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Abstract: The retina is a thin, light-sensitive membrane with a multilayered structure found in the
back of the eyeball. There are many types of retinal disorders. The two most prevalent retinal
illnesses are Age-Related Macular Degeneration (AMD) and Diabetic Macular Edema (DME). Optical
Coherence Tomography (OCT) is a vital retinal imaging technology. X-lets (such as curvelet, DTCWT,
contourlet, etc.) have several benefits in image processing and analysis. They can capture both
local and non-local features of an image simultaneously. The aim of this paper is to propose an
optimal deep learning architecture based on sparse basis functions for the automated segmentation
of cystic areas in OCT images. Different X-let transforms were used to produce different network
inputs, including curvelet, Dual-Tree Complex Wavelet Transform (DTCWT), circlet, and contourlet.
Additionally, three different combinations of these transforms are suggested to achieve more accurate
segmentation results. Various metrics, including Dice coefficient, sensitivity, false positive ratio,
Jaccard index, and qualitative results, were evaluated to find the optimal networks and combinations
of the X-let’s sub-bands. The proposed network was tested on both original and noisy datasets.
The results show the following facts: (1) contourlet achieves the optimal results between different
combinations; (2) the five-channel decomposition using high-pass sub-bands of contourlet transform
achieves the best performance; and (3) the five-channel decomposition using high-pass sub-bands
formations out-performs the state-of-the-art methods, especially in the noisy dataset. The proposed
method has the potential to improve the accuracy and speed of the segmentation process in clinical
settings, facilitating the diagnosis and treatment of retinal diseases.

Keywords: OCT; semantic segmentation; X-let; cyst

1. Introduction

OCT is a non-invasive and powerful imaging technique in ophthalmology that pro-
duces micrometer-resolution 3D images of structural and molecular of biological tissues
within the human retina [1,2]. It is a very effective diagnostic technique that offers informa-
tion on the structure and function of the eye, allowing ophthalmologists to diagnose and
monitor a variety of eye illnesses [3]. OCT is often employed in clinical settings to track the
development of retinal diseases and emerged as the gold standard for diagnosing the most
common macular disorders, including Diabetic Macular Edema (DME) and Age-Related
Macular Degeneration (AMD). One of the main causes of blindness and visual impairment
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is fluid leaking from damaged retinal blood vessels, which results in AMD and DME.
Macular Edema (ME) occurs when the blood vessels that leak into the center of the retina
swell as a result of a buildup of fluid. Ophthalmologists may take necessary efforts to avoid
vision loss and offer better results for their patients if these alterations are detected in their
early stage of development [4,5].

A cyst is a tiny, fluid-filled object that appears on ophthalmic OCT images of abnormal
eyes [6]. Cysts may be discovered in numerous sections of the eye, including the retina,
choroid, and anterior chamber. They can indicate various eye disorders, including Retinal
Detachment, Macular Edema, and AMD [7]. The aperture enlarges over time and affects the
patient’s eyesight. Three subcategories are presented based on the location of the cyst that
is characterized by the development of abnormal blood vessels in the choroidal vasculature:
pigment epithelial detachment, subretinal fluid, and intra-retinal fluid. Cysts in the eye
may have a variety of effects on vision and eye health, depending on their location and
size, as well as the underlying eye disease. Cysts in the retina, for example, may cause
vision loss if the retina detaches, while cysts in the choroid can indicate macular edema
or AMD [8]. Early detection and precise monitoring are the key factors to avoid blindness
in these patients. Ophthalmologists are interested in accurately segmenting the Macular
Edema-affected areas. Furthermore, the size, shape, and locations of cysts are very different
from case to case [6]. Manual cyst segmentation in OCT images can be a time-consuming
and tedious process, and it also requires expertise to accurately identify and segment the
cysts. This fact is why automated methods using deep learning and other image-processing
techniques were developed in this task to assist researchers and clinicians in the field of
ophthalmology [9].

In computer vision systems, semantic segmentation is a complex process to complete.
Many strategies were previously created to address this issue [10]. Semantic segmentation
is the ability to segment an unknown image into several components and objects and
assign a class label to each pixel. In recent years, a number of automated segmentation
techniques were suggested. For problems involving the segmentation of the cysts, tradi-
tional machine-learning techniques were applied extensively in research that began in the
2000s [10]. Traditional methods for OCT cyst segmentation typically involve pre-processing
the image to enhance the contrast and applying thresholding and morphological operations
to segment the cysts. These methods are relatively simple and computationally efficient;
however, they often struggle with the complex shape and texture of the cysts, as well as
the presence of noise and artifacts in the OCT images [11]. Traditional cyst segmentation
methods, such as Thresholding [11], Graph-Based Methods [12,13], and Active Contour
Methods [14], can be useful; however, deep learning methods were shown to improve
segmentation performance in various medical imaging applications, including OCT cyst
segmentation. Deep learning models can learn and extract features automatically from
the input data, reducing the need for manual feature engineering, and can achieve high
accuracy in segmentation tasks [11,15]. Our main goal, in this paper, is to show how using
appropriate sparse basis functions can improve the performance of Unet as a basic cyst
segmentation unit due to the consistency of chosen basis functions to the properties of
cystic B-scans.

2. Related Works

In this section, the required background about the deep learning methods and direc-
tional X-lets is presented. Deep learning gained significant attention in recent years as it
demonstrated remarkable performance in image segmentation [16]. Moreover, directional
X-lets are a family of transforms that capture directional information in images [17]. In this
section, we provide an overview of these methods and their applications in the field of
ophthalmology, particularly for the cyst segmentation of retinal OCT images.
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2.1. Deep Learning Review

Deep learning recently made major breakthroughs in the area of medical imaging due
to rising computer power and the amount of available data [18,19]. Convolutional Neural
Network (CNN) structures, in particular, can capture the non-linear mapping between
inputs and outputs, as well as automatically learn local area features and high-level abstract
features via multi-layer network structures, which are typically superior to a manual
extraction and pre-defined feature sets [19]. Various deep learning techniques were used to
segment retinal layers and retinal lesions. For example, some of the most advanced deep
learning architectures for image segmentation are FCNN [20], R2 Unet [21], Seg-net [22],
and Deeplabv3+ [23]. Trans-Unet was developed to identify fluid in our earlier work [24].
Trans-Unet is similar to Unet [20,25]. It comprises an expanded path and a contracting
path. It uses a hybrid CNN-Transformer architecture to make use of both the global context
stored by transformers and the finely detailed high-resolution spatial information from
CNN features.

Deep learning is used in ophthalmology to make use of the large datasets of the
fundus, while for OCT images that are frequently obtained in clinics [16], particularly for
computer-aided diagnosis, deep learning-based automated detection of glaucoma is often
performed on wide-field OCT scans [26]. Deep learning was also utilized in fundus and
OCT images [26] for the segmentation and classification of retinal vasculature and retinal
layers [27]. Fully Convolutional Neural Networks (FCN) show outstanding performance
in image segmentation challenges [28]. There were a few past attempts to use FCNs for
retinal fluid segmentation [29].

