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FOREWORD 

This is the first in a series of papers dealing 
with the problem of finding the optimal decision rules 
for n-period chance-constrained programming mod- 
els. The significant feature of this paper is that the 
admissible class of decision rules is not required to 
possess any specific analytic property, as it is in all 
previous work in this field. Instead the admissible 
class is the largest possible class of decision rules 
consistent with the interpretation given to «-period 
problems. It is shown that in this case the optimal de- 
cision rules are piecewise linear functions of certain 
conditional f tactile points and the decision rules of all 
preceding periods. 
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ABSTRACT 

The first five sections of this paper contain an intro- 
duction to the topic of chance-constrained programming. 
Then the general n-period expectation-objective model of 
chance-constrained programming is presented and certain 
necessary conditions are established for decision rules to 
be optimal for such a model. The question of the consisten- 
cy of the constraints and the finiteness of the optimal value 
of the objective function for such problems is discussed and 
several methods of resolving these questions are presented. 
The simplification that results when the chance-constrained 
problem is treated as a problem of linear programming un- 
der uncertainty is also discussed. The paper is concluded 
by solving two two-stage problems. 



1.   INTRODUCTION 

As an introduction to the topic of chance-constrained programming, the 
various kinds of objective functions and admissible classes of decision rules 
for chance-constrained problems that have appeared in the literature are dis- 
cussed in this paper, and remarks are illustrated by using the stochastic heat- 
ing-oil problem.   The general n-period expectation-objective model is then 
presented and optimal decision rules for such a model are shown to be piece- 
wise linear functions of certain conditional fractile points.   Using these results, 
the simplification obtained by treating the problem as one of linear programming 
under uncertainty is discussed.  The paper is concluded by solving two rathei 
simple two-stage problems. 

The topic of chance-constrained programming is, perhaps, best introduced 
by first examining an ordinary linear-programming problem in its most gen- 
eral form, i.e., 

maximize 

subject to 
AV  £   h (1) 

where A is an m x n matrix of constants, and b,c  are, respectively, m « 1 and 
rt x 1 constant vectors.   The object of problem 1 is to find the n »1 vector X 
from the set of all X satisfying  A\ ' b, which maximizes cVx. 

If a chance-constrained formulation were to replace problem 1 a problem 
of the following type would be obtained: 

maximize 

lie V) 

subject to 
PU\ ^ b) la, (2) 

where P means probability.  Here A, b,c are no longer constant matrices as 
they were in problem I; rather, they can have some or all of their elements as 
random variables.   The  m » 1 vector o contains a prescribed set of constants 
that are probability measures of the extent to which constraint violations are 
permitted.  In other words, an element a,< o and satisfying 0 ^ a, ^ 1 is asso- 
ciated with the constraint 

i.v, ^. 
to give 

P( i   fl.  I.   1   b. ) Ja, (3) 
l-l •' ' '   '     ' 



This means that the i th constraint may on occasion be violated, but it can be 
violated, at most, 100(1-0,) percent of the time. 

As yet nothing has been said about the nature of the functional of problem 
2.  As might be expected, a fairly wide range of reasonable choices can be con- 
sidered for the function f (c, X).  In Section 3 some of these choices will be dis- 
cussed and the work that has been done on them will be summarized. 

An important question in chance-constrained programming concerns the 
classes of decision rules that should be admissible for the problem.   Because 
the object in problem 2 is to find an optimal vector of stochastic decision rules 
X = <p (A, b, c) with the function <p chosen from some prescribed class of functions, 
a fundamental question is how to choose the admissible class of functions for 
o.   In all the literature published thus far, it is assumed that 0 is a linear func- 
tion of the elements of b, i.e., X is restricted to a linear decision rule.   In the 
results of this paper the admissible class of decision rules is greatly enlarged 
and then the optimal decision rules are shown to be pie^ewise linear.   This 
result is of particular importance because it shows that there exists good 
reason, other than the fact that it is mathematically more manageable, to limit 
oneself to finding the optimal linear rule. 

In some cases the class from which <p is to be chosen may be restricted 
deliberately, so that at the time of application of the decision rules X is not a 
function of some random variables; rather, the resulting X values are assigned 
numerical, i.e., deterministic, values.  When this can be done it is said that 
the resulting function provides a set of certainty-equivalent relations because 
it specifies the decision exactly, i.e., with certainty. 

In general, however, we permit a choice of <o for which the resulting X 
vectors are also random.   Thus problem 2 is solved for a set of stochastic 
decision rules imputing action for each manifestation of the random variables 
involved in the problem.   This is in contrast to other possible solution notions 
such as mixed strategies in game theory or Manne's probleml-which, it might 
be noted, corresponds to the solution ot only the first problem of the two into 
which the chance-constrained problem was factored in Charnes and Cooper1— 
or Tintner's stochastic programming.' 

In either the stochastic or certainty equivalent case it may also be pos- 
sible to develop a deterministic equivalent for problem 2.  That is, it may be 
possible to find a problem that is equivalent and yet does not contain any of the 
random variables explicitly.   Hence it is a deterministic (often convex) pro- 
gramming problem. 

These deterministic equivalents, when attainable, often provide a means 
of convenient analysis and characterization of the solutions of the given chance- 
constrained problem.   In addition they may also be valuable in their own right 
for purposes of theoretical analysis and policy review.  How to obtain deter- 
ministic equivalents for certain choices of f (c, X ) when the admissible class 
of functions for <p is th*» class of linear functions of b is illustrated in Section 3. 

2.   A CHANCE-CONSTRAINED EXAMPLE:   THE STOCHASTIC 
HEATING-OIL PROBLEM 

In order to elaborate further on the ideas developed above, an example of 
a chance-constrained problem will be given by using a simplified version of 



the problem that first (?ave rise to the chance-constrained progran.ming formula- 
tion and application.4   The problem is one of multiperiod scheduling of heating- 
oil production to meet an uncertain demand thai depends heavily on the weather. 
In the original problem the constraints included marketing constraints, which 
required production to be planned in such a way that customer demands were 
met as they materialized, and storage constraints, which restricted the amount 
of oil that could be kept in inventory.   The objective of the problem was to 
maximize expected profits over the entire planning horizon. 

As Charnes, Cooper, and Symonds showed,' a deeper consideration of the 
constraints suggested that the problem was, in fact, one of minimization of 
expected costs rather than maximization of the expected profits.   Because the 
constraints of the problem were such that customer demand was to be taken 
as given, i.e., stochastically determined, the real objective was to supply what- 
ever demands arose at a minimum total expected cost. 

A simplified version of this problem is: 

minimize 

subject lu 

,h{c,*> * w] 

P(l   *    i   R,  -    S  S,) 2 a«f* 1. .    . .n 
1    '   '       '='   ' (4) 

PIRj   J   0)   ^   1 )    1 rt, 

where the symbol E refers to the expectation operator, so the objective is ex- 
pected value minimization over the n periods of the planning horizon.   The c, 
and k, represent, respectively, the refinery costs and the inventory carrying 
charges for period); both C| and k,, ) r 1, . . . ,n, may be random variables. 
I) is the initial inventory at the start of period).   The random variable S, 
represents the anticipated sales for period ).   R, represents the production 
rate to be scheduled in period ) and is the quantity for which a decision rule is 
to be found. 

Thus problem 4 shows that minimization of the total expected production 
costs over periods ) = 1, . . . ,n is desired, subject to meeting customer de- 
mand at least lOOo, percent of the time in each period. 

The probability Q/ is known as the "risk level* associated with the (th 
constraint.   The quantity 

f 

l-l 

is called the 'quality level.*  Although in problem 4 these quality levels include 
all sales, it is important to note that this need not always be the case.   For 
example, we may adjust the original random variables so that b^ refers to a 
certain fraction of the original sales variables.   This would not change the 
problem in any mathpmatically essential way but it would alter our interpreta- 
tion of the problem.   Thus the constraints could be changed tc mean that in 
period ', 1003/ percent of all sales demands, plus or minus a safety margin, 
must be met at least lOOat percent of the time.   This flexibility in interpreta- 



tion of mathematically similar models is one of the significant features of 
chance-constrained programming.   In solving problem 4 it is convenient to 
find decision rule? such that the actual refinery production rates will be known 
exactly at the start of the period to which they apply.   In other words, it is 
desired that the stochastic decision rules R;, ) = 1, . . . ,n, be such that Rj is 
a known number at the start of the jth period.  This means that the admissible 
class of decision rules for R, can involve random variables only insofar as 
their values will be known, i.e., will have been observed, at the time of appli- 
cation of R|. Hence R, can be an explicit function of only the random variables 
of periods 1, ...,)- 1, and it cannot be a function of the random variables of 
the | th or future periods. 

