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1. INTRODUCTION

Optimal Decision Fusion in
Multiple Sensor Systems

STELIOS C.A. THOMOPOULOS, Member, IEEE

RAMANARAYANAN VISWANATHAN, Member, IEEE

DIMITRIOS C. BOUGOULIAS, Student Member, IEEE
Southern Illinois University

The problem of optimal data fusion in the sense of the Neyman-

Pearson (N-P) test in a centralized fusion center is considered. The

fusion center receives data from various distributed sensors. Each

sensor implements a N-P test individually and independently of the

other sensors. Due to limitations in channel capacity, the sensors

transmit their decision instead of raw data. In addition to their

decisions, the sensors may transmit one or more bits of quality

information. The optimal, in the N-P sense, decision scheme at the

fusion center is derived and it is seen that an improvement in the

performance of the system beyond that of the most reliable sensor is

feasible, even without quality information, for a system of three or

more sensors. If quality information bits are also available at the

fusion center, the performance of the distributed decision scheme is

comparable to that of the centralized N-P test. Several examples are

provided and an algorithm for adjusting the threshold level at the

fusion center is provided.
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The problem of data fusion in a central decision
center has attracted the attention of several investigators
due to the increasing interest in the deployment of
multiple sensors for communication and surveillance
purposes. Because of a limited transmission capacity, the
sensors are required to transmit their decision (with or
without quality information bits) instead of the raw data
the decisions are based upon. A centralized fusion center
is responsible for combining the received information
from the various sensors into a final decision.

Tenney and Sandell [1] have treated the Bayesian
detection problem with distributed sensors. However,
they did not consider the design of data fusion
algorithms. Sadjadi [2] has considered the problem of
general hypothesis testing in a distributed environment
and has provided a solution in terms of a number of
coupled equations. The decentralized sequential detection
problem has been investigated in [3-5]. Chair and
Varshney [6] have considered the problem of data fusion
in a central center when the data that the fusion center
receives consist of the decisions made by each sensor
individually and independently from each other. They
derive the optimal fusion rule for the likelihood ratio
(LR) test. It turns out that the sufficient statistics for the
LR test is a weighted average of the decisions of the
various sensors with weights that are functions of the
individual probabilities of false alarm PF and the
probabilities of detection PD. However, the maximum a-
posteriori (MAP) test or the LR test require either exact
knowledge of the a-priori probabilities of the tested
hypotheses or the assumption that all hypotheses are
equally likely. However, if the Neyman-Pearson (NP) test
is employed at each sensor, the same test must be used to
fuse the data at the fusion center, in order to maximize
the probability of detection for fixed probability of false
alarm.

We derive the optimal decision scheme when the N-P
test is used at the fusion center. The optimal decision
scheme, in the N-P sense, is derived: 1) for cases where
the various sensors transmit exclusively their decisions to
the fusion center, and 2) for cases where the various
sensors transmit quality bits along with their decisions
indicating the degree of their confidence in their decision.

11. DECISION FUSION WITH THE NEYMAN-
PEARSON TEST

Consider the problem of two hypotheses testing with
H1 designating one hypothesis and Ho the alternative.
Assume that the prior probabilities on the two hypotheses
are not known. A number of sensors N receive
observations and independently implement the N-P test.
Let uj designate the decision of the jth sensor having
taken into account all the observations available to this
sensor at the time of the decision. If the decision of the
jth sensor favors hypothesis H1, the sensor sets uj =
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+ 1, otherwise it sets Ui = -1. Every sensor transmits
its decision to the fusion center, so that the fusion center
has all N decisions available for processing at the time of
the decision making. Let (PF, PDj) designate the pair of
the probability of false alarm and the probability of
detection at which the jth sensor operates and implements
the N-P test. The fusion center implements the N-P test
using all the decisions that the individual sensors have
communicated, i.e., it formulates the LR test:

A(u) - P(u1,u2, ..., uNIH1)I (1)A(u)= U~jH0
t

P(Ul, U2, . ,UNI Ho) H,,

where u = (U1,U2, ..., UN) is a 1 x N row vector with
entries the decisions of the individual sensors, and t the
threshold to be determined by the desirable probability of
false alarm at the fusion center PfF, i.e.,

