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Optimal Delaunay and Voronoi quantization

schemes for pricing American style options

Gilles Pagès and Benedikt Wilbertz

Abstract We review in this article pure quantization methods for the pricing of mul-

tiple exercise options. These quantization methods have the common advantage, that

they allow a straightforward implementation of the Backward Dynamic Program-

ming Principle for optimal stopping and stochastic control problems. Moreover we

present here for the first time a unified discussion of this topic for Voronoi and

Delaunay quantization and illustrate the performances of both methods by several

numerical examples.

1 Introduction

This paper is focused on pure quantization method for pricing multi-asset Ameri-

can style options (by contrast with hybrid Monte Carlo-quantization approaches).

It continues two goals: it is partly a survey on the pricing of this family of options

by optimal Voronoi quantization techniques. It is also an opportunity to present

our first attempt to implement in a multi-dimensional setting the new quantization

method called dual (or Delaunay) quantization recently developed and investigated

in [Pagès and Wilbertz 2010a] and [Pagès and Wilbertz 2010b]. This approach re-

lies on the Delaunay triangulation of a grid whereas usual vector quantization re-

lies on its Voronoi diagram, hence its name since the Delaunay triangulation is and

Voronoi diagrams are in duality (see [Okabe et al. 2000]). Dual quantization has
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been originally introduced in [Pagès and Wilbertz 2009] to compute the expectation

of functionals of nonhomogenous Bernoulli random walks involved in the pricing

of CDO’s (in a static copula model).

Optimal Voronoi quantization, which is an old story going back the the 1950’s has

been originally developed for Signal transmission purpose at the Bell Laboratory,

has been implemented as a numerical method for the pricing of multi-asset Ameri-

can – strictly speaking Bermuda – options in a series of papers [Bally et al. 2001],

[Bally and Pagès 2003a], [Bally and Pagès 2003b], [Bally et al. 2003], [Bally et al. 2005].

Other fields of application have been developed, often in connection with financial

problems like numerical integration [Pagès 1993], [Pagès 1998], [Pagès and Printems 2003],

non-linear filtering(see [Pagès and Pham 2005], [Pham et al. 2005], [Sellami 2010],

[Sellami 2009] with application to stochastic volatility lodels, stochastic control

with application to portfolio management (see [Pagès et al. 2004]) and swing option

pricing (see [Bardou et al. 2010a], [Bardou et al. 2010b]), discretization of stochas-

tic PDE’s (typically Zakaı̈ and Mc Kean Vlasov equations, see [Gobet et al. 2007],

[Gobet et al. 2005]). We also refer to the surveys [Pagès et al. 2003] and [Pagès and Printems 2009]

and the references therein, as well as to the website devoted to Optimal quantization

(see [Pagès and Printems 2005]).

Quantization methods consists in approximating/discretizing an R
d-valued ran-

dom vector X by a random vector often denoted X̂ taking into a grid Γ of size N ≥ 1

so as to make ‖X− X̂‖p as small as possible. As concerns Voronoi quantization, X̂

is a projection following the nearest neighbour rule on grid Γ of size N. For dual

quantization, X̂ is the result of a random splitting operator which projects X on one

of the vertices of a “minimal” Γ -valued d-simplex which contains X , with a proba-

bility ruled by the barycentric coordinates of X . In a quadratic Euclidean framework

optimal Voronoi quantizers satisfy the so-called stationary property X̂ = E(X | X̂)

whereas all dual quantizers satisfy the reverse stationarity property X = E(X̂ |X).

When X has an unbounded support, one extends the splitting operator by a nearest

neighbour projection outside the convex hull of the grid Γ .

In order to solve dynamic optimization problems related to a (discrete time)

Markov chain (Xk)0≤k≤n, one introduces quantization trees that is quantization

grids Γk of the marginal Xk and some transition matrices approximating the the

Markov transition of the chain. The stationarity of the grids used in the quanti-

zation schemes designed on such quantization tree plays a important role to pre-

serve the numerical efficiency/accuracy: the easiest way to get convinced is to

check that such grids lead to quantization based cubature formulas of second or-

der (see [Pagès 1993, Pagès and Wilbertz 2010a]). Although not as prominent when

dealing with less linear problems (Bermuda option pricing, filtering, stochastic con-

trol, etc), stationarity turns out to be crucial when dealing with numerical implemen-

tation. Now, only optimal Voronoi quantization grid share this property whereas it

is shared by all dual quantization grids. This makes dual quantization more flexi-
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ble than the Voronoi one: when switching from a distribution to another like in an

iterative calibration procedure, one only has to modify the weights of a dual quanti-

zation grid to preserve the stationarity (even if the resulting quantization is no longer

optimal). This can be done on line by a regular Monte Carlo simulation in a few sec-

onds or even less with the help of high performance massively parallel computation

device (GPGPU). When dealing with Voronoi quantization, preserving stationarity

requires to re-adjust both the grids and the weights.

In Section 2 we propose in a Markovian framework a unified approach to provide

some a priori error bounds for Voronoi and Delaunay quantization schemes, relying

on a non asymptotic version of Zador’s theorem (about the rate of decay of the Lp-

quantization error). This improves and simplifies the results in [Bally and Pagès 2003a].

The resulting bound is the (weighted) sum of the quantization errors of the marginals

of the Markovian dynamics.

In Section 3, we present with more details both Voronoi and Delaunay quan-

tization. In Section 4, we briefly describe several stochastic optimization methods

to optimize grids. Those related to Voronoi quantization are classical (Lloyd’s I and

CLVQ) whereas their counterpart have been recently devised in [Pagès and Wilbertz 2010a]

or completely new. In section 6, we propose methods – some of them heuristic –

to optimize the structure of the quantization tree. In Section 7, numerical test are

carried out on several American payoff functions (swing option, exchange option

between geometric indices and call option on minimum of two assets) in a multi-

dimensional setting. We determine emirically rates of convergence, discuss several

improvement possibilities and finally establish a comparison with the Longstaff-

Schwartz algorithm.

NOTATION: | . | denotes the canonical Euclidean norm on the vector space R
d of

column vectors. conv(A) denotes the convex hull of A⊂ R
d .

2 Quantized Backward Dynamic Programming Principle

Let (Xk)0≤k≤n be an R
d-valued homogeneous Feller Markov chain defined on a

probability space (Ω ,A ,P) with transition P(x,dy). The homogeneity assumption

is essentially made for convenience in order to to alleviate notations but the exten-

sion to a non-homogeneous framework is straightforward. We will make the slightly

more stringent assumption that the chain is in fact “Lipschitz Feller”: this means that

the transition is not simply Feller but also preserves uniformly Lipschitz continuous

functions: there exists a (finite) real constant [P]Lip such that

∀ f : R
d → R

d , [P f ]Lip ≤ [P]Lip[ f ]Lip.
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where [ f ]Lip = supx6=y
| f (x)− f (y)]
|x−y]

. Without loss of generality we may assume that

[P]Lip = sup
[ f ]Lip≤1

[P f ]Lip.

Let hk : R
d →R+, 0≤ k ≤ n, be a sequence of Borel functions satisfying

max
0≤k≤n

‖hk(Xk)‖p < +∞.

Let FX = (FX
k )0≤k≤n denote the natural filtration of the chain X . It is classical

background from Optimal Stopping Theory that if one defines by induction the so-

called Backward Dynamical Programming Principle (BDPP) by

Vn = hn(Xn), Vk = max
(

hk(Xk),E
(
Vk+1 |Xk

))
(1)

then

V0 = sup
{

E

(
hτ (Xτ )

)
, τ : Ω → {0, . . . ,n}FX -stopping time

}

and more generally

Vk = esssup
{

E

(
hτ (Xτ ) FX

k

)
, τ : Ω → {k, . . . ,n}FX -stopping time

}
, k = 0, . . . ,n.

The sequence (Vk)0≤k≤n is known as the (P,FX )-Snell envelope of the so-called

obstacle process (h(Xk))0≤k≤n.

The paradigm of Quantized Backward Dynamic Programing Principle is two

folded and can be described as follows:

⊲ discretization. As a first step, we consider an abstract approximation process

of the Markov Chain (Xk)0≤k≤n by a sequence (X̂k)0≤k≤n of the form

X̂k = πk(Xk,Uk), k = 0, . . . ,n,

where (Uk)0≤k≤n is an i.i.d. sequence of R
d0-valued random vector independent of

FX
n (i.e. of (Xk)0≤k≤n) and the mappings πk : R

d×R
d0 → R

d are Borel functions.

As concerns numerical implementation we will of course ask the chain (Xk)0≤k≤n

and the exogenous simulation noise (Uk)0≤k≤n to be to be simulatable (at reasonable

cost) and the mapping πk to take values in finite sets Γk (called grids).

We will see further on that these random vectors Uk represent an exogenous noise

involved in the simulation process of X̂k “from” Xk (so will be the case when dealing

with dual quantization). One can always achieve such a framework by defining the

sequence (Uk) on a probability space (Ω0,A0,P0) and by considering the product

probability space (Ω̃ ,Ã , P̃) = (Ω ×Ω0,A ⊗A0,P⊗P0).

⊲ Quantized Backward Dynamic Programming Principle. As a second step, we

introduce a dynamic programming formula involving the r.v; X̂k, obtained by sim-
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ply mimicking the regular BDPP related to the Snell envelope of (hk(Xk))0≤k≤n;

in practice this essentially amounts to “forcing” the Markov property although the

sequence (X̂k)0≤k≤n has no reason to be a Markov chain. To be precise, we define a

sequence (V̂k)0≤k≤n

V̂n = h(X̂n), V̂k = max
(

hk(X̂k),E
(
V̂k+1 | X̂k

))
. (2)

Then the following (new) result holds about the rate of approximation of the

Snell envelope (Vk)0≤k≤n by its quantized counterpart (V̂k)0≤k≤n.