In particular, if consideration is limitec1 to linear rules, the rules will be 
of the form R^ TS + 6, where T is a lower triangular matrix. Specifically, we 
can write 

f-i 
R, - ^ypjS, >Sf '-i ». (5) 

where each y^, , 6/ is a scalar and vio = 0 = Yu. 
In their work, Charnes, Cooper, and Symonds4 were able, by using Eq 5, 

to convert problem 4 into a deterministic equivalent, which was then solved to 
give the optimal values y^ and 6^ for y/, and 6/, respectively.   Using these 
values, the optimal decision rules  R,, j = 1, . . . ,n, for problem 4 arc given by 

Rt - «t , 

R3  "   VaVi  *  y*2S2  *  S*' 

and, in general. 

R: = Ä.y^**s: 

* 
It is important to observe that different y^, weights apply to the same 

observed value of S,.   Thus Si need not (and in general will not) receive the 
same weight in R? as it did in Rj.   But once y,t, 6*, ) >k , j = 1, . . . ,n, have 
been found, Eq 5 supplies a set of relations (i.e., decision rules) that can be 
used to generate the required numbers (i.e., decisions) at the time these num- 
bers are needed.   Thus, as the observations on the preceding S, values are 
obtained, the resulting R, values will be known with the certainty the problem 
requires. 

The certainty-equivalent relations discussed above may supply all that is 
required for the conduct of operations.  They may not, however, meet all the 
needs of management, since management may want to evaluate different alter- 
natives before committing itself to a given set of policies or actions.   Since 
Eq 5 cannot be completed until the S, values have been observed, this evaluation 
of different alternatives cannot be achieved.   However, when a deterministic 
equivalent that assumes the form of a linear or convex programming problem 
is available, the duality relations of such problems can be used to supply dual 
evaluators.    Then, prior to obtaining the data needed to achieve the certainty- 
equivalent relations, it is possible to study the overall effects of variations in 



risk levels, quality levels, etc., and in other forms of constraint alt» jation and 
data testing. 

This completes the discussion of the stochastic*heating-oil proMem.   It 
has been examined at some length in order to illustrate one possible »rea of 
application of the results developed in Sections 6—10 of this paper anM in Ref 5. 
However, it is emphasized that this is not the only area to which chari-e-con- 
strained programming has been successfully applied.   Charnes, Coop r, Devoe, 
and Learner8 consider a problem of selecting studies and statistical t stimators 
in new-product marketing studies.  Chance-constrained programmin;; is also 
very useful in problems of financial budgeting and planning for liquid ty.   This 
is illustrated by Charnes and Thore7  when they consider the problem of plan- 
ning for liquidity in a savings and loan association.   Their results are extended 
further in a RAC paper now in preparation.8  Also, the investigation of the uses 
of chance-constrained programming in critical path analysis was begun recently 
by Charnes, Cooper, and Thompson.9 

3.   SOME CHOICES OF OBJECTIVES IN CHANCE-CONSTRAIN ED 
PROGRAMMING 

As mentioned in the 'Introduction* section, there are many possible 
choices for the function f(c, \ ) in problem 2.   In fact, it must be emphasized 
that the very concept of optimization under risk and uncertainty immediately 
raises important questions about the choice of rational objectives.   Surh ques- 
tions arise, for example, concerning the reasonableness of an ^xpectod-value 
optimization.  Why not choose some other measure of value?   The importance 
of this question becomes clear when it is noted that the decision rules that are 
optimal for one problem and a given objective will not, in general, h»' optimal 
for th«? same problem under a different objective. 

Charnes and Cooper10'11 investigate three different classes of objectives; 
specifically, they examine (a) an expected-value optimization, (b) a minimum- 
variance (or mean-square error) objective, and (c) a maximum-probability 
model.  These models are called, respectively, the "E model," "V model," and 
"P model" of chance-constrained programming. 

It is of intrrest to distinguish between the first two models and the third 
by reference to what H. A. Simon12 calls the "satisficing," as opposed to the 
"optimizing," objective, t   Simon originally proposed this objective as an   Iter- 
native to (a) and (b) in order to try to resolve some of the inadequacies of op- 
timizing objectives for characterizing certain aspects of human behavior.   In 
particular, he suggested that human beings do not always seek an absolute 
extremum before taking action in a given situation; rather, they try to maximize 
the probability of being better off than some given point of reference. 

In the P model, vectors c'', V', are specified relative to some set of values 
that an organism or human being will regard as satisfactory whenever these 
levels are achieved.   Of course the organism confronted by an environment 
subject to risk cannot be certain of achieving the given level c0' V when effect- 
ing its choice from what it believes to be the available alternatives.   Therefore 

tScc also March and Simon,15 and the extensions and applications to problems of 
budgetary management given in Cooper and Savvas,14 Stedry,15 and Stedry and Charnes.18 



it tries to maximize the probability of obtaining at least its desired level coT\0 

subject to its feasible alternatives of action. 
In their papers, Charnes and Cooper10'11 express the E model as follows: 

maximize 

E(cTX) 
subject to 

P(AX   < b)  >  a, (6) 

where A is a matrix of constants and b, c are vectors of random variables. 
They solve problem 6 for the optimal linear rule given by X s Db, and so con- 
vert the problem to one of finding the elements of the matrix D.   Under suitable 
assumptions concerning the symmetry, and the existence of second moments, 
of certain distributions! they show that the deterministic equivalent of problem 
6 is 

minimize 

subject to 

- '»/^b  " ''f  - -Mb, ■ '=1 "• 

- K*   E[b- ajDbl* *  v* £ 0, i*l m, CD 
U| 111 ' 

i't  >  0, 1=1 m, 

where ßj = LE(C)]T M^= LE(b)]T,a^ is the ith row of A, M b - vbt and - Ko, s 

F,-1 (a,) where  F, ( . ) is the cumulative distribution function of the random 
variable z, = (b, -aj Db ) / E^, - a^Db ]*,   ihis is a deterministic convex pro- 
gramming problem in the variables u, , i ^ 1, . . . ,m, and the elements d,, of D. 

Using the same kinds of techniques and limiting themselves to finding 
linear decision rules, Charnes and Cooper10'11 found deterministic equivalents 
for the V model: 

minimize 

subject to 
E(crX - c^X*)2 

P<A\   1   b)   ;> 

X   •   Db, 

where c''1, \0 are given vectors; and for the P model: 

maximize 

subject to 

f'U'v  ä  c^X") 

fM A \   1   b )   2  a 

V   -   Db 

tFor similar developments for other kinds of distributions and where  I) is spe 
ci alized in various ways see Ben-Isracl,T and Ben-Israel and Charnes. 18 



In both these models the resulting deterministic equivalents contain the con- 
straints r«f problem 7 as part of their system of constraints, although they also 
have additional constraints and a different objective function. 

In the problem to be considered, starting in Section 6, the expectation- 
objective formulation will be used.  No answer is attempted to the question of 
whether it is the "right* objective to use, but it seems to be a "reasonable* 
objective for problems of planning over an n-period horizon. 

4.  CHOICE OF DECISION RULES 

The developments of the following sections are concerned with establishing 
certain properties of the optimal decision rules for the general n-period E- 
objective model.   In Section 6, the admissible class of decision rules for the 
problem is defined as the most general class of rules consistent with this 
interpretation of n-period problems.   However, in order to illustrate clearly 
how closely the choice of an admissible class is related to this interpretation 
of the constraints of the problem, problem 4 must be considered again.  There 
it was seen that a choice of the admissible class to be  R = TS + 6, where I" is 
lower triangular, led to a constraint interpretation of the following kind: 

f-i         P-i 
P(lf  t   *( * St\lt *    i  R,  -    i   S,  .   If) 2 af.P=l n, (8) 

that is, given the observations S), ) = I, . . . /-I, and decisions R|, j = 1, . . . , 
/ - 1, on the right of the vertical stroke in Eq 8 (the stroke is used to suggest 
conditional  probability), and, before  St has been observed, a value must be 
found for R/ that, when added to the Mh period's beginning inventory I /, will 
be sufficient to meet the unknown demand St with at least the specified proba- 
bility at. 

Clearly then other choices of the matrix Twill lead to (or be associated 
with) different ways of interpreting the constraints.  This would be true if, for 
example, R| were permitted to be an explicit function of S^. 

This problem can be illuminated further by considering some of the work 
done by Ben-Israel17 on what will be called the "zero-order decision rule.* 
Here the decision maker wants to know all his program values in advance, 
i.e., at the start of the planning period.  Such a situation can arise, for example, 
in some aspects of short-term country development planning as well as in 
certain kinds of budgetary planning practice. 