+D 8 (logA(ui) -log PD

(6)
where

X
[1 for x = 0

6(x) - [0 for x 0O.
At the fusion center, the probability of false alarm

P = E P(A(u) Ho)
A(u)>t*

where t* is a threshold chosen to satisfy (7) for a given
PfF. Similarly, the probability of detection at the fusion
center

P = E P(A(u) H1 ).
A(u)>t*

(7)

(8)

E P(A(u) HO) = Pf
A(u)>t*

(2) A. Similar Sensors

Since the decisions of each sensor are independent
from each other, the LR test (1) gives

N P(uij1HI) H2
A(u) = H1t 3

P(uijHo) (HO

from which the result in [61 is readily obtained. In order
to implement the N-P test we need to compute
P(A(u) HO). However, due to the independence
assumption, it is easier to obtain the distribution P(log
A(u) HO) which can be expressed as the convolution of
the individual P(log A(u1) Ho). Thus, it follows from (3):

P(log A(u)I Ho)

= P(log A(uj)IHo)* ... * P(log A(UN)I HO). (4)

The LR A(u1) assumes two values. Either (1 - PD )/
(1 - PF ) when ui = 0 with probability 1 - PFi under
hypothesis HO and probability 1 - PDi under hypothesis
H1, or, PD'lPF, when ui = 1 with, probability PFi under
hypothesis HO and probability PDi under hypothesis H1.
Hence, we can write

P (log A (u1)IHo) = (1 -PFi) 8 (logA(ui)

1
- PD)-o1 PF/

When all the sensors are similar and operate at the
same level of probability of false alarm and probability of
detection, i.e., PF = PF - PF and =D= PD = PD for
every i and j, all the probability distributions in (3) are
the same and the N-P test leads to the following scheme
at the fusion center. (Expression similar to (9) and (10)
were obtained in [6] for the LR test.)
N H1

E aiui $ t
i= 1 Ho

where

ai =

log (D)
(PF)

lo ( I PF)

(9)

if ui = + 1, i = 1, ..., N

if ui = -(1, i = 1, ..., N.

(10)

If k out of the N decisions favor hypothesis H1, (9) can

be rewritten as

PD( t+N)I(11)Pk_log__ t+Nlog(-(11( PF (1 PD)] HO (I PD)

For all sensible tests, though, PF < PD. Hence, log
PD (1 - PF) > 0 and the N-P test becomes
PF (1 -PD)

+ PFi 8 (logA(Ui)

and

P(log A(u1) H1) = (1 -PD) 8 (logA (ui)

1 PD,

1 PFI

where t* is some threshold to be determined so that a

certain overall false alarm probability Pf is attained at

the fusion center.
The random variable k has a binomial distribution

with parameters N and PF under Ho and parameters N and

PD under H1. Hence, Pf and the overall probability of
detection PfD are given by

THOMOPOULOS ET AL: MULTIPLE SENSOR SYSTEM OPTIMAL DECISION FUSION
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(5) k $ t*
HO

(12)
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N

i-I f l] ) (1 PF

N

fD= (')b )DNiP lE ( PID (1 PD)
= [tti 1

P(A(u) |HO)

(13)

(14)

where It ] indicates the smallest integer exceeding t*.
The threshold t* must be determined so that (12) gives an
acceptable overall probability of false alarm.

For the configuration of N sensors, we are interested
to know whether the N-P test can provide a (Pf.,PKD) pair
such that

Pf ' min{PF.}
iEN

and Pf > max{PD}
iEN

(15)

where (PD, PFi) is the N-P test level for sensor i,

i-= ,...,N.
The next Theorem shows that condition (15) can be

satisfied if the randomized N-P test is used at the fusion
center, the number of sensors N is greater than two, and
all the sensors are characterized by the same (PF, PD)
pair.

(1-p)2
0

2p(1-p)
0

p2l
( 1-q )2

1-p
q(1 -g)
p(1-p) (p)2

Fig. 1. Distribution of LR at fusion center under hypothesis Ho for
two similar sensor system, N = 2

1H1)

2q(1 -q)
0

(1-q) 2

1 -q g 21-q q(1 -q) (q)2
p(1-p) p

Theorem. In a configuration ofN similar sensors,
all operating at the same (PF, PD) = (p, q), the
randomized N-P test at the fusion center can provide a
(Pf,, PfD) satisfying (15) ifN - 3.