Proposition 2.1 Let p∈ [1,+∞). Assume that

max
0≤k≤n

(
‖Xk‖p +‖X̂k‖p

)
< +∞

and assume that all the functions hk, k = 0, . . . ,n, are Lipschitz continuous. Then,

for every k∈ {0, . . . ,n},

‖Vk− V̂k‖p ≤
n

∑
ℓ=k

Cn,ℓ([P]Lip, [h.]Lip)‖X− X̂k‖p

where

Cn,k([P]Lip, [h.]Lip) = cp max
k≤ℓ≤n

(
[P]ℓ−k

Lip [hℓ]Lip

)

with cp = 1 if p = 2 and cp = 2 otherwise.

Proof. STEP 1. The functions vk are Lipschitz. One first shows by induction using

the Markov property that

Vk = vk(Xk), k = 0, . . . ,n,

where the functions vk are Lipschitz continuous satisfying

vn = hn and vk = max(hk,Pvk+1), k = 0, . . . ,n−1.

In particular, for every k = 0, . . . ,n−1,

[vk]Lip ≤max
(
[hk]Lip, [P]Lip[vk+1]Lip

)

where we used the elementary inequality |supi∈I ai − supi∈I bi| ≤ supi∈I |ai − bi|.

Then standard computations yield that

[vk]Lip ≤ max
k≤ℓ≤n

(
[P]ℓ−k

Lip [hℓ]Lip

)
.

STEP 2. Induction on ‖Vk− V̂k‖p . It follows from the quantized BDPP that
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V̂k = v̂k(X̂k) where v̂k : R
d →R+, k = 0, . . . ,n.

are Borel functions. Then

‖Vk− V̂k‖p ≤ ‖hk(Xk)−hk(V̂k)‖p +‖E(Vk+1 |Xk)−E(V̂k+1 | X̂k)‖p

≤ [hk]Lip‖Xk− X̂k‖p +‖E(Vk+1 |Xk)−E(V̂k+1 | X̂k)‖p .

Now, one easily checks that

E

(
V̂k+1 | X̂k

)
= E

(
V̂k+1 |πk(Xk,Uk)

)

=

∫

R
d0

E

(
V̂k+1 |πk(Xk,u)

)
P

Uk
(du)

since X̂k = πk(Xk,Uk), Uk and (V̂k+1,Xk) are independent (keep in mind that V̂k+1 is

σ(X̂k+1)-measurable and σ(X̂k+1)⊂ σ(Xk+1,Uk+1)).

It follows from the generalized Minkowski inequality that

∥∥∥E(Vk+1 |Xk)−E(V̂k+1 | X̂k)
∥∥∥

p

=

∥∥∥∥
∫

R
d0

[
E(Vk+1 |Xk)−E

(
V̂k+1 |πk(Xk,u)

)]
P

Uk
(du)

∥∥∥∥
p

≤

∫

R
d0

∥∥∥E(Vk+1 |Xk)−E

(
V̂k+1 |πk(Xk,u)

)∥∥∥
p

P
Uk

(du).(3)

Now, for every u ∈ R
d0 ,

∥∥∥E
(

V̂k+1 |πk(Xk,u)
)
−E

(
Vk+1 |Xk

)∥∥∥
p

≤
∥∥∥E
(
V̂k+1−Vk+1 |πk(Xk,u)

)∥∥∥
p

+
∥∥E(Vk+1 |Xk)−E

(
Vk+1 |πk(Xk,u)

)∥∥
p

≤ ‖V̂k+1−Vk+1‖p +
∥∥E
(
Vk+1 |Xk

)
−E

(
E
(
Vk+1 |Xk

)
|πk(Xk,u)

)∥∥
p

= ‖V̂k+1−Vk+1‖p +
∥∥Pvk+1(Xk)−E

(
Pvk+1(Xk) |πk(Xk,u)

)∥∥
p

where we successively used the fact that conditional expectation is an Lp-contraction

and that E
(
Vk+1 |Xk

)
= E

(
vk+1(Xk+1) |Xk) = Pvk+1(Xk). Now

∥∥Pvk+1(Xk)−E
(
Pvk+1(Xk) |πk(Xk,u)

)∥∥
p
≤ cp

∥∥Pvk+1(Xk)−Pvk+1(πk(Xk,u)
)∥∥

p

with cp = 1 if p = 2 and cp = 2 otherwise, so that finally

∥∥∥E
(

V̂k+1 |πk(Xk,u)
)
−E(Vk+1 |Xk)

∥∥∥
p

≤
∥∥∥V̂k+1−Vk+1

∥∥∥
p

+cp

∥∥Pvk+1(Xk)−Pvk+1(πk(Xk,u)
)∥∥

p

≤
∥∥∥V̂k+1−Vk+1

∥∥∥
p

+cp[Pvk+1]Lip ‖Xk−πk(Xk,u)‖
p
.(4)
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On the other hand,

∫

R
d0

‖Xk−πk(Xk,u)‖
p
P

Uk
(du) =

∫

R
d0

(E|Xk−πk(Xk,u)|p)
1
p P

Uk
(du)

≤

(∫

R
d0

E|Xk−πk(Xk,u)|pP
Uk

(du)

) 1
p

=
(

E|Xk−πk(Xk,Uk)|
p
) 1

p

= ‖Xk− X̂k‖p

where we used Jensen’s Inequality (since p ≥ 1) in the second line. Consequently,

plugging this bound in the P
U

-integrated form of (4) and the resulting inequality

in (3), yields

‖Vk− V̂k‖p ≤ ‖V̂k+1−Vk+1‖p +
(
[hk]Lip + cp[Pvk+1]Lip

)
‖Xk− X̂k‖p .

Hence, for every k∈ {0, . . . ,n},

‖Vk− V̂k‖p ≤
n

∑
ℓ=k

(
[hℓ]Lip + cp[P]Lip[vℓ+1]Lip

)
‖Xℓ− X̂ℓ‖p

≤
n

∑
ℓ=k

Cn,ℓ([P]Lip, [h.]Lip)‖Xℓ− X̂ℓ‖p

owing to the upper bound established in Step 1 for [vk]Lip. ♦

Example. We consider a jump diffusion solution to

dYt = b(t,Yt)dt +σ(t,Yt)dWt +κ (t,Yt−)dZt ,

where W = (Wt)t∈[0,T ] is an l-dimensional standard Brownian motion and Z =

(Zt)t∈[0,T ] is an l-dimensional square integrable compensated Lévy process without

Brownian component (so that its Lévy measure ν satisfies

∫

Rl
|z|2ν(dz) < +∞).

The processes W and Z are defined on a probability space (Ω ,A ,P) and are

supposed to be independent. In particular, Zt is centered, has a second moment and

both

(Zt)t∈[0,T ] and
(

ZtZ
∗
t − tE(Z1Z∗1)

)
t∈[0,T ]

are FW,Z
t -martingales (Z∗t stands for the transpose of Zt ). Assume that b : [0,T ]×

R
d → R, σ , κ : [0,T ]× →M (d,q) are Lipschitz continuous functions in (t,x)

(these assumptions are not optimal).

Under these assumptions, the above SDE has a strong solution starting from any

finite random vector Y0 independent of (W,Z) defined on (Ω ,A ,P).
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The “sampled process” (Ytn
k
)0≤k≤n at the discretization times tn

k = kT
n

, k = 0, . . . ,n,

is an homogenous Markov chain with transition P(n) := PT
n

formally reading

PT
n
( f )(x) = Ex

(
f
(
YT

n

))
.

Such a Markov chain is usually not simulatable. However one may always associate

to such a diffusion process its Euler scheme with step T
n

recursively defined by

Ȳ0 = Y0 and, for every k∈ {0, . . . ,n−1},

Ȳtn
k+1

= Ȳtn
k
+

T

n
b(tn

k ,Ytn
k
)+σ(tn

k ,Ytn
k
)(Wtn

k+1
−Wtn

k
)+κ (tn

k ,Ytn
k
)(Ztn

k+1
−Ztn

k
).

The sequence (Ȳtn
k
)0≤k≤n is a homogeneous Markov chain with transition P̄(n) read-

ing on bounded or non-negative Borel functions f ,

P̄(n)( f )(x) = E

(
f
(

x + b(x)
T

n
+σ(x)

√
T

n
Ξ +κ (x)Z T

n

))
(5)

where Ξ ∼N (0; Iq) is independent of Z T
n

. For notational convenience we will often

note P̄ for P̄(n).

Standard computations show that if f is Lipschitz continuous

|P̄(n)( f )(x)− P̄(n)( f )(x′)|2 ≤ [ f ]2Lip

(
1 +[b]2Lip

(T

n

)2

+Cσ ,κ ,d,Z
T

n

)
|x− x′|2

where Cb,σ ,d,Z = d[σ ]2Lip + [κ ]2LipE|Z1|
2. Similar bounds can be obtained for the

jump diffusion at time T
n

using Itô’s formula with jumps. This leads to the following

proposition.

Proposition 2.2 There exists a real constant Cb,σ ,κ ,T,d,Z such that,

∀n ≥ 1, [PT
n
]Lip ≤ 1 +Cb,σ ,κ ,T,d,Z

T

n
and [P̄(n)]Lip ≤ 1 +Cb,σ ,κ ,T,d,Z

T

n
.

As a consequence, if P = PT
n

or P = P̄(n)

sup
n≥1

max
0≤k≤n

[P]kLip ≤ eCb,σ ,κ ,T,d,Z < +∞.