For this particular case Ben-israel's theorem17 is employed to obtain 
the result 

if and only if 



where F, ( . ) is the cumulative marginal distribution functiun of the random 
variable b, and y is identical with F"1 (1 - a;) if and only if y equals maximum 

vrF, (y) » 1 - Q, ).   Thus the chance-constrained problem 

maximize 
EUTX) 

subject to 

PUX   i   b)  i   a . 

\   >   0 

has as its deterministic equivalent 

maximize 

subject to 

AV   i   F~1{ 1-a) . 

X   2   0, 

where u' = E ( cr), 
Ir. a similar manner the vector G-1 iß) can be defined as such that 

P ( u,r A   i   c1)  i.   ft 

if and only if 

Thus if 0, ( . ) is the cumulative marginal distribution function of c,, thejth 
component of cf, then y = ^~Hß) if and only if y     min lyrü^y) > /Sj. 

Therefore the deterministic equivalent of 

(9) 

minimize 

subject to 

is:   minimize 

subject to 

E^'b) 

!' ( a>r A   _ c ' )  d  ß . 

^T»ib 

A   >   [ G ~' < /y ) 

UJ   1    0 . 

where uh  ^  E(b). 
The result obtained is the same as that of Ben-Israel, i.e., each of the 

following two problems is the dual of the other: 

maximize 

U,-' iß) ir\ 

10 



subject to 

PUX   1   b)  >  a . 

X Z 0 

and minimize 

ü,' F-'d-a) 

subject to 

P(cuTA   ^  cT) > ß. 

This example clearly illustrates that the choice of decision rules here 
(or, alternatively, the interpretation of the constraint) markedly affects the 
resulting mathematical treatment of the model.   For example, in the case of 
zero-order decision rules it is possible to develop a duality theory along the 
lines of the foregoing work, making the solution and evaluation of such problems 
much simpler than when much larger classes of decision rules are considered. 

It would be possible to extend this discussion further by investigating 
other special and interesting cases.  Instead, however, n-period problems will 
be considered again and interpreted.  In the following developments the inter- 
pretation first suggested in Section 2 will be used.   That is, the admissible 
class of rules for the) th-period decision rule can include explicitly only the 
random variables whose values will have been observed when the time comes 
to put the )th decision into effect.   Thus, as in the heating-oil example, the )th- 
period decision rule will be a known number at the start of the jth period. 
However, unlike the developments outlined in Section 3, no other restrictions 
will be placed on the rules.   Hence a much larger class of rules than the set 
of linear rules already discussed will be considered, and yet the admissible 
class will include the cluss of linear rules. 

5.   MULTIPERIOD CHANCE-CONSTRAINED PROBLEMS 

Before proceeding with the solution of the general rt-period .--objective 
problem, a brief survey will be presented of the literature on n-period problems 
as it pertains to this discussion.   As has been mentioned, the work of Charnes, 
Cooper, and Symonds4 is fundamental in the field.  In addition the work of 
Symonds19 on stochastic scheduling by the horizon method and Charnes and 
Thore7 on liquidity planning are mentioned. 

If the special case of chance-constrained programming, which is obtained 
by making all the constraints hold with probability one, is considered, the prob- 
lem obtained Is one known in the field as "linear programming under uncertainty." 
Such problems were first discussed by Dantzig^in relation to what he called the 
"n-stage problem."  This emphasis on staging does not, however, provide a 
wholly adequate characterization of the problem, for—as was shown by Charnes, 
Cooper, and Thompson21—the n-stage problem of Dantzig can be converted into 

11 



a one-stage ordinary minimization problem.  Thus, whereas the staging em- 
phasis may appear to have a certain appeal in distinguishing between this and 
other approaches to programming, when statistical errors are present in the 
matrices (as, for example, in Madansky*8',s), it also tends to conceal the sim- 
pler characterizations of the problem. 

Specifically, Charnes, Cooper, and Thompson11 established the following 
important result: 

Theory 1 

Consider the problem 

maximize 

ElfIX,. 
■■■'**■' "r •"J 

subject to 

1 = 1      ' 
• o, i= 1, . . 

X,   >   0 

where the \i are piecewise analytic functions of the b, and X,, and f is a linear 
function of \!,..., \„.   Then the optimal decision rule for Vj ir a piecewise 
linear function of b,, . . . .b, and  V 

In the following work a similar result will he obtained as an immediate 
corollary to the main theorem. 

6.   THE GENERAL n-PERIOD E MODEL 

The problem to be discussed is the following: 

maximize 

E(c1
TX1   .   c2

TX3   ♦   cjx,  ....   cjxj 

subject to 

Pibi  i   \uXl)   • «,, 

P<b2    ■    \^\x    .    A22X2)   .   a2 

P{bl   ■'    A3.\    ♦    ^3*2   '    ^S'   "    "l 

'Mb.   -     K^i    '    *n2*2   '    ^3^3    ' ♦     \n\'   " 

X)   J   0 Ml. ,« 

(10) 

a_ 

where   P stands for probability and E denotes the expected-value operator. 
(A more detailed explanation of these follows.) 

12 



In problem 10 it is assumed that— 

, rt, is an   m, ' n   matrix all the elements of 

1 vector in which each element is a 
, . . . ,oim  ) is such that 0 ■ olk ■ I for 

(a)    A.,,i   " |, i, | - 1, .  .  ■ ,rt, is 

which are known constants. 

(b) a,, i- 1, . . . ,n, is an m, > 

prescribed probability, i.e., 
I K 

k " 1 m,, i = 1, . . . .n. 

(c)    cT = tc,,, . . . ' c in, ). 1 - i,. 
variables. 

j 

(d)   b/ = (b,,. . . . • bml ). • = i, 

,n, is a 1 > ttf  vector of random 

. ,n, is a 1  ' m, vector of random 
variables. 

(e) the joint distribution of the blk and c.?. It - 1 »"i.*    1 ").i. 
I - 1, ... ,n, is known, i.e., the multivanate distribution function of the  b^ and 
c,p  is assumed to be a known function. 

In addition to these five assumptions on the properties of the matrices 
involved in the problem, some conditions on the way in w'ich the problem is 
to be solved will be imposed    The nature of these additional assumptions is 
dictated by the interpretation of the problem in this paper.    Problem 10 will 
be treated as an n-penod, or n-sta^e, problem in which  X,, the vector of de- 
cision rules for the )th stage, is selected with knowledge of all decisions 
\i X,.,   and observations of the vectors of random variables b,, c,,!    1, 
. . . ,|-1, but before ^ , c]$ and all random variables of periods succeeding the 
|th are observed. Thus V will be known exactly (i.e., will be a known number) 
at the start of the |th period. 

In other words, we must select \i, our vector of first-period decisions, 
before observing the value of the first-period random vector b, and the first- 
period cost vector c,.   Then, having selected  X, and observed b, and i,, the 
second-period decision rules X,, must be chosen before observing the values of 
b; and <:2.  This process continues for n periods with X, depending only on X!   b, 
i, ,i = 1,. . . ,| -1, but not on bj,  c, or X,, b, , c,, i    )*1, . . . ,n.   This interpreta- 
tion means that the information at any stage (aside from a knowledge of the 
joint distribution of b,, c. , i,) r 1, . . . ,n) is limited to a knowledge of the de- 
cisions and observations of the preceding stages.   Thus it is assumed that— 

(f) the  n,' 1 vector  X(, |   1, . . . ,n, is a function of Xj , b^ c,, for i   1,. . ., 
)-l,   but is not a 1 unction of the remaining decisions  X,,!    |*1, . . . ,n, or of 
random vectors b,, c,, i   ), . . . ,n. 

X, will, of course, depend implicitly on the decisions and observations of 
succeeding stages because of the coupling nature of the constraints of problem 
10.   Assumption f means that   X, is not an explicit function of b,, c,, or X,, b,, 
c,,      )*1, . . . ,n, so that   X) will be known exactly (i.e., will be a known number) 
when the )th period decision is made. 

As a consequence of this assumption it can be seen that the choice of X, 
affects the objective function of problem 10 not only through the c^X, term but 
also through the effect of  X, on X,, |  2, . . . ,n.   X„ on the other hand enters the 
functional only in the  cj X„ term. 

It will now be shown how assumptions e and f enable the constraints of 
problem 10 to be written in a more convenient form.   The P operator in the 
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constraints means that the probability is computed using the joint distribution 
of b,, C|,i,) =1 n.   Thus, by using a Stieltjes integral, the following can 
be written: 

P(b)  >   All\l  ♦   ...  ♦   A^X,) .  / dF(.) 

where F( . ) is the joint distribution function of the b,, Cj,i, j=l, . . . ,«, and A 
is the set where b, > A(1 X, -,- . . . + A.jX,. 

