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Defocus blur is nearly always present in natural images: Objects at

only one distance can be perfectly focused. Images of objects at

other distances are blurred by an amount depending on pupil di-

ameter and lens properties. Despite the fact that defocus is of great

behavioral, perceptual, and biological importance, it is unknown

how biological systems estimate defocus. Given a set of natural

scenes and the properties of the vision system, we show from first

principles how to optimally estimate defocus at each location in any

individual image. We show for the human visual system that high-

precision, unbiased estimates are obtainable under natural viewing

conditions for patcheswith detectable contrast. The high quality of

the estimates is surprising given the heterogeneity of natural

images. Additionally, we quantify the degree to which the sign

ambiguity often attributed to defocus is resolved by monochro-

matic aberrations (other than defocus) and chromatic aberrations;

chromatic aberrations fully resolve the sign ambiguity. Finally, we

show that simple spatial and spatio-chromatic receptive fields ex-

tract the informationoptimally. The approach can be tailored to any

environment–vision systempairing:naturalorman-made, animalor

machine. Thus, it provides a principled general framework for ana-

lyzing the psychophysics and neurophysiology of defocus estima-

tion in species across the animal kingdom and for developing

optimal image-based defocus and depth estimation algorithms for

computational vision systems.
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In a vast number of animals, vision begins with lens systems that
focusanddefocus lighton the retinalphotoreceptors.Lenses focus

light perfectly from only one distance, and natural scenes contain
objects atmanydistances.Thus,defocus information isnearly always
present in images of natural scenes. Defocus information is vital for
many natural tasks: depth and scale estimation (1, 2), accommo-
dation control (3, 4), and eye growth regulation (5, 6). However,
little is known about the computations visual systems use to estimate
defocus in images of natural scenes. The computer vision and en-
gineering literatures describe algorithms for defocus estimation (7,
8). However, they typically require simultaneous multiple images
(9–11), special lens apertures (11, 12), or light with known patterns
projected onto the environment (9). Mammalian visual systems
usually lack these advantages. Thus, these methods cannot serve as
plausible models of defocus estimation in many visual systems.
Although defocus estimation is but one problem faced by vision

systems, few estimation problems have broader scope. Vision sci-
entists have developed models for how defocus is used as a cue to
depth and have identified stimulus factors that drive accommo-
dation (biological autofocusing). Neurobiologists have identified
defocus cues and transcription factors that trigger eye growth, a
significant contributor to the development of near-sightedness (5).
Comparative physiologists have established accommodation’s role
in predatory behavior across the animal kingdom, in species as di-
verse as the chameleon (13) and the cuttlefish (14). Engineers have
developed methods for autofocusing camera lenses and automati-
cally estimating depth from defocus across an image. However,
there is no widely accepted formal theory for how defocus in-
formation should be extracted from individual natural images. The
absence of such a theory constitutes a significant theoretical gap.

Here, we describe a principled approach for estimating defocus
in small regions of individual images, given a training set of nat-
ural images, a wave-optics model of the lens system, a sensor ar-
ray, and a specification of noise and processing inefficiencies. We
begin by considering a vision system with diffraction- and defocus-
limited optics, a sensor array sensitive only to one wavelength of
light, and sensor noise consistent with human detection thresh-
olds. We then consider more realistic vision systems that include
human monochromatic aberrations, human chromatic aberra-
tions, and sensors similar to human photoreceptors.
The defocus of a target region is defined as the difference

between the lens system’s current power and the power required
to bring the target region into focus,

ΔD ¼ Dfocus −Dtarget; [1]

where ΔD is the defocus, Dfocus is the current power, and Dtarget is
the power required to image the target sharply, expressed in diopters
(1/m). The goal is to estimate ΔD in each local region of an image.
Estimating defocus, like many visual estimation tasks, suffers

from the “inverse optics” problem: It is impossible to determine
with certainty, from the image alone, whether image blur is due to
defocus or some property of the scene (e.g., fog). Defocus esti-
mation also suffers from a sign ambiguity: Under certain con-
ditions, point targets at the same dioptric distances nearer or
farther than the focus distance are imaged identically. However,
numerous constraints exist that can make a solution possible.
Previous work has not taken an integrative approach that capital-
izes on all of these constraints.

Results

The information for defocus estimation is jointly determined by the
properties of natural scenes, the optical system, the sensor array, and
sensor noise. The input from a natural scene can be represented by
an idealized image Iðx; λÞ that gives the radiance at each location
x ¼ ðx; yÞ in the plane of the sensor array, for each wavelength λ. An
optical system degrades the idealized image and can be represented
by a point-spread function psf ðx; λ;ΔDÞ, which gives the spatial
distribution of light across the sensor array produced by a point
target of wavelength λ and defocus ΔD. The sensor array is repre-
sented by a wavelength sensitivity function scðλÞ and a spatial sam-
pling function sampcðxÞ for each class of sensor c. Combining these
factors gives the spatial patternof responses in agivenclassof sensor,

rcðxÞ ¼

 

X

λ

½Iðx; λÞ∗ psf ðx; λ;ΔDÞ�scðλÞ

!