This proposition emphasizes that if one set Xk = Ytn
k

or Xk = Ȳtn
k
, k = 0, . . . ,n,

and if, for example, hk = e−r T
n h, k = 0, . . . ,n, with h : R

d → R+ a Lipschitz func-

tion, then the coefficients Cn,k([P]Lip, [h.]Lip) introduced in Proposition 2.1 remain

uniformly bounded since
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sup
n≥1

max
0≤k≤n

Cn,k([P]Lip, [h.]Lip)≤ eCb,σ ,κ ,T,d,Z [h]Lip < +∞.

3 Optimal Voronoi and Delaunay quantizations

In this section we deal for a while with a static problem: how to optimize the quan-

tization of a fixed R
d-valued random vector X . This is the purpose of optimal quan-

tization which consists in minimizing the Lp-mean approximation error induced by

a quantization X̂ of X that takes at most N values. To be more precise, we aim at

minimizing ‖X− X̂‖p over a certain class of discretely valued random vectors X̂ .

3.1 Optimal Voronoi quantization

In the case of Voronoi quantization this optimization problem reads

ep,N(X) = inf
{
‖X− X̂‖p : X̂ is a random vector with # X̂(Ω)≤ N

}
.

It turns out, see e.g. [Graf and Luschgy 2000], that this definition is equivalent to

the definition of the optimal quantization error as the minimal Lp-distance from X

to a finite grid Γ ⊂ R
d with cardinality #Γ ≤ N, i.e.

ep,N(X) = inf
{
‖dist(X ,Γ )‖p : Γ ⊂ R

d , #Γ ≤ N
}

= inf
{(

Emin
x∈Γ
|X− x|p

)1/p

: Γ ⊂ R
d , #Γ ≤ N

}
.

This equivalence is based on the construction of a Voronoi quantization by means

of the nearest neighbour projection. Therefore, let Γ = {x1, . . . ,xN} ⊂ R
d be a grid

and denote by (Ci(Γ ))1≤i≤N a Borel partition of R
d satisfying

Ci(Γ )⊂
{

ξ ∈ R
d : |ξ − xi| ≤ min

1≤ j≤N
|ξ − x j|

}
.

Such a partition is called a Voronoi partition generated by Γ and we may define the

corresponding nearest neighbour projection as

ProjΓ (ξ ) = ∑
1≤i≤N

xi1Ci(Γ )(ξ ). (6)

The discrete random vector

X̂Γ ,Vor = ProjΓ (X) = ∑
1≤i≤N

xi1Ci(Γ )(X).
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is called Voronoi Quantization of X induced by Γ and satisfies

Emin
x∈Γ
|X− x|p = E|X− X̂Γ ,Vor|p.

At this stage, the purpose of optimal quantization is to prove the existence of op-

timal grids of size at most N which resulting quantization error attains the minimal

Lp-quantization error ep,N .

Proposition 1 (Optimal Voronoi quantizer). (see [Kieffer 1983, Graf and Luschgy 2000,

Pagès 1998]) (a) Let p∈ [1,∞). For every integer N ≥ 1, there exists at least one

optimal grid Γ ∗
N

of size at most N (or “at level N”) such that

‖X− X̂
Γ ∗

N
,Vor‖p = ep,N(X)

and N 7→ ep,N(X) is (strictly) decreasing to 0 (as long as it does not vanish).

Furthermore ep,N(X) = 0 if and only if supp(PX) has at most N elements and

if this support has at least N elements, then any optimal grid Γ ∗
N

has exactly N

pairwise distinct elements.

(b) If p = 2, any optimal Γ ∗
N

quantization grid satisfies the stationary property

E
(
X | X̂Γ ∗

N
,Vor) = X̂

Γ ∗
N

,Vor. (7)

Furthermore, if d = 1 and X has an absolutely continuous distribution with a log-

concave probability density, then (see [Abaya and Wise 1982], [Abaya and Wise 1984],

[Trushkin 1982], [Kieffer 1983]) there is only one stationary quantizer which is nec-

essarily the unique optimal quantizer of X at level N.

The stationarity property (7) plays an important role in the numerical aspects

of optimal Voronoi quantization although its proof is rather simple for an optimal

quantizer: by the very definition of conditional expectation as an L2(P)-orthogonal

projection

ep,N(X)≤ ‖X−E(X | X̂Γ ∗
N

,Vor)‖
2
≤ ‖X− X̂

Γ ∗
N

,Vor‖
2
= ep,N(X),

one derives (by uniqueness) that E(X | X̂Γ ∗
N

,Vor) = X̂
Γ ∗

N
,Vor

a.s.

For further mathematical insights on optimal vector (or Voronoi) quantization or

for more details , we refer to [Graf and Luschgy 2000] and the references therein.

3.2 Optimal dual quantization

By contrast to the above construction of Voronoi quantizations as best possible Lp-

mean approximation, optimal dual quantization relies on the best approximation
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which can be achieved by a discrete random vector X̂ that satisfies a certain station-

arity assumption on the extended probability space (Ω×Ω0,A ⊗A0,P⊗P0). That

is we define

dp,N(X) = inf
{
‖X− X̂‖p : X̂ : (Ω ×Ω0,A ⊗A0,P⊗P0)→ R

d ,

# X̂(Ω ×Ω0)≤ N and E(X̂ |X) = X
}
.

Then (see [Pagès and Wilbertz 2010a]), one may show that such a definition is

equivalent to

dp,N(X) = inf
{
‖Fp(X ;Γ )‖p : Γ ⊂ R

d ,#Γ ≤ N
}

for the local dual quantization functional

Fp(ξ ;Γ ) = inf

{( N

∑
i=1

λi|ξ − xi|
p
)1/p

: λi ∈ [0,1] and
N

∑
i=1

λixi = ξ ,
N

∑
i=1

λi = 1

}
.

If the grid Γ ⊂ R
d admits a Delaunay triangulation (e.g. the points in Γ are in

general position), then it was proved in [Pagès and Wilbertz 2010a] that we can con-

struct a dual quantization operator which is the counterpart of the nearest neighbour

projection for Voronoi quantization. This operator maps the random variable X ran-

domly to the vertices of the Delaunay triangle in which X falls, where the probability

of mapping X to a vertex ti is determined by the i-th barycentric coordinate of X in

the (non-degenerated) “hyper-triangle” (or d-simplex) conv{t j : j = 1, . . . ,d + 1}.

Mathematically speaking, let (Di(Γ ))1≤i≤m be a Delaunay partition of the convex

hull conv(Γ ) of Γ . Let us denote by λ k(ξ ) the barycentric coordinates of ξ in the

triangle Dk(Γ ), with the convention λ k
i (ξ ) = 0 if xi /∈ Dk(Γ ) and set

J u
Γ (ξ ) =

m

∑
k=1

[
N

∑
i=1

xi ·1{ i−1

∑
j=1

λ k
j (ξ )≤u<

i

∑
j=1

λ k
j (ξ )
}
]1Dk(Γ )(ξ ).

Then it holds

Fp(ξ ;Γ ) =
(

EP0
|ξ −J U

Γ (ξ )|p
)1/p

,

where U is defined on (Ω0,A0,P0) with a U
(
[0,1]

)
-distributed (so that the oper-

ator J u
Γ (ξ ) is defined on this exogenous space). Then we define (on the product

probability space (Ω̃ ,Ã , P̃) ) he dual (or Delaunay) quantization

X̂Γ ,Del = J U
Γ (X)

so that

‖Fp(X ;Γ )‖p = ‖X− X̂Γ ,Del‖p and E(X̂Γ ,Del|X) = X .
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As a matter of fact, this “strict” dual stationarity condition can only be fulfilled if

supp(PX) is bounded. To preserve as much intrinsic stationarity for X̂Γ as possible,

i.e. stationarity on conv(Γ ), we introduce the dual quantization for non-compactly

supported random vector X as

̂̄X
Γ ,Del

= J U
Γ (X)1{X∈conv(Γ )}+ ProjΓ (X)1{X /∈conv(Γ )}.

and denote the optimal dual quantization error in this case by

d̄p,N(X) = inf
{
‖X− ̂̄X

Γ ,Del
‖p : Γ ⊂ R

d ,#Γ ≤ N
}
.

Optimal dual quantizers. In both settings, it is shown in [Pagès and Wilbertz 2010a],

under continuity assumption of the distribution of X that for every N ≥ 1, there ex-

ists at least one optimal dual quantizer at level N which has exactly N components

for d̄p,N(X). Furthermore d̄p,N(X)→ 0 as N → ∞. If the distribution of X has a

compact support the same holds for the modulus dp,N(X) as soon as N ≥ d + 1.

3.3 Quantization rates

Both Regular (or Voronoi) and dual (or Delaunay) quantization error moduli satisfy

formally the same theorem.

Theorem 3.1 (Optimal Voronoi quantization) Let p, p′∈ (0,∞), p < p′.

(a) ASYMPTOTIC ERROR BOUND (ZADOR’S THEOREM) (see e.g. [Zador 1982,

Bucklew and Wise 1982, Graf and Luschgy 2000]) Assume X∈ Lp′(Ω ,A ,P) with a

distribution P
X
(dξ )= h(ξ )λd(dξ )+ν

X
(dξ ) where the finite measure ν

X
is singular

w.r.t. the Lebesgue measure λd on (Rd ,Bor(Rd)). Then

lim
N

N
1
d ep,N(X) = J̃

vq

p,‖.‖
‖h‖

1
d

p
p+d

where J̃
vq

p,‖.‖ = infN≥1 N
1
d ep,N(X)∈ (0,∞) corresponds to the uniform distribution

over the unit hypercube [0,1]d when R
d is equipped with the norm ‖ .‖.