It is important that it is clearly understood what is meant by the above 
identity. This is most easily seen by writing out the 'th of the m, equations 
(as b, is m,  * 1) in detail: 

P(bff > fl)l Xj  *   . . .   +  3)1   X,  .     .. *  a^  X,) 

"   /.f, läfihu.        ..hlmi. ,bnl Km„cU- ■
cin1 

c«l C«nJ 

where a^1 is the ^th row of \.l and a1''1 is the region in the sample space of the 
random variables involved in the problem over whici. b.p > ajf' X, + . . . ♦ Cj'f'.Xi 
* ... * o'.f'^i-   Hence the compact notation 

FMb,   >   A^X,  ♦   . . .  ♦   AJJX,) ^   ( dFi .) 

represents »ij identities of the type shown. 
By assumption e, F( . ) is a known function.   Because of assumption f, the 

set  A depends only on b,, c,, i ^1, . . . ,j-l, and b, and not on the remaining b, 
and c,.  Consequently the integration in the above identities can be performed 
by integrating first with respect to b      . . . ,b„, and c,, . . . .c,,, and then in- 
tegrating with respect to b,, . . . tbt, and c,, . . . ,<:,_,.   But wh-^n integrated 
with respect to b,, c, ,i ^j+l, . . . ,n, and c,, the region of integration is over 
the entire range of possible values of these vectors of random variables (i.e., 
the range of all values that the random variables can assume with non-zero 
probability) and hence the resulting value of the integral is 1.  Thus   ^dF( . ) = 

AdF( .),where F, ( . ) is the joint distribution function of b,, . . . .b, and 
c,, . . . , c,., .   Moreover F, ( . ) is a known function because F( . ) is known. 

Through the use of conditional probabilities . ^F. ( . ) can be written in 
terms of F. ( . ), the conditional distribution function of b. given b,, c„i=l, 
. . . ,j-l, and G, ( . ), the joint distribution function of b,, c,, i^lj . . . , |-1.   We 
have, by definition, f AdF(( . ) r /_\( "AdF { . )) d(j.( . ).  Again F ( . ) and i^i . ) 
are known because they can be computea from a knowledge of F( . ). 

Now o ) =1, ... ,n is defined as an m, ' 1 vector of probabilities such 
that 

{{"'' j (   { j  dF^ .))   dG,{ .)   >   ttt   if andonU  if   / d F, ( . )   i   ^ 

The ö( will be conditional probabilities depending on the given (i.e., conditional) 
values of b,, c,, i   1, . . . ,)-l, which are used in determining F. ( . ).   In other 
words, Q. is such that 

',(h) -   S.S  • '  ^nN' - u, (ID 
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if and only if 

^  -  V.   * *   ^X,),  a, 

where the P operator means that the probability is computed using the con- 
ditional distribution of b, given b,, c„ i  1, . . . ,|-1, i.e., using ?,(.).   Thus, 
for example, if bj is independent of b,, cl,i=l, . . .,| -1, the P represents 
probability using the marginal distribution of b,. 

It is clear from the above development that if, instead of hrwing P and o, 
as in the constraints of problem 10, a similar problem is given whose con- 
straints involve P and some set of conditional probabilities ö,,) =1, . . . ,n, 
the corresponding total probabilities P, along with their associated o,, can be 
obtained by integrating P and o. with respect to G, ( . ). 

It is important to note in this development that ö, = o, because F, ( . ) is 
the marginal distribution function of b, and so is F,( . ).   In other words, a,is 
a vector of constants and its components do not depend on the observed values 
of any of the random variables involved in the problem.   This agrees with the 
interpretation of the problem in this paper because X, must be selected before 
any of the random variables are observed.   Consequently the first-period con- 
straints must have a completely deterministic equivalent.   This is precisely 
the type of interpretation that led to Ben-Israel's theorr mIT and its associated 
results (see Section 4).   In brief, X, is a zero-order decision rule. 

The question of how to determine ö, for given o, and distribution functions 
F ( . ) and G ( . ) is extremely difficult.   Here, however, determining analytical 
properties of X.  in terms of 5. is of chief concern;   hence the problem of deter- 
mining ä  will oe left for a subsequent paper.   However, it must be emphasized 
that ö. can (and in general will) depend on the given values of b,, c,, i "1, . . . , 
|-\.  This is of particular importance because it greatly enlarges the types of 
^o.istraints that are permissible in such a model.   Elsewhere in the literature 
it is always assumed that the probabilities with which the constraints must hold 
are given constants no matter what values of the random variables are observed. 
Thus a more general problem is being treated than any previously considered 
in the literature. 

Relation 11 and assumption i can be used to prove the following: 
Lemma 1.   The constraint P(b;> A^X,   * ... *  A,, X, ) > a  in problem 10 

can be replaced by the equivalent constraint 

where F-' (l-ö ) is an m. "1 vector of the l-ö, percentile (or fractile) points of 
the conditional distribution of b, given b,, c,, 1 • i ' | •   The ith component of 
F"1 (l-o   ),   F-1 (1-5",, ). is defined by  F.-' (l-ö   M maximum lyrF, (y) • 1-a,, ]. 

The use of a maximum in the definition of  f,"' (l-o,, ) is justified because 
the assumption is that F ( . ) is left continuous.* Thr- reason the vector in- 
equality F (V) ' l-o  does not necessarily define V uniquely is due to the fact 
that some of the random variables involved in p! ( . ) may be discrete and that 
some of the components of l-o, may be zero.   In general each component, v,, 

tFor a further discussion of left contiguous distribution functions see Gnedenko, 
(Ref 24, Ch 4). 
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of Y fan take on any value in an interval. If this interval is denoted by y, (l-o,,) 
and y^l-o,, ), y^l-a^) respectively represent the smallest and largest numbers 
in the interval y. (l-a., ), then the i th component of  F"1 (l-o ) is given by 

It is assumed throughout this discussion that  F. ' (I-».,) is well defined 
for all i, |.   Thus, for example, if F ( . ) is the distribution function of a normal 
random variable then it is implicitly assumed that no component of OF. is 1, so 
that F"1 (l-ö  ) does not take on the value ot - <*> for any i.  Similarly it can be 
seen tnat 5M  cannot be zero for any i or |, since in this case 1-a,,   = 1 and so 
y^l-c?,,) = ♦ oc, no matter what distribution F, ( . ) is used.   This is, however, 
no restriction on our problem, since o,,  = 0 means that the corresponding 
constraint can be ignored because it will be satisfied for any choice of decision 
rules X,, . . . , V,. 

Proof.   Assume that X,, 1 « j * ) are decision rules that satisfy 
P(b)> Aj.X,   *  ... ♦  \u\,)-or   Then 

f'lbj   >   \l\l   •   .        ♦   A))X))  "  "i   (by relation 11), 

or 

or 

(Mb,   •    A,^,   ♦ +    ^X,)   •-    l-a". 

ButfMb^   A^X ,+ ...♦   A))X)) =  'ijdF^ .) where Bis the set for which 
b, '   ApX, * ... *  A|jX,  = Z.   Also, by assumptions a and f, A.lX1 

+ . . . * A.-Xj 
is not a function of b(, hence Z does not depend on the still-to-be-observed value 
of b,.   Consequently we have 

/dly.) -  j-'dF"!,) -  F~(Z) -  r^-^x, .    ..  A,^,). 

Thus the fth constraint of problem 10 requires that 

VVS *      ♦ W' '- '-v 

But any distribution function is a nondecreasing function of its argument, so 
that F, (A,,X, + . . . ••  A,, X, ) « l-ö, implies 

V*!    ' <    AMX.    -    r"i",1-a") (12) 

Since all the steps of the proof are completely reversible, relation 12 implies 

pibt > ^|lxi  . .   A,^,» . a, 

Thus the lemma is proved.+ 
Using Lemma 1, problem 10 is written in the following equivalent form: 

^Note the similarity between Lemma 1 and Ben-Israel's theorem.17 
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maximize 

subject to 
^X, -   F-'ll-a-l. 

A^X,   *   \22\2 .   F2-'(l-aJ. 

A31XI    +     A32V
2    *    S3X3 -    r3"'ll-a"^- (13) 

An,\    *    \2S   *    ^3*3   ♦ ♦    \n\   -    ^'"-"n1' 

v, i 0 ,,1 . n. 