sampcðxÞ; [2]

where ∗ represents 2D convolution in x. Noise and processing
inefficiencies then corrupt these sensor responses. The goal is to
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estimate defocus from the noisy sensor responses in the available
sensor classes.
The first factor determining defocus information is the statis-

tical structure of the input images from natural scenes. These
statistics must be determined by empirical measurement. The
most accurate method would be to measure full radiance func-
tions Iðx; λÞ with a hyperspectral camera. However, well-focused,
calibrated digital photographs were used as approximations to
full radiance functions. This approach is sufficiently accurate for
the present purposes (SI Methods and Fig. S1); in fact, it is
preferred because hyperspectral images are often contaminated
by motion blur. Eight hundred 128 × 128 pixel input patches
were randomly sampled from 80 natural scenes containing trees,
shrubs, grass, clouds, buildings, roads, cars, etc.; 400 were used
for training and the other 400 for testing (Fig. 1A).
The next factor is the optical system, which is characterized by

the point-spread function. The term for the point-spread func-
tion in Eq. 2 can be expanded to make the factors determining its
form more explicit,

psf ðx; λ; aðz; λÞ;W ðz; λ;ΔDÞÞ; [3]

where aðz; λÞ specifies the shape, size, and transmittance of the
pupil aperture, and W ðz; λ;ΔDÞ is a wave aberration function,
which depends on the position z in the plane of the aperture, the
wavelength of light, the defocus level, and other aberrations in-
troduced by the lens system (15). The aperture function deter-
mines the effect of diffraction on the image quality. The wave
aberration function determines degradations in image quality not
attributable to diffraction. A perfect lens system (i.e., limited only
by diffraction and defocus) converts light originating from a point
on a target object to a converging spherical wavefront. The wave
aberration function describes how the actual converging wave-
front differs from a perfect spherical wavefront at each point in
the pupil aperture. The human pupil is circular and its minimum
diameter under bright daylight conditions is ∼2 mm (16); this
pupil shape and size are assumed throughout the paper. Note
that a 2-mm pupil is conservative because defocus information
increases (depth-of-focus decreases) as pupil size increases.
The next factor is the sensor array. Two sensor arrays were

considered: an array having a single sensor class sensitive only to
570 nm and an array having two sensor classes with the spatial
sampling and wavelength sensitivities of the human long-wave-
length (L) and short-wavelength (S) cones (17). (A system sen-
sitive only to one wavelength will be insensitive to chromatic
aberrations.) Human foveal cones sample the retinal image at ∼128

samples/degree; this rate is assumed throughout the paper. Thus,
the 128 × 128 pixel input patches have a visual angle of 1 degree.
The last factor determining defocus information is the com-

bined effect of photon noise, system noise, and processing in-
efficiencies. We represent this factor in our algorithm by applying
a threshold determined from human psychophysical detection
thresholds (18). (For the analyses that follow, we found that
applying a threshold has a nearly identical effect to adding noise.)
The proposed computational approach is based on the well-

known fact that defocus affects the spatial Fourier spectrum
of sensor responses. Here, we consider only amplitude spectra
(19), although the approach can be generalized to include phase
spectra. There are two steps to the approach: (i) Discover the
spatial frequency filters that are most diagnostic of defocus and
(ii) determine how to use the filter responses to obtain contin-
uous defocus estimates. A perfect lens system attenuates the
amplitude spectrum of the input image equally in all ori-
entations. Hence, to estimate the spatial frequency filters it is
reasonable, although not required, to average across orientation.
Fig. 1B shows how spatial frequency amplitudes are modulated
by different magnitudes of defocus (i.e., modulation transfer
functions). Fig. 1C shows the effect of defocus on the amplitude
spectrum of a sampled retinal image patch; higher spatial fre-
quencies become more attenuated as defocus magnitude in-
creases. The gray boundary represents the detection threshold
imposed on our algorithm. For any given image patch, the shape
of the spectrum above the threshold would make it easy to es-
timate the magnitude of defocus of that patch. However, the
substantial variation of local amplitude spectra in natural images
makes the task difficult. Hence, we seek filters tuned to spatial
frequency features that are optimally diagnostic of the level of
defocus, given the variation in natural image patches.
To discover these filters, we use a recently developed statistical

learning algorithm called accuracy maximization analysis (AMA)
(20). As long as the algorithm does not get stuck in local minima,
it finds the Bayes-optimal feature dimensions (in rank order) for
maximizing accuracy in a given identification task (see http://
jburge.cps.utexas.edu/research/Code.html for Matlab implement-
ation of AMA). We applied this algorithm to the task of identifying
the defocus level, from a discrete set of levels, of sampled retinal
image patches. The number of discrete levels was picked to allow
accurate continuous estimation (SI Methods). Specifically, a ran-
dom set of natural input patches was passed through a model lens
system at defocus levels between 0 and 2.25 diopters, in 0.25-di-
opter steps, and then sampled by the sensor array. Each sampled
image patch was then converted to a contrast image by subtracting
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Fig. 1. Natural scene inputs and the effect of defocus in a diffraction- and defocus-limited vision system. (A) Examples of natural inputs. (B) Optical effect of

defocus. Curves show one-dimensional modulation transfer functions (MTFs), the radially averaged Fourier amplitude spectra of the point-spread functions.