(b) NON-ASYMPTOTIC ERROR BOUND (PIERCE’S LEMMA) (see e.g. [Luschgy and Pagès 2008])

There exists a real constant K
vq

d,p,p′ ∈ (0,∞) such that, for every random vector

X : (Ω ,A ,P)→ R
d ,

∀N ≥ 1, ep,N(X)≤ K
vq

d,p,p′N
− 1

d min
a∈Rd
‖X−a‖p′.

In fact the above non-asymptotic bound is a slight improvement of that estab-

lished in [Luschgy and Pagès 2008] taking advantage of the obvious invariance of
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ep,N(X) by translation: ep,N(X) = ep,N(X + a), a∈ R
d(1) Note that all proofs of

Pierce’s Lemma need a random quantization argument (see e.g. [Graf and Luschgy 2000]).

Theorem 3.2 (Optimal dual quantization) ([Pagès and Wilbertz 2010b]) The above

theorem for Voronoi quantization also holds true, with appropriate real constants

J̃
dq

p,‖.‖ ≥ J̃
vq

p,‖.‖ and K
dq

d,p,p′ (≥ K
vq

d,p,p′) when replacing ep,N(X) by its counterpart the

minimal dual Lp-mean quantization error d̄p,N(X). However, the non-asymptotic

claim only holds true for N ≥ Nd,p,p′ (depending only on d, p, p′)

When X has a compact support, the theorem holds true – with N ≥ d + 1 –

with the error modulus dp,N(X) with same constants J̃
dq

p,‖.‖
and K

dq

d,p,p′ . When d = 1,

J̃
dq

p,‖.‖ =
(

2p+1

p+2

) 1
p

J̃
dq

d,p,p′ .

4 How to get optimal Voronoi and Delaunay quantizations

4.1 Optimal quadratic Voronoi Quantization

Throughout this section we focus on the quadratic case, although , at least formally,

all proposed algorithms have an Lp counterpart for p≥ 2.

4.1.1 Original and randomized Lloyd’s I algorithm

When the dimension d = 1 and p = 2 (quadratic case), one may identify a quantiza-

tion grid Γ of size N with an N-tuple with increasing components i.e. an element of

I
N

:= {(x1, . . . ,xN
)∈R

N | −∞ < x1 < · · ·< x
N

< +∞}. It has been originally shown

in [Kieffer 1983] that if the distribution of a random variable X has a log-concave

probability density function, then then there exists a unique stationary quantizer of

size N, denoted Γ ∗,N i.e. a quantizer satisfying

E
(
X | X̂Γ ∗,N)= X̂Γ ∗,N . (8)

Since a quadratic optimal quantizer at level N of an absolutely continuous distri-

bution has exactly N pairwise distinct components and is stationary (see Proposi-

tion 1), this stationary quantizer Γ ∗,N is also an optimal quadratic quantizer.

Kiefer provided (see [Kieffer 1982]) an alternative proof of the above facts by a

more constructive approach by considering the following so-called Lloyd’s I proce-

1 The fact that this holds for every N ≥ 1 rather than for N ≥ Np,p′ ,d as stated

in [Luschgy and Pagès 2008] follows form the obvious facts that ep,N(X) ≤ ep′ ,N(X) ≤

mina∈Rd ‖X −a‖p′ so that the first Np,p′,d −1 terms can be included in the real constant K
vq

d,p,p′ .
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dure to update recursively a quantization grid Γ(m) (of size N), namely

X̂Γ(m+1) = E
(
X | X̂Γ(m)

)
, m∈ N, Γ(0)∈I

N
∩H (P

X
) (9)

where H (P
X
) = conv(supp(P

X
)). It is proved that the procedure “lives” inside

I
N
∩H (P

X
) and that, still under the log-concavity assumption, Γ(m) converges ex-

ponentially fast toward the unique stationary N-quantizer Γ ∗,N . Written in a more

analytical form, (9) reads if Γ(m) = {xm,1, . . . ,xm,N},

xm+1,i = E
(
X | X̂Γ(m) = xm,i

)
=

∫

Ci(Γ(m))
ξ P

X
(dξ )

P
X
(Ci(Γ(m)))

, i = 1, . . . ,N,

where in this 1D-setting Ci(Γ(m)) =
(xm,i−1 + xm,i

2
,

xm,i + xm,i+1

2

]
with xm,0 = −∞

and xm,N+1 = +∞.

It is straightforward that the procedure as defined by (9) can be extended to the

d-dimensional setting. One defines recursively the sequence of N-quantizers Γ(m),

m∈ N, by Γ(0) ⊂H (P
X
), #Γ(0) = N and

xm+1,i = E
(
X | X̂Γ(m) = xm,i

)
=

E
(
X1{X∈Ci(Γ(m)}

)

P(X ∈Ci(Γ(m)))
, i = 1, . . . ,N,

with obvious notations. One easily checks that

‖X− X̂
Γ(m+1)‖2 = ‖X−E

(
X | X̂Γ(m))

∥∥
2

= inf
{
‖X−ϕ (X̂Γ(m))‖2 : ϕ : R

d → Γ(m),ϕ is Borel
}
≤ ‖X− X̂Γ(m)‖2

so that, this multi-dimensional Lloyd’s I procedure always lets the quadratic quan-

tization error decrease (except if Γ(m) is itself stationary at finite range). Of course,

any stationary quantizer is a fixed point for the Lloyd’s I procedure and in higher

dimension there are always several stationary quantizers. As far as we know, no con-

vincing proof of pointwise convergence to a global minimum has been established

so far for the grids Γ(m). However, from a practical point of view, one may reason-

ably hope that this convergence does hold, at least toward a local minimum of the

quadratic quantization error functional Γ 7→ ‖X− X̂Γ ‖2.

As soon as the dimension d of the state of the random vector X is not lower

than 3 or 4, the Lloyd’s I procedure cannot be implemented by analytical means

since it becomes impossible to compute integrals like

∫

Ci(Γ )
f (ξ )dξ by any kind of

cubature formulas (hoxever see [Wilbertz 2005] for the low dimensional cases). The

alternative solution, when the random vector X is simulatable, is to rely on a Monte

Carlo simulation at each step m to compute for every i∈ {1, . . . ,N},
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E
(
X |X ∈Ci(Γ(m))

)
= a.s.- lim

L→∞

∑L
ℓ=1 Xℓ1{Xℓ∈Ci(Γ(m)}

∑L
ℓ=1 1{Xℓ∈Ci(Γ(m)}

.

Note that Xℓ ∈Ci(Γ(m)) if and only if xm,i is the nearest neighbour of Xℓ among all

components xm,i, i = 1, . . . ,N of the current grid Γ(m).

A huge literature has been devoted to practical aspects of Lloyd’s I procedure

and its applications in Signal Processing and Data compressing. For further insights

in that direction, see e.g. [Gersho and Gray 1992]. In Data Analysis (when the un-

derlying distribution of interest is the uniform distribution over the data set (i.e. the

empirical measure of this data set) the “batch” (for “non-randomized”) procedure is

known as the k-means algorithm. For some applications in Delaunay grid generation

see [Du and Gunzburger 2002]. On the other hand little has been done on theoretical

aspects, since the original work ([Kieffer 1982]).

4.1.2 The Competitive Learning Vector Quantization algorithm

The so-called CLVQ algorithm is a stochastic gradient algorithm relying on the fact

that the squared quadratic quantization error, called distortion. We will make the ob-

vious abuse of notationconsisting in identifying grids of size at most N and N-tuples

with possibly “repeated” components. The distorsion is then defined on (Rd)N by

Γ = (x1, . . . ,xN
) 7−→DistorN(X ;Γ ) := E min

1≤i≤N
|X− xi|

2.

This function is differentiable at every N-tuple x = (x1, . . . ,xN
)∈ (Rd)N having pair-

wise distinct components with a gradient ∇ xDistorN(X ;Γ ) given by

∇ xDistorN(X ;Γ ) = 2
(
E
(
(xi−X)1{X∈Ci(Γ )}

))
1≤i≤N

.

If #suppP
X
≥ N, the distortion function is differentiable at any minimum since it

has pairwise distinct components (see [Graf and Luschgy 2000]). Furthermore as

emphasized above its gradient has a representation as an expectation formally read-

ing

∇ xDistorN(X ;(x1, . . . ,xN
)) = E

(
∇ xdistorN

(
X ;(x1, . . . ,xN

)
))

.

The function defined on R
d× (Rd)N by

(ξ ,Γ ) 7−→ ∇ xdistorN

(
X ;Γ

)

is sometimes called a local gradient of the potential function DistorN . Then, the

paradigm of stochastic approximation says that under technical assumptions to be

specified the so-called stochastic gradient descent defined by
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Γ(m+1) = Γ(m)−γm+1∇ xdistorN(Xm+1;Γ(m)), m≥ 1, Γ(0) ⊂ R
d , #Γ(0) = N,

where (Xm)m≥1 is an i.i.d. sequence of copies of X and (γm)m≥1 is a sequence of gain

parameter satisfying the decreasing step assumption” assumption ∑m≥1 γm = +∞
and ∑m≥1 γ2

m < +∞ which is standard in Stochastic Approximation Theory.

From a practical point of view, this abstract formula can be decomposed into two

phases: set for convenience Γ(m) = (xm,1, . . . ,xm,N), m≥ 0.

(i) Competitive Phase: Search of the nearest neighbour xm,i∗(Xm+1) of Xm+1

among the components of xm,i, i = 1, . . . ,N, of Γ(m) (using a “winning convention”

in case of conflict between two or more components).