Fully Convolutional Neural Networks, Adversarial Networks, and Unets are some
of the most popular methods used for OCT cyst segmentation tasks. Unet has several
advantages over fully convolutional methods that make it a better choice for certain tasks,
especially in medical imaging. Although Unet is a FCN method, some improvements could
help Unet performs more effectively [30]. One advantage of Unet is that it includes both
a contracting path and an expanding path, which allows for the precise localization of
features. The contracting path is a sequence of convolutional and max pooling layers that
reduce the spatial dimensions of the input. In contrast, the expanding path is a sequence of
up-convolutional layers that increase the spatial dimensions. This structure enables Unet to
effectively capture both high- and low-level features, allowing for a more detailed segmen-
tation [31,32]. Moreover, adversarial approaches are employed in semantic segmentation,
especially in medical imaging in which is the size of the artifact is too small others; however,
Unet-based methods are thought to outperform adversarial approaches owing to their abil-
ity to properly localize objects while preserving fine-grained information [10,33]. Overall,
Unet’s sophisticated architecture and its ability to effectively preserve and utilize both
high- and low-level features make it a better choice than FCN and adversarial methods for
certain tasks; thus, we will use Trans-Unet as the base network for the sub-bands analysis.

The succeeding pooling layers minimize the spatial information of the feature in
order to learn more abstract feature representations [34]. However, dense prediction
problems need extensive spatial information. Due to the limitations of standard pooling
techniques, they are (1) prone to disregard essential texture information in the image and
(2) inadequately resilient to noise. The sub-bands employ a spectral domain transformation
approach to address these difficulties.

2.2. X-Lets Review

X-lets refer to a broad category of signal-processing techniques that use mathematical
functions or transforms to analyze and manipulate signals [17]. X-lets such as wavelets and
circlets, contourlets, and Dual-Tree Complex Wavelet Transform (DTCWT) have various
applications in signal processing and image analysis, including denoising, edge detection,
and compression. X-lets are particularly useful for signal and image denoising because
they can represent both the high- and low-frequency components of a signal with a variable
window size, which allows for more accurate noise reduction while preserving important
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signal features. X-lets could be useful for image segmentation because of the specific
time–frequency properties of different sub-bands. X-let sub-bands have low computational
complexity and better preserved edges in images, making them a promising tool for several
applications [17].

In deep learning frameworks, X-let transforms can be applied in two ways: (1) as part
of the network architecture (e.g., using wavelet layers instead of pooling layers); or (2) using
sparse X-let representations of the image as inputs in the network. The X-let transform was
used to overcome problems with pooling in deep learning. Conventional down-sampling
methods, such as max-pooling and average pooling, usually ignore the Nyquist sampling
theorem; however, anti-aliased CNNs can improve segmentation accuracy by incorporating
the wavelet transform [35]. Moreover, as shown in similar studies, other X-lets could
easily use this structure. Hongya Lu et al. segmented human thyroid applications using
DTCWT-based CNN. They attempted to apply DTCWT in CNN layers rather than the
max-pooling layer [35]. Similarly, Qiufu Li et al. developed a modified Unet model with
a Wavenet wavelet layer. André Souza’s approach improved performance, while Brito
et al. coupled max-pooling with wavelet pooling. This group proposed a novel multi-
pooling approach that combined wavelet and classic pooling. Alijamaat et al. attempted
to combine wavelet pooling with Unet to improve semantic segmentation performance
in order to extract distinct directions in brain MRI images [30]. Guiyi Yang et al. [36]
used wavelet transforms in the Attention Unet for concrete crack segmentation. Several
researchers tried to integrate the wavelet transform into deep learning models, such as
the Unet and Attention Unet models. Some studies applied the wavelet transform in the
network structure, while others have used sub-bands as the input image. For example, one
team used contourlet sub-bands as inputs in their marine raft segmentation network based
on Attention Unet [37]. Another team utilized 3D discrete wavelet transform as the input
image for polarimetric SAR images [38]. To the best of our knowledge, no prior research
examined the different X-let transform configurations and function of each sub-band in
OCT cyst segmentation. Table 1 displays of different sparse-based deep learning methods
are discussed in the related works.

This paper focuses on using X-let sub-band combinations in a deep-learning frame-
work to segment OCT fluid. X-lets are effective time–frequency analysis tools that de-
compose an image signal at different time scales using a family of basic functions. They
provide improved edge preservation and low computational complexity compared to other
wavelet transforms.

We aim to compare the effects of different sub-band combinations in terms of perfor-
mance metrics, such as the Jaccard index and Dice scores. They examine the impact of
different sub-band combination transforms and their new formation types on the deep
learning framework. To the best of our knowledge, this is the first comprehensive compara-
tive study on the application of different X-lets sub-bands in OCT fluid segmentation. The
use of sub-band combinations in deep learning methods for OCT fluid segmentation has
the potential to significantly improve the accuracy of the segmentation results, especially
in normal and noisy conditions. By conducting a comprehensive comparison study on the
application of different X-let sub-bands, the authors aim to provide a better understanding
of the optimal sub-band combination required for OCT fluid segmentation.

In this paper, we attempted to expand on the state-of-the-art approach in a variety
of ways:

1. We used the X-lets input framework to enhance the accuracy of semantic segmentation
in OCT images and evaluated the performance of various X-let combinations;

2. We proposed a novel optimal X-let transform by concatenating different sub-bands
and two-channel sub-bands, which resulted in improved segmentation performance;

3. Our study highlighted the importance of choosing the right architecture and combina-
tion of sub-bands for OCT cyst segmentation and provided insights into the strengths
and weaknesses of different methods;
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4. We compared different methods, architectures, and transforms to choose the best
combination and transform required for the OCT semantic segmentation application.

Table 1. Comparison of different sparse-based deep learning architectures discussed in related work.