(C) Radially averaged amplitude spectra of the top-rightmost patch in A. Circles indicate the mean amplitude in each radial bin. Light gray circles show the

spectrum of the idealized natural input. The dashed black curve shows the human neural detection threshold.
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and dividing by the mean. Next, the contrast image was windowed
by a raised cosine (0.5 degrees at half height) and fast-Fourier
transformed. Finally, the log of its radially averaged squared am-
plitude (power) spectrum was computed and normalized to a mean
of zero and vector magnitude of 1.0. [The log transform was used
because it nearly equalizes the standard deviation (SD) of the
amplitude in each radial bin (Fig. S2). Other transforms that
equalize variability, such as frequency-dependent gain control, yield
comparable performance.] Four thousand normalized amplitude
spectra (400 natural inputs × 10 defocus levels) constituted the
training set for AMA.
Fig. 2A shows the six most useful defocus filters for a vision

system having diffraction- and defocus-limited optics and sensors
that are sensitive only to 570 nm light. The filters have several
interesting features. First, they capture most of the relevant in-
formation; additional filters add little to overall accuracy. Second,
they provide better performance than filters based on principal
components analysis or matched templates (Fig. S3). Third, they
are relatively smooth and hence could be implemented by
combining a few simple, center-surround receptive fields like
those found in retina or primary visual cortex. Fourth, the filter
energy is concentrated in the 5–15 cycles per degree (cpd) fre-
quency range, which is similar to the range known to drive hu-
man accommodation (4–8 cpd) (21–23).
The AMA filters encode information in local amplitude

spectra relevant for estimating defocus. However, the Bayesian
decoder built into the AMA algorithm can be used only with the
training stimuli, because that decoder needs access to the mean
and variance of each filter’s response to each stimulus (20). In
other words, AMA finds only the optimal filters.
The next step is to combine (pool) the filter responses to es-

timate defocus in arbitrary image patches, having arbitrary
defocus. We take a standard approach. First, the joint probability
distribution of filter responses to natural image patches is esti-
mated for the defocus levels in the training set. For each defocus
level, the filter responses are fit with a Gaussian by calculating
the sample mean and covariance matrix. Fig. 2B shows the joint
distribution of the first two AMA filter responses for several
levels of defocus. Fig. 2C shows contour plots of the fitted
Gaussians. Second, given the joint distributions (which are six
dimensional, one dimension for each filter), defocus estimates
are obtained with a weighted summation formula

ΔD̂ ¼
X

N

j¼1

ΔDjp
�

ΔDjjR
�

; [4]

where ΔDj is one of the N trained defocus levels, and pðΔDjjRÞ is
the posterior probability of that defocus level given the observed
vector of filter responses R. The response vector is given by the
dot product of each filter with the normalized, logged amplitude
spectrum. The posterior probabilities are obtained by applying
Bayes’ rule to the fitted Gaussian probability distributions (SI
Methods). Eq. 4 gives the Bayes optimal estimate when the goal
is to minimize the mean-squared error of the estimates and when
N is sufficiently large, which it is in our case (SI Methods).
Defocus estimates for the test patches are plotted as a function

of defocus in Fig. 2D for our initial case of a vision system having
perfect optics and a single class of sensor. None of the test patches
were in the training set. Performance is quite good. Precision is
high and bias is low once defocus exceeds ∼0.25 diopters, roughly
the defocus detection threshold in humans (21, 24). Precision
decreases at low levels of defocus because a modest change in
defocus (e.g., 0.25 diopters) does not change the amplitude spectra
significantly when the base defocus is zero; more substantial
changes occur when the base defocus is nonzero (24, 25) (Fig. 1C).
The bias near zero occurs because in vision systems having perfect
optics and sensors sensitive only to a single wavelength, positive
and negative defocus levels of identical magnitude yield identical
amplitude spectra. Thus, the bias is due to a boundary effect: Es-
timation errors can be made above but not below zero.
Now, consider a biologically realistic lens system having

monochromatic aberrations (e.g., astigmatic and spherical). Al-
though such lens systems reduce the quality of the best-focused
image, they can introduce information useful for recovering
defocus sign (26). To examine this possibility, we changed the
optical model to include the monochromatic aberrations of hu-
man eyes. Aberration maps for two defocus levels are shown for
the first author’s right eye (Fig. 3A). At the time the first author’s
optics were measured, he had 20/20 acuity and 0.17 diopters of
astigmatism, and his higher-order aberrations were about equal in
magnitude to his astigmatism (Table S1). Spatial frequency atten-
uation due to the lens optics now differs as a function of the defocus
sign. When focused behind the target (negative defocus), the eye’s
2D modulation transfer function (MTF) is oriented near the pos-
itive oblique; when focused in front (positive defocus), the MTF has
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the opposite orientation (Fig. 3B). Image features oriented orthog-
onally to the MTF’s dominant orientation are imaged more sharply.
This effect is seen in the sampled retinal image patches (Fig. 3C)
and in their corresponding 2D amplitude spectra (Fig. 3D).
Many monochromatic aberrations in human optics contribute

to the effect of defocus sign on the MTF, but astigmatism—the
difference in lens power along different lens meridians—is the
primary contributor (27). Interestingly, astigmatism is delib-
erately added to the lenses in compact disc players to aid their
autofocus devices.
To examine whether orientation differences can be exploited to

recover defocus sign, optimal AMA filters were relearned for vi-
sion systems having the optics of specific eyes and the same single-
sensor array as before. There were two procedural differences: (i)
Instead of averaging radially across all orientations, the spectra
were radially averaged in two orthogonal “bowties” (Fig. 3D)
centered on the MTF’s dominant orientation (SI Methods) for
each sign of defocus (Fig. 3E). (ii) The same training natural
inputs were passed through the optics at defocus levels ranging
from −2.25 to 2.25 diopters in 0.25-diopter steps, yielding 7,600
thresholded spectra (400 natural inputs × 19 defocus levels).
The filters for the first author’s right eye (Fig. 4A) yield esti-