(ii) Learning Phase: One moves the winning component towards Xm+1 using a

dilatation i.e.

xm+1,i∗(Xm+1) = Dilatation[Xm+1,1−γm+1](xm,i∗(Xm+1))

where the dilatation Dilatation[ξ ,λ ] centered at ξ ∈R
d with ratio λ > 0 is defined by

∀y∈ R
d , Dilatation[ξ ,λ ](y) = ξ +λ (y− ξ ) = (1−λ )ξ +λ y.

All other components stay still.

This procedure is useful for small or medium values of N. For general back-

ground on stochastic approximation, we refer to [Benveniste et al. 1990, Duflo 1996,

Kushner and Yin 2003]. Unfortunately, the CLVQ procedure turns out to be singular

in the world of recursive stochastic approximation algorithms, and only “conditional

a.s. convergence” results have been obtained (also known as a.s. convergence in the

“Kushner-Clark sense”), see [Pagès 1998]. However, in a 1D framework standard

a.s. convergence has been established at a regular CLT weak convergence rate for

distributions with compact support (see [Bouton and Pagès 1993]).

This procedure has also given rise to many empirical investigations and heuristic

statements, especially in the artificial neural network community where the CLVQ

appears as a degenerate case of the Kohonen self-organizing maps used in non-linear

automatic classification. Other optimization procedures have also been implemented

like evolutionary algorithms (see e.g. [Mrad and Ben Hamida 2006]).

4.1.3 Companion parameters

To fully elucidate the distribution of a quantization X̂ of X , not only the grid

Γ = {x1, . . . ,xN
} is necessary but also the weights pi = P(X̂ = xi). These weights

are often called “companion parameters”. Other companion parameters may be of

interest like the local inertia E
(
1X∈{Ci(Γ )}|X− xi|

2
)
.
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⊲ Adaptive estimation (CLVQ). When performing the CLVQ algorithm, one may

devise a companion procedure to estimate these weights on-line by setting

pi
(m+1) = pi

(m)− γ̃m+1

(
pi

(m)−1{i∗(Xm+1)=i}

)
, i = 1, . . . ,N

where γ̃m = γm or γ̃m = 1/m (the second choice corresponds to the usual empirical

mean but with respect to the “moving grids” Γ(m)). No significant extra computation

is needed since i∗(Xm+1) is already computed in the core of the CLVQ procedure.

⊲ Posterior estimation. From a practical point of view, it seems more efficient to

estimate by a standard Monte Carlo simulation the weights pi posterior to the grid

optimization: this amounts to “freezing” Γ(m) = Γ and setting γ̃m = 1/m in the above

procedure (still based on repeated nearest neighbour searches).

4.1.4 More on practical aspects

⊲ Quasi-Monte Carlo. For formerly mentioned procedures, one may substitute

a sequence of quasi-random numbers to the usual pseudo-random sequence. This

often speeds up the rate of convergence of the method, although this remains mostly

heuristic in Stochastic Approximation (see however [Lapeyre et al. 1990]).

⊲ Inductive computation: the splitting method. The most important step to pre-

serve the accuracy of the quantization as N increases is to use the so-called splitting

method which finds its origin in the proof of the existence of an optimal N-quantizer:

once the optimization of a quantization grid of size N is achieved, one specifies the

starting grid for the size N + 1 or more generally N + ν , ν ≥ 1, by merging the

optimized grid of size Nwith ν points sampled independently from the distribution

having a probability density proportional to ϕ
d

d+2 where ϕ denotes the p.d.f. of the

distribution P
X

. This rather unexpected choice is motivated by the fact that this dis-

tribution provides the lowest in average random quantization error (see [?]).

When simulation at a reasonable cost of the distribution ϕ
d

d+2 (ξ )λd(dξ ) is im-

possible, one can still simulate instead P
X

-distributed numbers. This is the adopted

strategy to compute the grids of the d-dimensional normal distribution available on

the website [Pagès and Printems 2005] (see below).

⊲ Nearest neighbour search. All the above procedures rely on repeated nearest

neighbour searches. The complexity of a naive implementation of this procedure

grows linearly with d×N and becomes very demanding as d increases. So reducing

its computational cost is strategic.

– The most basic (although quite efficient) method is the Partial Distance Search:

to check whether a record level Lrec is beaten or not by |x|= ((x1)2 + · · ·+(xd)2)1/2

one checks at each step ℓ if (x1)2 + · · ·+(xℓ)2 ≥ L2
rec. If so, one rejects x and test a

new point.
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– A more sophisticate procedure has been originally devised by Bentley and an-

alyzed in a the seminal paper [Friedman et al. 1977] . It is an efficient way to store

the data (the N points) based along a search tree called k-d tree. It reduces the

complexity of the nearest neighbour search down to O(logN) (after a one shot pre-

processing of complexity O(N logN)). An improved version of the k-d tree, based

on a preliminary PCA, has been developed in [McNames 2001] and is known as the

PAT algorithm (for Principle Axis Tree). Other search trees based on a preliminary

“rough” quantization have also been proposed (see [Corlay 2011]). The (relative)

efficiency of such methods first increases as the dimension of the state space grows

but becomes more limited for large dimension where “brute force” (unfortunately)

comes back in the game.

⊲ Still more on practical aspects. Many practical studies have been carried

out, including heuristic considerations about the above described procedures in

[Gersho and Gray 1992] with an orientation toward Signal Processing and Data

compressing. In [Pagès and Printems 2003] a first numerical study entirely devoted

to the multi-variate normal distribution has been developed which finally led to

make available optimized grids of multivariate normal distributions on the web-

site [Pagès and Printems 2005] devoted to optimal vector and functional quantiza-

tion.

These grids have been computed inductively using the splitting method by a combi-

nation of CLVQ (for medium values of N ) and Lloyd’s I algorithm, for dimension

running from d = 1 up to d = 10 and sizes N running from 1 up to 10000. For

each grid Γ several “companion parameters (see below) are included in the files,

especially the weights wi = P(N (0; Id)∈ Ci(Γ )), i = 1, . . . ,N, but also the local

Lp-inertia
(
E|X − xi|

p1{X∈Ci(Γ )}

)
1≤i≤N

for p = 1, 2.

4.2 Dual quantization

In general, a grid which was optimized for Voronoi quantization will also serve as

a good grid for Delaunay quantization. As concerns practical applications, the most

important advantage of dual quantization is its intrinsic (dual) stationarity property

E(X̂Γ ,Del|X) = X (where X̂Γ ,Del = J U
Γ (X))

which holds for any grid Γ with supp(PX) ⊂ conv{Γ } regardless of its optimality

with respect to the distribution of X . Dual stationarity exclusively follows from the

way of defining the dual quantization weights as

pi = P(X̂Γ ,Del = xi).
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Nevertheless, we give here a short sketch of the couterparts of Lloyd’s I proce-

dure and the CLVQ-algorithm for dual quantization.

4.2.1 Lloyd-type algorithm for dual quantization

In order to establish a Lloyd-type algorithm for the optimization of dual quantization

grids, we write Γ(m) = {xm,1, . . . ,xm,N}⊂R
d for m∈N and denote by (DI(Γ ))I∈I a

Delaunay partition of conv(Γ ), where the index set I = I (Γ )⊂
{

I ⊂ {1, . . . ,N} :

# I = d + 1
}

defines a Delaunay triangulation in Γ . Moreover, if ξ ∈ DI(Γ ), we

write λ I
xi
(ξ ) for the barycentric coordinate of ξ ∈ conv{x j : j ∈ I} with respect to

the vertex xi.

Recall that each Delaunay triangle DI(Γ ) is characterized by the center of a

sphere spanned by the vertices {x j : j ∈ I} which contains no point of Γ in its

interior. We then denote this center by zI = zI(Γ ) and define a Delaunay center by

mapping

ZΓ (ξ ) = ∑
I∈I

zI 1DI (Γ )(ξ ). (10)

Note moreover that those Delaunay centers are exactly the vertices of the corre-

sponding Voronoi tessellation since they are at the same distance to the x j, j∈ J.

If one considers the optimization problem (still with an abuse of notation)

Γ = (x1, . . . ,xN
) 7−→DistorN(X ;Γ ) := E|X−J U

Γ (X)|2 (11)

then it was shown in [Pagès and Wilbertz 2010a] that the gradient of this function

in Γ reads

∇ Γ DistorN(X ;Γ ) = 2
[
E
(
(xi−ZΓ (X))1{J U

Γ (X)=xi}

)]
1≤i≤N

.

The first order optimality condition therefore writes

E
(
ZΓ ∗(X)|J U

Γ ∗(X)
)

= J U
Γ ∗(X)

and can be regarded as a counterpart to (8). We may therefore define a Lloyd-type

method for dual quantization starting at some initial grid Γ(0) ⊂ R
d ,#Γ(0) = N as

X̂Γ(m+1) = E
(
ZΓ(m)(X)|J U

Γ(m)
(X)
)
, m≥ 0.

Since it holds

P(J U
Γ (X) = xi) = ∑

I∈I : i∈I

∫

DI (Γ )
λ I

xi
(ξ )PX(dξ ),

we arrive for m≥ 1 at
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xm+1,i =

∑
I∈I : i∈I

zI

∫
DI (Γ ) λ I

xi
(ξ )PX (dξ )

∑
I∈I : i∈I

∫
DI(Γ ) λ I

xi
(ξ )PX(dξ )

, i = 1, . . . ,N.

This means that xm+1,i is chosen as a weighted sum of the Delaunay centers zI whose

triangles share the same vertex xm,i in Γ(m). It can be shown that such an algorithm is

in fact a Quasi-Newton method and therefore converges to a local minimum of (11)

(see e.g. [Iri et al. 1984] in the case of the regular Lloyd’s I method).