Framework X-Let Transform Type Input Key Features Reference

DTCWT-CNN Dual-tree complex wavelet
transform (DTCWT) Network structure Image

DTCWT used in CNN layers
instead of the max-pooling
layer for improved
segmentation accuracy

Hongya Lu
et al. [35]

Wavenet Unet Wavelet transform Network structure Image
Modified Unet model with
Wavenet wavelet layer for
improved segmentation

Qiufu Li
et al. [39]

Max-Wavelet Pooling Wavelet transform Network structure Image

Multi-pooling approach
combining wavelet and classic
pooling for improved
performance

Brito et al. [40]

Wavelet Unet Wavelet transform Network structure Image
Wavelet transform used in
Attention Unet for concrete
crack segmentation

Guiyi Yang
et al. [36]

Contourlet Attention
Unet Contourlet transform Input framework Sub-bands

Contourlet sub-bands are used
as inputs in marine raft
segmentation networks based
on Attention Unet

Zhang
et al. [37]

3D Discrete Wavelet
Transform

3D Discrete Wavelet
Transform Input framework Sub-bands

3D Discrete Wavelet Transform
used as the input image for
polarimetric SAR images

Bi, H. et al. [38]

Attention Unet with
DTCWT DTCWT Input framework Sub-bands Applied different methods for

OCT cyst segmentation
Darooei
et al. [24]

Proposed Optimal
X-let Transform

Combination of different
sub-bands transforms
(DTCWT, contourlet,
curvelet, circlet)

Input framework Sub-bands
Novel optimal X-let transform
for improved segmentation
performance

This paper

3. Materials and Methods
3.1. Dataset

The dataset is introduced in this section to evaluate and compare the performance of
different X-lets and their combinations (of basis functions) for OCT cyst segmentation. The
preparation of the dataset involved acquiring and pre-processing images of OCT B-scans
of cysts. Once the images were pre-processed and labeled, the dataset could be split into
training and testing subsets to facilitate model training and evaluation. It was crucial to
ensure that the dataset was diverse and representative of the various types of OCT images
that may be encountered in real-world scenarios. This approach could help increase the
robustness and generalizability of the deep learning models trained on this dataset.

Two distinct datasets were used to investigate the impact of various X-let sub-band
combinations. The initial dataset included 194 B-scans created via the Heidelberg OCT
equipment (fluid and normal). Our team previously obtained this dataset [41]. We needed
to enlarge our dataset to boost our performance. Our dataset was integrated with the Retinal
OCT Fluid Challenge (OPTIMA) [42]. This collection comprises 356 OCT B-cans images at
various resolutions, including normal and fluid images. All images and ground truth masks
from the various datasets were scaled to 512 × 512 resolutions. The data may be found at
https://github.com/rezadarooei/OCT fluid dataset (accessed on 1 December 2022).

To enhance our dataset and test the agreement and repeatability of the proposed
approach network, we employed data augmentation methods, such as rotation, shift, and
crop. The datasets were separated into training and test sets at random. The dataset
contains 502 different fluid images; using data augmentation, we sourced 5500 standard
images. In this process, we applied different random combinations of data augmentation
processes. We also used the structural similarity index measure (SSIM) to calculate the

https://github.com/rezadarooei/OCT
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similarity between the augmented images, and eliminated the highly similar (redundant)
images; after that, we performed a visual inspection to check the dataset.

The resistance against noise is an important aspect of evaluating any segmentation
approach. We used various noise levels, since many OCT imaging devices suffered from
the speckle noise. In some devices, such as Heidelberg, the images were displayed in
the log domain, and the final observed noise was modeled via additive white Gaussian
noise. Different amounts of white Gaussian noise were applied to the database images,
resulting in a new database with 70% of the images chosen to be noisy and 30% remaining
as the original version. This experiment aimed to look at the effect of noise in sub-bands.
Furthermore, this dataset was randomly divided into 80% and 20% for training and testing.

The Signal-to-Noise Ratio (SNR) is a measure of the test of the quality of a signal,
which is defined as the share of the signal power relative to the noise power. It is commonly
used in image processing and analysis to evaluate the quality of an image or a signal by
this metric. The SNR was calculated as the ratio of the power (variance) of the signal to the
power (variance) of the noise in the image, as follows:

SNR = 10log10

(
||A||2F
||A−B||2F

)
,

Frobenius norm : ||A||2F = ΣN
i=1ΣM

j=1a2
ij.

(1)

For this dataset (σn = 80), the SNR was equal to 8.11 dB. Figure 1 shows a sample
image of the dataset, the true segmentation of the cyst on it, and the noise-added image.
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3.2. X-Let Combination

X-lets (extended wavelets) are a series of mathematical functions that expand regular
wavelets, and were discovered to have superior signal and image representation capabilities.
We investigated the usage of X-lets as a feature extraction method for automated cyst
segmentation in OCT images in this paper. We aimed to increase the performance of deep
learning techniques in both normal and noisy situations using the unique qualities of
X-lets. The final aim is to identify the optimum X-let foundation for OCT cyst semantic
segmentation and compare its performance to other current approaches [17].

Contourlet, dual-tree complex wavelet, curvelet, and circlet are all transform-based
image analysis methods that are often used for image processing and segmentation tasks.
Each of these methods has unique strengths and weaknesses when it comes to semantic
segmentation.

• Contourlet transform: A mathematical method called the contourlet transform is used
to find 2D geometries in images. It works by employing the Laplacian Pyramid to
divide an image into a number of sub-bands, after which the image is subjected to a
number of directional filter banks. The contourlet transform is a multi-scale, multi-
directional transform that is specifically designed to handle the edges and contours
in an image. This specialization makes it useful for segmenting objects with com-
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plex shapes and boundaries. However, the contourlet transform is computationally
expensive and may not be suitable for real-time applications [43].

• Dual-tree complex wavelet transforms: The discrete wavelet transform (DWT) breaks
down a signal into several sub-bands, with each sub-band representing the signal
in a special time–frequency duration. The dual-tree complex wavelet transform is
a variation in the standard wavelet transform that provides improved directional
selectivity and phase information. DTCWT sub-bands make the transform useful for
segmenting objects with textures and fine details. However, the dual-tree complex
wavelet transform may not be as effective as the contourlet transform for handling
complex corners [44].

• Curvelet transform: The Discrete Curvelet Transform (DCT) is a mathematical tool
designed for processing and analyzing digital images. It is based on the concept of
curved wavelets, and aims to represent complex structures, such as contours and
edges, more efficiently than other popular wavelet transforms. The curvelet transform
is a multi-scale, multi-directional transform that is designed to capture the curved
and smooth features in an image. This specialization makes it useful for segmenting
objects with smooth shapes and boundaries. However, the curvelet transform may not
be as effective as the contourlet transform for handling sharp edges and corners [45].

• Circlet transform: The circlet transform is a mathematical signal and image processing
tool. It is based on the decomposition of a signal into its component elements, using
circular functions as basis functions. When compared to standard linear transforms,
such as the Fourier Transform, the transform strives to offer a better depiction of
shapes and edges in images. The circlet transform is a recently proposed method that
combines the advantages of the curvelet and contourlet transforms. It is designed to
handle both sharp edges and smooth contours in an image, making it suitable for a
wide range of segmentation tasks. However, the circlet transform is relatively new
and is yet to be extensively tested in real-world applications [45].

The choice of transform method for semantic segmentation depends on the specific
characteristics of the images being analyzed and the requirements of the application. The
choice of sub-bands depends on the application and the type of features that are important
for the task. To compare the performance of these sub-bands for OCT cyst segmentation,
we evaluated their individual and combined contributions. The contourlet transform
is effective for analysis of complex contours, the dual-tree complex wavelet transform
is useful for finding the linear edges, the curvelet transform is useful for detecting the
curve singularities, and the circlet transform is more appropriate for extracting the circular
patterns in the images.