More precisely, for N _ 3, the randomized N-P test
can be fixed so that

pf = PF = p and PfD> PD = q (16)
where PF and PD are the probability offalse alarm and
probability of detection at the individual sensors.

Proof. First we show that for N = 2, condition (15)
cannot be satisfied with the second inequality as a strict
one. Then we prove that for N = 3, the randomized N-P
test satisfies condition (15). By using the fact that for
fixed probability of false alarm, the probability of
detection at the fusion center is maximized by the N-P
test among all mappings from the observation space into
the decision space, we prove by induction that condition
(15) is satisfied for all N _ 3.

Let-N = 2 and (PF,PD) = (p, q) for both sensors.
Using (4), (5), (6), (9), and (10), the LR distributions at
the fusion center under hypothesis Ho and H1 are plotted
for the reader's convenience in Figs. 1 and 2,
respectively. Since for all p in (0, 1)

p2 < p< 2p(l -p) + p2 (17)

it follows that, in order to satisfy PfF = p, the
randomized N-P test must be used at the fusion center
with threshold q(1 - q)lp(1 -p) and randomizing factor
w defined by

p2 + w2p(l -p) = p (18)

where 0 < w < 1. Solving (18) we obtain w = 0.5,
independent of p. Since Pf is determined by an
expression symmetric to (18) (see Figs. 1 and 2), PfD =

Fig. 2. Distribution of LR at fusion center under hypothesis H1 for
two similar sensor system, N= 2.

q for w = 0.5. Hence, neither condition (16) nor
condition (15) (which is more restrictive) can be satisfied
for N = 2.

Let N = 3. The distributions of the LR under Ho and
H1 are given in Figs. 3 and 4, respectively. From Fig. 3,

P(A(U) HO)

(1-p)3
3p( -p) 2

0

3p2(1 -p)
0

p3F
1-q )3 q(1-q) q (1 -q
1-P p(O-p)2 p2-p)

(q)3
p

Fig. 3. Distribution of LR at fusion center under hypothesis Ho for
three similar sensor system, N= 3.

P(A(U)1H1 )

(1 -q) 3

3q(1-q)2
0

3p2( 1 -q)
0

( 1-q )3 q(1_q)2 q2 -q
1-p p(I-p)2 p2(p)

q3

(q)3p

Fig. 4. Distribution of LR at fusion center under hypothesis H1 for
three similar sensor system, N = 3.
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if the threshold at the fusion center is set at q2(1 - q)l
p2(1 -p),
PfF =p3 + 3p2(l -p) <p (19

for 0 < p < 0.5. The left-hand side (LHS) of inequality
(19) is greater than p for p > 0.5. Hence, since PF <
0.5, the randomized N-P test that satisfies (15) at the
fusion center is determined by

p3 + 3p2(1-p) + w3p(l -p)2 = p (20

from which

W = 3- p
33(1 -p)

To assess the performance of the fusion scheme
further, we compare it with the best centralized scheme,
the N-P test which utilizes raw data, not decisions, from
the different sensors. The loss associated with the use of
decisions instead of raw data at the fusion center, is
assessed by means of a simple example. Let a single
observation from each of the four (N= 4) sensors be
distributed normally (see Fig. 5) as

>) ri - G(0, 1), under Ho

G(S, 1), under HI.

(21)

Hence, w is a positive fraction for 0 < p < 0.5.
Since PD at the fusion center is given by an

expression similar to (20) (see Fig. 4), with q in place of
p, and q > 0.5, it follows from (20) that PD > q, which
proves the Theorem for N = 3.

Assume that the randomized N-P test satisfies
condition (16) for an arbitrary number of sensors N. We
show that it also satisfies the condition for N + 1, and
thus complete the induction and the proof of the
Theorem.

Let UN = {U1, U2, ..., UN} designate the set of
decisions from the N sensors that are available at the
fusion center. All the sensors operate at the same level
(p, q). Let fN(UN) designate some decision rule at the
fusion center operating at fixed probability of false alarm
p. LetfN' (UN) designate the randomized N-P test at the
fusion center at level p. For fixed probability of false
alarm, the probability of detection at the fusion center
(power of test) is maximized for the N-P decision rule
among all possible decision rules.