This algorithm, which is new to our knowledge, is the first tool we used to com-

pute optimal dual quantization grids like the one below obtained from the Brownian

motion at time 1 and its supremum over [0,1]. The second algorithm is the counter-

part of the CLVQ and is described below.
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Fig. 1 Dual Quantization of the joint distribution a Brownian motion at T = 1 and its supremum

over [0,1] (N = 250).

4.2.2 CLVQ like procedure for dual quantization

Like for the “Voronoi” CLVQ algorithm, we consider the dual distortion function

Γ = (x1, . . . ,xN
) 7−→ DistorN(X ;Γ ) := E|X −J U

Γ (X)|2.
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Referring again to [Pagès and Wilbertz 2010a], it holds for the gradient of the dual

distortion function

∇ Γ DistorN(X ;Γ ) = 2
[
E
(
(xi−ZΓ (X))1{J U

Γ (X)=xi}

)]
1≤i≤N

.

As above, the stochastic gradient method is given by

Γ(m+1) = Γ(m)−γm+1∇ xdistorN(Xm+1;Γ(m)), m≥ 1, Γ(0) ⊂ R
d , #Γ(0) = N

where (Xm)m≥1 is an i.i.d. sequence of copies of X and (γm)m≥1 is a sequence of

gain parameters satisfying the decreasing step assumption.

In practice that means that we generate a sequence (Xm)m≥1 of i.i.d copies of X

and the two phases of the CLVQ-algorithm read as follows

(i) Competitive Phase: Search for the Delaunay triangle I∗(Xm+1) ∈ I (Γ(m))

which contains the realization Xm+1.

(ii) Learning Phase: One moves the winning triangle towards the Delaunay cen-

ter Z
Γ(m)(Xm+1) using a dilatation i.e.

∀i ∈ I∗(Xm+1) : xm+1,i = Dilatation
[Z

Γ(m) (Xm+1),1−γm+1]
(xm,i).

4.2.3 Search for the matching Delaunay hyper-triangle

A crucial point in both above procedure, as well as in the weight computations later

on, is the search for the Delaunay triangle I∗(ξ ) ∈ I (Γ ), which contains a point

ξ ∈ conv(Γ ). This phase in dual quantization optimization is the exact counterpart

of nearest neighbour search for Voronoi quantization. Such a search can be imple-

mented efficiently by a directed search on the Delaunay triangulation of Γ . To be

more precise, one starts at a triangle I0 ∈I (Γ ) and then moves on to that neighbor

triangle of I0 which lies on the line defined by the Delaunay center zI0 and ξ . It

was shown in [Bowyer 1981] that such a procedure reaches the triangle I∗ ∈I (Γ )

which contains ξ in average after O(N1/d) steps, where N is the number of points

in the grid Γ . For more details on such point location procedures in triangulations

we refer to [Devroye et al. 2004] and [Muecke et al. 1999].

We did not speak yet about the weight computation in this section although it

is a crucial step to fully determine the distribution of X̂ (whatever quantization is

adopted) which in turn is necessary to produce quantization based cubature formu-

las. However, since we are interested in American option pricing, we postpone this

kind of question to the quantization tree below where we will show how to compute

the transition weights of the tree for both types of quantization.
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5 Application to cubature formula for numerical integration

Let X̂ be a quantization based approximation of a random vector X taking value in

a grid Γ = {x1, . . . ,xN
} of size N ≥ 1 (X̂ = ProjΓ (X) (Voronoi) or J U

Γ (X) (Delau-

nay)) depending on the Voronoi or Delaunay nature of the quantization).

⊲ Lipschitz continuous functions. If F : R
d → R is Lipschitz continuous

|EF(X)−EF(X̂)| ≤ [F ]LipE|X− X̂ |= ‖X− X̂‖
1
.

This yields an approximate cubature formula since

EF(X̂) = ∑
1≤i≤N

piF(xi) where pi = P(X̂ = xi), i = 1, . . . ,N.

Furthermore, we know that Voronoi quantization is optimal in the following sense

sup{|EF(X)−EF(X̂)|, [F ]Lip ≤ 1}= e1,N(X).

⊲ Functions with Lipschitz continuous differential. Assume that Γ̂ is stationary (i.e.

E(X | X̂)= X̂) or “dual stationary” (i.e. E(X̂ |X)= X), then (see [Pagès and Wilbertz 2010a])

|EF(X)−EF(X̂)| ≤ [DF]LipE|X− X̂ |2

where DF denotes the (Lipschitz continuous) differential of F . At his stage, one

must have in mind that few grids Γ (mainly the optimal quadratic grids) are station-

ary for Voronoi quantization whereas all grids are dual stationary by construction.

⊲ Convex functions. If F is convex and Γ is a stationary Voronoi quantizer, then

EF(X̂Γ ,vor)≤ EF(X) where X̂Γ ,vor = ProjΓ (X).

If X has compact support, for any grid Γ such that conv(Γ )⊃ supp(P
X
),

EF(X)≤ EF(X̂Γ ,del) where X̂Γ ,del = J U
Γ (X).

Combining both quantization approaches yields a deterministic security interval.

6 Quantization tree

Let us come back to our Bermuda option pricing problem with the notations intro-

duced in Section 2. At each time k∈ {0, . . . ,n}, we consider a grid Γk of size Nk

supposed to be an optimal (or at least a “good”) Voronoi/Delaunay quantization of

the Markov chain Xk at time k.
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We define the discretization function πk : R
d× [0,1]→R

d as

• Voronoi:A Borel nearest neighbour projection on the grid Γk (see (6)) i.e.

∀ξ ∈ R
d , ∀u∈ [0,1], πk(ξ ,u) := ProjΓk

(ξ ). (12)

• Delaunay: A splitting operator on the grid Γk

∀ξ ∈ R
d , ∀u∈ [0,1], πk(ξ ,u) := J u

Γk
(ξ )1{ξ∈conv(Γk)}

+ ProjΓk
(ξ )1{ξ /∈conv(Γk)}

.

(13)

Definition 6.1 A quantization tree of the Markov chain X = (Xk)0≤k≤n is made of

– a set of n + 1 grids Γk of size Nk ≥ 1, k = 0, . . . ,n, whose elements are denoted

Γk = {xk
1, . . . ,x

k
N
}, k = 0, . . . ,n;

– a set of transition matrices pk =[pk
i j]1≤i≤Nk,1≤ j≤Nk+1

, k = 0, . . . ,n−1, defined by

pk
i j = P

(
X̂k+1 = xk+1

j | X̂k = xk
i

)
.

The resulting “quantized” dynamical programing principle derived from (2),

once written “in distribution”, reads

v̂n(x
n
i ) = hn(x

n
i ), i = 1, . . . ,Nn

v̂k(x
k
i ) = max

(
hk(x

k
i ),

Nk+1

∑
j=1

pk
i j v̂k+1(x

k+1
j )

)
, i = 1, . . . ,Nk, k = 0, . . . ,n−1.

Remarks. • Once the grids have been settled and the transition weight matrices

pk have been computed, on can perform the above backward quantization tree de-

scent as many times as necessary for different payoff functions. All the information

about the discretization of the Markov dynamics is “stored” in the quantization tree

(Γk,p
k)0≤k≤n.

• The complexity of the backward descent of such a tree is clearly proportional to

∑
0≤k≤n−1

NkNk+1. For a given global budget of N = N0 + · · ·+Nn (usually prescribed

by the memory limitations of the computing device). Up to edge effects the minimal

complexity is attained with constant size trees i.e. Nk = N
n+1

, k = 0, . . . ,n. If X0 = x0,

then N0 = 1 and Nk = N−1
n

, k = 1, . . . ,n. Other considerations (see below) may lead

to other specifications for the quantization tree
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6.1 Error bounds

By combining the error bounds of Proposition 2.1 and the non asymptotic bounds for

optimal quantization(s) we get the following proposition which takes advantage of

the non-asymptotic Zador’s Theorems (3.1(b) and 3.2(b)). It simplifies the original

presentation from [Bally and Pagès 2003a] and extends it to dual quantization.

Proposition 6.3 Assume the Markov chain satisfies all the assumptions of Propo-

sition 2.1 and that furthermore, max0≤k≤n ‖Xk‖p′ < +∞ for a p′ > 1. Assume that

the payoff functions hk, k = 0, . . . ,n are Lipschitz continuous. Assume the sequence

(X̂k)0≤k≤n is defined either by (12) or by (13) and that, for every k = 0, . . . ,n, the

quantization size Nk ≥ Nd,p,p′ (Nd,p,p′ = 1 in the Voronoi setting). Then for every

p∈ [1, p′), there exists a real constant κ p,p′ > 0 such that, for every k∈ {0, . . . ,n},

‖vk(Xk)− v̂k(X̂k)‖p ≤ κ p,p′

n

∑
ℓ=k

Cn,ℓ([P]Lip, [h.]Lip)σp′(Xk)N
− 1

d

ℓ

where σp(Xk) = mina∈Rd ‖Xk−a‖p, k = 0, . . . ,n.

For a second order scheme (based on Voronoi quantization) which takes full

advantage of the stationarity, we refer to [Sellami 2010]. For other other applica-

tions (cubature formulas, non-linear filtering, stochastic control, etc) we refer to

the surveys [Pagès et al. 2003], [Pagès and Printems 2009] and the reference therein

(Voronoi quantization) or [Pagès and Wilbertz 2010a] (dual quantization).

6.2 Design of an optimized quantization tree by simulation

6.2.1 Grid sizes

A first step (however not mandatory) is to minimize the error bound (at the origin)

obtained in Proposition 6.3 for a given budget of elementary quantizers N0 + · · ·+

Nn≤N (this limitation is usually related to the memory devoted to the computation).