The E operator in the functional of problems 13 and 10 means tnat the 
expected value is being taken with respect to the joint distribution of b,, c,,i , 
I =1, . . .,n.   By using the linearity of the objective function in X,,)   1, . . . ,n, 
the following may be written: 

EI I cj\.) -  s   h^,dF{ ■
)- 

l-J '   '      Ml-*' 

However, this expected-value operation can be simplified by making use 
of assumption f.   Since X. is a function of \ , b,, c,, 1   1, . . . j-1, only, 

Elcjx^   -     I c/.XjdF* .) '    j c/X, 

fcfx^F^.) 

f dp,« ■ )   dF,* . ) 

where dF| ( . ) is the conditional distribution function of b,, ... ,b„, c,.,,... ,cM 

given b,, . . . ,b. , , c,, . . . , Cj , and F.( . ) is the joint distribution function of 
bi. • •. • ib|-i. f 1 c, •   Thus,in computing E(crX ), cTX. is integrated by using 
only F. ( . ) rather than  F( . ). 

7.   MATRIX THEORY 

In the following discussion of the optimal decision rules use is made of a 
generalized inverse of a matrix.   The properties required of such inverses 
are listed below.   Proofs may be found in Charnes and Kirbyr and Rao.M 

Definition.   Let A be any m • n matrix.   Then any n » m matrix  A" such 
that  AA" A    Ais called a generalized inverse of A. 

It can be shown that such an inverse always exists and is unique if and 
only if m    n . 

Lemma 2. Let A be an m » n matrix. Then there exists an A" such that 
AA* I if and only if rank (A) m, i.e., A has a right inverse if and only if it 
has full row rank. 

Lemma 3.   The matrix equation   AX - b is consistent if and only if  AA" b ^b. 
Lemma 4.   Let the matrix equation   AX " b be consistent.   Then the general 

solution is given by   X "  A*b * (I- VX )\ where  V is an arbitrary n * 1 vector and 
I is the n ' n identity matrix. 
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Using these lemmas, a necessary and sufficient condition can be given 
for the existence of a vector X satisfying the set of inequalities   AX * b,   \ " 0. 
For, there exists  \ ^ 0 such that   AX '- b. 

»there exists  X, S, > 0 such that   AX + S    b where S is an n ■ 1 vector 
»there exists  \, S, ^ 0 such that   AX - b-S, AA" (b-S)    b-S by using 

Lemma 3. 
»there exists an arbitrary vector Y and a vector S ^ 0 such that 

A4*(b-S)   ~ b-S 

A*(b-S)   2 (A* A-I) > 

by using Lemma 4.   In this case  X - A* (b-S^ +(l- A*A) V.   Therefore there 
exists a finite n « 1 vector X satisfying the set of inequalities  AX • b, X ^ 0 
if and only if there exists a finite n » 1 vector V and n > 1 vector S, S ^ 0 such 
that AA« (b-S) = b-S and A" (b-S) - ( A«A-I) V.   From Lemma 2 it can be seen 
that if A has full row rank, the condition  AA" (b-S) - b-S becomes an identity 
and it is only required that there exist vectors V and SO such that  A" (b-S) 
> (AM-I) Y. 

8.   REMARKS ABOIT THE CONSISTENCY OF THE CONSTRAINTS 

A significant property of chance-constrained programming models is that 
the constraints generally represent the "intentions* of management rather than 
hard and fast "rules.*  In other words, the constraints rep-esent "bounds" in- 
side which management would like to operate "most of the time* rather than 
"all the time."  The decision rules resuhng from solving a chance-constrained 
problem are designed to give guidelines rather than definite plans of action for 
management operation and decision, subject to qualifications surrounding the 
controls involved in implementing the rules.   Thus the optimal decision rules 
for our problem may impute an action that, because of exceptional circumstances, 
cannot actually be taken. 

Another major feature of the chance-constrained programming concept 
is that, in contrast to so-called "linear programming under uncertainty," the 
constraints (e.g., l^a  r b, , as in relation 3) need not hold with probability 
1.   This generalization is important on several r^ilistic grounds.   First, it 
may not be possible, or even desirable, to specify actions in every conceivable 
circumstance, i.e., for every possible value of the random variables.   For ex- 
ample, in the heating-oil problem (see Section 2), certain combinations of 
events (which really did occur once or twice) were impossible for the company, 
acting alone, to handle either physically or economically.   Second, constraints 
that have the nature of "policies" are not really intended to apply in every in- 
stance but only "almost all the time,"  Hence the constraints of the problem in 
Section 2 say that the supply of heating oil must exceed the customer demand, 
not all the time but 100a, percent of the time, where a, is some number close 
to but not equal to 1.   Third, oy their nature, policies (as opposed to definite 
rules) need not spell out in advance the actions that will be taken in exceptional 
circumstances. 
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Chance-constrained programming allows for such exceptional circum- 
stances in a very easy, natural manner, particularly when the admissible 
classes are defined in s^rne straightforward analytical manner, e.g.. as linear 
decision rules.   However, questions arise when one wishes to consider "all 
possible" or "all possibly desirable" stochastic actions in time sequence.   It 
may then be seen, on reflection, that an essential feature of the analytically 
specified admissible class is that the analytic description carries one through 
sets of random events that imply constraint violations or the impossibility of 
actual, as opposed to imputed, further actions in the time sequence.   For ex- 
ample, in the heating-oil problem the linear decision rules defined a value of 
R. no matter how large the values observed for S,, « = 1, . . . ,)-l.   Clearly 
then, if extremely large demands were observed in periods 1, . . . ,)-!, it would 
be physically impossib'e for the company to produce enough oil to meet the 
amount given by R,.   This would represent an exceptional ciicumstance and the 
company would not (and could not) follow the decision for period | imputed by 
the linear decision rule.   Thus it is important to consider the question of what 
analytic specifications should be made to carry one through such situations in 
solving for optimal rules. 

In addition this example shows that if constraints that place an upper 
bound on Rj, ) - 1, . . . ,n are added to problem 4   it is possible that the con- 
straints will be inconsistent for some values of S,, | - 1, . . . ,n.   Therefore 
discussion of the difficulties involved when the constraints of the problem are 
inconsistent must precede the establishment of certain properties of the decision 
rules that are optimal for this problem. 

The question of inconsistency is of significance because, as has been 
illustrated, one of the major (and frequently overlooked and misunderstood) 
properties of chance-constrained models is that points for which the constraints 
are inconsistent may well exist in the sample space of the random variables 
involved in the problem.   In other words   there may be points (b,, . . . ,bw 

c,, . . . ,cn) in the sample space of the random variables b,, c,,i , ) = 1, . . . ,n, 
for which there do not exist decision rules X,, ) ^ 1, . . . ,n that satisfy the 
constraints of problem 13.   Thus it is possible that for some values of the ran- 
dom variables b,, c,, i     1, . . . j-1, and first )-l decisions, X,, i = 1, . . . ,j-l, 
there will not exist an n,    1 vector X, ^0 satisfying A,, X,   « F.^'d-a,)- An_, X,-, 
-. . .-AnV   In such cases the question arises as to the meaning of the expec- 
tation operator in the functional.   How is E( cj X.) calculated over those sample 
points for which no feasible X, exists? 

One method of resolving this difficulty is to replace i"   E ( cJX.) in the 
functional bv i"   E, ( cj\), where E, means that the expected value »s taken over 
only those sample points for which there exist decision rules X,, . . . ,X., 
satisfying the first ) constraints of problem 13.   Thus 

but 

EU'V -   / s'vr,' 

E.I^V ■ /s'W* 

where A, denotes the region where the first ) constraints of problem 13 are 
consistent. 
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If A, denotes the complement of A,, it can be seen that E(c.TX.) and  E.(cJXj) 
are related by 

E,(c,TX,)  -E(r,TX,)  -   fcjx^i.). 

\ 

By applying the mean value theorem we obtain the equation 

EU**,)  - E^Cc^X,)  - kP(Ä)) 

where k is a constant and 

P( A )  -    / dF,! • > 
Ä. 

Thus we see that whenever PlA,) is small, the use of E, provides a close ap- 
proximation to E. 

The concept of an analytic decision-rule class under chance constraints 
originated by Charnes and Cooper2'10,2T'a8 provides a direct and simple means 
of specifying the decision rules across the inconsistent points of the problem. 
In this case the analytic description of the class permits X. to be defined 
throughout all points of the sample space of the random variables (see the pre- 
ceding discussion and the example of Section 2).   Therefore, when a class of 
decision rules is specified, X, becomes defined throughout A, and the use of 
the E operator again becomes meaningful. 