Transform Sub-Bands Formations Input Framework

In prior work, we discovered that edge-based approaches out-performed context-
based methods for cyst OCT segmentation when utilizing the DTCWT [24]. We opted
to use the edge-based technique to compare the performance of various transformations.
Figure 2 shows different edge-based combinations. Nevertheless, there are three edge-
based approach options. In our previous work, we suggested that, of the three options
for the edge-based technique, two of them, i.e., two channels and six channels in DTCWT,
have better performance than the other options [24].

To compare different combinations in the edge-based strategy, we opted to apply a
two-channel combination of different sub-bands as the input representation for OCT image
segmentation because it provided a general form that did not cause hardware limitations.
We tested different combinations of sub-bands to determine the optimal combination. Based
on the results section, contourlet had better results; thus, we used two channels from this
transform as the employed sub-bands.

In Figure 3, different sub-bands of the two-channel of the transforms are shown.
In the context of edge-based combination, the two-channel sub-bands referred to the
decomposition of an input image into two sub-images. The first channel represented the



Diagnostics 2023, 13, 1994 8 of 19

low-frequency components of the image, while the second channel represented the high-
frequency components that are extracted from band-pass and high-pass sub-bands. In the
given context, the first channel image in the figure contained the low-pass filtered version
of the original image, which represented the smoother regions. On the other hand, the
second channel image contained the high-pass filtered version of the original image, which
represented the edges and details. The high-pass filter enhanced the edges and details by
highlighting the intensity variations in the image.
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The contourlet transform provided a richer representation of edges in the image. It
extracted edges at multiple scales and orientations and provided a sparse representation
of the image. The two-channel combination of contourlet sub-bands enhanced the edge
information and provided a better input representation for OCT image segmentation.

Combining different transformation sub-bands based on two-channels was useful for
OCT cyst segmentation. In OCT images, different sub-bands or channels of a transform
could capture different features of the cysts, such as their texture, shape, and size. By
combining these sub-bands, we created a more comprehensive representation of the cysts,
which could potentially improve the accuracy of segmentation. Based on the results sections,
we suggested three different combinations for X-lets based on the two-channel combination.
These combinations contained different transforms. The first combination, as shown in
the first column of Figure 3, utilized the low-pass of both channels, as low-pass images
produce better results than other sub-bands due to their similarity to the original image.

The second combination, as shown in the second column of Figure 3, used all five
channels, which included four low-pass sub-bands and the edges obtained from the con-
tourlet sub-bands. Finally, the third combination, as shown in the third column of Figure 3,
employed all five channels, including the edges of all sub-bands and the low pass of
the contourlet.
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Many ways of denoising could be used in the reconstruction of OCT images. In this
study, without any need to add any further denoising algorithm, a simple soft threshold-
based denoising algorithm was utilized for all high-pass sub-bands to reduce noise in OCT
images during the cyst segmentation process [46].
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3.3. Network

As stated in the literature, the Trans-Unet model, which was built on transforms,
out-performs other models in different image segmentation tasks [24]. The Trans-Unet
model combined the strong properties of the transformer design, which is used extensively
in natural language processing, with the advantages of the Unet architecture, which is
frequently utilized in medical image segmentation applications. The transform design
enables the model to more effectively capture global dependencies and long-term contextual
information in the input data, while the Unet architecture offers a robust foundation for
collecting local image attributes and spatial interactions. By merging these two architectures,
the Trans-Unet model could attain state-of-the-art performance on various medical image
segmentation tasks, making it a potential method for future study in this area.
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The Trans-Unet with Figure 4 architecture was found to have the best performance in
both qualitative and quantitative evaluation metrics that compared other proposed Unets
and architectures. This finding meant that the Trans-Unet produced the most accurate
segmentation results and showed better consistency in different datasets. Therefore, we
implemented Trans-Unet as a base network.
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3.4. Metrics

It is important to evaluate the performance of any segmentation method using both
quantitative and qualitative metrics. Quantitative metrics provide numerical measures of
performance, while qualitative metrics involve visual inspection of the segmented images
for overall quality and consistency. Using quantitative and qualitative indicators, we gained
a thorough transformation of the strengths and limitations of specific formations and made
informed decisions about how to improve them to gain the best possible outcomes. In this
section, we introduce these methods.

3.4.1. Dice Score

The F1-score, or Dice index, is a performance indicator used to quantify the predictive
accuracy of a model. It considers both a model’s accuracy and recall, and delivers a single
scalar rating to represent overall performance. The harmonic mean of accuracy and recall
is used to calculate the F1-score, with a higher score suggesting that the model makes
fewer false positive or false negative predictions. The F1-score is a helpful statistic for
unbalanced datasets, since it gives a more thorough assessment of the model’s performance
than accuracy alone. It calculates scores by using the below equation:

dice =
2|A

⋂
B|

|A|+|B| . (2)

3.4.2. Jaccard Index

The Jaccard index, also known as the Jaccard similarity or the Jaccard coefficient, is a
statistic used to assess the similarity of two sets of data. It is determined by dividing the
size of the sets’ intersection by the size of the sets’ union. The Jaccard index is a number
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between 0 and 1, with 1 representing total similarity and 0 representing no similarity
between the sets. The Jaccard index is often used in image segmentation tasks to determine
how successfully the anticipated segmentation mask coincides with the ground truth mask,
and it calculates the score using the below equation:

J(A, B) =
|A∩ B|
|A∪ B| . (3)

3.4.3. Sen and FPR

The number of pixels in the image that are properly and mistakenly projected as
tumor pixels is the TP, which is equivalent to Equation (4) (True Positive), and FP, which is
(False Positive). N is the total number of non-tumor pixels, and P is the number of tumor
pixels in the image. These metrics are applied to the qualitative result. Due to their greater
sensitivity and lower FPR, the metric shows better performance.

Sen(%) =
TP
P
× 100, FPR(%) =

FP
N
× 100. (4)

3.5. Loss Function

In deep learning, a loss function is a mathematical function that computes the differ-
ence between the expected and actual target outputs. A deep learning model’s goal is to
reduce the loss, which indicates the difference between anticipated and actual values. The
loss function guides the optimization process, which adjusts model parameters to minimize
loss. The loss function is chosen based on the kind of task, such as regression, classification,
or segmentation. Deep learning often employs loss functions, such as mean squared error,
cross-entropy, and the Dice similarity coefficient. In this paper, we propose the Tversky
loss function because of its unbalanced dataset, and during the task, we find out new loss
functions for the unbalanced datasets.