An elementary optimization under constraint yields for the sizes of the grids

Nk =

⌊
akN

a0 + · · ·+ an

⌋
with ak =

(
Ck,n([P]Lip, [h.]Lip)σp′(Xk)

) d
d+1

, k = 0, . . . ,n.

This allocation depends on the payoff but if max0≤k≤n[hk]Lip < +∞, one may re-

place ak by ãk = max0≤ℓ≤n−k[P]ℓLipσp′(Xk) or even ãk = σp′(Xk) if, one “controls”

max0≤k≤n[P]kLip (like in the example following Proposition 2.1). In the dual setting,

this allocation is an heuristic since we have the additional constraint Nk ≥ Nd,p,p′ .
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Example. Let Xk = Wtn
k
, W Standard Brownian motion. Then σp′(Xk) = cp′

√
tn
k ,

k = 0, . . . ,n.

6.2.2 Transition weight estimation

⊲ The “diffusion” method. Like for the grid optimization, a large L-sample (X (ℓ))

of the chain is generated and sent “through” the grids. Then one estimates each

transition weight by

pk
i j = a.s.- lim

L→∞

∑L
ℓ=1 P(πk(X

(ℓ)
k ,Uk) = xk

i ,πk+1(X
(ℓ)
k+1,Uk+1) = xk+1

j |X
(ℓ)
k , X

(ℓ)
k+1)

∑L
ℓ=1 P(πk(X

(ℓ)
k ,Uk) = xk

i |X
(ℓ)
k )

(14)

where πk is specified following the type of the quantization. We may assume that

the integration with respect to Uk and Uk+1 can be done explicitly by a closed form

solution (keeping in mind that (Uk) and (Xk) are independent). This holds trivially

true for Voronoi quantization, but also for dual quantization as we will see later on.

The strong consistency follows then from the Strong Law of large Numbers since

E

(
P(πk(X

(ℓ)
k ,Uk) = xk

i ,πk+1(X
(ℓ)
k+1,Uk+1) = xk+1

j |X
(ℓ)
k , X

(ℓ)
k+1)

)

= P(πk(X
(ℓ)
k ,Uk) = xk

i ,πk+1(X
(ℓ)
k+1,Uk+1) = xk+1

j )

and

E

(
P(πk(X

(ℓ)
k ,Uk) = xk

i |X
(ℓ)
k )
)

= P(πk(X
(ℓ)
k ,Uk) = xk

i ).

When πk does not depend on the exogenous noise (like for Voronoi quantization),

the above estimator coincide with the naive one, that is

pk
i j = a.s.- lim

L→∞

∑L
ℓ=1 1

{πk(X
(ℓ)
k

,Uk)=xk
i ,πk+1(X

(ℓ)
k+1

,Uk+1)=xk+1
j }

∑L
ℓ=1 1

{πk(X
(ℓ)
k

,Uk)=xk
i }

.

⊲ More precisely, in the case of Voronoi quantization, it holds

πk(X
(ℓ)
k ,Uk) = xk

i ⇐⇒ X
(ℓ)
k ∈Ci(Γk),

where Ci(Γk), i = 1, . . . ,Nk denotes a Voronoi partition of R
d , so that (14) finally

reads

pk
i j = a.s.- lim

L→∞

∑L
ℓ=1 1

{X
(ℓ)
k
∈Ci(Γk)∩X

(ℓ)
k+1
∈C j(Γk+1)}

∑L
ℓ=1 1

{X
(ℓ)
k
∈Ci(Γk)}

.

Note here, that from an implementational point of view, we do not need to con-

struct the whole Voronoi diagram of the grids Γk. It is sufficient to perform a Nearest



26 Gilles Pagès and Benedikt Wilbertz

Neighbor search to estimate the transition probabilities as it can be seen in Algo-

rithm 1.

Algorithm 1 Transition probability estimation for Voronoi quantization

for ℓ = 1, . . . ,L do

x← x0, i← 0, pi
1← 1

for k = 1, . . . ,n do

Simulate Xℓ
k given Xℓ

1 , . . .,Xℓ
k−1

Find Nearest Neighbor-Index j of Xℓ
k in Γk

Set

pk
i j+ = 1

pk+1
j + = 1

i← j

end for

end for

Set pk
ij←

pk
i j

pk
i

, 1≤ i, j≤ Nk,1≤ k ≤ n

⊲ In case of dual quantization it holds for Xk ∈ conv(Γk), with the notation from

Section 4.2,

P(πk(X
(ℓ)
k ,Uk) = xk

i ) = ∑
I∈I (Γk): i∈I

∫

DI (Γk)
λ I

xk
i

(ξ )PX (dξ ),

where DI(Γk), I ∈I (Γk) denotes a Delaunay partition of conv(Γk).

The estimation of the transition probabilities pk
i js then can be implemented as

shown in Algorithm 2.

Algorithm 2 Transition probability estimation for dual quantization

for ℓ = 1, . . . ,L do

x← x0, i← 0, pi
1← 1

for k = 1, . . . ,n do

Simulate Xℓ
k given Xℓ

1 , . . .,Xℓ
k−1

Find Delaunay hyper-triangle τk of Xℓ
k in Γk

Update pk
·,· w.r.t. barycentric coordinates of (Xℓ

k−1,Xℓ
k ) (τk−1, τk)

Update pk+1
· w.r.t. barycentric coordinates of Xℓ

k in τk

end for

end for

Set pk
ij←

pk
i j

pk
i

, 1≤ i, j≤ Nk,1≤ k ≤ n

Although this transition probability estimation by Monte-Carlo simulation is

usually the most time consuming part of the quantization tree algorithm in prac-

tice, one has to emphasize here, that both above algorithms can be parallelized
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very efficiently. This is indeed of special importance since the availability of mas-

sive parallel computing device at very low price like as GPGPUs. It was shown

in [Pagès and Wilbertz 2011], that the computational time for transition probability

estimation can be reduced by a factor 200 when implemented on a GPGPU device.

⊲ The spray method. On can decouple the computation of the transitions at each

time steps by noting that

L
(

πk+1(Xk+1,Uk+1)= xk+1
j |πk(Xk,Uk)= xk

i

)
≈L

(
πk+1(Xk+1,Uk+1)= xk+1

j |Xk = xk
i

)
.

The distribution on the right hand side is easy to simulate (since the chain is sup-

posed to be simulatable). Consequently one can perform a Monte Carlo simulation

based on this distribution to estimate (approximately) the pk
i js. As concerns Voronoi

quantization, it has been shown in [Pagès et al. 2003] that the error induced by such

an approximation is of second order if the grids Γk are stationary.

Decoupling the estimation of the successive transition matrices makes possible to

perform a new parallelization of the estimation procedure (see [Bronstein et al. 2010])

with again a significant reduction of the computation time down to a few seconds

on a GPGPU device.

6.3 Martingale correction

When the structure process (Xk)0≤k≤nis a martingale (e.g. a discounted set of d risky

assets under a risk neutral martingale probability, or a Brownian motion at times tn
k =

kT
n

, etc) and X0 = x0, the quantization based approaches do not preserve naturally

this property (or any dynamical property). One way to proceed is to slightly modify

the grids Γk as follows:

– Define by a backward induction Γ̃n = Γn and for every k = 0, . . . ,n−1,

Γ̃k =
{

xk
1, . . . ,x

k
Nk

}
where x̃k

i =
Nk+1

∑
j=1

pk
i j x̃

k+1
j , i = 1, . . . ,Nk.

– Re-center the grids by setting

Γ mart
k = Γ̃k + x0− x̃0.

The resulting quantization tree (Γ mart
k ,pk)0≤k≤n has the distribution of a martingale

starting at x0 at time 0. Although it often significantly improves numerical results,

theoretical error bounds no longer hold. It is observed that the translation x0− x̃0 is

negligible in practice.
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7 Numerical experiments

7.1 Swing Options

We begin the numerical illustrations by the example of the pricing of swing options

in a Gaussian 2-factor model. Such a problem consists in solving the normalized

stochastic control problem (interest rate is neglected)

esssup

{
E

(
n−1

∑
k=0

qk

(
vk(Xk)−K

)
|F0

)
,qk : (Ω ,Fk)→ [0,1], q̄n ∈ [Qmin,Qmax]

}

(15)

for global consumption couple (Qmin,Qmax)∈ N
2 and q̄k := ∑k−1

l=0 ql . As shown in

[Bardou et al. 2010b] there exists an optimal bang-bang control for this problem,

which leads, in combination with the BDPP, to

Pn
n ≡ 0

Pn
k (Qk) = max

{
x
(
vk(Xk)−K

)
+E(Pn

k+1(χ
n−k−1(Qk,x))|Xk);x ∈ {0,1}∩ In−k−1

Qk

}

with admissible set IM
Qk := [(Qk

min−M)+∧1,Qk
max∧1] and

χM(Qk,x) :=
(
(Qk

min− x)+,(Qk
max− x)∧M

)
so that Pn

0 (Qmin,Qmax) is a solution to

(15).

A straightforward quantization of this problem then reads

P̂n
n ≡ 0

P̂n
k (Qk) = max

{
x
(
vk(X̂k)−K

)
+E(P̂n

k+1(χ
n−k−1(Qk,x))|X̂k);x ∈ {0,1}∩ In−k−1

Qk

}

and error bounds have been established in [Bardou et al. 2010b]. Note here that

the computation of the conditional expectations E
[
P̂n

k+1(χ
n−k−1(Qk,x))|X̂k = xk

i

]

becomes straightforward owing to Section 6 since it holds E( f (X̂k+1)|X̂k = xk
i ) =

∑Nk+1

j=1 pk
i j f (xk+1

j ).