One way of defining X, in A. is to specify   X, - 0 in this region.   The effect 
of this definition is to make E, (f/X,) =  E(£TX,).   Moreover use can be made of 
the material developed in Section 7 to specJy, a priori, the region A, over 
which X, = 0 will be put.   It is known from Section 7 that there exists a decision 
rule X, > 0 satisfying A,, X,   «  ^"'(l-ö,) - A,,., X..,   - ... - A,, X^f and only if 
there exist vectors V   and S, ^ 0 satisfying 

^.X^F-'M-^ - ^n_l^l,i - ... - A,.*, -s,. 

F-'d-ä i - S.-.V. -     • - VS - s 
i • 

and 

V'F.-'d-ä,) - v.V, -    ■ - V^ - s,' -^n'Sr'^', 

and in this region 

If P, denotes the region where a feasible X, exists, it can be seen that A,, the 
set of points (or which the first | constrain's are consistent, is given by   ■{. ,0, 
Hence A., the complement of A., equals   ,'. ,0,, where D, is the complement of 

The specification of X, as constant (   0) over its region of inconsistency 
makes it possible to extend the results obtained below.   In Theorem 2 it will 
be proved that in the region where the constraints are consistent the optimal 
decision rule for X,  gives  X, as a piecewise linear function of F,"l(l-o,), and 
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X,.,, • . . .X,.  Therefore specifying X, = 0 in A, means that the optimal de- 
cision rules become piecewise linear everywhere. 

Another method of resolving the difficulty of inconsiscency that could yield 
values of X, ^ 0 in A, is to modify the formulation of the constraints of the prob- 
lem so that the right-hand side of the constraints in problem 13 is operated on 
by a projection into the range of the A,, operator.  This projection would be the 
identity operator when consistency holds and would yield some near point in 
the range of A„  when the )th constraint is inconsistent (if the Penrose-Moore 
inverse" were used in the projection operator, the near point would be the 
nearest feasible point in the Euclidean sense).+  With this change in the con- 
straints, the E operator could then be applied without modification and the re- 
suiting functional value of  E(c(

TXJ) would differ from E, (c^Xj) by, at most, some- 
thing on the order of F'A ). 

Regardless of the procedure used to resolve the difficulty of inconsistent 
sample points, the problem of determining the optimal iecision rule for  X, is 
reduced to finding the optimal rule when the constraints are consistent.   At 
those sample points where sufficient consistency exists for the constraints and 
the functional to be meaningful, the argument of the following section is valid. 

9.  OPTIMAL CLASS OF DECISION RULES 

Let (b,,. . . ,bn, Ci, . . . ,c„) be any point in the sample space of the vectors 
of random variables b,,^,!, ) = 1, . . .,n,for which there is consistency, i.e., 
let this sample point be in '",,0,.   Suppose that for eac'i such consistent point 
the decision rules are found to be X*, . . . , X*, maximizing 1"   eTX, subject to 
the constraints of problem 13.   Then  X*   1 = 1,.. .,n,are the optimal decision 
rules for the problem.   This follows from the fact that for any other feasible 
decision rules, X,, j = 1, . . , ,n, for problem 13, I" , c,7^* - 1"   c T\. results 
from the definition of  Xj», |    1, . . . ,n.   This implies that Ed^c ' X') 

-   E (I" , fi'Xj), thus establishing the optimally of  X*, | = 1,... ,«, for points 
where consistency is present. 

Theorem 2 

The optimal decision rule for X, in problem 13 is of the form 

\     •  a pie cr wise linear func t ion of the  F_  (1-a   I  dnd  \ \ 
"i-i 

Proof.   By assumption f, X, , )     1, . . . ,n, influences the objective function 
through the terms c/X,, c*, X)(1 , . . . , cjv,.   Hence the effect of the choice of 
\n appears in 'he functional only in the cj X^ term.   Consequently the first step 
is to find the optimal decision rule for  V, as a function of XM_l, . . . »X,  and 
then proceed recursively by finding the optimal  X,,., as a function of  \„_2,. . ., X, 
until the problem is ultimately reduced to finding the optimal  X,. 

^ See Ben-Israel and Charnes30 and other references on Penrose-Moore inverses 
given in Section 2. 
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To avoid the detailed computation for each stage  the theorem will be 
proved by induction on i where ] = n +1-1.   After proving the theorem for 
1 = 1, i.e., after proving that the optimal Xn is given as a piecewise linear func- 
tion of F^'d-o,,), X^,, . . . , X,, it is then assumed for induction that the theorem 
is true for < = k, i.e., for Vk+i . • • • . V   ^ is then proved true for < = k * 1, 
i.e., for Xn.j,. 

Let (b,, . . . ,bn, c,,. . . ,c^) be any consistent point in the space of possible 
values for the vectors of random variables, b,, c,,! , j = 1, . . . ,n.   For this 
sample point the problem of maximizing I"  c^X, subject to the constraints of 
problem 13 will be solved and thus the optimal aecision rules  X*, j = 1. . . . ,n, 
will be obtained. 

Let X,, . . . »X,,., be specific values for the first n-1 decision rules.   Then 
our problem becomes one of determining a decision rule for \ that solves 

maximize 

subject to 
^X 

*****    -   P;  "-"n1   -   ^...X...   -..-   A., V, »Bn_i ^„-1 -    • • - '»„iS • (14) 

But because X., j = 1, . . . ,n-l is specified and the focus is on a single point 
in the sample space, the right-hand side of the constraints in problem 14 is a 
known vector.   Moreover by assumption a all  A,, are constant matrices; hence 
problem 14 is a linear programming problem and so has a dual.  'Its dual is 

minimize 

subject to 

T A ■    rT 

2 0 
(15) 

If problem 14 has a finite optimal solution  X^, then the convex set of 
feasib'e solutions to problem 15 has a finite number of extreme points, denoted 
by u'J,, i = I, . . . ,Nn; and, from the dual theorem of linear programming, it is 
concluded that 

^v: mm 

• - 1 V 

"B
T
1[F:1,>-°J    -    ^nn-^n-. "    ^ . * . ] J 

(16) 

Since there is only a finite number \n of extreme points, problem 16 implies 
that  X£ is a piec   wise linear function of F~l(l-0'n) - A^,,,,, X^,. . .- Ani X, with, 
at most, \n pieces.   Hence   V^, is piecewise linear in ^"'(l-aj and XM_1, . . . »X,. 
Thus the theorem is true for f    \. 

Now assume for induction that the theorem is true for /    k.   Then there 
exist functions H, wF._l(l-ö ), XM , . . . , X,]) =n-k + l, . . . ,n, which are pieiewisc 
linear in F-'Ml-o.), X.,, , . . . .X,, and are such that   X,*     Hj ,) - n-k*l, . . . ,n. 
Thus problem 13 can be written as 
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maximize 

subject to 
EI^I     * *   'nV,,-*    *    ^J-*.!".-*♦!    * *    ^'V 

A,^, i rr'n-o,). u^i 

\,, \,    *   A-,\,   '_   F"1! l-a,i . 
Ill . t        * » ^ 

1*1     '      ' n -*. 2   ' 2     ' *n-lr.n-Jr^n-*     -'n-*'"0«-* 

.   i-l n-M 

Again let (b^ . . . ,bn, c,, . . . ,cn) be a particular sample point and let 
X,, . . . .Vj.fe.^e specified values for the firstn-k-1 decision rules. Then 
\*_k is obtained by solving the following: 

maximize „ 

subject to 

A
n_4,.n-* Xn-*     -   Fn"-»' ' ""n-*1    "    An-*. n-*-1 X n-k-1    " "    An-ir,l   Xi (lg) 

^-*    -    0 

The functional in problem 18 is piecewise linear in \_k because of the 
piecewise linearity of the H.,) -n-k*!, . . . ,n.   Moreover the optimal \„_i, can 
be obtained by first solving problem 18 over each piece where the functional 
is linear in Vi_k and then selecting the piece that is optimal.   That is, the solu- 
tion space of problem 18 can be divided into sets K,, . . . ,K\. such that in any 
set Kp the functional in problem 18 is linear in X„_fc.   Problem 18 is then solved 
for   V,* k  r the optimal \_k in Kr,r = 1,. . . , \, and finally \JLk is selected such 
that 

r-1, .. . .\ 

Since for any set Kr the functional in problem 18 is linear in V,^. the 
problem in Kr is 

maximize 

subject to 

where ir[_fc is a 1   > rin k matrix whose components depend on the sample point 
(b,, . . . .b,,, f,, . . . ,cB) and the given values of  \ V*-i' 

Because problem 19 is a linear programming problem like problem 14, 
by writing its dual and proceeding exactly as was done in going fiom problem 
14 to problem 16, it can be seen that X'^   is a piecewise linear function of 
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F^d-o^, Xn-j,.,, . . . ,X,.  Since this is true for each region Kr over which 
the functional in problem 18 is linear, it is concluded that  S*^ is indeed piece- 
wise linear in F^d-o^), Vk-i. • • • . X,. 