Let UN+1 = {UN, UN+±} designate the decision
ensemble of N + 1 similar sensors all operating at the
same level (p, q). Then by choosingfN+1(UN+1) =
fN (UN),

PD(fN+l(UN+l)) = max PD(fN±1(UN±1))

- PD(fN(UN)) (22)

from which it follows that

PfD N+ 1 - fDN> q. (23)

Thus the induction is complete and so is the proof of
the Theorem.

Consider a system of four sensors N = 4 all operating
at PF = 0.05 and PD = 0.95. If tf - 2, from the
binomial cumulative table we get PF = 0.0 14 and PD =
0.9995 at the fusion center, i.e., a considerable
improvement in the performance of the overall system.
From the binomial cumulative table it can be seen that at
least three sensors are required for the decision fusion
scheme to improve the performance of the system, as the
Theorem suggests.

T T
L TU r

Fig. 5. Data distribution at each sensor under hypotheses HI and H0,
and confidence regions. Threshold is indicated by T. The intervals
-o, TL) and (Tu, x) are designated "confidence" regions. Interval

(TL, TU) is designated "no confidence" region.

The N-P test utilizing all the ris will have the form
N

Z ri > tb.

To achieve a false alarm pb, a threshold of

t \- Q-1 (pb)

(24)

(25)
is needed at the fusion center, where Q( ) = 1 - 4I( ),
with (D( ) the cumulative distribution function (cdf) of
the standard normal, and Q 1 is the inverse function of
Q. Moreover,

pb =Q (tb NS) (26)

To obtain a PF = 0.05 and PD = 0.95 at each
sensor, a signal satisfying ti = Q` (0.05) is required,
from which ti = 1.64, and 0.05 = 1 - Q(ti-S) from
which S = 3.29.

Consider achieving a pb = 0.001 at the fusion center
with the four sensors. This requires a threshold tb = 2
Q` (0.001) = 6.18, from which PI = 0.9998 (see (25)
and (26)).

This example shows that the best decentralized fusion
scheme achieves a (Pf, PfD) = (0.014, 0.9995), whereas
the best centralized fusion scheme achieves a (pb, pb)
= (0.001, 0.9998) for the same sensors. Clearly the loss
in power associated with transmitting highly condensed
information from the sensors to the fusion center is
causing the degradation in the performance of the fusion
scheme. As a compromise, a multibit information could
be transmitted to the fusion center containing quality
information related to the degree of confidence that a
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sensor has about its decision along with the decision
itself. This situation is examined in Section III.

Table I gives the different N-P test thresholds that the
fusion center can operate so that condition (15) is
satisfied. The thresholds were found using the interactive
fusion algorithm (IFA) that we developed (see the
Appendix).

TABLE I

Decision Fusion 5 Sensor System
Sensors PF: Equal x Unequal -
Sensors PD: Equal x Unequal-

Probability Probability
Threshold of Detection of False Alarm

@ Fusion Center @ Fusion Center @ Fusion Center

PDMAX = .95000 PFMIN = .5000OE-O1

t* PD PF
6859.0 .977407 .300000E-04

19.000 .998842 .115812E-02
.52631E-01 .999970 .225925E-01

1 SENSOR OFF

PDMAX = .95000 PFMIN = .5000OE-O1

t* PD PF
361.00 .985981 .481250E-03

1.0000 .999519 .140187E-0l

2 SENSORS OFF

PDMAX = .95000 PFMIN = .5000OE-01

t* PD PF
19.000 .992750 .725000E-02

B. Disimilar Sensors

Case 1. All the sensors operate at the same
probability of false alarm level PF, but different levels of
probability of detection from each other, i.e., PD x PDj.,
i jpj. Without loss of generality we assume the
ranking PD, > PD2 > .. > PDN from which the
following ordering in the abscissae of the conditional
distribution of the individual LRs results:

1 -PDI 1 -PD2 1 -PDN
< < . <

1 -PF 1 PF 1 -PF

< PDN < < PD I
PF PF

The conditional distribution of the compound LR at
the fusion center is obtained by convolving the individual
distributions, using the IFA. Convolution of the
distributions P(log A(uj)JHk) corresponds to linear shifts
of their logarithmic abscissae, which is translated into
addition of logarithms. Hence, the distribution of the LR
P(A(u) Hk) at the fusion center can be obtained directly
by multiplication of the abscissae of the P(A(u)j)|Hk).
Hence the point of the distribution P(A(u) H,) which is

(l-_PD) (1_P
closest to the origin has abscissa (1 - PD

(1 _PF)N
and ordinate (1 -PDI) (1 - PDN) under H1 or

(1 - PF)N under Ho. On the other hand, the point farthest

apart from the origin has abscissa DI D2 ... DN and

ordinate PD1 * PDN under H1 or P' under Ho. In
between these two extreme points, the abscissae of the

PD.
distribution of the compound LR have the form H1 p

H 1 where S is a subset of integers from {1, 2,
jEES 1 PF
... N} and S its complement with respect to this set. The
corresponding ordinates are Hl PD 11 (1 - PD ) under H1

inS jES

or P ISl (1 -PF)I31 under Ho, where I f I designates the
cardinality of the set Q. Once the distribution of the
compound LR is determined, the threshold at the fusion
center can be determined to satisfy a given probability of
false alarm PfF from which the probability of detection
PfD is determined. At the fusion center we want to set-up
the threshold so that Pf < PF while Pf > max {PD}.
This is achieved by the IFA as the following example
illustrates.

Consider a five-sensor system. All the sensors operate
at the same level PF = 0.05. However, due to different
noise environments or quality of the sensors, they yield
different PDS as Table II indicates.

TABLE II
Probability Of Detection At The Individual Sensors For The Same

Probability Of False Alarm In A Five Sensor System

I 1 2 3 4 5

PD 0.95 0.94 0.93 0.92 0.91

Table III summarizes all the choices of thresholds at
the fusion center that satisfy condition (15) as given by
the IFA. A significant improvement in the system
performance is achieved by fusing the individual
decisions.

Case 2. The different sensors operate at different
probabilities of false alarm and probabilities of detection,
i.e., PF, =A PF and PDi = D,iD $ij. The distribution of

.1 1

the cumulative LR of the fusion center is obtained
numerically as in case 2, and the threshold tf is found to
satisfy a given PfF. Ideally, the threshold tf must be
chosen so that condition (15) is satisfied. However, this
may not always be feasible. The following examples
illustrate the procedure.

We consider three different systems with five, four,
and three sensors. Each system results by eliminating the
sensor with the lowest PD from the system that has one
more sensor. For the five-sensor system, the (PD, PF) of
the sensors are given in Table IV.

Table V summarizes the results as obtained by IFA.
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TABLE III

Decision Fusion: 5 Sensor System
Sensors PF: Equal x Unequal_
Sensors PD: Equal _ Unequal x

Probability Probability
Threshold of Detection of False Alarm

@ Fusion Center @ Fusion Center @ Fusion Center

PDMAX = .95000 PFMIN = .50000E-01

t* PD PF
6163.2 .957817 .300000E-04

53.004 .963797 .142812E-03
45.880 .968973 .255625E-03
40.339 .973523 .368437E-03
38.907 .977913 .481250E-03
34.208 .981772 .594062E-03
32.081 .985391 .706874E-03
29.610 .988731 .819687E-03
28.207 .991913 .932499E-03
24.416 .994668 .104531E-02
20.705 .997003 .115812E-02

.20998 .997454 .330156E-02

.17806 .997835 .544500E-02

.15413 .998165 .758843E-02

.14683 .998480 .973187E-02

.13552 .998771 .118753E-01

.12709 .999043 .140187E-01

.11174 .999282 .161622E-01

.10778 .999513 .183056E-01

.94760E-01 .999717 .204490E-01

.82023E-01 .999892 .225925E-01

TABLE V

Decision Fusion : 5 Sensor System
Sensors PF: Equal _ Unequal x
Sensors PD : Equal - Unequal x

Probability Probability
Threshold of Detection of False Alarm

@ Fusion Center @ Fusion Center @ Fusion Center

PDMAX = .95000

t*
57882.