Tversky Loss Function

Tversky Loss, also known as the Tversky index, is a popular loss function utilized in
deep learning for semantic segmentation problems. This loss function aims to measure the
similarity between two sets, the predicted segmentation, and the ground truth. The Tversky
Loss function is unique in its calculation, as it employs a weighting factor that considers
the false positive and false negative rate to balance the trade-off between precision and
recall. The Tversky Index (TI) is an asymmetric similarity measure that combines the
dice coefficient and the Jaccard index. This function is particularly useful when dealing
with imbalanced datasets, where the ratio of positive to negative samples is uneven. The
Tversky Loss function can be optimized using gradient descent algorithms, and is capable
of providing highly accurate results in image segmentation tasks [47].

I =
TP

TP + αFN + βFP
. (5)

4. Results

In this study, several deep learning architectures with different sub-band inputs and
conditions were tested. These architectures were written in Python, and the deep learning
models were trained and evaluated using a computer equipped with 64 GB of RAM, two
parallel GEFORCE GTX 1080 Ti GPUs, and an i7 core 7th generation CPU. On PCs, Cuda
version 10 and cuDNN version 7.5 were used.

In our study of fluid localization in DME and AMD patients, various state-of-the-art
techniques for fluid segmentation were implemented with Trans-Unet optimal parameters.
In the first step, different transformations were applied for OCT semantic segmentation
to determine the best-fit transform for the OCT semantic segmentation. To ensure fair
comparisons, a fixed 150 epoch was set for the Trans-Unet selection; after that, suggested
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different combination transforms were tested with different transforms and the original
image. In all networks, we tried some fixed parameters, as shown in Table 2:

Table 2. Trans-Unet networks fixed parameters.

Loss Optimizer Number of Filters Epochs

Tversky
(α = 0.8, β = 0.2)

Adam
(learning rate = 1 × 10−4) (8, 16, 32, 64, 128) 150

4.1. Normal Condition

In this part, we propose to conduct a comparative analysis between different X-let
combinations and simple image input. The purpose of this analysis may be to evaluate the
effectiveness of different X-let combinations and determine the most suitable approach for
the task. The comparison may involve using various evaluation metrics, such as F1-score,
Jaccard, and loss curve, to measure the performance of each approach; the qualitative results
are also evaluated. The comparisons were made between a simple image (the original OCT
image), two channels of different sub-bands (i.e., using a combination of two sub-bands
generated by DTCWT, curvelet, contourlet, or circlet transforms), and a combination of
low-pass images of different transforms with high passes in various formations. This
comparison is aimed at identifying the most effective representation for segmenting cysts
in OCT images using their proposed deep learning model. The results of this analysis
help us to make informed decisions when choosing the best sub-bands for the semantic
segmentation task involving the proposed methods.

Table 3 demonstrates the performance of different X-let combinations based on Jaccard
and Dice metrics. In this context, the results suggest that the DCWT-based combination
outperforms the other combinations in the training phase, especially the original image.
This result means that combining different transforms with the deep learning model
improves the accuracy of semantic segmentation for OCT images. Moreover, the validation
of the combination with 5-ch-hh is better than with other transforms. The best results are
bolded in each column.

Table 3. Comparison of different X-lets combinations with Trans-Unet using simple image.

Transform Dice (Validation) Jaccard (Validation)

Simple Image 90.73 (82.59) 82.08 (72.78)
Curvelet (2-ch) 92.32 (85.64) 85.84 (75.29)

Contourlet (2-ch) 92.07 (85.25) 85.41 (74.73)
Circlet (2-ch) 92.06 (85.54) 85.4 (75.07)

DTCWT (2-ch) 94.52 (84.23) 89.64 (73.67)
Combination 1 (4-ch) 92.09 (85.80) 85.45 (75.6)
Combination 2 (5-ch) 93.12 (86.21) 84.21 (73.82)

Combination 3 (5-ch with-hh) 93.4 (86.5) 84.0 (73.9)

Figure 5 compares the quantitative results of the X-let-based framework approach
with other methods in terms of F1-score and Jaccard metrics. According to the statement,
the DTCWT approach showed better performance than the other methods in the training
phase, especially in comparing a simple image and the validation phase. Combination
of the best sub-bands achieved the best performance in the suggested formations. This
result means that the contourlet-based approach is more effective in segmenting the desired
features, as indicated by the higher F1-score and Jaccard values.
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The qualitative results of a sample image in Figure 6 indicate that the X-let method
performs better compared to other methods, such as applying Trans Unet on the simple
image input. In this case, it suggests that all X-let transforms result in better performance
compared to the simple image, with contourlet especially outperforming the others, and
the five-channel combinations produce a more accurate and visually pleasing segmentation
of the sample image. This fact can be useful for applications where high-quality visual
results are important, such as medical imaging or computer vision.
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Figure 6. Qualitative result of different sub-bands using sample image. (a) Original Image. (b) True
Mask. (c) Simple (Sen = 68%, FPR = 0.09%). (d) Curvelet (Sen = 97%, FPR = 0.35%). (e) Contourlet
(Sen = 98%, FPR = 0.47%). (f) Circlelet (Sen = 94%, FPR = 0.3%). (g) DTCWT (Sen = 83%, FPR = 0.08%).
(h) Combo (4-Ch) (Sen = 98%, FPR = 0.47%). (i) Combo (5-Ch) (Sen = 94%, FPR = 0.21%). (j) Combo
HF (5-Ch) (Sen = 91%, FPR = 0.07%).



Diagnostics 2023, 13, 1994 14 of 19

Figure 7 depicts the sensitivity and FPR of different combinations, showing that the five-
channel decomposition using high-pass sub-bands of contourlet transform performs better in
finding cysts and that contourlet is the best transform between the suggested transforms.
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4.2. Noisy Condition

In this section, we compare the performance of different combinations of transforms
and their transformations on the segmentation of noisy OCT images. The proposed combi-
nations were based on the contourlet, dual-tree complex wavelet, and curvelet transforms.

We evaluate the performance of the different combinations based on Dice and Jaccard
metrics on the noisy dataset. Table 4 shows the results of two-channel combinations and
combinations of various transforms. The two-channel contourlet has better performance
between different transform sub-bands. The five–channel combination out-performs the
other combinations in terms of Dice and Jaccard. This combination achieves a 79.2 on the
Dice index across noisy conditions. The best results are bolded in each column.

Table 4. Comparison of different X-lets combinations with Trans-Unet in noisy condition.

Transform Dice (Validation) Jaccard (Validation)

Simple Image 89.8 (67.4) 81.6 (52.4)
Curvelet (2-ch) 89.4 (78.5) 81 (65.4)

Contourlet (2-ch) 89.7 (78.6) 81.5 (65.4)
Circlet (2-ch) 88.9 (77.6) 79.4 (63.1)

DTCWT (2-ch) 90.6 (72.5) 83 (57.4)
Combination 1 (4-ch) 88.3 (76.7) 79.4 (63.1)
Combination 2 (5-ch) 90.2 (78.4) 82.3 (65.5)

Combination 3(5-ch with-hh) 91.1 (79.2) 81.6 (65.8)

The second-best combination is related to the dual-tree complex wavelet transform-
based sub-bands.