Thus, by induction, the theorem is proved. 
Corollary 1.   The optimal decision rule for X, , i - 1, . . . ,n, in problem 13 

is of the form X, r a piecewise linear function oi the F^'d-a,), i - 1, . . . ,|. 

10.   OPTIMAL DECISION RULES FOR SOME SPECIAL CASES 

The results of the preceding section apply to any model satisfying assump- 
tions a through f.  These assumptions are, however, very general and so it is 
instructive to look in closer detail at certain special cases that yield particu- 
larly interesting results.   More specifically the chief concern will be the case 
in which problem 10 is an rt-stage linear-programming-under-uncertainty 
problem (i.e., o,^ - 1, *   1 , . . . ,m1, i = 1, . . . ,« ). 

However, another important special case of problem 10 is considered in 
Ref 5.   This is the case in which each A,,   matrix, i ^) ,i ,)r 1, . . . ,rt, is a 
1  ■ 1 matrix.   In other words, each period generates exactly one new constraint 
(instead of m, new constraints as in problem 10).   Charnes and Kirby"1 have 
shown that there is much more to say about the solution of such problems than 
has been said in Theorem 2.   In particular  an explicit method of obtaining the 
optimal decision rules under certain circumstances is shown. 

To begin with, however, it is observed that Corollary 1 also implies the 
following. 

Corollary 2.   The optimal decision rule for X,,) M, . . . ,n, in problem 13 
is piecewise linear in the b,, c,, i = 1, . . . ,)-l, if and only if ^"'(l-öp), t-l, 
...,), is piecewise linear in b,, c,, i   1, ...,/.-1. 

As an example of a situation in which Corollary 2 is applicable, consider 
me case where b,, . . . ,bn, c,, . . . ,cn. are jointly normally dis^ibuted^nd 
Of   is a constant for all ), /, and so does not depend on the given values of 
b,, c,, i - 1,. . . ,i  1. Then F. ( . ) is the distribution function of a normal random 
variable with mean m and variance 6 .   Moreover m is a linear function of the 
random variables that are given in the conditional distribution.   Thus m is a 
linear function of b,, c,,i   1, ... ,| - 1.   Also ö2 is a constant.   Therefore 
F. (yp)    ♦ ( y(-m/ 6 ) can be written where ♦( . ) is the distribution function of a 
normal random variable with mean 0 and variance 1.   Thus 

F,(\f)   •   l-a.f   "   Vf   =   F.-   (l-a.p)   -   <S4>"1(l-afrl   ♦   m. 

But a.f is, by hypothesis, a constant. Hence ♦"Hl-ö.p) is a constant, and the 
linearity of m implies the linearit ■ of f~Kl-o.f). Therefore each component 
of ^"'(l-ö.), |   1, ... ,n, is a linear function of h,, c,, i    1, . . . ,| -1. 

To give examples where the fractile points are linear in the given sample 
points and the o. are not constant is fairly difficult.   In fact it is clear that \* 
will not, in general, be piecewise linear in b,, c,, i    1,...,|-1. 

Another special case of this corollary falls into the category of linear 
programming under uncertainty.♦   Suppose that o,     1, )- 1, . . , ,n.   Then by 

tSt't" Champs, Cooper and Thompson21 and G. B. Dantzig et al.20' 31",4 
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our definition of a, there must also be <?, - 1, )= 1, . . . ,n.   Assume also that 
the conditional distribution of bj,) =1, . . . ,n, given b,, c, ,|    1, ... ,| -1, is 
such that its Oth tractile point does not depend on the given values of b,, c,, 
1=1, . . . ,)-l.   Then F'r'd-ä.) = Fj'MO),) =1, . . . ,n, becomes a const; nt vector 
the components of which are known before any observations have been made. 
The solutions space of problem 13 is therefore a fixed convex set wlose bound- 
ing hyperplanes do not depend on the random variables involved in the problem 
Thus we are led to the following: 

Theorem 3 

Assume a   - 1, ) = 1, . . . ,n. 
Assume F-'iO), ) = 1, . . . ,rt, is a vector of constants. 
Then the optimal decision rule for  \, in problem 13 is such that  \ is 

piecewise constant. 
Proof.   By Corollary 1 the optimal  X) is piecewise linear in Ff'd-o,). 

i    1, . . . ,).   Therefore  X, is piecewise linear in the F71 (0), i    1, ... ,1 -1. 
But F^'fO) is a constant by assumption.   Hence, \, is piecewise constant. 

This result was also obtained in a different manner by Charnes, Cooper 
and Thompson l for the r»-stage linear-programming-under-uncertainty mode! 
(see Theorem 1). 

The assumption used above that Fr'(0) be a constant vector is not as 
restrictive as it might appear at first glance.   Indeed this assumption is true 
for a very largo class of distribution functions F) ( . ).   In fact in Theorem 3 
only such distributions are eliminated as F| ( . ), the distribution function of a 
random variable that is uniform over (a, b ) where a depends on b,, c,, 1 = 1,. . ., 

I -1.   However, if a is a constant, b can depend on b,, c,, 1    1, ... ,1 -1, and 
F, ( . ) will still satisfy the requirement that Ff'IO) be a constant. 

This discussion also illustrates one of the major weaknesses of linear 
programming under uncertainty, i.e., that for many distributions the constraints 
of problem 13 are inconsistent everywhere.   Suppose again that b,, c,,!^ 1, 
. . . ,n, are jointly normally distributed.   Then Fj ( . ) is the distribution function 
of a normal random variable, hence Frl(0)     - ar.   Consequently there do not 
exist decision rules X., j" 1, . . . .n, that satisfy the constraints of problem 13, 
no matter what sample points are observed. 

Further results are obtained on the linear-programming-under-uncertainty 
problem by restricting the above model still further.   To do this It is assumed 
that c., j = 1, , . . ,n is a vector of constants rather than random variables and 
then problem 13 is shown to reduce to an ordinary linear programming problem. 
When c., 1    1, . . .,", are constants, the E operator means that the expected 
value of 1"    c[\, is taken, using the joint distribution of b,, . . . ,bn.   Therefore 
if problem 13 is solved for a given sample point (b,, . . . .b,,), the optimal de- 
cision rules \* 1    1,...,« will be obtained for this particular »ample point. 
But o,     1, 1   1, ... ,n, and by assumption ^,"'(0) is a vector of constants;   hence 
the constraint set of problem 13 does not depend on the sample point (b, b»). 
Moreover since the ^ are constant, problem 13 is now completely deterministic. 
Thus   X*. 1   1, . . . ,n will be optimal for all sample points and these optimal 
decision rules can be found by solving the ordinary limar programming 
problem 
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maximize 

subject to 

i-i   '    ' 

A., V,   ♦   An,\,   ♦   .    •   ♦   A     V,,   ■_  F^'iO) nil n2i rinn n 

\.   - 0 .   i-l,... .n 

Another example of a situation in which the solutions spare of problem 13 
does not depend on the observed values of b,, c,, i    1, . . . ,n can be obtained 
by supposing that b,, j   1, ... ,n is stochastically independent of b,, c,, i    1, 
...,)-! and that Oj  ,)    1, . . . ,n is a constant vector.   Then FT'Ü-ä. ) is a 
constant vector, since it represents the 1-^th fractile point of the marginal 
distribution of b, .   But by assumption e this marginal distribution is known, 
so Fj'd-ä ) can be computed before taking any observations.   Thus the solutions 
space of problem 13 does not depend on the observed random variables. 

Even when b, is dependent on the b,, c,, i   1 1 ~li Ff1 (l"ö,) is a 
vector of constants because it represents the m, • 1 vector of 1-or, percentile 
points of the marginal distribution of bpand ST,    a, is constant. 

It is interesting to note that if f,,)    1, ... ,n is a constant vector, if 
b^ j    1, ... ,n is independent of the joint distribution of b,, i   1, . . . ,| - Land if 
ä., |    1, . . . ,n is constant, then,by an argument analogous to that used above, 
it can be concluded that problem 13 becomes an ordinary linear programming 
problem. 

11.   EXAMPLES 

To illustrate the results obtained two examples are presented.   In the 
first example, problem 20, the constraints are consistent for all sample points 
and all values of <?. in t0, 11.   In the second case, problem 23, it can be seen 
how a well-posed problem can have sample points for which the constraints 
are inconsistent. 