426.86
373.63
358.72
284.83
273.46
239.36
160.34
153.94
134.74
102.72

.99369

.75752

.66305

.63660

.42643

.37325

.35836

.28454

.27319

.23912

PFMIN = 10000E-01

PD
.957817
.960153
.962908
.966248
.969430
.973289
.977840
.981459
.985848
.991024
.997003
.997179
.997382
.997622
.997912
.998143
.998416
.998746
.999061
.999442
.999892

PF
.269200E-05
.816400E-05
.155360E-04
.248480E-04
.360200E-04
.501320E-04
.691439E-04
.917159E-04
.120228E-03
.158640E-03
.216852E-03
.393780E-03
.661908E-03
.102314E-02
.147942E-02
.202115E-02
.275098E-02
.367287E-02
.477889E-02
.617598E-02
.805816E-02

1 SENSOR OFF

TABLE IV
Probability Of False Alarm And Detection For A Five-Sensor System

With Disimilar Sensors

i 1 2 3 4 5

PFi °0.05 0.04 0.03 0.02 0.01

PDi 0.95 0.94 0.93 0.92 0.91

PDMAX = .95000

t*
1129.9

4.6908
4.1058
3.9420
3.1300
3.0051
2.6303

PD
.976981
.979548
.982575
.986246
.989742
.993983
.998984

PFMIN = .20000E-01

PF
.150400E-03
.697600E-03
.143480E-02
.236600E-02
.348320E-02
.489440E-02
.679560E-02

In all cases, a significant improvement in the performance
of the system is achieved from fusing the decisions. PDMAX = .95000

2 SENSORS OFF

PFMIN = .30000E-01

PD
.98972032.222

PF
.458000E-02

III. TRANSMISSION OF DECISIONS ALONG WITH
QUALITY INFORMATION

Consider the case where the jth sensor transmits
quality information bits to the fusion center about its
decision along with the decision itself. The simplest case
corresponds to the transmission of binary {O, 1} quality
information indicating the degree of confidence that the
sensor has on the decision that it transmits. Under the
scenario, a bit one indicates "confidence", whereas a bit
zero indicates "no confidence". Fig. 5 illustrates how the
binary quality bit c is defined. A strip (TL, Tu) about the
threshold T of an individual sensor is designated as region
of no confidence and the bit c = 0 is transmitted along

with the decision when the observation r falls into this
region. The two regions forming the compliment of the
(TL, TU) region are considered confidence regions and the
bit c = 1 is transmitted along with the decision when the
observations fall into one of the two regions.

The joint probability distribution of (u, c) (skipping
the sensor index for simplicity) can be easily obtained
from

P(u,c|Hk) = P(c|u,Hk)P(uIHk), k = 0, 1 (27)

where P(uIHk), u = + 1 and k = 0, 1 is specified by
PF and PD, and referring to Fig. 5,
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P(A(u,c)IH1) =

P(c= 1 IU= 1,Hk) = J dP(rIHk)/
Pr[k out of N decisions favor H, and,

n out of these k decisions have
confidence index 1 and, m out of
the N - k decisions that favor Ho
have confidence index 1 IH, ]

P(c=Olu= l,Hk) = fl dP(rlHk) = (I) [Cil]n [1-Clllk- (N-k)

[C lolm [1 - CloI|N-k-m

(.cNPk (1 -PD)N-
U

dPa(riHk) = 1
fIiiUIV~

P(c=O|u= -lIk) = fdP(rlHk)l

fl dP(rHk) = Ck
I U II

P(c=1Iu=-I,Hk) = fdP(rlHk)/

f dP(r|Hk) = Ck
I U lI

Similarly,

P(A(u, c)I Ho) = kn [C0l l n[ 1 C lkl]
( N-k) [C10]m [ 1-COoIN-k-m

(k)PF 1 PF)k

(28) from which

for k = 0, 1.
Hence, for every sensor

P(u=i, c=j|Hk) = Cji^P(u=ilHk),
i= -1, 1, andj = 0, 1 (29)

and

P(u=i, c=jjH1) CI P(u= itHI)
P(u=i, c=jjHO) C3 P(u=iiHo)

i= -1, 1, and j = 0, 1. (30)