The performance of different sub-band combinations in noisy conditions is evaluated
in Figure 8. The results are analyzed in terms of Dice and Jaccard, which shows that
five-channel with high passes has better performance than the other transforms.
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For qualitative evaluation, the segmented OCT images are visually inspected and
compared to the ground truth images shown in Figure 9. We found that the combination
of low-pass contourlet and high-pass sub-bands provided the best results in terms of
visual quality.
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Figure 9. Qualitative result of different sub-bands in the noisy condition. (a) Original Image. (b) True
Mask. (c) Simple (Sen = 31%, FPR = 0.04%). (d) Curvelet (Sen = 85%, FPR = 0.9%). (e) Contourlet (Sen
= 92%, FPR = 1.17%). (f) Circlelet (Sen = 65%, FPR = 0.44%). (g) DTCWT (Sen = 44%, FPR = 0.15%).
(h) Combo (4-Ch) (Sen = 69%, FPR = 0.78%). (i) Combo (5-Ch) (Sen = 76%, FPR = 0.36%). (j) Combo
HF (5-Ch) (Sen = 82%, FPR = 0.56%).

In order to analyze the FPR and sensitivity in the noisy condition, we calculated and
compared these metrics in Figure 10. We found that the combination of low-pass contourlet
and all sub-bands’ edges had the highest results.
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5. Conclusions and Future Work

OCT is an imaging technique that produces high-resolution cross-sectional images
of biological tissues. Accurate and efficient segmentation of cystic spaces in OCT images
can aid clinicians in diagnosing and monitoring retinal diseases and can help them to
make correct treatment decisions. This paper focused on finding the best sparse transform
between the suggested transform for automated OCT cyst segmentation and using their
combination to find the optimal formation for the OCT cyst semantic segmentation. Deep
learning-based OCT cyst segmentation can also potentially reduce the workload of oph-
thalmologists and improve patient care. To achieve this goal, Trans-Unet is used as the
base network.

The proposed deep learning method for OCT cyst segmentation has significant clin-
ical potential. Accurate and efficient cyst segmentation can aid ophthalmologists in the
diagnosis and monitoring of a variety of eye diseases, including macular edema and age-
related macular degeneration, which are major causes of blindness and visual impairment.
Early detection and precise monitoring of cysts are crucial for preventing vision loss in
affected patients. Automated segmentation using deep learning models reduces the need
for manual segmentation, which is a time-consuming and tedious process. It can also assist
ophthalmologists in making more informed decisions about patient care. As demonstrated
in this paper, the high accuracy and efficiency of deep learning models in segmentation
tasks make them a promising tool for improving the diagnosis and treatment of eye dis-
eases. Therefore, the proposed method has significant clinical potential and can improve
patient outcomes in the field of ophthalmology. For example, this method could be an
efficient way to measure fluid differences in patients undergoing anti-VEGF therapy. By
automatically segmenting the areas of fluid accumulation in the retina, the method can
provide a quantitative measure of the changes in fluid volume over time. This approach
could be particularly useful for monitoring the effectiveness of anti-VEGF therapy, which
aims to reduce fluid accumulation in the retina.

The proposed network was incredibly successful in OCT semantic segmentation;
however, it faces several challenges in terms of the noisy and extracting edges. Deep
learning methods, such as the X-let sub-band combinations based on Unet proposed in
this paper, can significantly improve the accuracy and efficiency of the segmentation
process. These sub-bands can be used as inputs to adapt the deep learning model for
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semantic segmentation, which can improve the model’s performance by providing more
comprehensive information about the image. Different X-lets refer to different transforms
that can be applied to images for feature extraction. The different X-lets that were suggested
in this paper included the curvelet transform (this transform is used to extract curved
features from an image), contourlet transform (this transform is used to extract features
from an image that has edges and contours), circlet transform (this transform is used to
extract features from an image that has circular symmetry), and dual-tree complex wavelet
transform (this transform is used to extract features from an image at multiple scales and
orientations). By combining the features extracted from multiple transforms, it is possible
to improve the accuracy of semantic segmentation in OCT images. Using the combination
of X-lets involved in the proposed deep learning method, this paper illustrated the model’s
ability to segment fluid regions in OCT images, especially in noisy conditions. Therefore,
the use of X-lets in OCT cyst segmentation can lead to more accurate and reliable diagnosis
and treatment of retinal diseases.

Future work can include fine-tuning the parameters, incorporating regularization
terms in both the loss function and a hyperparameter model, using other X-lets, selecting
the optimal combination among X-lets, and introducing a unique loss function for cyst
segmentation. Additionally, a novel Unet architecture based on sub-bands can be proposed,
and different X-let sub-bands can be investigated using other novel networks.

The mixture of experts is another promising suggestion for improving the perfor-
mance of the OCT semantic segmentation task. This approach involves training multiple
specialized networks, or experts, to perform effectively on different subsets of the data. The
outputs of these experts are then combined to yield more accurate predictions than any of
them could yield individually. By leveraging the strengths of different networks for differ-
ent parts of the image, the mixture of experts can potentially improve the segmentation
performance, especially in challenging cases where a single network may struggle.

Author Contributions: Conceptualization, R.K. and H.R.; methodology, R.D., R.K. and H.R.; software,
R.D. and M.N.; validation, R.D., R.K. and H.R.; formal analysis, R.D. and M.N.; investigation, R.D.;
resources, H.R.; data curation, R.D. and M.N.; writing—original draft preparation, R.D., M.N., R.K.
and H.R.; writing—review and editing, R.D., R.K. and H.R.; Visualization, R.D. and M.N.; supervision,
H.R.; project administration, H.R.; funding acquisition, H.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Podoleanu, A.G. Optical coherence tomography. J. Microsc. 2012, 247, 209–219. [CrossRef] [PubMed]
2. Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A.

Optical coherence tomography. Science 1991, 254, 1178–1181. [CrossRef]
3. Schmitt, J.M. Optical coherence tomography (OCT): A review. IEEE J. Sel. Top. Quantum Electron. 1999, 5, 1205–1215. [CrossRef]
4. Ferris, F.L., III; Wilkinson, C.; Bird, A.; Chakravarthy, U.; Chew, E.; Csaky, K.; Sadda, S.R.; Beckman Initiative for Macular

Research Classification Committee. Clinical classification of age-related macular degeneration. Ophthalmology 2013, 120, 844–851.
[CrossRef] [PubMed]

5. Podoleanu, A.G. Optical coherence tomography. Br. J. Radiol. 2005, 78, 976–988. [CrossRef] [PubMed]
6. Wei, X.; Sui, R. A Review of Machine Learning Algorithms for Retinal Cyst Segmentation on Optical Coherence Tomography.