mates of defocus magnitude similar in accuracy to those in Fig.
2D (Fig. S4A). Importantly, the filters now extract information
about defocus sign. Fig. 4B (black curve) shows the proportion of
test stimuli where the sign of the defocus estimate was correct.
Although performance was well above chance, a number of
errors occurred. Similar performance was obtained with “stan-
dard observer” optics (28); better performance was obtained
with the first author’s left eye, which has more astigmatism. Thus,
a vision system with human monochromatic aberrations and a
single sensor class can estimate both the magnitude and the sign
of defocus with reasonable accuracy.
Finally, consider a vision system with two sensor classes, each

with a different wavelength sensitivity function. In this vision sys-
tem, chromatic aberrations can be exploited. It has long been
recognized that chromatic aberrations provide a signed cue to
defocus (29, 30). The human eye’s refractive power changes by ∼1
diopter between 570 and 445 nm (31), the peak sensitivities of the
L and S cones. Typically, humans focus the 570-nm wavelength
of broadband targets most sharply (32). Therefore, when the eye is
focused on or in front of a target, the L-cone image is sharper than
the S-cone image; the opposite is true when the lens is focused
sufficiently behind the target. Chromatic aberration thus introduces
sign information in a manner similar to astigmatism. Whereas
astigmatism introduces a sign-dependent statistical tendency for
amplitudes at some orientations to be greater than others, chro-
matic aberration introduces a sign-dependent tendency for one
sensor class to have greater amplitudes than the other.
Optimal AMA filters were learned again, this time for a vision

system with diffraction, defocus, chromatic aberrations, and
sensors with spatial sampling and wavelength sensitivities similar
to human cones. In humans, S cones have ∼1/4 the sampling rate
of L and medium wavelength (M) cones (33). We sampled the
retinal image with a rectangular cone mosaic similar to the hu-
man cone mosaic. For simplicity, M-cone responses were not
used in the analysis. The amplitude spectra from L and S sensors
were radially averaged because the optics are again radially
symmetric. Optimal filters are shown in Fig. 4C. Cells with
similar properties (i.e., double chromatically opponent, spatial-
frequency bandpass receptive fields tuned to the same fre-
quency) have been reported in primate early visual cortex (34,
35). Such cells would be well suited to estimating defocus (30).
A vision system sensitive to chromatic aberration yields unbiased

defocus estimates with high precision (∼ ±1/16 diopters) over
a wide range (Fig. 4D). Sensitivity to chromatic aberrations also
allows the sign of defocus to be identified with near 100% accuracy
(Fig. 4B, magenta curve). The usefulness of chromatic aberrations
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is due to at least three factors. First, the ∼1-diopter defocus dif-
ference between the L- and S-cone images produces a larger signal
than the difference due to the monochromatic aberrations in the
analyzed eyes (Fig. S5; compare with Fig. 3E). Second, natural L-
and S-cone input spectra are more correlated than the spectra in
the orientation bowties (Fig. S6); the greater the correlation be-
tween spectra is, the more robust the filter responses are to vari-
ability in the shape of input spectra. Third, small defocus changes
are easier to discriminate in images that are already somewhat
defocused (21, 24). Thus, when the L-cone image is perfectly fo-
cused, S-cone filters are more sensitive to changes in defocus, and
vice versa. In other words, chromatic aberrations ensure that at
least one sensor will always be in its “sweet spot”.
How sensitive are these results to the assumptions about the

spatial sampling of L and S cones? To find out, we changed our
third model vision system so that both L and S cones had full
resolution (i.e., 128 samples/degree each). We found similar fil-
ters and only a small performance benefit (Fig. S7). Thus,
defocus estimation performance is robust to large variations in
the spatial sampling of human cones.
Some assumptions implicit in our analysis were not fully

consistent with natural scene statistics. One assumption was that
the statistical structure of natural scenes is invariant with viewing
distance (36). Another was that there is no depth variation within
image patches, which is not true of many locations in natural
scenes. Rather, defocus information was consistent with planar
fronto-parallel surfaces displaced from the focus distance. Note,
however, that the smaller the patch is (in our case, 0.5 degrees at
half height), the less the effect of depth variation. Nonetheless,
an important next step is to analyze a database of luminance-
range images so that the effect of within-patch depth variation

can be accounted for. Other aspects of our analysis were in-
consistent with the human visual system. For instance, we used a
fixed 2-mm pupil diameter. Human pupil diameter increases as
light level decreases; it fluctuates slightly even under steady il-
lumination. We tested how well the filters in Fig. 4 can be used to
estimate defocus in images obtained with other pupil diameters.
The filters are robust to changes in pupil diameter (Fig. S4 A and
B). Importantly, none of these details affect the qualitative
findings or main conclusions.
We stress that our aim has been to show how to characterize

and extract defocus information from natural images, not to
provide an explicit model of human defocus estimation. That
problem is for future work.
Our results have several implications. First, they demonstrate

