data than

the MDP policy and Q is the number of the days that the

ED-DSP transfers more data than the MDP policy.

The average of the positive difference is over 0.0250Gbits,

but the maximum average of negative difference is only

0.0008Gbits. Hence, the MDP policy can transfer data over

ED-DSP more than 31.25times (0.0250/0.0008) of the day

that the ED-DSP can transfer data over the MDP policy.

The minimum number of days that the MDP policy trans-

fers more data than the ED-DSP is 203days. So that, the

MDP policy can transfer data over the ED-DSP at least

(203/366)x100 = 55.46% a year.

Consequently, the MDP policy has a discrete change in the

duty cycle and can be operated in different solar irradiance

classes. It can transfer more data than the ED-DSP at least

9.6591Gbits a year. Hence, if the cost of the data service

equals to 10$ per one Gbit, the MDP policy can gain at least

289$ a year more than the ED-DSP for one node.

VII. CONCLUSIONS

Solar energy harvesting with PV panels is one viable solution

to sustaining the battery energy of WSN nodes. To manage

battery energy and data transfer, the MDP can be used to

decide when to allow an SEH-WSN node to change its

duty cycle, which will allow the node to yield maximum

data transfer while maintaining battery energy close to the

threshold battery level.

In this article, the communication between the SEH-WSN

node and base station is one hop style, where the base station

can receive data from others nodes simultaneously. The MDP

state is a set that consists of the pair of battery energy and

duty cycle of the node. The duty cycle of each node can only

be adjusted by one level per decision-making. The reward

is determined as the amount of the data transfer. Transition

probability matrices are constructed by solar irradiance prob-

ability, as calculated from the hourly solar irradiance model.

Then, linear programming is used to solve this MDP problem

to obtain the optimal policy that will be programmed in the

node.

The simulations with the solar irradiance model (Classes

1-5, 8, and 10) show that the MDP policy and the ED-DSP

can transfer data throughout the daytime and prevent the

depletion of the battery. In addition, the MDP policy trans-

fers more data than the ED-DSP in the different irradiance

classes.

The simulations with the annual data from Colorado, Ore-

gon, Utah, and Texas show that the MDP policy can transfer

data more than the ED-DSP throughout the year. Most of the

days in the year, the MDP policy transfers more data than the

ED-DSP. Therefore, The MDP policy outperforms the ED-

DSP with the ideal prediction.

For future work, the authors will develop the MDP policy

with multi-hop communication. Then, scalability and fair-

ness can be considered.
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FIGURE 19. Graphs of the different amounts of data transfer in different areas in the U.S.

18 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3086883, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 10. Amounts of the data transfer in the different solar irradiance classes and battery capacities from 6 AM to 6 PM.

Class

Amount of the data transfer [Gbit]

50J 150J 500J

MDP policy ED-DSP ∆ MDP policy ED-DSP ∆ MDP policy ED-DSP ∆

Class 1 10.2949 10.2619 0.0330 10.4366 10.3150 0.1217 10.2244 10.0764 0.1480
Class 2 10.1779 10.1503 0.0276 10.3436 10.2056 0.1380 10.1273 9.9655 0.1617
Class 3 7.7351 7.7016 0.0335 7.9451 7.8669 0.0783 8.5316 8.1989 0.3327
Class 4 10.3136 10.2897 0.0239 10.4614 10.3491 0.1123 10.2469 10.1086 0.1383
Class 5 7.9980 7.9525 0.0455 8.8492 8.6541 0.1951 9.5730 9.3426 0.2304
Class 8 10.0811 10.0587 0.0224 10.3001 10.1831 0.1170 10.1813 10.0208 0.1605
Class 10 10.1640 10.1357 0.0283 10.3481 10.2270 0.1211 10.1768 10.0324 0.1443

TABLE 11. Amounts of the data transfer in the different solar irradiance classes and period of the daytime with 150J battery capacity.

Class

Amount of the data transfer [Gbit]

10h (7 AM-5 PM) 12h (6 AM-6 PM) 14h (5 AM-7 PM)

MDP policy ED-DSP ∆ MDP policy ED-DSP ∆ MDP policy ED-DSP ∆

Class 1 8.6992 8.5872 0.1121 10.4366 10.3150 0.1217 12.1695 12.0383 0.1312
Class 2 8.6265 8.4994 0.1271 10.3436 10.2056 0.1380 12.0495 11.9064 0.1431
Class 3 6.6600 6.5857 0.0743 7.9451 7.8669 0.0783 9.2314 9.1470 0.0844
Class 4 8.7191 8.6155 0.1037 10.4614 10.3491 0.1123 12.1991 12.0776 0.1215
Class 5 7.5079 7.3199 0.1880 8.8492 8.6541 0.1951 10.1524 9.9700 0.1824
Class 8 8.6032 8.4941 0.1092 10.3001 10.1831 0.1170 11.9723 11.8651 0.1071
Class 10 8.6385 8.5224 0.1161 10.3481 10.2270 0.1211 12.0450 11.9254 0.1196

TABLE 12. Amounts of the data transfer in the entire year.

Area/Year
Amount of the data transfer [Gbit]

MDP policy ED-DSP ∆

Golden, Colorado/2019 2107.0331 2094.9037 12.1294
Eugene, Oregon/2020 2074.1614 2062.8563 11.3051
Milford, Utah/2012 1944.0281 1934.3690 9.6591
Edinburg, Texas/2017 2544.8550 2532.3614 12.4936

TABLE 13. Average values of the positive and negative different amounts of

data transfer, and numbers of the days that MDP policy transfers more data

than ED-DSP and vice versa.

Area/Year
∆

+
ave ∆

−

ave Number of days

[Gbit] [Gbit] MDP > ED-DSP >
Golden, Colorado/2019 0.0458 -0.0007 261 104
Eugene, Oregon/2020 0.0254 -0.0003 360 6
Milford, Utah/2012 0.0453 -0.0007 203 163
Edinburg, Texas/2017 0.0421 -0.0008 291 74
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