Sensors 2023, 23, 3144. [CrossRef] [PubMed]
7. Mousavi, N.; Monemian, M.; Ghaderi Daneshmand, P.; Mirmohammadsadeghi, M.; Zekri, M.; Rabbani, H. Cyst identification in

retinal optical coherence tomography images using hidden Markov model. Sci. Rep. 2023, 13, 12. [CrossRef]
8. He, X.; Fang, L.; Tan, M.; Chen, X. Intra-and inter-slice contrastive learning for point supervised OCT fluid segmentation. IEEE

Trans. Image Process. 2022, 31, 1870–1881. [CrossRef]

https://doi.org/10.1111/j.1365-2818.2012.03619.x
https://www.ncbi.nlm.nih.gov/pubmed/22708800
https://doi.org/10.1126/science.1957169
https://doi.org/10.1109/2944.796348
https://doi.org/10.1016/j.ophtha.2012.10.036
https://www.ncbi.nlm.nih.gov/pubmed/23332590
https://doi.org/10.1259/bjr/55735832
https://www.ncbi.nlm.nih.gov/pubmed/16249597
https://doi.org/10.3390/s23063144
https://www.ncbi.nlm.nih.gov/pubmed/36991857
https://doi.org/10.1038/s41598-022-27243-2
https://doi.org/10.1109/TIP.2022.3148814


Diagnostics 2023, 13, 1994 18 of 19

9. Ganjee, R.; Ebrahimi Moghaddam, M.; Nourinia, R. An unsupervised hierarchical approach for automatic intra-retinal cyst
segmentation in spectral-domain optical coherence tomography images. Med. Phys. 2020, 47, 4872–4884. [CrossRef]

10. Hao, S.; Zhou, Y.; Guo, Y. A brief survey on semantic segmentation with deep learning. Neurocomputing 2020, 406, 302–321.
[CrossRef]

11. Viedma, I.A.; Alonso-Caneiro, D.; Read, S.A.; Collins, M.J. Deep learning in retinal optical coherence tomography (OCT): A
comprehensive survey. Neurocomputing 2022, 507, 247–264. [CrossRef]

12. Oguz, I.; Zhang, L.; Abràmoff, M.D.; Sonka, M. Optimal retinal cyst segmentation from OCT images. In Medical Imaging 2016:
Image Processing; SPIE: Bellingham, WA, USA, 2016.

13. Rashno, A.; Koozekanani, D.D.; Drayna, P.M.; Nazari, B.; Sadri, S.; Rabbani, H.; Parhi, K.K. Fully automated segmentation of
fluid/cyst regions in optical coherence tomography images with diabetic macular edema using neutrosophic sets and graph
algorithms. IEEE Trans. Biomed. Eng. 2017, 65, 989–1001. [CrossRef] [PubMed]

14. Katona, M.; Kovács, A.; Dégi, R.; Nyúl, L.G. Automatic detection of subretinal fluid and cyst in retinal images. In Proceedings of
the Image Analysis and Processing-ICIAP 2017: 19th International Conference, Catania, Italy, 11–15 September 2017; Proceedings,
Part I 19. Springer: Cham, Switzerland, 2017.

15. Lin, M.; Bao, G.; Sang, X.; Wu, Y. Recent advanced deep learning architectures for retinal fluid segmentation on optical coherence
tomography images. Sensors 2022, 22, 3055. [CrossRef]

16. Lee, C.S.; Tyring, A.J.; Deruyter, N.P.; Wu, Y.; Rokem, A.; Lee, A.Y. Deep-learning based, automated segmentation of macular
edema in optical coherence tomography. Biomed. Opt. Express 2017, 8, 3440–3448. [CrossRef]

17. Khodabandeh, Z.; Rabbani, H.; Dehnavi, A.M.; Sarrafzadeh, O. The ellipselet transform. J. Med. Signals Sens. 2019, 9, 145–157.
18. Lee, J.-G.; Jun, S.; Cho, Y.W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep learning in medical imaging: General overview. Korean J.

Radiol. 2017, 18, 570–584. [CrossRef] [PubMed]
19. Anwar, S.M.; Majid, M.; Qayyum, A.; Awais, M.; Alnowami, M.; Khan, M.K. Medical image analysis using convolutional neural

networks: A review. J. Med. Syst. 2018, 42, 226. [CrossRef]
20. Morley, D.; Foroosh, H.; Shaikh, S.; Bagci, U. Simultaneous detection and quantification of retinal fluid with deep learning. arXiv

2017, arXiv:1708.05464.
21. Alom, M.Z.; Hasan, M.; Yakopcic, C.; Taha, T.M.; Asari, V.K. Recurrent residual convolutional neural network based on u-net

(r2u-net) for medical image segmentation. arXiv 2018, arXiv:1802.06955.
22. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.

IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]
23. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image

segmentation. In Proceedings of the European Conference on Computer Vision (ECCV) 2018, Munich, Germany, 8–14 September 2018.
24. Darooei, R.; Nazari, M.; Kafieh, R.; Rabbani, H. Dual-Tree Complex Wavelet Input Transform for Cyst Segmentation in OCT

Images Based on a Deep Learning Framework. Photonics 2023, 10, 11. [CrossRef]
25. Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Adeli, E.; Wang, Y.; Lu, L.; Yuille, A.L.; Zhou, Y. Transunet: Transformers make strong encoders

for medical image segmentation. arXiv 2021, arXiv:2102.04306.
26. Chan, G.C.; Muhammad, A.; Shah, S.A.; Tang, T.B.; Lu, C.K.; Meriaudeau, F. Transfer learning for diabetic macular edema (DME)

detection on optical coherence tomography (OCT) images. In Proceedings of the 2017 IEEE International Conference on Signal
and Image Processing Applications (ICSIPA), Kuching, Malaysia, 12–14 September 2017; IEEE: Piscataway, NJ, USA, 2017.

27. Fang, L.; Cunefare, D.; Wang, C.; Guymer, R.H.; Li, S.; Farsiu, S. Automatic segmentation of nine retinal layer boundaries in
OCT images of non-exudative AMD patients using deep learning and graph search. Biomed. Opt. Express 2017, 8, 2732–2744.
[CrossRef] [PubMed]

28. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015.

29. Venhuizen, F.G.; van Ginneken, B.; Liefers, B.; van Asten, F.; Schreur, V.; Fauser, S.; Hoyng, C.; Theelen, T.; Sánchez, C.I. Deep
learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography.
Biomed. Opt. Express 2018, 9, 1545–1569. [CrossRef] [PubMed]

30. Alijamaat, A.; NikravanShalmani, A.R.; Bayat, P. Diagnosis of multiple sclerosis disease in brain MRI images using convolutional
neural networks based on wavelet pooling. J. AI Data Min. 2021, 9, 161–168.