that excellent defocus information (including sign) is available in
natural images captured by the human visual system. Second, they
suggest principled hypotheses (local filters and filter response
pooling rules) for how the human visual system should encode
and decode defocus information. Third, they provide a rigorous
benchmark against which to evaluate human performance in tasks
involving defocus estimation. Fourth, they demonstrate the po-
tential value of this approach for any organism with a visual sys-
tem. Finally, they demonstrate that it should be possible to design
useful defocus estimation algorithms for digital imaging systems
without the need for specialized hardware. For example, in-
corporating the optics, sensors, and noise of digital cameras into
our framework could lead to improved methods for autofocusing.
Defocus information is even more widely available in the an-

imal kingdom than binocular disparity. Only some sighted ani-
mals have visual fields with substantial binocular overlap, but
nearly all have lens systems that image light on their photo-
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receptors. Our results show that sufficient signed defocus in-
formation exists in individual natural images for defocus to
function as an absolute depth cue once pupil diameter and focus
distance are known. In this respect, defocus is similar to binocular
disparity, which functions as an absolute depth cue once pupil
separation and fixation distance are known. Defocus becomes
a higher precision depth cue as focus distance decreases. Perhaps
this is why many smaller animals, especially those without con-
sistent binocular overlap, use defocus as their primary depth cue
in predatory behavior (13, 14). Thus, the theoretical framework
described here could guide behavioral and neurophysiological
studies of defocus and depth estimation in many organisms.
In conclusion, we have developed a method for rigorously

characterizing the defocus information available to a vision sys-
tem by combining a model of the system’s wave optics, sensor
sampling, and noise with a Bayesian statistical analysis of the
sensor responses to natural images. This approach should be
widely applicable to other vision systems and other estimation
problems, and it illustrates the value of natural scene statistics
and statistical decision theory for the analysis of sensory and
perceptual systems.

Methods
Natural Scenes. Natural scenes were photographed with a tripod-mounted

Nikon D700 14-bit SLR camera (4,256 × 2,836 pixels) fitted with a Sigma

50-mm prime lens. Scenes were those commonly viewed by researchers at

the University of Texas at Austin. Details on camera parameters (aperture,

shutter speed, ISO), on camera calibration, and on our rationale for ex-

cluding very low contrast patches from the analysis are in SI Methods.

Optics. All three wave-optics models assumed a focus distance of 40 cm (2.5

diopters), a single refracting surface, and the Fraunhoffer approximation,

which implies that at or near the focal plane the optical transfer function

(OTF) is given by the cross-correlation of the generalized pupil function with

its complex conjugate (15). The wavefront aberration functions of the first

author’s eyes were measured with a Shack–Hartman wavefront sensor and

expressed as 66 coefficients on the Zernike polynomial series (Table S1). The

coefficients were scaled to the 2-mm pupil diameter used in the analysis from

the 5-mm diameter used during wavefront aberration measurement (37).

A refractive defocus correction was applied to each model vision system

before analysis began to ensure 0-diopter targets were focused best. Details

on this process, and on how the dominant MTF orientations in Fig. 3 were

determined, are in SI Methods.

Sensor Array Responses. To account for the effect of chromatic aberration on

the L- and S-cone sensor responses in the third vision system, we created

polychromatic point-spread functions for each sensor class. See SI Methods

for details.

Noise. To account for the effects of sensor noise and subsequent processing

inefficiencies, a detection threshold was applied at each frequency (e.g., Fig.

1C); amplitudes below the threshold were set equal to the threshold am-

plitude. The threshold was based on interferometric measurements that

bypass the optics of the eye (18) under the assumption that the limiting

noise determining the detection threshold is introduced after the image is

encoded by the photoreceptors.

Accuracy Maximization Analysis. AMA was used to estimate optimal filters for

defocus estimation. See SI Methods for details on the logic of AMA.

Estimating Defocus. Given an observed filter response vector R, a continuous

defocus estimate was obtained by computing the expected value of the

posterior probability distribution over a set of discrete defocus levels (Eq. 4).

Details of this computation, of likelihood distribution estimation, and of

likelihood distribution interpolation are in SI Methods.
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SI Methods

Natural Scenes.Camera aperture diameter was set to 5 mm (f/10).
Maximum shutter duration was 1/100 s. ISO was set to 200. To
ensure well-focused photographs, the lens was focused on optical
infinity, and care was taken that imaged objects were at least 16 m
from the camera (i.e., maximum defocus in any local image patch
was 1/16 diopter). Ten 128 × 128-pixel patches were randomly
selected from each of 80 photographs; half were used for training
and half for testing. RAW photographs were calibrated via
a previously published procedure and were converted either to
14-bit luminance or long, medium, and short wavelength (LMS)
cone responses, depending on which type of sensor array was
being modeled (1). We excluded all natural input patches that
had <5% root-mean–squared (rms) contrast before they were
passed through a model eye’s optics. This exclusion removed the
small percentage of patches that were dominated by camera
pixel noise and that would largely fall below the human detection
threshold (16%; 7% from non-sky regions and 9% from blank
blue sky). Defocus estimates from these patches are (unsur-
prisingly) of low quality. However, vision systems have access to
local contrast and hence could disregard defocus estimates from
image locations with very low contrast. Including these patches
in the analysis has no discernable effect on the estimated filters
and only a minor effect on overall estimation performance.