In both these examples the various ö, will not be explicitly written as 
functions of b^ ri, i =1,, . . ,1-1.   Thus the problem will be solved treating 6. as an 
arbitrary function of its conditional random variables, subject only to the re- 
striction that 0 * äjf ' I for all | and f.   In addition it will be assumed that our 
problems are given in the form of problem 13 rather than problem 10, so that 
the constraints involve P and a. and not P and Qr 

Example 1 

As our first example the following two-stage problem in which X,      i,, 
and X2 " i2 are 1  ■ 1 vectors (i.e., i|,i2 are single variables) will be solved: 
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maximize 

subject to 
f ''i'l    *   '2*2) 

P(bl     '   .,) ■   a, 

Pib7 1 t1  * x2) l «i. (20) 

«, ,«2 - o. 

where c, is uniformly distributed over .15, 25. and c. is uniformly distributed 
over wc, - 6,  c, * 4 ..   Thus the mean of c,, given c,, is c, -1; but c2, like c,, 
has a range of ten units,    b, is uniformly distributed over '100, 200' and b: is 
uniformly distributed over .75, 2h! - 75!.   Thus the mean of b:, giver h,, equals 
b,, but the range of b, is not the same as the range of b,. 

In addition it is assumed that c, and c2 are independent of b, and b,.   The 
solution of problem 20 is begun by computing F^'d-ö,) and FV(l-ö2). 

Let y be a random variable that is uniformly distributed over .a, b ,. 
Let y be the l-öTth fractile point of v. Then "v(l/b -a) (i> 1 - a. Hence 
y     (b-a) (1-or) + a.   Thus the equivalent form of problem 20 is: 

maximize 

subject to 

'.   * 

C(f, t.   »  i-, i, > 

"_   100 ( l-a,!   •   100 

ti   S 12b, - 150)  ( 1 -ä2i 
(21) 

t, , i2    ■ o. 

Or, equivalently, 

maximize 

subject to 
EU,i,   •   c,.2i 

i, 1  J00   -   lOOoj , 

i,   -   i,   '_ 2( l-ö,»!».   ♦   lV)ä,   - ?'> . 
1 A it i 

'. ■ *2 - o 

Let (b,, b2, c,, cjbe any sample point and let x, be given.   Then to deter- 
mine i* the following must be solved: 

maximize 

subject to 

l.   1   2( l-ä2>b,   ♦   lMa2   -  :S   -  X, 

»2    2  0 
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But t ,    0 always, so that »t     2(1-0:) bl * 150or, -75-1,.   To find the optimal 
i, the following must now be solved; 

maximize 
Eu.i,   •   c2i2 i 

subject to 

t.   ■_ looi I -a. i  »  UKI , 
(22) 

In problem 22 I means that the expected value is taken with respect to 
the joint distribution of h,, h,, c,, t .. But x, is independent of these random 
variables by assumption f* and d and c:  are independent of b, and h..   Hence 
Hi,!,)     E'i,)»,     L., ,,(,,)!,     1,,; f,, ^(i;). x,      E,,^,)!,     201,, where the 
subscript of the   [ denotes the distribution used in computing the expectation 
and c, i, means that the conditional distribution of c2, given c,, is used. 

Also 

r  . ,«'   - f  K , l.' i -« , i h,  • i'>oa_, - :"> - 1,11. 

' -'f  i.,!),) - J r' i,«.h, i ♦ ivir' ^ ä_ i - :r)Ei rj - ^f i ij, 

where the expectation is computed using the joint distribution of b,, b:, c,, c.. 
However, in order to find i* it is necessary to know explicitly the expression 
for I (i.x*) as a function of x,.   Hence, as M ij     t.^Uj)     f,,. 1 ., ^d .). 
(,,(1,-1)     19, to obtain x, the following must be solved: 

Maximize 

subject to 

>, '_ loo ii-ä,!  • ion , 

', - "• 

where K     21 (..b,) - 21 d.a.b,) * 1501 U.ö:) - 75 Id.). 
Therefore 

, *   ,   11 H I   i - ,7 ,1    .    1 I K I 

and 

I*    -    J     I -« , ih,     •     I'.!!« . •     IJ'    -    100  n , 

Since f   '(1  ö  ) was linear m b,, i* .s seen to bv also linear in b,, which agrees 
with Corollary 2.   Also if t»:, ö       1, t* is piecewise constant (in fact it is a 
constant), as was predicted by the discussion of the linear-programming-under- 
uncertainfv case. 

' In fact. Irom thf intt rprcUtion of the general problem, it is clear that x,, the 
vector nl first-period decisions, will always have I ( X,) V,. This is another dirt'ct 
consequence ni  X, aw a /ero-order decision rule (see Section (i). 
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Example 2 

For our second example the following problem is considered: 

maximize 
EU,!,   ♦  c2t2i 

subject to 

Pib,  z a,,!,) 

f'fb     ;  8,, I,    ♦   fl, , 1, 1    -  a,. (23) 

where i, and t . ire defined as in the previous example; b, and b: are jointly 
normally distributed with means m, and m^ and variances 6^ and ft;, respectively, 
and correlation coefficient p > 0; au and a:: are positive constants and a., is a 
negative constant; and c, and c2 are independent of b, and b,. 

From our definition of b, and b    it can be seen that their joint frequency 
function is given by 

(    ' 
2nhi f>:S \-P        j   :M- 

I b, h. 
/b,-m,y       )   /bi -mA/h.-mA     /h—wA' 

and f(5, b, ), the conditional frequency function of b   given b,, satisfies 

f(b2   b,) 
r_bi_M 

f   i b   > 

where (Mb,) is the marginal frequency function of b,.   Therefore 

fib2   b,i -   e»(i 

\   -"   \    I - p :<sti i -,.-') 
b , - m ,   -   p    -   ' b . 

so that b., given b,, is normally distributed with mean     m. * P (ft./ ftj (b|   m,) 
and variance     ft (1-p ). 

Thus f. '(l-ö.) 6,'1-p-♦-'(l-Q.) * m: - p (6r/6,),.,,, ♦ p (6/ft, lb, . whert 
4'( . ) is the distribution function of a normal random variable with mean 0 and 
variance 1.   Let k] , k    be defined by 

te ,   -   iS, v   1 - (j-   4>~' i 1 - n , 1    •   m .   -   ()-'-<«., 
A, 

,S. 

•■>l 

Then a problem equivalent to problem 23 is 

maximize 
f ■. , i    ♦  . , i  ' 

sul))ect to 

_    fi j   «f"       1-0,1     »    «, 

u     i     •   J . , i     '_   k , b ,    •   *-• 
,ii ... i    i 

«,     i,   -  " 

(24) 
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Let (b|, b., C|, t;) be any sample point in the space of random variables 
^i . b;, C|, c,.   Let i, be a given first-period decision rule.   Then to find xf 
the following must be solved: 

maximize 

subject to 

li  - f>' 

or, equivalently, 

maximize 
C2l2 

subject to 

_' b, > - - - 

2 2 u ?.' M ? .> 
I,     _   -  -    I),     .    —    --.—   I, 

as a2,    0 by hypothesis.   Since t,     0, also by assumption, the following is 
obtained: 

«2    -    „—  ",     '    ,—   -^:
,

1      ''      k.b1     *    te2    "    "2.'.    -0- 

nn feasiblr soltttlon if     ^ i h ■    *   ''j ~   ',2I 'l    <   0 . 

Thus region D. discussed above is seen to be defined by kib, * k.. - a^i,  • 0. 
Moreover since äM     0 it can be seen from problem 24  that   Di is the _region 
lor which 6, 4>'1(l-äi ) + mi  • 0, so that the union of Di 02 gives the set^j. 

Using the rule if     0 in L:, the optimal i,  is found by solving the following: 

maximize 

subject to 

aM   »1     '-    *1   *~[[   '-»l'     *     mi 

(25) 

If ft, * '(l-o,) * m, ^ 0, then a feasible i, exists and 

 ^   ''•    "     * I»}*::    '        "22      ''      ' Vo,.,   ) 

But  D, is the region where k, b, * k   - a..,«,   -0, that is, b,  > (a^/k, ) i,  - (k /k, ) 
as k,    0 and k, is a constant because ft, is a constant (see Section 6).   If it is 
now assumed that k. is also a constant, i.e., that or. is a constant, the following 
is obtained: 
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Finally, using the fact that x1 

25 can be written: 

maximize 

subj - t to 

to be independent of b1 and 1 , problem 

19 11 1 51 + 
+ --'--'- f z ct>( zl d z 

a 22 a 2l x l - 112 -m l k l 

Ill 51 

( 26) 
- .... ~ 

where w ( . ) is the frequency function of a normal random variable with m an 
0 and variance 1. Solving this problem (which can be don asily by applying 
the Lagrange-multiplier techniqu to problem 26), the following i obtain c: 

Thus the optimal dec ision rules are 

fea ibl e 
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