31. Liu, L.; Cheng, J.; Quan, Q.; Wu, F.X.; Wang, Y.P.; Wang, J. A survey on U-shaped networks in medical image segmentations.
Neurocomputing 2020, 409, 244–258. [CrossRef]

32. Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Martinez-Gonzalez, P.; Garcia-Rodriguez, J. A survey on deep
learning techniques for image and video semantic segmentation. Appl. Soft Comput. 2018, 70, 41–65. [CrossRef]

33. Benjdira, B.; Bazi, Y.; Koubaa, A.; Ouni, K. Unsupervised domain adaptation using generative adversarial networks for semantic
segmentation of aerial images. Remote Sens. 2019, 11, 1369. [CrossRef]

34. Liu, X.; Wang, S.; Zhang, Y.; Liu, D.; Hu, W. Automatic fluid segmentation in retinal optical coherence tomography images using
attention based deep learning. Neurocomputing 2021, 452, 576–591. [CrossRef]

35. Lu, H.; Wang, H.; Zhang, Q.; Won, D.; Yoon, S.W. A dual-tree complex wavelet transform based convolutional neural network for
human thyroid medical image segmentation. In Proceedings of the 2018 IEEE International Conference on Healthcare Informatics
(ICHI), New York, NY, USA, 4–7 June 2018; IEEE: Piscataway, NJ, USA, 2018.

https://doi.org/10.1002/mp.14361
https://doi.org/10.1016/j.neucom.2019.11.118
https://doi.org/10.1016/j.neucom.2022.08.021
https://doi.org/10.1109/TBME.2017.2734058
https://www.ncbi.nlm.nih.gov/pubmed/28783619
https://doi.org/10.3390/s22083055
https://doi.org/10.1364/BOE.8.003440
https://doi.org/10.3348/kjr.2017.18.4.570
https://www.ncbi.nlm.nih.gov/pubmed/28670152
https://doi.org/10.1007/s10916-018-1088-1
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.3390/photonics10010011
https://doi.org/10.1364/BOE.8.002732
https://www.ncbi.nlm.nih.gov/pubmed/28663902
https://doi.org/10.1364/BOE.9.001545
https://www.ncbi.nlm.nih.gov/pubmed/29675301
https://doi.org/10.1016/j.neucom.2020.05.070
https://doi.org/10.1016/j.asoc.2018.05.018
https://doi.org/10.3390/rs11111369
https://doi.org/10.1016/j.neucom.2020.07.143


Diagnostics 2023, 13, 1994 19 of 19

36. Yang, G.; Geng, P.; Ma, H.; Liu, J.; Luo, J. DWTA-Unet: Concrete Crack Segmentation Based on Discrete Wavelet Transform and
Unet. In Proceedings of the 2021 Chinese Intelligent Automation Conference, Zhanjiang, China, 5–7 November 2022; Springer:
Singapore, 2021.

37. Zhang, Y.; Wang, C.; Ji, Y.; Chen, J.; Deng, Y.; Chen, J.; Jie, Y. Combining segmentation network and nonsubsampled contourlet
transform for automatic marine raft aquaculture area extraction from sentinel-1 images. Remote Sens. 2020, 12, 4182. [CrossRef]

38. Bi, H.; Xu, L.; Cao, X.; Xue, Y.; Xu, Z. Polarimetric SAR image semantic segmentation with 3D discrete wavelet transform and
Markov random field. IEEE Trans. Image Process. 2020, 29, 6601–6614. [CrossRef]

39. Li, Q.; Shen, L. Wavesnet: Wavelet integrated deep networks for image segmentation. In Proceedings of the Pattern Recognition
and Computer Vision: 5th Chinese Conference, PRCV 2022, Shenzhen, China, 4–7 November 2022; Proceedings, Part IV.; Springer:
Cham, Switzerland, 2022.

40. De Souza Brito, A.; Vieira, M.B.; De Andrade, M.L.S.C.; Feitosa, R.Q.; Giraldi, G.A. Combining max-pooling and wavelet pooling
strategies for semantic image segmentation. Expert Syst. Appl. 2021, 183, 115403. [CrossRef]

41. Montazerin, M.; Sajjadifar, Z.; Khalili Pour, E.; Riazi-Esfahani, H.; Mahmoudi, T.; Rabbani, H.; Movahedian, H.; Dehghani, A.;
Akhlaghi, M.; Kafieh, R. Livelayer: A semi-automatic software program for segmentation of layers and diabetic macular edema
in optical coherence tomography images. Sci. Rep. 2021, 11, 13794. [CrossRef] [PubMed]

42. Optima Cyst Segmentation Challenge. 2015. Available online: https://optima.meduniwien.ac.at/research/challenges/ (accessed
on 17 August 2015).

43. Da Cunha, A.L.; Zhou, J.; Do, M.N. The nonsubsampled contourlet transform: Theory, design, and applications. IEEE Trans.
Image Process. 2006, 15, 3089–3101. [CrossRef] [PubMed]

44. Ma, J.; Plonka, G. The curvelet transform. IEEE Signal Process. Mag. 2010, 27, 118–133. [CrossRef]
45. Chauris, H.; Karoui, I.; Garreau, P.; Wackernagel, H.; Craneguy, P.; Bertino, L. The circlet transform: A robust tool for detecting

features with circular shapes. Comput. Geosci. 2011, 37, 331–342. [CrossRef]
46. Selesnick, I. A Derivation of the Soft-Thresholding Function; Polytechnic Institute of New York University: New York, NY, USA, 2009.
47. Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Jorge Cardoso, M. Generalised dice overlap as a deep learning loss function for

highly unbalanced segmentations. In Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for
Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th International Workshop, ML-CDS 2017, Held in
Conjunction with MICCAI 2017, Québec City, QC, Canada, 14 September 2017; Proceedings 3. Springer: Cham, Switzerland, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs12244182
https://doi.org/10.1109/TIP.2020.2992177
https://doi.org/10.1016/j.eswa.2021.115403
https://doi.org/10.1038/s41598-021-92713-y
https://www.ncbi.nlm.nih.gov/pubmed/34215763
https://optima.meduniwien.ac.at/research/challenges/
https://doi.org/10.1109/TIP.2006.877507
https://www.ncbi.nlm.nih.gov/pubmed/17022272
https://doi.org/10.1109/MSP.2009.935453
https://doi.org/10.1016/j.cageo.2010.05.009

	Introduction 
	Related Works 
	Deep Learning Review 
	X-Lets Review 

	Materials and Methods 
	Dataset 
	X-Let Combination 
	Network 
	Metrics 
	Dice Score 
	Jaccard Index 
	Sen and FPR 

	Loss Function 

	Results 
	Normal Condition 
	Noisy Condition 

	Conclusions and Future Work 
	References