Combining (6) and (22) we obtain

P(A(u,c)|H,)= C1I PD A(u( c) 1 PD

+ Ccl PD <A(,c)
01 PD)

+ C'O(1 -PD)8 A(U,c)C)O<I-PD))
00 Cooo ~~(1 PF)

+ C10(1 -PD) 6(A(u c) C (1 PD)1

(31)

Similarly, P(A(u,C) HO) is obtained from (29) by
substituting PD with PF in the product-weights of the
delta functions. Therefore, the probability distribution of
the LR at the fusion center is given by the convolution

P(log A(u, c) |Hk) = P(log A(ul, cl) Hk)
* ...* P(logA(UN,CN)jHk). (32)

In the case where all the sensors operate at the same

level (PF, PD) the mathematics simplify somewhat, since

N k N-k k

k=t*l n =t2* m = tl _ C1°

* [I - C -n(n
N

) [CO%]m

* 1 (m) Pk(1 PF) ]l (35)

The Pf is obtained by an expression similar to (35) with
PD in place of PF and the index 1 instead of 0 above Ci.
The thresholds t*, t*, and t* are to be determined to
satisfy a given probability of false alarm at the fusion
center. Notice that more than one set of thresholds can

yield the same Pf. Clearly, the set that results in the
highest Pf must be selected.

From (35) it can be seen that a superior performance
in regards to (Pf, Pf) can be achieved when quality
information is transmitted along with the decisions. The
improvement in performance of the fusion center when
quality information bits are transmitted comes from the
fact that the summation over P(A(u, c) Hk) can be made
finer with the three different thresholds. To show that,
consider the example of Section IIA. In this example four
similar sensors N = 4, operate at PF = 0.05 and PD =

0.95 from received data ri N (0, 1) under Ho and ri -

N (S = 3.29, 1) under HI. The threshold at each sensor is
set to ti = 1.64 to satisfy PF. Using Fig. 5 and the
previous equations, we obtain for tL,i = 0.8ti = 1.312
and tu,i = 1.2, and ti = 1.968 the Cks that are given in
Table VI.

Using the IFA, it follows that there is a choice of 33
different thresholds that the fusion center can operate so

that (15) is satisfied as shown in Table VII. It can be
seen from this table that there is a significant
improvement in the performance of the overall system
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TABLE VI
Quality Bit Coefficients For Gaussian Distributed Data

Hk HI HoCi]

Cil 0.948 0.46
Cot 0.052 0.54
COo 0.52 0.047
CIO 0.48 0.953

TABLE VII

Decision Fusion 4 Sensor System with Quality Bits
Sensors PF: Equal x Unequal_
Sensors PD Equal x Unequal_

Probability Probability
Threshold of Detection of False Alarm

@ Fusion Center ( Fusion Center @ Fusion Center

PDMAX = .95000

t*
62318.
20357.
9390.7
2988.7
2911.9
951.21
926.74
438.79
302.74
139.65
136.06
44.446
43.303
42.189
20.503
14.146
13.782
6.5253

6.3575
4.5021
2.0768
2.0234
1.9713
.66097
.64397
.62741
.29706
.21036
.20495
.94544E-01
.92113E-01
.6695 lE-01
.30090E-01
.29316E-01

PD
.956002
.960940
.961918
.963462
.980782
.981595
.990711
.990738
.990880
.990937
.992362
.992406
.993906
.998114
.998114
.998129
.998524
.998525

.998577

.998579

.998580

.998662

.999354

.999355

.999398

.999762

.999763

.999763

.999771

.999772

.999810

.999810

.999811

.999851

PFMIN = .5000OE-01

PF
.17555IE-05
.199808E-05
.210220E-05
.261876E-05
.856706E-05
.94213 lE-05
.192580E-04
.193191E-04
.197900E-04
.201943E-04
.306685E-04
.316713E-04
.663133E-04
.166041 E-03
.166055E-03
.167161E-03
.195805E-03
.195924E-03

.204121E-03

.204578E-03

.204970E-03

.245637E-03

.596850E-03

.597499E-03

.664750E-03

.124555E-02

.124796E-02

.124850E-02

.128557E-02

.130148E-02

.171378E-02

.171395E-02

.175343E-02

.311705E-02

compared with the individual sensors and the fusion
system without quality information. For a comparable Pf
= 0.9998, the PfF = 0.0013 when quality bit
information is transmitted as opposed to (PfF, PfD) =