Optics. Patches were defocused by simulated optical systems.
Before analysis began, a refractive defocus correction was applied
to each model vision system so that 0-diopter targets were focused
best. We applied the correction that maximized the volume under
theMTF scaled by the neural contrast sensitivity function (2). This
metric accurately predicts the refractive correction that humans
judge best (3).
When the optical model included monochromatic aberrations

other than defocus, the dominant orientation of the MTF
changed with the sign of defocus. To estimate the dominant
orientation for each sign, the MTF was computed for each of 65
evenly spaced negative defocus levels between −0.75 and −0.25
diopters and 65 positive defocus levels between +0.25 and +0.75
diopters. Each MTF was convolved with a bowtie function and
the result was fitted with a Von Mises function (circular Gauss-
ian). The function peak was the estimated orientation for that
defocus level. We then found the two orientations that were best
centered in the estimated orientation distributions for the posi-
tive and negative defocus levels, with the constraint that these
two orientations differed by 90 degrees. Forcing dominant ori-
entations to be perpendicular is justified when astigmatism is
the primary aberration that changes with defocus sign, because
then the principal directions of lens surface curvature are always
perpendicular.

Sensor Array Responses. To account for chromatic aberration and
its effect on L- and S-cone sensor responses, single-wavelength
point-spread functions (PSFs) were computed every 5 nm be-
tween 400 and 700 nm (3). The wavelength-dependent change in
refractive power of the human eye was taken from the literature
(4). Separate polychromatic PSFs were obtained for each cone
class by weighting the single-wavelength PSFs by the L- and S-
cone sensitivity functions (5) and by the D65 daylight illumina-
tion spectrum and then summing

psfcðx;ΔDÞ ¼
1

K

X

λ

psf ðx; λ;ΔDÞscðλÞD 65ðλÞ; [S1]

where K is a normalizing constant that sets the PSF volume to
1.0. Retinal images were obtained by transforming the RGB
values of the input photographs to LMS values and then by
convolving the L- and S-cone input channels with the poly-
chromatic PSFs (6). This procedure was repeated for each de-
focus level under consideration.
To implement the reduced spatial sampling rates of the L

and S cones, we sampled the retinal images using the rectangular
array shown in Fig. 4D, Inset. Then, we linearly interpolated
back to full resolution. Linear interpolation is justified because
it cannot add useful information into the image.

Accuracy Maximization Analysis (AMA). The logic of AMA is as
follows. Consider encoding each training stimulus with a small
population of filters that each apply a linear weighting function
with a specified response noise (here, a small amount of Gaussian
noise). Suppose that the linear weighting functions are known. In
that case, it is easy to compute the mean and variance of each
filter’s response to each training sample. If these means and
variances are known, then a closed-form expression can be de-
rived for the approximate accuracy of the Bayesian optimal de-
coder with access to the means and variances (7). Finally, this
closed-form expression can be used to search the space of linear
weighting functions to find the functions (filters) that give the
most accurate performance. We searched for these functions
using gradient descent after initializing each weighting function
with random values. Different random initializations yielded the
same final estimated filters. A Matlab implementation of AMA
and a short discussion of how to apply it are available at http://
jburge.cps.utexas.edu/research/Code.html.
AMA is a form of dimensionality reduction similar to principal

components analysis (PCA) with one critically important dif-
ference: AMA finds the training set components (feature di-
mensions) that are optimal for a particular task whereas PCA
finds the components that account for the highest proportion of
variance in the training set, without regard to task. The fact that
PCA and AMA filters differ indicates (unsurprisingly) that retinal
amplitude spectra variability exists that is not due to defocus.
Another difference is that PCA is required to find orthogonal
components, whereas AMA has no such requirement. Like PCA,
AMA components are found sequentially: The first component is
selected to maximize accuracy then the second component is
selected to maximize accuracy when used in conjunction with the
first component, and so on.

Estimating Defocus. Bayes’ rule gives the posterior probability of
each specific defocus level ΔDj,

p
�

ΔDjjR
�

¼
p
�

RjΔDj

�

p
�

ΔDj

�

P

N

k¼1

pðRjΔDkÞpðΔDkÞ

; [S2]

where pðRjΔDjÞ is the likelihood of the observed filter response
vector given that defocus level, and pðΔDjÞ is the prior proba-
bility of that defocus level. We assumed that the likelihood for
each defocus level is a multidimensional Gaussian (one dimen-
sion per filter) with mean vector μj and covariance matrix Σj,
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p
�

RjΔDj

�

¼ gauss
�

R;  μj;Σj

�

; [S3]

where μj and Σj were set to the sample mean and covariance
matrix of the raw filter responses (e.g., Fig. 2 B and C). In our
test set, the prior probabilities of the defocus levels were equal.
Thus, the prior probabilities factor out of Eq. S2.
Increasing the number of discrete defocus levels in the training

set increases the accuracy of the continuous estimates. (Identi-
fication of discrete defocus levels becomes equivalent to con-
tinuous estimation as the number of levels increases.) However,
increasing the number of discrete defocus levels increases the
training set size and the computational complexity of learning
filters via AMA. In practice, we found that excellent continuous
estimates are obtained using 0.25-diopter steps for training,
followed by interpolation to estimate Gaussian distributions be-
tween steps. Interpolated distributions were obtained by fitting
a cubic spline through the response distribution means and linearly
interpolating the response distribution covariance matrices. In-
terpolated distributions were added until the maximum d′ (i.e.,
Mahalanobis distance) between neighboring distributions was ≤0.5.
To prevent boundary condition effects, we trained on defocus

levels that were 0.25 diopters more out of focus than the largest
defocus level for which we present estimation performance.