Furthermore we will focus here on the case Qmin = 0, Qmax = n so that the solu-

tion Pn
0 has the representation

Pn
0 =

n

∑
k=1

(vk(Xk)−K)+.

We therefore may hope that due to this simple structure as a strip of calls and

in view of section 5 that stationarity may play an important role for the numerical

results.

As underlying we have chosen as in [Bronstein et al. 2010] the two dimensional

Markov process
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Xk =

(∫ k∆ t

0
e−α1(k∆ t−s)dW 1

s ,

∫ k∆ t

0
e−α2(k∆ t−s)dW 2

s

)
.

so that the 2-factor underlying is given by vk(Xk) for vk(x1,x2) = s0 exp
(
σ1x1 +

σ2x2−
1
2
µt

)
. The numerical parameters here read in detail as

s0 = 20, α1 = 1.11, α2 = 5.4, σ1 = 0.36, σ2 = 0.21, ρ =−0.11, n = 30

i.e. we have a Gaussian process (Xk) with a true correlation. Note that in such a

setting the transformation of an optimal and stationary Voronoi quantization grid

for the bivariate standard normal distribution into one with correlation ρ destroys

already the stationarity property in the transformed grid. In the case of dual quanti-

zation, stationarity for the transformed grid is at least preserved on conv(Γ ).

As it is shown in Figures 2 and 3 the dual methods outperforms clearly the

Voronoi approach, which is mainly caused by the intrinsic stationarity of the De-

launay quantization mapping.

Moreover; we already observe that Dual quantization tends to lead to an upper

bound whereas Voronoi quantization is approaching from below. (Both those obser-

vations hold in general true for convex F and precisely stationary quantizers X̂ .)

Swing option: #exercise days: 30, K = 5.0
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Fig. 2 Convergence of the quantization methods as function of the average grid size N.
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Swing option: #exercise days: 30, K = 5.0
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Fig. 3 Convergence of the quantization methods as function of the average grid size N.

7.2 Bermuda options

First we recall the following basic fact: in classical non-arbitrage theory of contin-

gent claims, it is well-known that, in a complete market, the discounted fair price

of a Bermuda option with payoff process (hk(Stk ))0≤k≤n, 0 = t0 < t1 < .. . < tk . . . <

tn = T , is the Snell envelope of the discounted payoff process so that

Premiumtk = S0
tk

SnellP∗

(
hk(Stk)

S0
tk

)

0≤k≤n

where (S0
t )t∈[0,T ] is the numéraire (also called “riskless asset”) and St = (S1

t , . . . ,S
d
t )t∈[0,T ]

is the risky asset price R
d-valued process and P

∗ is the risk-neutral probability. In

what follows Bermuda options appear as time approximation of American options

(see [Bally and Pagès 2003b] for various time discretization error bounds).

7.2.1 Geometric Exchange Option

We now consider the case of a geometric exchange put option in a multi-dimensional

Black Scholes model with maturiry T and 11 exercise dates k T
10

, k = 0, . . . ,10. That

means that the underlyings (Si
t)t∈[0,T ], i = 1, . . . ,d are given by the (uncorrelated)



Optimal Delaunay and Voronoi quantization schemes for pricing American style options 31

Black-Scholes dynamics:

Si
t = si

0 exp
(
(r−δi−

σ2
i

2
)t +σiW

i
t

)
, si

0 > 0,

W = (W 1, . . . ,W d) standard Brownian motion, and the payoff of this option reads

for d = 2k

ϕ (S1
t , . . . ,S

d
t ) =

( k

∏
i=1

Si
t −

d

∏
i=k+1

Si
t

)
+
.

Example 1. As parameters we have chosen a Bermudan option with maturity T = 1,

11 exercise dates: k/10, k = 0, . . . ,10, and

si
0 = 40

2
d , i = 1, . . . ,k, si

0 = 40
2
d , i = k + 1, . . . ,d, r = 0.05,

σi = 0.2, i = 1, . . . ,d, δi = 0.05, i = 1, . . . ,k, δi = 0.0, i = k + 1, . . . ,d.

These settings can be reduced for any d to a 2-dimensional exchange option for

which we computed reference values using a Boyle-Evnine-Gibbs tree with 10000

time steps.

The resulting log-log plots of the convergence for Voronoi and Dual quantization

can be found in Figures 4 and 5.
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Fig. 4 Log-Log plot of quantization methods for the geometric exchange option in dimension 2

One observes here again that dual quantization approach yields a slightly better

rate (cf. Table 1) than the Voronoi quantization approximation.

2d 4d

Voronoi Quantization 0.73 0.36

Dual Quantization 0.86 0.38

Table 1 Rates of convergence for the exchange option.
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Fig. 5 Log-Log plot of quantization methods for the geometric exchange option in dimension 4

Note moreover that the upper bound in Proposition 6.3 promises only an optimal

rate of 0.5 in dimension 2 and 0.25 in dimension 4. Therefore it seems that also in

this example there is some more smoothness to capture which leads in practice to

better rates than those for the worst case error within class of Lipschitz functionals.

Due to the very smooth convergence seen in Figures 4 and 5, we furthermore

apply a Richardson-Romberg extrapolation on the error expansion

EF(X)≈ EF(X̂)+κ N−α ,

which is a pure heuristic but has a theoretical justification for stationary quantizer

(see, e.g., [Pagès and Printems 2009]). We therefore use the rates α from Table 1

and extrapolate the unknown κ using two different grids sizes N1 and N2. As a

result, we obtain in the above setting for

P̂Rom
0 = P̂

N1
0 +

P̂
N1
0 − P̂

N2
0

N−α
2 −N−α

1

N−α
1

a stable and fast convergence as shown in Figures 6 and 7 for dimensions 2 and 4.

These experiments suggest to adopt the mid-price 0.5× (PriceVQ + PriceDQ).

Alternatively one may, following the commonly shared idea of including the pay-

off in the regression basis of Longstaff-Schwartz’s algorithm, use the European price

of the exchange option as a control variate. This means that the BDPP reads

Ṽn = ϕtn(Xn)−CEur
T−tn

(Xn)

Ṽk = max
{

ϕtk (Xk)−CEur
T−tk

(Xk); E
(
Ṽk+1

∣∣Xk

)}
, 0≤ k ≤ n−1,

where CEur
t (x) is the european price for maturity t and initial Stock price x.

Consequently, the true price V0 is given by
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Fig. 6 Convergence of the extrapolated quantization methods for the geometric exchange option

in dimension 2
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Fig. 7 Convergence of the extrapolated quantization methods for the geometric exchange option

in dimension 4

V0 = Ṽ0 +CEur
T (X0).

Numerical results for the above setting are given in Figures 8 and 9.

7.2.2 Put-On-The-Min option

A final comparison is taken out on the example of an put-on-the-min option in a two

dimensional Black Scholes model. The payoff of this option reads

ϕ (S1
t ,S

2
t ) =

(
K−min(S1

t ,S
2
t )
)

+
.
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Fig. 8 Convergence of quantization methods with european control variate for the geometric ex-

change option in dimension 2
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Fig. 9 Convergence of quantization methods with european control variate for the geometric ex-

change option in dimension 4

Here again the reference values were computed using a Boyle-Evnine-Gibbs tree

with 10000 timesteps.

We compare the dual quantization approach including the martingale correction

of Section 6.3 to the Longstaff-Schwartz (L-S) approach from the Premia software

package(2). For the L-S procedure, we have chosen a family of 22 independent

functions (21 monomial functions + the payoff function) and plotted in Figure 10

a Monte Carlo simulation with increasing number of sample paths ranging from

10.000 to 100000 and its 95% confidence interval.

2 Software developped by Projet MATHFI at Inria
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This setting was chosen to arrive at approximately equal computational times for

the L-S approach and the dual quantization method.

One clearly sees in Figure 10 that the quantization approach with martingale

correction provides already for small N a very good approximation to the true value

of the Bermuda option. In addition, the L-S approach suffers from a higher volatility,

since it is more depend on the Monte Carlo error than the quantization tree approach,

which contains the critical MC-Simulation only in the weight estimation.

Furthermore we have also plotted in Figure 10 the Monte Carlo estimation by a

L-S approach from the Premia software package in order to compare results.

Example 2. 2-asset (correlated) Black-Scholes model with maturity T = 1 and 11

exercise times k T
10

, k = 0, . . . ,10,

s1
0 = s2

0 = 40, r = 0.05, σ1 = 0.2, σ2 = 0.3, ρ = 0.5, K = 40,

for a put on the min, i.e. payoff

ϕ (S1
t ,S

2
t ) =

(
K−min(S1

t ,S
2
t )
)

+
.

As underlying Markov process Xk we have chosen a 2-dimensional Brownian Mo-

tion W = (W 1,W 2) with correlation ρ.

 3.76

 3.78

 3.8

 3.82

 3.84

 3.86

 3.88

 3.9

 3.92

 3.94

 3.96 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

N

D
Q

 +
 M

art
LS

 +
 95%

 conf
B

erm
udan ref

A
m

erican ref

Fig. 10 Convergence of quantization methods for a put-on-the-min option in dimension 2
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[Benveniste et al. 1990] BENVENISTE, A., MÉTIVIER, M. AND PRIOURET, P. [1990]: Adaptive

algorithms and stochastic approximations, Translated from the French by Stephen S. Wilson.

Applications of Mathematics 22, Springer-Verlag, Berlin, 365 p.

[Bouton and Pagès 1993] BOUTON, C. AND PAGÈS, G. [1993]: Self-organization and
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