(0.014, 0.9995) without quality information. The
performance of the fusion center when one quality
information bit is transmitted approaches that of the best
centralized N-P test, as Table VIII suggests. It is

TABLE VIII
Comparative Results From 3 Different Fusion Systems With Four

(N=4) Sensors, All Operating At Level (PF, PD) = (0.05, 0.95) When
The Individual Sensors Transmit:

Only decisions 0.014 0.9995

Decision with one quality bit 0.0013 0.9998

Raw data (Best centralized N-P test) 0.001 0.9998

interesting to notice that fusion of the decisions improves
the performance of the overall system even in the case of
two sensors when quality information bits are transmitted
along with the decisions, as Table IX indicates. Table X
shows the performance of a three sensor system with
quality bits.

TABLE IX

Decision Fusion: 2 Sensor System with Quality Bits
Sensors PF: Equal x Unequal_
Sensors PD: Equal x Unequal-

Probability Probability
Threshold of Detection of False Alarm

@ Fusion Center @ Fusion Center @ Fusion Center

PDMAX = .95000 PFMIN = .5000OE-01

t * PD PF
1.0654 .951900 .696499E-02
1.0380 .995129 .48611IE-01

IV. CONCLUSIONS

The problem of fusing decisions from N independent
sensors in a fusion center was considered. We assumed
that each sensor transmits its decision to the fusion
center. The decision of each individual sensor is based on
the N-P test. The fusion center formulates the LR using
all the received decisions and decides on which
hypothesis is true using the N-P test also. The pdf of the

TABLE X

Decision Fusion: 3 Sensor System with Quality Bits
Sensors PF: Equal x Unequal-
Sensors PD: Equal x Unequal_

Probability Probability
Threshold of Detection of False Alarm

@a Fusion Center @ Fusion Center (@ Fusion Center

PDMAX = .95000 PFMIN = .5000OE-01

t * PD PF
40.645 .985857 .177933E-02
13.277 .987683 .191689E-02
6.1248 .987804 .193657E-02
1.9493 .987994 .203422E-02
1.8992 .994400 .540756E-02
.62039 .994500 .556904E-02
.60444 .997872 .111475E-01
.19745 .997890 .112365E-0l
.88740E-01 .998065 .132165E-01
.28243E-01 .998250 .197652E-01
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log LR at the fusion center was obtained as the
convolution of the pdfs of the log LRs of the individual
sensors. Once the pdf of the LR is obtained, the threshold
at the fusion center is determined by a desired probability
of false alarm.

For a fusion system with three or more sensors, all
the sensors operating at the same (PF, PD) level, it was
proved that if the N-P test is used to fuse the decisions,
the probability of detection at the fusion center exceeds
that of the individual sensor for the same probability of
false alarm. However, if the sensors operate at arbitrary
(PF, PD) levels, no general assessment can be made
about the performance of the fusion center since the
performance depends on how far the operating points of
the sensors are from each other.

The problem of decision fusion when the sensors
transmit quality information bits indicating their
confidence on the decisions was also considered and the
N-P test at the fusion center was derived. Several
numerical examples showed that use of quality
information can improve the performance of the fusion
center considerably.

An IFA was developed to solve the fusion problem
numerically. Once one of the three parameters (threshold,

probability of false alarm, or probability of detection) is
specified, the IFA determines the other two, given the
probabilities of false alarm and detection of each
individual sensor.

APPENDIX

The IFA receives as data the number of sensors, their
(SF, PD) levels, and the Ck, quality information
parameters if the sensors transmit quality information bits
along with their decisions. It then computes the LR pdf at
the fusion center conditioned on each hypothesis. After it
computes the pdf, it asks the user which option he/she
prefers. The alternative options are the following.

1) Display of the entire pdf.
2) Threshold computation for a given Pf and display of

the corresponding KD.
3) Determination of the thresholds that satisfy (15).
4) Threshold computation for a given P{f and display of

the corresponding PF.
5) Elimination of one or more sensors and repetition of

the algorithm.
6) Quit.
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