Testing the Three-Color-Channel Approximation of Full Radiance

Functions. Idealized hyperspectral radiance functions Iðx; λÞ con-
tain the radiance at each location x in the plane of the sensor
array for each wavelength λ, as would occur in a hypothetical
optical system that does not degrade image quality at all.
Throughout the paper we used well-focused calibrated three-
color-channel digital photographs IcðxÞ as approximations to
idealized hyperspectral radiance functions. To test whether this
approximation was justified, we obtained a set of hyperspectral
reflectance images (8), multiplied them by the D65 irradiance
spectrum (to obtain radiance images), and then processed them
according to two workflows. (The actual measured irradiance
spectra were flatter than the D65 spectrum, making the following
test more stringent.)
In the first workflow, hyperspectral images were processed

exactly as specified by Eq. 2 in the main text. The idealized image

Iðx; λÞ was convolved with wavelength-specific point-spread
functions and weighted by the wavelength sensitivity of each
sensor class, before being spatially sampled by each sensor class.
We refer to the sensor responses resulting from this workflow as
“hyperspectral” sensor responses.
In the second workflow, hyperspectral images were converted

to three-channel LMS images and were defocused with poly-
chromatic point-spread functions (Methods), before being spa-
tially sampled by the sensor array. Specifically, each class of
sensor response was given by

rcðxÞ ¼ ½IcðxÞ
∗psfcðx;ΔDÞ�sampcðxÞ; [S4]

where each image channel was obtained by taking the dot product
of the wavelength distribution at each pixel with the sensor
wavelength sensitivity: IcðxÞ ¼

P

λ
Iðx; λÞscðλÞ. We refer to the

sensor response resulting from this workflow as the “color-
channel” sensor responses.
Finally, we fast-Fourier transformed both the hyperspectral

and color-channel sensor responses and compared their ampli-
tude spectra (Fig. S1). The analysis shows that for the present
purposes, it is justified to approximate sensor responses by using
polychromatic point-spread functions to defocus three-channel
color images.

Defocus Filter Comparison (AMA vs. PCA vs. Templates). We com-
pared defocus-level identification performance of the AMA
defocus filters to the performance of defocus filters that were
obtained via suboptimal methods. AMA filters substantially
outperform filters determined via PCA and template matching.
Template filters were created by multiplying the average natural
input spectrum with the modulation transfer function for each
defocus level (i.e., the template filters were the average retinal
amplitude spectra for each defocus level). The test stimuli from
the main text were projected onto each set of filters to obtain the
filter response distributions. Each filter response distribution was
fit with a Gaussian. A quadratic classifier was used to determine
the classification boundaries. The proportion correctly identified
was computed as a function of the number of filters (Fig. S3).
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Fig. S1. Test of three-color-channel approximation to hyperspectral images. (A) Hyperspectral (Left) and color-channel (Right) L-cone sensor amplitude spectra

for a particular patch (Inset). Hyperspectral sensor responses were obtained via Eq. 2 in the main text and color-channel sensor amplitude spectra were ob-

tained via Eq. S4, the approximation that was used throughout the paper. Different colors indicate different defocus levels. The gray area shows the threshold

below which amplitudes were not used in the analysis. (B) Hyperspectral (Left) and color-channel (Right) S-cone sensor amplitude spectra of the same patch

(Inset in A). (C) Hyperspectral vs. color-channel amplitudes in the L-cone channel for 20 patches randomly selected from the hyperspectral image database (8).

The approximation (Eq. S4) is perfect if all points fall on the unity line. Colored circles show the correspondence between the amplitudes from the particular

patch shown in A. Black dots show the correspondence for amplitudes in the other 19 test patches. (D) Hyperspectral vs. color-channel amplitudes in the S-cone

channel for the same 20 patches. Colored circles show the correspondence between the amplitudes shown in B.
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Fig. S2. Average standard deviation (SD) of logged ampliutde in each radial bin across all stimuli in the training set. The log transform nearly equalizes the SD

of the amplitude within each radial bin, especially in the critical range >3 cpd.
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Fig. S3. Defocus filter comparison in defocus identification performance: AMA filters (solid lines) vs. PCA filters (dashed lines) and template filters (dotted

lines) for the vision systems considered in the paper. Identification accuracy is plotted as a function of the number of filters. (A) Diffraction- and defocus-limited

vision system with a sensor array sensitive only to 570 nm light. (B) Vision system limited by the monochromatic aberrations of the first author’s right eye. (C)

Vision system with diffraction, defocus, and chromatic aberration and with a sensor array composed of two sensors with wavelength sensitivities similar to the

human L and S cones. Note that chance performance is higher in A than in B and C by nearly a factor of 2 because there were more defocus levels used in B and

C than in A (19 vs. 10). To directly compare identification performance in A to that in B and C, multiply the identification performance in A by 10/19.
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Fig. S4. Defocus magnitude estimates and filter robustness to different pupil diameters. (A) Results for the vision system with the monochromatic aberrations

of the first author’s right eye. Magnitude estimates (circles) are similar to those obtained with perfect optics (Fig. 2D). Although precision is somewhat reduced,

the monochromatic aberrations introduce the benefit of enabling decent estimates of defocus sign (Fig. 4B). Diamonds and crosses show defocus estimates for

images formed with 3- and 4-mm pupils, respectively, instead of the 2-mm pupil images upon which the filters were trained. (B) Results for the vision system

sensitive to chromatic aberrations having sensors like human L and S cones. Defocus estimates are robust to changes in pupil diameter. The robustness of the

estimates means that filters determined for one pupil diameter can generalize well for other pupil diameters. The correct pupil diameter was assumed in all

cases. If incorrect pupil diameters are assumed, defocus estimates are scaled by the ratio of the correct and assumed diameters. Note that under the geometric

optics approximation, 2-mm pupils with 2.0 diopters of defocus produce the same defocus blur (i.e., blur circle diameter) as 3- and 4-mm pupils with 1.33 and

1.0 diopters of defocus, respectively.

Burge and Geisler www.pnas.org/cgi/content/short/1108491108 4 of 7

www.pnas.org/cgi/content/short/1108491108


algorithm detection
threshold

algorithm detection
threshold

algorithm detection
threshold

Frequency (cpd)
1 10 100

Frequency (cpd)
1 10 100

Frequency (cpd)

A
m

p
lit

u
d

e

1 10 100
10

−2

10
−1

10
0

10
1

1/f amp spectrum

1/f amp spectrum

1/f amp spectrum

∆D = -0.5 diopters ∆D = 0.0 diopters ∆D = +0.5 diopters

L-cone spectrum

S-cone spectrum

ta
rg

e
t

ta
rg

e
t

fo
cu

s

ta
rg

e
t

fo
cu

s

fo
cu

s

CBA
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defocus. The difference between the L- and S-cone spectra is significantly larger than the difference between the spectra in different orientation bands in-

troduced by the monochromatic aberrations of the first author’s right eye (Fig. 3E). In other words, the signal introduced by the optics is larger for chromatic

than for the monochromatic aberrations in the analyzed eyes.
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Fig. S7. Defocus filters and estimation performance for a vision system with a cone mosaic having full-resolution spatial sampling rates for both L and S cones

(128 samples/degree each). The vision system was otherwise identical to the third model considered in the main text. “Training” and “test” stimuli from the

main text were used to train filters and test estimation performance. (A) Optimal defocus filters are comparable to the filters shown in Fig. 4C. As expected, in

these filters spatial frequency selectivity is slightly higher than in the main text, because the L- and S-cone image undersampling does not occur in this system.

(B) Defocus estimates. Performance is comparable to that shown in Fig. 4D, although precision is slightly increased. Thus, the sampling rates of human cones do

not significantly reduce defocus estimation performance.
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Table S1. Johannes Burge, right eye, Zernike coefficients, 2-mm

pupil diameter

j n m Zernike coefficient, μm Zernike term

1 0 0 0 Piston

2 1 −1 0 Tilt

3 1 1 0 Tilt

4 2 −2 0.033296604 Astigmatism

5 2 0 −0.000785912 Defocus

6 2 2 0.007868414 Astigmatism

7 3 −3 0.021247462 Trefoil

8 3 −1 −0.002652952 Coma

9 3 1 −0.004069984 Coma

10 3 3 −0.001117291 Trefoil

11 4 −4 −0.003315845

12 4 −2 0.000470568 Secondary astigmatism

13 4 0 −0.002159882 Spherical

14 4 2 −0.003245562 Secondary astigmatism

15 4 4 0.000722913

16 5 −5 0.000152741

17 5 −3 −0.000338946

18 5 −1 0.000409569 Secondary coma

19 5 1 0.000433756 Secondary coma

20 5 3 −0.000141623

21 5 5 −0.000425779

22 6 −6 −2.19851E-05

23 6 −4 0.00011365

24 6 −2 −8.65552E-06

25 6 0 0.000103126 Secondary spherical

26 6 2 7.40655E-05

27 6 4 9.48473E-07

28 6 6 4.66819E-05

29 7 −7 5.89112E-06

30 7 −5 1.73869E-07

31 7 −3 2.9185E-06

32 7 −1 −8.47174E-06

33 7 1 −7.90212E-06

34 7 3 2.59235E-06

35 7 5 7.59019E-06

36 7 7 −3.07495E-06

37 8 −8 2.43143E-06

38 8 −6 1.77089E-07

39 8 −4 −1.30228E-06

40 8 −2 −3.92712E-07

41 8 0 −1.59687E-06

42 8 2 −9.91955E-07

43 8 4 1.00225E-07

44 8 6 −7.46211E-07

45 8 8 −2.76361E-06

46 9 −9 −1.60158E-08

47 9 −7 −2.31327E-08

48 9 −5 −1.97329E-08

49 9 −3 −3.49865E-09

50 9 −1 4.11879E-08

51 9 1 4.64632E-08

52 9 3 −1.72462E-08

53 9 5 −4.16899E-08

54 9 7 4.61718E-09

55 9 9 7.37214E-08

56 10 −10 3.85138E-08

57 10 −8 −1.07015E-08

58 10 −6 −1.00234E-09

59 10 −4 4.98049E-09

60 10 −2 4.99783E-09

61 10 0 9.41298E-09

62 10 2 5.92213E-09
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Table S1. Cont.

j n m Zernike coefficient, μm Zernike term

63 10 4 −1.47403E-09

64 10 6 5.24061E-09

65 10 8 1.78739E-08

66 10 10 −8.1141E-09

Astigmatism: RMS wavefront error, 0.03421 μm. Higher-order aberra-

tions: RMS wavefront error, 0.02245 μm.
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